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Abstract

Multi-output problems are now an extensively active area facing the rising need of trans-
ferring knowledge across related outputs. Multi-output Gaussian Processes are particularly
important that utilize efficiencies and elegance of Gaussian Process and extend its modelling
power from single-output to multi-output.

In this project, we focus on the Gaussian Process Autoregressive Regression (GPAR) model
that explicitly exploit dependencies between outputs (Requeima et al., 2018). We extend the
model to a fully Bayesian inference version which replaces the former denoising approxima-
tion used by GPAR and handles noisy outputs or missing data well by producing more robust
results. The inference scheme also enables our model to deal with non-Gaussian likelihood
and even combinations of different likelihoods, which allows for a tractable variational
bounds that scales-up to large datasets. The expected advantages are validated through
extensive experiments using synthetic and real datasets. We also put our novel model in an
unifying framework of the multi-output Gaussian Processes literature, comparing existing
state-of-art method with respect to modeling power, how latent process being shared and
approximations required.
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Chapter 1

Introduction

Traditional supervised learning has shown great power at solving single-output problems,
such as binary classification of identifying spam among emails and regression problems such
as to predict gross merchandise volume in the e-commerce platform. However, since the
increasing trends of today’s complex decision making, learning paradigms that simultane-
ously predict multiple outputs at once are at a pressing need. Due to frequent upgrading of
technology and personalised system, there are many mechanisms that deal with multiple
complex factors. For example, a mobile phone application that captures information about
mobility, communications, and interactions in social media at the same time would need
a good solution to learn these related tasks and infer future possible behaviors or missing
recordings due to rare malfunction of devices. Moreover, medical signals measured of dif-
ferent body parts or weather conditions measured in different geographical locations would
require a systematic way of learning that discovers similarities between patterns and help
to leverage knowledge. Multi-outputs problems often appear in many different forms, such
that they either differ in data types or ways how each output correlate and interact with each
other. The diverse data types include real-valued multi-target regression (Borchani et al.,
2015), multi-label classification (Zhang et al., 2013) where output variables are binary, and
the heterogeneous case where a mix of continuous, categorical, or discrete variables are of
interests (Moreno-Muñoz et al., 2018). For example, when human behavior is of interest,
active use or non-use of social software and distance from home would correspond to the
heterogeneous case where one output is binary and the other continuous. The correlation
also appears in different ways, such that one output might depend quite simply on inputs but
depend on certain other outputs in a complex way. On another aspect, outputs can either
share similar marginal distribution, such as image or audio data, or they can be marginally
heterogeneous and require separate modelling of “inter-” and “intra-” differences (Ma et al.,
2020, Carlson et al., 2010). The sophisticated dependencies between these outputs need
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structured inference and can be modeled by different methods.

Gaussian Process (GP) is a powerful model that defines probability distributions over func-
tions, where Bayesian inference will be convenient to achieve or approximate in a wide
range of tasks, including regression, classification, and state-space model (Wilk et al., 2020).
Typically, GPs are designed for single-output problems that out-performs other methods in
providing uncertainty over predictions but increasing research on multi-output GPs (MOGP)
has also shown its popularity and generalization in adapting to the arisen multi-output fields.
The first history of MOGP appears as co-kriging (Chiles et al., 2009) widely used in the
geostatistic community and also evolves as multi-task learning or transfer learning within the
machine learning group. The key focus of MOGP is to exploit the dependencies between
outputs in a way that latent processes will share information and achieve better performance
for all tasks. In this project, we would provide a brief comprehensive view of MOGP, com-
pare and contrast existing methods. Particularly, one of the MOGPs that explicitly treats
outputs as inputs, unlike in the co-kriging case where latent processes are implicitly combined
using a matrix, is called the Gaussian Process Autoregressive Regression (GPAR) studied by
Requeima et al. (2018). We focus on further generalising GPAR to deal with noisy or missing
values in the output with more caution and enable it to model non-Gaussian likelihoods and
even heterogeneous data as mentioned before. We utilize the approximation inference scheme
raised by Salimbeni et al. (2017) which is motivated to solve the intractability introduced by
non-Gaussian mappings in deep Gaussian Processes.

1.1 Thesis Contribution

We present the Gaussian Process Latent Autoregressive model (GPLAR), combining ideas in
deep GPs and MOGPs literature. In order to solve the deficiency in the original GPAR such
that noisy outputs are directly used as inputs and hence leads to larger noise in a subsequent
stage, hidden variables are introduced corresponding to noiseless, unobserved but true latent
function evaluations that require fully Bayesian inference. Since direct links between outputs
could also be seen as a nested composition of GP priors, one can easily find similar structures
in deep GPs. We utilize the doubly stochastic variational inference scheme in deep GPs,
proposing a free-energy term by introducing inducing points at each output level.

• Firstly, we study and compare GPAR and GPLAR’s performance over different levels
of observation noise and our method successfully solves the problem of misbehavior of
the original GPAR model when observation noise is large. We further extend GPLAR
to deal with non-Gaussian likelihoods and show its superiority using real datasets.
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• Secondly, we realize GPAR’s poor performance when there are missing values in
the first few output levels, as the original GPAR is sensitive to the sequence order
of outputs. Analysis of possible reasons and a new version of GPLAR inspired by
bi-directional Recurrent Neural Networks is proposed.

• Thirdly, we review and analyze the similarities and differences among the models
proposed in the MOGPs’ literature through the views of how latent processes are
shared, linearity or non-linearity mappings between outputs.

1.2 Thesis Structure

This project is organized as follows. In Chapter 2, we first review the basics of Gaussian Pro-
cess, including the widely-used sparse approximation inference scheme. Then we introduce
ideas behind GPAR and extend it to the latent variable version, after which, approximation
strategies utilized in deep GPs are reviewed and incorporated with our method. At the end
of this chapter, Section. 2.5 summarizes related work in a unified framework, where clear
advantages of our method compared with other works are presented. In Chapter 3, we discuss
the theoretical details of the modeling process, including inducing points optimizations and
kernel selections. We further interpret the uncertainty estimates and elaborate the fact that
GPLAR and bi-directional approach can be combined together. In Chapter 4, we assess
our methods by testing them on synthetic data sets and real data sets, comparing them with
previous GP models dealing with multi-outputs. Lastly, conclusions, limitations of the
proposed model, and comments over future research are made in Chapter 5.





Chapter 2

Gaussian Process Latent Autoregressive
Model

This section provides a brief overview of the non-parametric model, GP, and its sparse approx-
imation strategies which are widely used to deal with intractability and large computations. A
complete description of the GPAR model and discussion of its deficiencies will be followed,
and a new proposed model that deals with these deficiencies is then introduced. The new
proposed model, GPLAR, requires a careful approximation scheme which we borrow ideas
from deep GPs literature. We then put the new model into a comprehensive framework of
multi-output GPs literature, listing flaws and advantages of different approaches.

2.1 Gaussian Process

A Gaussian Process is a generalization of a multivariate Gaussian distribution to infinitely
many variables. One can also view a Gaussian Process as defining a distribution over func-
tions, where inference and learning directly take place in the function space (Rasmussen,
2003). Due to the elegant nature of Gaussian, such that both the conditionals and the
marginals of a joint Gaussian are again Gaussian, GP allows for specification on property
of the concerned function at a finite number of points, ignoring the infinitely many other
points without losing any information. Its combination of the Bayesian paradigm and non-
parametric modelling makes it attractive in uniting a sophisticated and consistent view.

Considering a non-linear mapping, f (x), from input x, to a scalar real-valued output y, mod-
elled by a GP, it is fully specified by its mean function, m(x), and covariance function(kernel),
k(x,x′) as follows,
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f ∼ GP(m(x),k(x,x′))

m(x) = E[ f (x)]

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))]

Following the definition, joint distribution of a finite collection of function values is,

p(f) =N (f;m(X),K(X,X))

where X = {xn}N
n=1 is the training inputs, [m(X)]n = m(xn) and [K(X,X)]i j = k(xi,x j). The

mean functions and the kernels encapsulate the prior knowledge about the behaviour of the
concerned function. The mean functions describe the average value, while the kernels specify
how smooth, wiggly, periodic the function is. Squared-exponential (SE), Rational-quadratic
(RQ) and Linear (Lin), and Periodic (Per) are kernels commonly used that determine different
generalization properties (shown in Fig. 2.1) of the model.

Fig. 2.1 First and Third columns: kernel k(·,0). Second and Fourth columns: two examples
draw from GP using corresponding kernels.

It is worth noticing that summing kernels can be seen as a superposition of independent GPs,
such that suppose f1 ∼GP(0,k1) and f 2 ∼GP(0,k2) are two independent Gaussian Process,
then f1 + f2 ∼ GP(0,k1 + k2). With multi-dimensional input, sum of kernels discovers
additive structures over dimensions while multiplication of kernels discovers interactive
structures over dimensions. In views of AND-like and OR-like operations, summing kernels
corresponds to OR-like operation since two locations are believed to have high covariance as
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long as one of the kernel has a high value, while multiplying kernels corresponds to AND-like
operation since similarity is assumed only when all kernels have high values (D. Duvenaud,
Lloyd, et al., 2013).

Incorporating knowledge into the prior after observing the training data is the primary interest
of Bayesian models, and posterior of a GP model is another Gaussian Process. Suppose the
N training observations y are noisy and modelled by Gaussian noise as follows, which can
also be seen as a diagonal matrix added to the covariance,

p(y|X,σ2
y ) =

N

∏
n=1

N (yn; f (xn),σ
2
y )

cov(yp,yq) = k(xp,xq)+σ
2
y δpq, or, cov(y) = k(X,X)+σ

2
y I

where δpq = 1 iff p = q. The posterior distribution over the functions, f∗, evaluated at some
unseen N∗ test points, X∗, is equivalent to conditioning the joint Gaussian prior p(y, f∗) on the
observations. Graphically shown in Fig. 2.2, the generative process can be seen as drawing
functions from the prior and rejecting those that disagree with the observations (Rasmussen,
2003). Analytical expressions for the posterior distribution and log-marginal likelihood for
the varying hyperparameters are obtained as follows,

f |y ∼ GP(m̂(x), k̂(x,x′))

m̂(x) = k f f(Kff +σ
2
y I)−1y

k̂(x,x′) = k f f ′ −k f f(Kff +σ
2
y I)−1kf f ′

log p(y|θ ,σ2
y ) = logN (y;0,Kff +σ

2
y I) =

1
2

yT (Kff +σ
2
y I)−1y− 1

2
log |Kff +σ

2
y I|− N

2
log2π

(2.1)

where k f f and Kff are covariance vector and matrix between function values, θ are hy-
perparameters from mean and covariance functions specified by GP. The first term in the
log-marginal likelihood is the only term which involves the observation y and hence encour-
ages fitting and reduces bias. The second term penalises the complexity of the model, for
example, small lengthscales would lead to large log-term value. As a result, selection of
hyperparameters through maximisation of the marginal likelihood is robust to overfitting,
despite the fact that the procedure can be trapped in local maximum (Rasmussen, 2003).
Unfortunately, the cumbersome computational complexity resulting from the inversion of
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(a) prior (b) posterior

Fig. 2.2 GP Bayesian Procedure: Shaded area in both figures are 95% confidence interval
(i.e mean ±2× standard deviation) and black lines represent the mean; (a) shows three draws
from the GP prior, (b) shows three draws from the posterior after observing seven noise-free
points labeled as crosses

the matrix Kff +σ2
y I in Eq. 2.1 which costs O(N3) and the analytical intractability resulting

from non-Gaussian likelihoods are the two main challenges of standard GPs. Many excel-
lent approximation methods are developed to address these problems, one of which used
variational inference (Titsias, 2009) and will be explained in detail in the following section.

2.2 Sparse GP approximation: VFE

Most approximate methods in the literature utilize M < N inducing-points u and allow time
complexity reduce from O(N3) to O(NM2). A variational method first introduced by Titsias
(2009) that works on finite variable sets, and then discussed in infinite-dimensional function
space by A. G. d. G. Matthews et al. (2016), maximizes a lower bound to the exact marginal
likelihood (ELBO) of the model by applying the Jensen’s inequality:

log p(y|θ)= log
∫

p(y, f |θ)d f ≥
∫

q( f ) log
p(y, f |θ)

q( f )
d f =Eq( f ) log

[
p(y, f |θ)

q( f )

]
=LELBO

where f is the function. The difference between the exact log-marginal likelihood and LELBO

is just the Kullback-Leibler (KL) divergence between the variational distribution and the true
posterior:

log p(y|θ)−LELBO = KL[q( f )∥p( f |y,θ)]
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The exact marginal likelihood is recovered when q( f ) = p( f |y,θ), and maximising the
ELBO is equivalent to minimizing the KL divergence. This avoids overfitting and obtains
an approximation by explicitly minimizing the distance between the variational one and the
truth. Making the inducing-points u explicit, the variational distribution is chosen to be of
the form:

q( f ) = q( f ̸=u,u|θ) = p( f ̸=u|u,θ)q(u)

The true posterior is p( f |y,θ) = p( f ̸=u|y,u,θ)p(u|y,θ). In this approximation, the inducing
points u act like a sufficient statistics “summarizing” all training observations y, or like a
bottleneck such that y̸=u communicate through the inducing points indirectly with the
data (Hensman, A. Matthews, et al., 2015). This particular form allows a cancellation of
p( f ̸=u|u,θ) which is the last remaining source of cubic time complexity.

LELBO = Eq( f |θ)

[
log

p(y| f ,θ)p( f ̸=u|u,θ)p(u|θ)
p( f ̸=u|u,θ)q(u)

]
= Eq( f |θ)

[
log

p(y| f ,θ)p(u|θ)
q(u)

]
=

N

∑
n=1

Eq( f |θ)[log p(yn| fn,θ)]−KL[q(u)∥p(u)] (2.2)

where fn = f (xn). When the variational distribution is of the form q(u) = N (u,m,S),
analytical solution that maximizes the ELBO with respect to parameter m and S can be
found for regression with Gaussian observation noise (Titsias, 2009). However, to solve the
intractability for non-Gaussian observations and enable stochastic optimisation via Monte-
Carlo sampling method, the uncollapsed bound is used where an approximate posterior over
the function evaluated at training points, f, is obtained by analytically marginalising out the
inducing points, u as follows,

q( f ) =
∫

p( f ̸=u|u)q(u)du ∼ GP( f ; m̃(x), k̃(x,x′))

m̃(x) = k f uK−1
uu m

k̃(x,x′) = k f f ′ −k f uK−1
uu (Kuu −S)K−1

uu ku f ′

When non-Gaussian likelihood is placed, the expectation integrals in Eq. 2.2 becomes
intractable and can be evaluated using quadrature (Hensman, A. Matthews, et al., 2015).
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Evaluating the ELBO and q(u) has time complexity O(NM2) which results in a significant
computational saving.

2.3 GPAR and GPLAR

As all previous sections are dealing with scalar output, we now consider the modelling of
multiple outputs. In the multi-output scenario, assume x and y = {yl}M

l=1 are the training
inputs and associated observations for M outputs. We assume all M outputs share the
same input space, although the training sets can be heterotopic or isotopic in different
situations, i.e. each output can have different or same training sets such that evaluations
are obtained by separate or simultaneous simulations. We will use isotopic configurations
from now on, but the discussed models can also be generalized to heterotopic situations
which will be discussed in section. 2.5. Utilizing the product rule to decompose the joint
distribution of multi-dimension into a set of univariate conditional distributions, Gaussian
Process Autoregressive Regression (GPAR) (Requeima et al., 2018) model factorizes the
distribution of M outputs y1:M(x) = (y1(x), . . . ,yM(x)) as,

p(y1:M(x)) = p(y1(x))p(y2(x)|y1(x)) . . . p(yM(x)|y1:M−1(x))

such that ym(x) is generated from y1:m−1(x) according to some latent function fm. GPAR
models these latent function f1:M with GPs as follows,

y1(x) = f1(x), f1 ∼ GP(0,k1(x,x′))

y2(x) = f2(y1(x,x)), f2 ∼ GP(0,k2
(
(y1(x),x),(y1(x′),x′)

)
...

yM(x) = fM(y1:M−1(x,x)), fM ∼ GP(0,kM
(
(y1:M−1(x),x),(y1:M−1(x′),x′)

)
Kernel Selections. The choices of kernels {k1:M} are crucial since they determine nonlinear
or linear dependencies to be modeled between outputs, input-dependent or input-independent
relationships between noises that can be discovered. The original paper adopted the approach
presented in Table 2.1, which will be the simple starting point of the upcoming variants of
GPAR.

Deficiencies of GPAR. There are limitations in the current formulation of GPAR. An exam-
ple graphical model of three-dimensional outputs are shown in Fig. 2.3a, where observation
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Dependencies Kernels

Linear kNL(x,x′)+ kLin(y(x),y(x′))
+ dep. on input kNL(x,x′)+ kNL(x,x′)kLin(y(x),y(x′))
Nonlinear kNL(x,x′)+ kNL(y(x),y(x′))
+ dep. on input kNL(x,x′)+ kNL((x,y(x)),(x′,y(x′)))
Linear + Nonlinear kNL(x,x′)+ kNL(y(x),y(x′))+ kLin(y(x),y(x′))

Table 2.1 GPAR kernel k1:M for f1:M, where kNL denotes nonlinear kernels such as squared
exponential or rational quadratic kernels, kLin denotes a linear kernel. Here, y(x) are all
preceding outputs and can be multi-dimensional.

y1 is directly used as inputs to function f2 and f3 and the possible noises are not modelled.
Noisy outputs from an earlier stage result in noisy inputs to a subsequent level. The original
paper solved this by employing a denoising transformation, such that the posterior predictive
mean of preceding outputs are used as inputs instead. Furthermore, when there are missing
values in some levels of outputs, GPAR might fail to produce correct predictive distribution
under some situation due to how the missing values are imputed. Although the inference
and learning procedure remains valid for closed-downwards observations, i.e., for every
observation ymn = ym(xn), there are also observations y(1:m−1)n, since the posterior and the
evidence decompose like the prior as a product of conditionals, for not closed-downwards
observations, imputation is required and the model uses posterior predictive mean. Experi-
ments have shown that this imputation method and GPAR’s layer-by-layer fitting procedure
have poor performance on closed-upwards observations.

x

y1

f1

y2

f2

y3

f3

(a) GPAR

x

h1 y1

f1

h2 y2

f2

h3 y3

f3

(b) GPLAR

Fig. 2.3 : Graphical models of (a) GPAR and (b) GPLAR. Observed variables y1:3 are shaded.
f1:3 denote latent function mappings.
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A more principled approach is to do fully Bayesian inference. Instead of directly working
on observations, we introduce latent variables, h1:3 for each output (graphically shown in
Fig. 2.3b) and an approximation method is required to inference these variables. This method
also enables non-Gaussian likelihoods, such as classifications, or non-negative data. We call
this model Gaussian Process Latent Autoregressive (GPLAR) model. To leverage the fact
that a similar idea is implemented in the inference schemes for deep GPs (Salimbeni et al.,
2017), we review the basic ideas in the next section.

2.4 Approximate Inference for DGP and GPLAR

Deep Gaussian Process (DGPs) is a multi-layer generalisation of GPs combined in a hierar-
chical composition (Damianou et al., 2013). When GPAR’s kernels k1:M depend non-linearly
on previous outputs, one can construct a particular form of DGP (Requeima et al., 2018).
For simplicity and easy comparison with GPLAR, we assume scalar real-valued output,
single-dimensional intermediate layers and observations with Gaussian noise. The complete
probabilistic representation of such a DGP comprising L layers can be written as follows,

p( fl|θl) = GP( fl;ml,Kl), l = 1, . . . ,L

p(hl| fl,hl−1,σ
2
l ) = ∏

n
N (hl,n; fl(hl−1,n),σ

2
l ),h0,n = xn

p(y| fL,hL−1,σ
2
L) = ∏

n
N (yn; fL(hL−1,n),σ

2
L)

Similar to what is introduced to GPLAR, the inputs to each layer are noisy outputs from the
previous layer, hl−1, which are referred to as “hidden variables”. The probabilistic model of
a GPLAR model with L-dimensional outputs can be represented as below,

p( fl|θl) = GP( fl;ml,Kl), l = 1, . . . ,L

p(hl| fl,X,h1:l−1,σ
2) = ∏

n
N (hl,n; fl(xn,h1:l−1,n),σ

2
l )

p(yl|hl) = ∏
n
N (yl,n;hl,n,σ

2
yl
)

Success of DGPs lies in the intermediate layers, which act like input, output wrappings,
extracting important features. This leads to automatic learning of complex kernels which
is more flexible compared to apprehend hand-chosen kernels. Hence, multi-dimensional
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intermediate layers are important and crucial to DGPs. While in GPLAR, we use single-
dimensional latent variables which might cause problems. However, since skip connections
exit both from inputs and from previous outputs in GPLAR, pathology of oversimple latent
representation can be alleviated (D. Duvenaud, Rippel, et al., 2014).

Posterior distributions over the latent function mappings, f1:L, as well as over the intermediate
hidden variables h1:L−1 are of interest. Taking a 3-layers DGP as an example, the joint
density of all variables and the exact posterior of unobserved variables ( f1:3 and h1:2) have
the following form,

p(y, f1, f2, f3,h1,h2) = p( f1)p( f2)p( f3)
N

∏
n=1

[p(h1n| f1,xn)p(h2n| f2,h1n)p(h3n| f3,h2n)]

p( f1, f2, f3,h1,h2|y) =
p(y, f1, f2, f3,h1,h2)

p(y)
,

where p(y) =
∫

p(y, f1, f2, f3,h1,h2)d f1d f2d f3dh1dh2

Here, p(y) is the exact marginal likelihood for hyperparameter tuning. Unlike in the standard
GPs, the inputs to each layer are stochastic or random caused by previous layers and the
mapping is no longer Gaussian. Whilst this enables complex wrapping and build sophisticated
relationships, the above posteriors and model evidence also become analytically intractable.
Even though the computational complexity can be reduced by sparse approximation, the
intractability due to non-Gaussian functionality is still not solved. Hence, more careful
approximations are required. The sparse approximation method used in Damianou and
Lawrence’s original work (Damianou et al., 2013) introduce variational distributions over
both the latent functions, { fl}, and the hidden variables, {hln}. This was memory intensive
as the space complexity scales linearly with the number of data points and rendering the
model obsolete for large datasets (Thang Duc Bui, 2018). Furthermore, initialization of the
variational parameters would be troublesome if the inducing locations and the latent GPs are
mismatched (Richard et al., 2011). Instead, existing works (Salimbeni et al., 2017; T. Bui
et al., 2016) used approximation schemes that only require variational distribution over latent
functions. As noted by Thang Duc Bui (2018), since more importance is devoted to accurate
predictions at test time, approximate posterior over non-linear GP mappings requires more
effort instead of good approximations over training hidden variables. Hence, in these works,
the conditional p(hln| fl,h(l−1)n) is retained, i.e. no approximation over the hidden variables
are learnt, which also allows explicit dependencies within {hl}, and between {hl} and { fl}.
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The resulting approximate posterior by introducing inducing points ul to each layer are as
follows,

q( f1, f2, f3,h1,h2) =p( f1̸=u1|u1)p( f2̸=u2|u2)p( f3̸=u3|u3)q(u1)q(u2)q(u3)×

∏
n

p(h1n| f1,xn)p(h2n| f2,h1n)

Using the same idea, we introduce inducing points to every layer (w.r.t dimensions) of
GPLAR, we have the approximate posterior and joint distribution (written with u explicitly)
of the model as,

q( f1, f2, f3,h1,h2,h3) =p( f1̸=u1|u1)p( f2̸=u2|u2)p( f3̸=u3|u3)q(u1)q(u2)q(u3)×

∏
n

[
p(h1n| f1,xn)p(h2n| f2,h1n,xn)p(h3n| f3,h2n,h1n,xn)

]
p(y, f1, f2, f3,h1,h2,h3) =p( f1̸=u1|u1)p( f2̸=u2|u2)p( f3̸=u3|u3)p(u1)p(u2)p(u3)×

∏
n

[
p(h1n| f1,xn)p(h2n| f2,h1n,xn)p(h3n| f3,h2n,h1n,xn)

p(y1n|h1n)p(y2n|h2n)p(y3n|h3n)

]
Evidence Lower Bound. As the procedure stated in section 2.2, the lower bound to the
log-marginal likelihood is as follows,

LELBO = Eq

[
log

p(y, f1, f2, f3,h1,h2,h3)

q( f1, f2, f3,h1,h2,h3)

]
(2.3)

=−
3

∑
l=1

KL [q(ul)∥p(ul)]+∑
l,n
Eq [log p(yln|hln)] (2.4)

The difference between the exact log-marginal likelihood and ELBO is the KL divergence
between the approximate posterior and the true one:

log p(y)−LELBO = KL[q( f1, f2, f3,h1,h2,h3)∥p( f1, f2, f3,h1,h2,h3|y)]
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Maximizing the ELBO w.r.t to the variational parameters and the hyperparameters is equiv-
alent to minimizing the KL-divergence. We jointly obtain approximations to the model
evidence and the posterior. The latent function distribution conditioning on inducing points,
p( fl ̸=ul |ul) and the hidden variables conditionals, p(hln| fl,h(1:l−1)n,xn), are cancelled out in
the variational expectation, which leads to greatly simplified form in Eq. 2.4. The second
term in Eq. 2.4 decomposes along the training instance and along output dimensions (i.e.
along inputs and outputs which enables use of stochastic optimization method), such that
one layer output only requires one hidden variables, which can be rewritten as,

∑
l,n
Eq [log p(yln|hln)] =∑

n

∫
h1n

q(h1n|xn) log p(y1n|h1n)

+
∫

h1n,h2n

q(h1n|xn)q(h2n|h1n,xn) log p(y2n|h2n)

+
∫

h1n,h2n,h3n

q(h1n|xn)q(h2n|h1n,xn)q(h3n|h2n,h1n,xn) log p(y3n|h3n)

=∑
l,n

∫
hln

q(hln) log p(yln|hln)

where q(hln) =
∫

h(1:l−1)n

q(hln|h(1:l−1)n,xn) . . .q(h2n|h1n,xn)q(h1n|xn)

Positing a Gaussian form for each variational distribution q(ul) =N (ul;ml,Sl), we notice
that the latent function, fl , can be analytically marginalized out at each layer, as mentioned
in section 2.2,

q(hln|xn,h(1:l−1)n) =
∫

fl
p(hln| fl,xn,h(1:l−1)n)p( fl ̸=ul |ul)q(ul)

=N (hln; µhl |h1:l−1
(x̂ln), σ

2
hl |h1:l−1

(x̂ln))

where µhl |h1:l−1
(x̂ln) = kl(x̂ln,Zl)K−1

ulul
ml,

σ
2
hl |h1:l−1

(x̂ln) = kl(x̂ln, x̂ln)−kl(x̂ln,Zl)K−1
ulul

(Kulul −Sl)K−1
ulul

kl(Zl, x̂ln)+σ
2
l

where x̂ln = (xn,h(1:l−1)n) is concatenation of input and previous hidden variables, and
Kulul = Kl(Zl,Zl) is the covariance between each layer’s inducing points. Notice that for
q(h1n), the distribution is not conditioned on any hidden variables but only input xn, and hence
is a Gaussian predictive distribution. However, for q(h2n|xn) =

∫
h1n

q(h2n|h1n,xn)q(h1n|xn),
since conditional GP predictive distribution is non-linear w.r.t h1n, and there exists random-
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ness in h1n, the resulting q(h2n) can be seen as a complicated mixture of infinite number of
Gaussian densities (Thang Duc Bui, 2018), which is likely to be multi-modal or heavy-tailed.

Simple Monte Carlo Sampling. The nested simple Monte Carlo method is adopted by
Salimbeni et al. (2017) to propagate a Gaussian distribution through a GP posterior, where
q(h2n|xn) is approximated by a mixture of finite number of Gaussian densities sampled from
q(h1n|xn) as follows,

q(h2n|xn)≈
1
R ∑

r
q(h2n|h1nr,xn), s.t. h1nr ∼ q(h1n|xn)

This sampling-based approximation is unbiased and exact when R → ∞. When further
propagating h2n and h1n to posterior of h3n, samples are now drawn from a uniformly
weighted mixture of Gaussian and we have,

q(h3n|xn) =
∫

h1n,h2n

q(h3n|h2n,h1n,xn)q(h2n|h1n,xn)q(h1n|xn)

≈ 1
R ∑

r

∫
h2n

q(h3n|h2n,h1nr,xn)q(h2n|h1nr,xn), h1nr ∼ q(h1n|xn)

≈ 1
R ∑

r

1
M ∑

m
q(h3n|h2nm,h1nr,xn), h2nm ∼ q(h2n|h1nr,xn)

≈ 1
R ∑

r
q(h3n|h2nr,h1nr,xn), h1nr ∼ q(h1n|xn)

h2nr ∼ q(h2n|h1nr,xn)

In DGPs, the marginals in each layer only depend on output from the last layer, for example,
hLn only depends on h(L−1)n which in turn only depends on h(L−2)n. Therefore, every
hln is propagated only to the next layer. While in GPLAR, the marginals in each layer
depend on outputs from all previous layers, hence hln is propagated to all following layers
from (l +1)-th to the last. To obtain a low variance gradient of the variational expectation
w.r.t the variational parameters, which in here corresponds to ml and Sl , we apply the
reparametrisation trick invented by Kingma and Welling (2013), and recursively draw samples
hlnr ∼ q(hln|h(1:l−1)n,xn) as,

hlnr = µhl |h1:l−1
(x̂ln)+ εlnr ×σ

2
hl |h1:l−1

(x̂ln), εlnr ∼N (0,1) (2.5)

When general likelihood rather than Gaussian observation is placed, log p(yln|hln) requires
additional approximations such as another simple Monte Carlo sampling, which also enables



2.5 Related Work 17

sub-sampling the data and achieve scalability.

Predictions. To make predictions over test locations X∗, we can obtain an approximate
predictive distribution as a mixture of Gaussian densities by propagating S samples through
the variational posterior as,

q(h∗ln|x∗n)≈
1
R ∑

r
q(h∗ln|h∗(1:l−1)nr,x

∗
n)

where samples are drawn using Eq. 2.5, replacing input x by test input x∗.

2.5 Related Work

Many existing works have been done to explore dependencies between outputs, similarly to
GPAR or GPLAR that utilize Gaussian Process to model non-linearities in data, i.e. MOGPs.
The difference lies in how the latent process relates to each other, and how information,
containing inputs or hidden variables, flow through latent process, either shared in an implicit
mixture form, or explicitly Markov-chained or fully-connected, which will be thoroughly
discussed in this section. A unifying framework presenting connections between different
methods of MOGPs are shown in Figure. 2.4.

2.5.1 Linear and Nonlinear Variants.

When kernels of GPLAR depend linearly on previous outputs, a multi-output GP model
where latent processes are combined linearly using a lower-triangular matrix is recovered
(Requeima et al., 2018). Defining a suitable cross-covariance function between multiple
outputs has been the main focus of MOGPs. One classical way to define such a property
shared between tasks are the linear coregionalization model (LCM) (Wackernagel, 2013),
which is equivalent to putting a GP prior on the multiple tasks that share a set of independent
latent functions linearly combined by a matrix as follows,

fl(x) =
Q

∑
j=1

al ju j(x),a matrix formulation:f = Au

where f = { fl}M
l=1 denotes functions modeling each task, A = {al j}M,Q

l=1, j=1 is the matrix
discovering inter-task correlations and u = {u j ∼ GP(0,k j)} is the set of independent GPs.



18 Gaussian Process Latent Autoregressive Model

Modelling of

non-Gaussian mappings Linear kernels

over outputs

Nonlinear kernels

over outputs

Implicit mixture

Input Propagation

Fully-connected

Markov-chained

Sharing of latent process

Explicit
connections;
Autoregressive

Lin:Co-kriging
NL:Hierarchical

ICM, SLFM,
MTGP

COGP

HetMOGP, MTCGP

DGP

DGP-IPGPLAR

GPAR
MF-DGP

NARGP

Fig. 2.4 A unifying framework of multi-output GPs, corresponding models and references of
every abbreviation are presented in Table. 2.2.

Abbreviation Model Reference

ICM Intrinstic Coregionalisation Model Wackernagel (2013)
SLFM Semi-Parametric Latent Factor Model Gryparis et al. (2007)
MTGP Multi-Task Gaussian Processes Yu et al. (2005),Bonilla et al. (2008)
COGP Collaborative Multi-Output GPs Nguyen et al. (2014)
HetMOGP Heterogeneous Multi-Output GPs Moreno-Muñoz et al. (2018)
MTCGP Multitask classification GPs Skolidis et al. (2011)
DGP Deep Gaussian Process Damianou et al. (2013),T. Bui et al. (2016)

with input propagation D. Duvenaud, Rippel, et al. (2014)
NARGP Nonlinear Multi-fidelity Model Perdikaris et al. (2017)
MF-DGP Multi-fidelity DGP Cutajar et al. (2019)

Table 2.2 Models and references
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Within the MOGPs literature, many existing works are variants of LCM which differ on the
extent of how the latent process u are shared. Works of Yu et al. (2005) achieve inter-task
tying by drawing functions from one same process and never uses the mixing matrix. Semi-
parametric latent factor model (Gryparis et al., 2007) uses P < M (M= number of outputs)
latent processes with P distinct covariance functions while Bonilla et al. (2008) uses P latent
process with one same covariance function. After introducing pseudo-points for sparse
approximations to enable scalable inference, collaborative multi-output GP model (COGP)
(Nguyen et al., 2014) achieves sharing of latent process by sharing “sparsity strucuture”, i.e.
the inducing variables. Works of Moreno-Muñoz et al. (2018) further generalize by sharing
the same set of inducing inputs, Z. Although these methods are involving and becoming
more and more flexible to inference dependencies across outputs, the kernels over outputs
are still linear, while more complex relationships can be discovered if nonlinear kernels over
outputs are used. One advantage of LCM is that any ordering of outputs combination is
achievable since the mixing matrix, A is not constrained, while one particular ordering of
outputs modelled by GPAR or GPLAR would restrict the mixing matrix to be lower-triangular.

When kernels of GPLAR depend non-linearly on previous outputs, a particular structured
DGP with input propagation is recovered (Requeima et al., 2018). Since the single-layer
GPs, which is just independent GPs (sharing covariance functions and inducing inputs in
settings of (Salimbeni et al., 2017), is limited by assumptions of Gaussian marginals, and
the requirement of defining suitable priors in terms of mean and covariance functions, deep
structures solve these using a hierarchical combination of latent processes. However, since
this input and output wrappings are complex and implicit, either inference or interpretation
over missing values after observing other outputs would be difficult. The leveraged version
where each intermediate layer is directly observed as corresponding output would be much
more helpful and will be discussed in the next subsection.

There are also works that consider more direct connections between outputs or inputs and
gain greater flexibility. Apart from a weighted sum of shared latent function u, COGP added
an individual GP hl which is unique to each output, yl . The observation likelihood model is
given by,

p(y|u1:Q,h1:M) =
M

∏
l=1

N

∏
n=1

N (yln;
Q

∑
j=1

al ju j(xn)+hl(xn),σ
2
yl
)
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where ai j is the combination weights, i.e. the mixing matrix. These unique functions over
inputs can be seen as input propagation in the linear case. In the nonlinear situation, problem
of invariance of all modeled directions but one when repeated composition of GPs are used,
is alleviated by propagating the input to each layer (D. Duvenaud, Rippel, et al., 2014).
Apart from input propagation, the multi-view DGP model (MvDGP) presented by Zhu et al.
(2020) considered modeling data coming from different sources that has different structured
features that need to be treated separately. Specifically, if the data are from two different
sources, two DGPs are run over the two input spaces respectively. After certain depths, the
last layers of two views are concatenated and passed to a common DGP which models shared
information from both views. The concatenation step is similar to the concatenation of inputs
and previous outputs in GPLAR, where GPs at layer l can be seen as a multi-view problem
with views from both the input and previous outputs.

2.5.2 Explicit sharing of latent process: Autoregressive

As mentioned above, implicit mixtures of latent processes, either in an LCM form that leads
to linear kernels over outputs or in a hierarchical way that leads to nonlinear kernels over
outputs, is limiting and difficult to interpret. Explicit connections with other outputs using
kernels in “free-form” as shown in Table. 2.1 would provide more complicated modelling
of dependencies and benefit dealing with arbitrarily missing data. Multi-fidelity model is
closely related to multi-output predictions and is interested in fusions of cheaply-obtained
information with low-fidelity into limited high-fidelity data where relationships between
observations with variant fidelity levels are discovered. The nonlinear multi-fidelity model
(NARGP) raised by Perdikaris et al. (2017) leveraged the structure in deep GPs and made
the connections between outputs explicit by passing the outputs from previous fidelity
layer to next layer in nested GPs, just like GPAR. However, unlike the fully autoregressive
connections in GPAR and GPLAR, Perdikaris et al. (2017) assumed a Markov property in
multi-fidelity situations such that, given the evaluations at nearest fidelity functions, nothing
more can be learnt from earlier fidelities as follows,

ft(x) = gt(x, ft−1(x))

where gt is a function with a GP prior, ft and ft−1 are functions modelling data at fidelity
level t and t − 1. The original design of kernels in the NARGP model also captures both
nonlinear mappings between fidelities and their correlation with input. However, Perdikaris
et al. (2017) assumed nonlinear kernels for every component which is not appropriate when
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the correlations between fidelities are linear. Hence, Cutajar et al. (2019) who studied a
model based on NARGP, use the following covariance function which is nearly identical to
our discussions ( f ∗l−1 denotes the function of previous fidelity at previous layer)

kl = kρ

l (x,x
′)[σ2

l f ∗l−1(x)
T f ∗l−1(x

′)+ k f−1
l ( f ∗l−1(x), f ∗l−1(x

′)]+ kδ
l (x,x

′)

where kρ

l is a space-dependent scaling factor which corresponds to the kernel in GPLAR
who captures outputs’ dependence on input, σ2

l is the variance of linear kernel over fidelities,
k f−1

l take charges of non-linear correlations over fidelities, and kδ
l models bias at that level.

From another perspective, as mentioned in (Liu et al., 2018), a significant difference between
the linear and nonlinear variants mentioned in last subsection and the autoregressive models
is that the outputs are treated with unequal importance. This asymmetric characteristic is
also revealed as a special form of the mixing matrix in the LMC framework where it is
constrained to a lower triangular matrix. In the multi-fidelity scenario, the datasets usually
has a natural ordering since the goal is to improve the predictions of expensive outputs with
high-fidelity by transferring knowledge learned from inexpensive outputs with low-fidelity.
Similarly, in GPAR and GPLAR, the data also admits an ordering. For example, if inferring
missing values in one single output is of interest, this output should be placed last so that
dependencies with all previous channels are modeled and transfer learning from all previous
tasks are achieved. This may exhibit some disadvantages since GPLAR becomes sensitive to
the selection of one particular ordering. Alternatives of GPLAR that deal with this problem
are discussed in Chapter 3. There are models which also take outputs from previous tasks as
inputs but treat all outputs equally, such as the stacked single target model (Wolpert, 1992)
and ensemble of regressor chains (Read et al., 2011). The stacked single-target model raised
by Wolpert (1992) predicts each output using independent GPs at the first stage and then
augment the input with predictions from the first stage to learn a new function for each output
at the second stage. However, such transformation of the multi-output modeling process into
a series of successive modeling of single-output problems (Borchani et al., 2015) can be
problematic if outputs observed latter fail to feedback its effect on modelings of previous
tasks. This problem is also present in GPAR but solved in GPLAR as discussed in the
following subsection.
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2.5.3 Modelling for non-Gaussian mappings

When non-Gaussian likelihoods are placed, computing posterior distribution becomes in-
tractable and different schemes are used to offer approximations. The heterogeneous multi-
output GP(HetMOGP) (Moreno-Muñoz et al., 2018) draws latent functions from LCM to
model heterogeneous outputs, where every distribution is completely specified by a set
of parameters to be fitted. For example, a Bernoulli distribution is fully specified by the
probability of success, and a Gaussian distribution is fully specified by mean and variance.
The intractability is solved by variational inference and applying stochastic variational in-
ference which is similar to GPLAR’s inference scheme. While Skolidis et al. (2011) used
probit likelihoods to model several binary variables, and used expectation-propagation to
approximate the posterior. Additive multi-output GPs presented by Vanhatalo et al. (2018)
utilized the Laplace approximation.

Apart from non-Gaussian likelihoods, nested GPs also come at a price with intractability
although they allow for greater flexibility through non-Gaussian marginal densities. Authors
of NARGP chose to maintain the computational cost by replacing the function values with
a GP prior by the posterior mean from the previous inference level, which is similar in the
case of GPAR. However, this setting reduces the problem to sequential maximum-likelihood
estimation questions which are equivalent to fitting GPs in an isolated hierarchical way such
that GPs at lower fidelities will not be updated even when more observations from higher
fidelities arrive. Similar in GPAR, GPs of foregoing outputs will be fixed once the fitting is
finished, which leads to its poor performance in closed-upwards missing observations. To
allow communications of information (such as uncertainty) between fidelities (equivalent
to channels in GPLAR), Cutajar et al. (2019) presented the multi-fidelity DGP (MF-DGP)
which trains end-to-end. A graphical example with three fidelity levels is presented in
Fig. 2.5a, where each fidelity level t has a different set of inputs {Xt}3

t=1. GPLAR can also
have different input locations for different outputs (i.e. heterotopic data where evaluations
are obtained by separate simulations), shown in Fig. 2.5b. The only modeling difference
between GPLAR and MF-DGP is that each layer in MG-DGP is conditioned on inputs
and evaluations only from the immediate previous fidelity. While in GPLAR, each layer is
conditioned on evaluations from all preceding layers. Namely, one fidelity level in MF-DGP
only communicates to other fidelities through its immediate former level, while a channel in
GPLAR communicates to all previous channels explicitly and directly.

Although MF-DGP also uses variational inference and simple Monte Carlo method to prop-
agate information, the treatments of inducing inputs are different. Since the intermediate
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layers in MF-DGP has true meanings and unlike intermediate layers in original DGP where
hidden variables are free to represent any extracted features, MF-DGP selects inducing points
from available observations where previous fidelities are also observed and fixes inducing
points during optimization. However, in GPLAR, more principled approach is used to enable
the optimization of inducing locations and will be discussed in detail in section 3.1.
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Fig. 2.5 (a): Graphical model of MF-DGP. ft
l denotes evaluations of latent function in layer

l at inputs with fidelity t. (b): Graphical model of GPLAR with different inputs for each
output. ht

l denote specific evaluations of latent function in output level l at inputs Xt . For
ht

l whose l is larger than t, output is not observed and will be regarded as missing value.
log p(yln|hln) for such missing value will not be included while calculating the variational
expectation (second term in Eq. 2.2). Passing of samples to missing values is marked by
dashed lines as they are omitted.





Chapter 3

Theoretical Details, Alternatives and
Extensions of GPLAR

3.1 Treatment of Inducing Inputs

Selection and optimization of the inducing inputs location are less explicit parts of the model.
Recall that for the first layer corresponding to the GP mappings for first output y1, there
is only one single input, x. Treatment of inducing inputs is standard and similar to other
sparse approximation situations. The original GPAR model used fixed and regularly-spaced
inducing inputs locations over time, since they are known to perform well for time-series
datasets (Thang D Bui et al., 2014). However, for higher layers, the selections are less
straightforward. As noted by Cutajar et al. (2019), since both points in the original input
space (temporal space) and their corresponding evaluations of functions at previous output
level are passed through the next layer, the inducing points of higher layers should also be
intrinsically linked due to these correspondences. For example, suppose zm is the inducing
location of one of the inducing inputs of first layer, the following vector should be passed to
layer l after previous l −1 propagation,[

zn f1(zn) f2(zn, f1(zn)) . . . fl−1(zn, f1:l−2(zn))
]

Since the inducing inputs are associated across layers, free optimization of inducing inputs at
each layer is no longer appropriate in contrast to the case in DGPs. The original GPAR used
the posterior predictive means of previous layers evaluated at inducing locations Z (which are
fixed and evenly-spaced over time) as “optimized” inducing points. While MF-DGP selected
inducing points from available observations which were fixed afterwards as mentioned in
section 2.5.
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Choose from Observations. Firstly, we used the same strategy employed in MF-DGP,
where a subset of training data {xm,ym} are selected as inducing points and fixed afterwards.
Mean of the variational distribution over inducing inputs, ml , at each layer is also initialized
to the corresponding observed output at dimension l, {ylm}, while variances are initialized
to be near zero, meaning start from being deterministic. There is some problem with this
strategy, since inducing points can only be selected at where observations and also their
previous levels are available, no inducing points will be placed when the observations are not
closed-downwards. Taking a three-dimensional output with temporal inputs in interval [0,1]
as an example, if y1 and y2 has missing values on interval [0.4,0.6], even if the corresponding
values are present for y3, there is no inducing points over [0.4,0.6] for the third layer, since
evaluations of first and second latent functions are missing. This would unnecessarily
introduce uncertainty at the third layer for interval [0.4,0.6].

Using GPAR Predictive Mean. To solve the problem mentioned above, we then tried to
use the posterior predictive mean from GPAR. This allows us to select inducing locations
anywhere regardless of observations being closed-downwards or upwards. One concern
might be whether a large bias in GPAR’s posterior predictive mean will pass false information
to GPLAR, since GPAR performs poorly if there are missing values in the first few channels.
Experiments on synthetic data have shown that even if inducing inputs are initialized incor-
rectly, parameters of variational distributions, especially the mean parameter, will correct
them after observing outputs from latter channels. The experimental results will be further
discussed in section. ??. This again shown that GPAR’s sequential optimization prevents
communication of information through channels, while GPLAR improved this and allow GPs
at preceding layers to be updated in order to have predictions at latter channels “closer” to
observations (w.r.t to higher variational expectation). However, although predicted mean has
been improved, uncertainty are not well-calibrated. We would expect the model to produce
high uncertainty to reflect lack of data on missing areas, but current GPLAR can some times
give an incorrect result with high confidence in channels whose following outputs are all
observed (closed-upwards). This problem will be further discussed in the next section.

Enable Optimization of Inducing Locations. To make the optimization of inducing lo-
cations possible, we need to relate inducing inputs over output dimensions to inducing inputs
over the original input space. Inspired from the last strategy that uses posterior predictive
mean of GPAR, we can use posterior mean of GPLAR. Since q(ul) is taken to approximate
the posterior q(ul|y), summarizing sufficient statistics from the training observations y, we
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could take mean of p(ul) as inducing inputs to the next layer l +1. The correspondence is
also clear as q(u1) is the posterior distribution over inducing locations Z, such that,

q(u1)m = q(u1m), where u1m = f1(zm)

q(u2)m = q(u2m), where u2m = f2(zm,E[q(u1m)])

...

q(uL)m = q(uLm), where uLm = fL(zm,E[q(u1m)], . . . ,E[q(u(L−1)m)])

The resulting inducing inputs to each layer l is as follows,[
Z m1 . . . ml−1

]
where ml denotes mean of each variational distribution. In this setting, inducing inputs
are “automatically” optimized since they are variational parameters themselves, except for
Z which are inducing inputs over the original input space. Experiments have shown little
overhead in computation after enabling optimization over inducing locations. Optimizing
the inducing locations are beneficial in high-dimensional problems (Nguyen et al., 2014).
More comparison and discussions on performance over real datasets with higher dimensional
inputs are in Chapter. 4.

3.2 Bi-directional GPLAR

The current settings of GPLAR has difficulties and deficiencies while dealing with real
datasets with longer dimensional outputs. As mentioned before, although the end-to-end
training across all channels enables update of GPs for outputs that are first fed to the model
after observing data from outputs arrived at a later stage, when outputs’ dimension becomes
larger, e.g. 10 outputs, backpropagation of errors at the 10th level to the 1st channel becomes
difficult. For example, when there is strong dependencies between the 10th output and the
8th output, then the 8th output and the 5th output, and finally the 5th output and the 1st output,
updating variational parameters of the first output would be difficult after observing data
points at the 10th channel. However, an update in the first layer would be easy to show
effect on predictions at the 10th layers. Since the outputs are processed according to a
particular order, each channel tends to have most effects on the previous channel. On the
other hand, in the real world, correlation between two variables is often asymmetric, for
example, the number of people suffering from lung cancer is greatly potentially correlated
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Fig. 3.1 Graphical model of Bi-directional GPLAR

to the number of people smoking, while the number of people smoking would have a more
complex dependency on other factors, instead of also having a significant correlation with
people with lung cancer. Hence, a particular ordering of outputs in GPLAR would restrict
the modelling from discovering dependencies in both directions.

3.2.1 Inspired by Bi-directional RNN

To solve the problem, we take inspiration from the bi-directional RNN model. RNN is spe-
cially and elegantly designed to deal with sequential data that embodies correlations between
points over the sequence. Original RNN can be modified to use input information from future
by delaying the output for certain time frames. However, adding too many frames from the
future might distract RNN’s modeling power. The basic idea of bidirectional recurrent neural
nets (BRNNs) raised by Schuster et al. (1997), is splitting each state neuron to take charge of
the forward and the backward direction separately, both of which are connected to the same
output. This enables every point to have complete and sequential information from both the
past and the future.

Taking the bi-directional form of GPLAR, since the sequential character is along the output
dimension instead of the temporal space as in the standard RNN situation, we run another
GPLAR in reverse order whose graphical verison is shown in Fig. 3.1. The hidden vari-
ables from both directions at each layer are aggregated and added with noise to produce
observations if in regression problem. The complete probabilistic model is as follows,
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p( fl|θl) = GP( fl;ml,Kl), l = 1, . . . ,L

p(gl|θ ′
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Now, GP in each layer would have kernels on all other channels. This structure not only
makes the model richer by enabling asymmetric correlations but also makes learning easier
since information flows from both directions and source of updates is not restricted to back-
propagation from channels at a distance. Apart from better predictive mean, the uncertainty
estimates should also be better-calibrated as discussed below.

3.2.2 Uncertainty in Former Channels

Firstly, although experiment results do confirm better predictive mean at missing areas in
the first few channels when the number of outputs is low using simple GPLAR than GPAR,
predictive uncertainty is sometimes not well-calibrated and is especially over-estimated. We
looked into a case when the model did give predictions with low-confidence to reflect lack
of data in layers where following channels are observed. In this case, a simple DGP with
one-dimensional intermediate layers are added in order to propagate information from last
output to each previous output. In Figure 3.2, electrodes FZ, F1, and F2 are placed in the first
three rows, whose measurements for time from 0.6 to 0.8 are missing. The observations in
this time area are called closed-upwards, since measurements from F3 onwards are observed.
The observations in time interval [0.8,1.0] are neither closed-upwards nor closed-downwards,
and dependencies between (FZ,F1,F2) and (F3,F4) are still possible to be discovered from
GPAR, hence the predictive mean and variance of GPAR are well-fitted. While for GPLAR,
all predictions are over-confident except for electrode F2. To understand why uncertainty
for F2 is correctly reflected, we looked into the learnt variance parameter of kernels at each
layer in GPLAR. Large variance would indicate strong dependencies between variables and
when the kernels between outputs have zero variances one would recover independent GPs.

As shown in Table 3.1, variances of kernels between F2 and all its following electrodes are
of low values. However, there are electrodes who depend quite significantly on either F1 or
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Fig. 3.2 This is a real dataset example consisting of measurements (in voltage) over time (in
seconds) from 7 electrodes placed on a certain patient’s scalp. Black dots denote training
points fed to the model, while green dots represent missing values taken away. Red and
green lines are predictive mean from GPAR and GPLAR respectively, while blue lines are
variational mean (labeled as “q_mu”) of GPLAR evaluated at inducing points in the forward
direction. The shaded area corresponds to 95% confidence interval.

FZ. For example, F3 depends similarly on time and F1; F4 depends both significantly on
F1 and FZ. These strong dependencies will have effects such that variance of predictions in
the preceding channels will be squeezed in order to have more certain predictions in latter
channels since data points are only observed in latter channels. For example, if we denote one
particular prediction of hidden variables in F1 as h2n, corresponding to input xn ∈ [0.6,0.8],
variational expectation of the corresponding prediction in F3 that depends on h2n are as
follows,

1
S ∑

r

∫
log p(y4n|h4n)p(h4n|xn,h1nr,h2nr,h3nr)

where (h1nr,h2nr,h3nr) are sampled according to Eq. 2.5. Since y4n is observed, predictive
mean of h4n is learnt to be closer to y4n, variance of h4n will also be pushed to zero after
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Output
Temporal kernel
variance

Linear kernel variances
over output

Non-linear kernel
variance over output

FZ 4.8E+00
F1 3.6E-01 FZ:7.1E-01 1.9E-06

F2 3.1E-01
FZ:2.4E+00
F1:2.1E-01 4.1E-06

F3 6.0E-01
FZ:5.9E-07
F1:6.3E-01
F2:7.4E-07

6.5E-07

F4 1.9E+00

FZ: 3.4E+00
F1:1.3E+00
F2:8.2E-06
F3:7.9E-05

1.0E-06

F5 2.8E-01

FZ:6.0E-07
F1:3.3E-05
F2:4.6E-07
F3:5.1E-01
F4:5.8E-07

1.9E-06

F6 5.9E-01

FZ:6.1E-04
F1:2.9E-05
F2:5.5E-06
F3:4.1E-07
F4:1.9E-01
F5:3.1E-04

2.3E-06

Table 3.1 Parameter values of variances of kernels learnt training on models and datasets
from Figure. 3.2. Kernels between F2 and other electrodes are highlighted by red color.

predictive mean gets closer to the observation as likelihoods are maximized. If variance of
h2n remains to be high, h2nr would take on several values, and “high” correlation between F1
and F3 would leads to varying predictive mean of h4n which brings down likelihood. Hence,
variance of h2n is pulled down, ignoring the fact that no enough data is observed around the
area. Another interpretation would be that y4n are treated as direct observations of F1, while
model should be able to separate direct observations in the same channel from observations
of latter channels who only utilize the hidden variables at the current layer as inputs. As
for the hidden variable in F2, h3n, since correlation with any latter channel is low, no latter
observations are treated as direct observations. Regularization term in Eq. 2.2,

−KL[q(u3)∥p(u3)]



32 Theoretical Details, Alternatives and Extensions of GPLAR

would pull the variational distribution along the missing area towards prior distribution. DGP
in another direction has corrected the predictive mean as correlation between F3 and F2 is
discovered, while variance from the forward direction remains. In conclusion, since some
hidden variables h are combining information from all previous layers, but is modeled by
a single function, the variance is directly modified by observations arrived at a later stage.
If later outputs’ observations only partially update or partially depend on previous hidden
variables, where the lack of data can still be retained, the model can give better-calibrated
uncertainty estimates. Bi-directional GPLAR is expected to achieve this by decomposing the
hidden variables into additive sum of GPs from two directions. If there is missing value in
the first output, whose hidden variables are h1n and h′1n, even if variance of h1n is reduced
by latter observations y2n and y3n, variance of h′1n would still be pushed to prior. Because
h′1n is the last hidden variable in the reverse direction, and is never used as input to any other
layer. Hence, bi-directional GPLAR can have better uncertainty estimates in the first few
channels, but might still fail for missing outputs in the middle channels. If dependencies are
discovered both with latter outputs in the forward direction and with previous outputs in the
backward direction, variance of both hidden variables will be eliminated.

3.2.3 Correlated/Repeated Kernels

However, although theoretically, bi-directional GPLAR should produce better-calibrated
uncertainty, in experiments they still can perform badly. We suspect is another problem
spotted from the graphical model itself, which might be the cause of the aforementioned
behavior. If one directly write down the probabilistic formula of the last layer in Fig. 3.1
combing two directions as follows,

p(y3n|xn,h1n,h2n) =N (y3n; f3(xn,h1n,h2n)+g3(xn),σ
2
y3
)

It is easily observed that there are repeated kernels over temporal space. The kernels in f3

are additive which contains a distinct kernel over input and g3 is over the same temporal
space. Although sum of squared exponential kernels can represent discovering of different
characteristic length-scales, correlated kernels are also possible to cause over-confidence.

3.3 Additive GPLAR

We first summarise the deficiencies of simple bi-directional GPLAR and raise possible
direction of solutions,
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• Since the kernels over outputs in GPLAR are multi-dimensional and previous channels
evaluated at xn are passed to later channels which also depends on xn locally, this
intrinsic linkage requires inducing points to be also intrinsically linked. The methods
mentioned in section. 3.1 either disables the optimization over inducing locations or
only has freedom to optimize over the temporal space and is restricted over output
space. More flexibility can be achieved if the inducing points over outputs are not
internally connected to inducing points over input.

• When there are missing values in the middle channel which has strong dependencies
with latter and previous channels whose data points over the same input are observed,
predictions at the current layer will have under-estimated uncertainty resulted from
failure of model to distinguish direct observations from current output and those
indirect.

• Although bi-directional version allows for flows of information from all outputs,
repeated using of input can hurt model’s complexity, making it more susceptible to
overfitting.

An alternative of GPLAR is to make the combined hidden variables explicit by decomposing
them into additive components, each of which is individually modelled by a distinct GP. The
decomposition can appear in many forms with different depth.

Combined GPLAR Additive Fully Additive

h1 f1(x) g1(x) g1(x)

h2 f2(x,h2) g2(x) g2(x)
+h21(h2) +h21(g1)

h3 f3(x,h2,h3) g3(x) g3(x)
+h31(h1) +h31(g1)
+h32(h2) +h32(g2)

+h321(h21)

Table 3.2 Decomposition of single GP on hidden variable. First column is the original hidden
variable which is directly connected to observation through likelihood. The second column is
the original setting of GPLAR. The third column decomposes the single GP into a temporal
function and functions explicitly on previous hidden variables. The forth column further
decomposes where there is a function on every previous function outputs
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In the original GPLAR, a single GP is used to model the output whose input is multi-
dimensional. The additive version breaks the multi-dimension to multi-GP processes, which
is equivalent to changing a product of kernels to a first-order additive kernel in the non-linear
kernel case. Functions drawn from a high-order kernel (ARD SE) have less long-range
structure, while draws from additive low-order kernel tends to have more global trends (D. K.
Duvenaud et al., 2011). Since sum of orthogonal single-dimensional kernels represents
low-order correlations, in the fully additive version which is the fourth column in Table. 3.2,
deeper-order dependencies are also modeled, for example, h321(h21(g1(x))) is a GP mod-
elling correlation between the third output and the part in second output explained by first
output.

The fully additive transformation breaks the combination and places a GP on every component.
This breakage removes constraints on internally linked inducing points, such that in the
example presented in Table. 3.2, the inducing points for g3 are over time, and the inducing
points for h31 are over the output space of g3. These two sets of inducing points do not
necessarily have one-to-one correspondence. However, this breakage also introduces new sets
of variational parameters which significantly increase the number of variables that require
more careful initialization strategies. gi is unique to each output i that corresponds to the
temporal correlation in the original model. Hence, this separation also enables generalisation
to bi-directional version without using repeated kernels over input as shown in Fig. 3.3. It is
obvious that temporal kernel only exists in function g individually in each channel, and every
output has at least one kernel with g in all other channels. Since now the hidden variables
come from addition of multiple GPs, the source of variance also becomes multiple. When
observation in the third output is present but missing in the first output, variance of hidden
variables h1n will only decrease in part represented by g1, while variance of h12,h13,h123

will remain. However, lack of data in g1 is still unable to be reflected through higher-order
functions.
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Fig. 3.3 Graphical model of Bi-directional Additive GPLAR. The red part denote additive
GPLAR in backward direction.





Chapter 4

Experiments

4.1 Overview

All experiments implemented in this chapter utilize the library GPflow 2. (De G. Matthews
et al., 2017), which takes advantage of the benefits of TensorFlow 2.0. In all cases, we
evaluate the held-out predictive log-likelihood (HLL) and the standardised mean squared
error (SMSE) on a held-out test datasets for each output. As the predictions of GPLAR are
mixtures of Gaussian by propagating S samples through all layers as described in Eq. 2.4,
the log-likelihood is approximated by,

HLL = ∑
n

log
1
R ∑

r

∫
p(ylnr|hlnr)N (hlnr; µhl |h1:l−1

,σ2
hl |h1:l−1

)

where µ and σ2 follow Eq. 2.5 and R denotes number of samples which is usually 100. The
SMSE is simply the mean squared error normalised by the variance of the truth:

SMSE =
∑n(∑r ylnr/R− yin)

2

N × (ȳi − yin)2

where ȳi =
1
N ∑n yin. During training, we use Adam (Kingma and Ba, 2014) optimizer, with

default parameter values and an exponentially decaying learning rate initialized as 0.01. Dif-
ferent strategies of initialization and optimization of inducing points locations as discussed
in section. 3.1 are compared in detail. Lengthscales and variances of nonlinear kernels over
outputs are initialized to 1., while variances of linear kernels over outputs are initialized to
10.. Initialization of variances of kernels are important, such that if variances of kernels over
outputs are much smaller than that of kernels over input, model would have difficulties in
finding the expected correlations between outputs.
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The techniques of using stochastic variational inference (Hoffman et al., 2013; Hensman,
Fusi, et al., 2013) require careful strategies when optimizing hyperparameters of kernels,
variational parameters and inducing locations and noise variance of likelihoods all together.
In the implementation of DGPs, variances of the variational parameters of intermediate
layers are initialized to very small values, which is equivalent to starting as a single layer
GP. Similar to this idea, variances of the variational parameters of each layer of GPLAR are
initialized to be close to zero, which is giving the initial inducing points function value (either
from observations or GPAR posterior mean) full confidence to ensure stability during the
early iterations. The noise variances of likelihoods are also kept small at the beginning. Since
the first term in Eq. 2.2 is a sum of independent terms, its computation can be distributed and
unbiased noisy estimations of the objective and the gradients can be obtained by sub-sampling
with a scaling factor, N/|B|, where |B| denotes the minibatch size.

Normalization is important as multi-outputs regression usually has very distinct distributions
for different outputs and it is necessary that every output is normalised before being fed into
the model. Otherwise, distribution of one output need to be learnt each time it is passed
to the following layers, and slows down learning. Hence, we applied whitening on every
output for the training data, and kept records of mean and variance of training samples.
During prediction time, these mean and variance are added or multiplied back to perform
easy “un-normalization”.

4.2 Synthetic Data Experiments

4.2.1 Synthetic Data from Functions

We first tested GPLAR on the same set of data produced by synthetic functions as follows,
which was also used in the original GPAR paper to demonstrate model’s ability of discovering
dependencies between outputs,

y1(x) =−sin(10π(x+1))
2x+1

− x4 + ε1

y2(x) = cos2(y1(x)+ sin(3x))+ ε2

y3(x) = y2(x)y2
1(x)+3x+ ε3
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To begin with, variances of noises ε1:3
iid∼N (0,0.05) are fixed to be small values. Since y2

and y1 is combined and used in y3 in a much simpler form as compared to the function with
only x as input to predict y3 directly, GPAR and GPLAR can exploit these dependencies be-
tween (y1,y2) and y3 while independent GPs would struggle with this complicated structure
between x and y3. Fig. 4.1 shows GPAR and GPLAR fit to 100 data points randomly drawn
from the above functions. It is easy to observe that GPLAR has well-calibrated uncertainty
such that observations are mostly covered by the shaded area, while GPAR tends to overfit
and fail to reflect the noise which accumulates along the outputs. It is also surprised to
discover that GPAR becomes more and more unstable when noise level increases. As shown
in Fig. 4.2, with same level of noise variance but only different random seeds for drawing
random data points from the functions, the left figure shows severe over-fitting in the third
output such that the model is trying to fit to noise, while the right figure shows significant
under-fitting in both y2 and y3 where GPAR performs similarly to independent GPs. GPLAR
performs more stable and produce similar results with similar held-out log-likelihood even
with different datasets produced by different seeds.

Fig. 4.1 Dataset from synthetic functions: GPAR vs GPLAR predictions. Blue dots are
observations. Shaded area represents 95% condifence interval

(a) Overfitting Example (b) Underfitting Example

Fig. 4.2 Overfitting and underfitting examples for GPAR
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We then test the ability of handling missing values to see whether GPLAR can produce
predictions on missing output after observing other outputs and applying the discovered
dependencies. As mentioned in section 3.1, if inducing points are chosen from observations,
all its previous outputs should be available. This leads to unnecessary uncertainty as shown
in Fig. 4.3a. Since observations with input ranging from 0.2 to 0.4 are missing for y1, no
inducing points are located in this area for all following outputs. The uncertainty estimates
shown by blue shaded area is larger for y2 and y3 with x ∈ [0.2,0.6] than other locations,
despite the fact that observations are present. If inducing points are initialized using GPAR’s
posterior mean of evenly-spaced inducing locations, aforementioned problem will be solved.
When noise variance is as high as 0.05, even if posterior mean from GPAR has high bias,
as shown in Fig. 4.3b for y1 and y2 with x ∈ [0.2,0.6], GPLAR successfully updates its
variational mean after observing data points from y3. GPAR would fail to do so since every
layer is fitted sequentially. However, it is clear that uncertainty estimates from GPLAR for
both the first and the second output in the missing area are under-estimated.

(a) Initialize from observations (b) Initialize from GPAR posterior mean

Fig. 4.3 Handling missing values with two inducing points strategies. Missing values are
placed in [0.2,0.4] for first output and in [0.6,0.8] for second output, labelled using red dots.
Noise level for the two datasets are 0.01 and 0.05 respectively. Black dots in the left figure
represent inducing points from observations. Yellow dots in the right figure represent the
final variational mean parameter value for each inducing location.
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Output HLL

GPAR GPLAR

y1 -200.290 -175.794
y2 -314.689 -490.632
y3 -353.180 -408.538
y4 -448.052 -347.413
y5 -54226.6 -939.300

Table 4.1 Held-out log-likelihood for every output: GPAR vs GPLAR

4.2.2 Synthetic Data from GPs

A more theoretical approach is to draw synthetic data directly from a GPLAR model. Suppose
we have,

k1(x,x′) = kSE(x,x′)

k2((x,h1(x)),(x′,h1(x′))) = kSE(x,x′)+ kSE(h1(x),h1(x′))

k3((x,h1:2(x)),(x′,h1:2(x′))) = kSE(x,x′)+ kSE(h1:2(x),h1:2(x′))

where kSE denotes squared-exponential kernel. With zero mean function in each layer, we ran-
domly draw samples layer by layer and the results are shown in Figure. 4.4. Many test points
and even some training observations falls outside GPAR’s 95% confidence interval. If linear
kernels over outputs are used instead of SE kernel, and with large variance in each dimension,
a small change in the first output would lead to large fluctuations in following outputs. A five
outputs example is presented in Fig. 4.5. If we set noise variance for the former four outputs
to be large and small for the last output, GPAR would fail to consider noise from previous
outputs that leads to variance in the last output and give severely over-confident predictions.
To numerically compare performance of the two models, we use the held-out log-likelihood.
The held-out log-likelihoods (HLL) corresponding to Fig. 4.5 are presented in Table. 4.1.
It is observed that HLL of GPAR for last output exploded negatively, while GPLAR suc-
cessfully propagated uncertainty through layers and gave moderately confident predictions
near training observations and predictions with larger uncertainty far away from observations.

To better assess performance of two models against the noise level, we calculate the held-out
log-likelihood on test datasets versus the variance of noise ε (The datasets has same form
as show in Fig. 4.4). As mentioned in the previous section, results of GPAR are unstable
and can give different predictions using different seeds of random sampling. Hence, we run
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Fig. 4.4 Dataset from synthetic GPs with non-linear kernel over outputs: GPAR(left) vs
GPLAR(right) predictions. Noise level is high(variance=0.5). Black and red dots denote
training observations and test points respectively. Green lines and shaded area in left figure
is GPAR’s results, red lines and shaded area in right figure is GPLAR’s results.

GPAR 100 times independently using different seeds for each variance level. It is observed
from Fig. 4.6 that the instability of GPAR increases along outputs, and the lower bound of
held-out log-likelihood also decreases along outputs, which suggests that using noisy outputs
from previous layer harms GPAR’s predictions for next output. Since GPLAR always gives
same predictions after convergence, only one run is performed and its held-out log-likelihood
is observed to always overlap or locate higher than the upper bounds of GPAR. Strange
behavior is spotted in the third output of GPAR in Fig. 4.6, such that held-out log-likelihood
is extremely negative when noise variance is close to zero. It turns out that predictive variance
of the third output are all near zero (in 1e−7 level), making the likelihood explode in the
negative direction if the true observation is only slightly away from the predictive mean.
While predictive variances of GPLAR are at an appropriate level. These reults all indicate
that GPLAR handles noise from observations more carefully, and produce predictions that
are more robust to under-fitting or over-fitting.
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Fig. 4.5 Dataset from synthetic GPs with linear kernel over outputs: GPAR(left) vs
GPLAR(right) predictions. The first four outputs has high noise and the last with low
noise.

4.3 Real-World Data Experiments

4.3.1 Base model comparison

In this section, we evaluate GPLAR’s performance on two standard datasets commonly used
to evaluate multi-output modelling power, and compare GPLAR against GPAR.

Electroencephalogram (EEG) dataset. 1 As mentioned in section 3.2.2 as an example,
these are 256 measurements in voltage in one second from 7 electrodes mounted on a pa-
tient’s scalp when the patient is presented with a certain image. We took the measurements
from patient number 337, and use full 256 observations from electrodes F3-F6 and first 156
signals from electrodes, FZ, F1, and F2 as training points, and last 100 observations of FZ,
F1, and F2 as the test points to predict. Fig. 4.7 visualize predictions for the three electrodes

1The EEG datset is available at https://archive.ics.uci.edu/ml/datasets/eeg+database

https://archive.ics.uci.edu/ml/datasets/eeg+database
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Fig. 4.6 Held-out log-likelihood vs Noise level for GPAR and GPLAR. Only one run is
performed by GPLAR which is denoted by solid lines. 100 runs are performed by GPAR,
whose 95% CI over log-likelihood is shaded and the median is labeled by dashed lines.

Output SMSE HLL

GPAR GPLAR GPAR GPLAR

FZ 0.1340 0.1273 -135.7 -141.3
F1 0.3285 0.3130 -663.1 -183.1
F2 0.1536 0.1317 -132.4 -136.6

Table 4.2 SMSE and HLL for last three outputs: GPAR vs GPLAR for the EEG datasets

by only using non-linear kernels over outputs, and it is observed that predictions of GPAR
over F1 are over-confident which leads to large HLL in Table. 4.2. While uncertainty over
F1 from GPLAR is well-calibrated and the 95% confidence interval covers nearly every
point except those in time [0.9,1.0]. The SMSE for every output is also lower in results
provided by GPLAR. As FZ, F1 and F2 are last three outputs fed to the model, posterior
mean from GPAR already has high accuracy. Hence, fixed inducing inputs do not introduce
any problems, and second method of optimizing inducing locations from section. 3.1 would
produce similar results.

If we fit standard DGPs to this dataset, only one small modification is needed to deal with
missing data, which is separating the calculations of the variational expectation terms in the
final layer. Missing values are identified and skipped during the calculations. Since every
output in such a multi-output task is correlated to input to some extend, skip connection is
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Fig. 4.7 Predictions for electordes FZ, F1, and F2 from the EEG datasets by GPAR(green)
and GPLAR(red). Dots and crosses denote training and test points.

important which propagates the input to every intermediate layer and the final layer. As an
alternative, Salimbeni et al. (2017) introduced an identity mean function at each intermediate
layer, however, explicit propagation of input is validated to perform better although still
worse than autoregressive models as shown in Fig. ??. Despite that DGPs can discover
non-Gaussian dependencies between inputs and outputs since all multi-output layers use
independent outputs with shared covariance functions, such input and output wrappings
are implicit and independent outputs prevent DGPs from exploiting dependencies between
outputs, limiting their predictive performance on highly correlated data.

Exchange Rates Dataset. 2 The Pacific Exchange Rates Service keeps records of ex-
change rates of all currencies against US dollars every day. We extract exchange rates of
ten international currencies and three metals in the year 2007, and take 50−100th days for
“USD/CAD”, 50−150th days for “USD/JPY” and 50−200th days for “USD/AUD” as miss-
ing values to be predicted, and take information on all other days and full-year observations
for all other currencies as training points. By using both linear and non-linear kernels over
outputs, Fig. 4.8 presents predictions of GPAR and GPLAR for the three currencies with
missing values. Although as shown in Table. 4.3, only SMSE of GPLAR over “USD/AUD”
is significantly lower than that of GPAR, it is also observed that GPLAR give predictions with
more uncertainty even outside the missing area, while GPAR would have high confidence

2The exchange rates dataset is available at http://fx.sauder.ubc.ca.

http://fx.sauder.ubc.ca
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and model with more wigglings.

Fig. 4.8 Predictions for “USD/CAD”, “USD/JPY” and “USD/AUD” from the exchange rates
datasets by GPAR(green) and GPLAR(red). Black dots are training observations, purple dots
are test points.

4.3.2 Bi-directional GPLAR on real-world data

Failure of one-directional GPLAR and ways to improve it. In this section, we evaluate
the bi-directional GPLAR on multi-output datasets and evaluate the prediction power regard-
less of where the missing values are located, either closed-upwards, closed-downwards, or in
the middle. To begin with, we first show misjudgement of one-directional GPLAR on the
EEG dataset. As shown in Fig. 4.9a, observations in time [0.6,0.8] are closed-downwards
since down-to electrode FZ, all its previous outputs are also observed. While observations in
time [0.4,0.6] are closed-upwards since up-to output electrode F5, all its following outputs
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Output SMSE HLL

GPAR GPLAR GPAR GPLAR

USD/CAD 0.0215 0.0439 148.60 153.95
USD/JPY 0.0170 0.0234 843.18 860.95
USD/AUD 0.2089 0.0685 523.97 464.58

Table 4.3 SMSE and HLL for outputs: GPAR vs GPLAR for the Exchange datasets

are observed. If simple one-directional GPLAR is run, it would produce neither correct pre-
dictive mean nor well-calibrated uncertainty on closed-upwards observations. It is suspected
that F4, F5, FZ, F1, F2 (the later five) electrodes can perform perfectly only given input time,
such that the variational parameters of the first two outputs are not updated. Hence, if the
kernels over inputs for those later outputs are removed, GPLAR can produce better predictive
mean, but the uncertainty outside the missing area would also by unnecessarily high. Forcing
the outputs to learn through cross-channel can benefit predictions on missing values. Another
method that would help is initializing mean of variational distributions from zero. This would
also force later outputs to learn correct dependencies between itself and the former channel,
because the intentional zero variational mean from previous layers would propagate same
values and “flatten” the predictions which is not desirable. While starting from posterior
mean of GPAR, although dependencies are found, since the kernels over outputs are not
input-dependent, the discovered function relationships are not bijective, and model could be
easily trapped in local minimums.

Fig. 4.9b shows the result after applying the first strategy where uncertainty is higher than
usual everywhere since temporal kernels are removed. Fig. 4.10a shows the result after
applying the second method, and it is clear that the uncertainty is over-estimated as the reason
stated in section. 3.2.2. The predictive mean also becomes more flattened and has high bias,
if the missing period is longer, shown in Fig. 4.9b.

Bi-directional GPLAR. As mentioned in section. 3.2, since information flows from both
directions, dependencies between each output and all other outputs can be modeled. Further-
more, outputs are no longer modeled by single hidden variables but by two, one from the
original direction and one from backwards, predictive variance from former outputs would
not be entirely shrunk in order to have larger log-likelihood on observations from later outputs.
Hence, bi-directional GPLAR should give both better predictive means and better predictive
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(a) Wrong predictions: simple GPLAR (b) Better predictive mean: method 1

Fig. 4.9 The left figure shows wrong predictions on closed-upwards observations on the
EEG datsets by one-directional GPLAR. Notice that the order of electrodes is different
from previous experiments. The right figure shows better predictive mean after using the
technique of learning only from cross-channels.

(a) Better predictive mean: method 2 (b) Longer predictions

Fig. 4.10 The left figure shows better predictive mean after using the technique of initializing
the variational mean from zero. The right figure shows predictions on longer time period.

variances. We run the bi-directional GPLAR on the EEG and exchange-rate dataset, and eval-
uate the performance on a larger range with different patients for EEG dataset and different
years for exchange-rate dataset. It is more impartial to compare performance of bi-directional
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GPLAR with both GPAR running in a forward direction and also in a backward direction. It
is shown in Figure. 4.11a that without using any method as mentioned in previous subpara-
graph, bi-directional GPLAR can learn better predictive mean. Although the uncertainty is
larger as compared to the simple version, it is still too small to cover the missing observations.

The dependencies are so much harder for GPLAR to learn is because, for such situations,
the model is expected to learn both dependencies between channels and also correlations
over the input space. Simple data as EEG datasets can already achieve decent results by only
considering functions over the input space, however, when missing data is of importance,
cross-channel dependencies would play a much more important role than temporal functions.
Hence, the model needs to choose carefully and balance the contributions of inputs and other
outputs. On the other hand, maximizing free-energy, or lower bound of the evidence, with
respect to such amount of parameters is sensitive to initialization and is more likely to be
trapped by local minimum. Some experiments have shown that when model has been trapped
inside local minimum, it would give prior distribution on missing areas which is equivalent
to independent GPs as if variances of cross-channel kernels have been pushed to zero. A
example of entirely learning through cross-channel kernels are shown in Fig. 4.11b, and it is
clear that better predictive mean are accomplished.

(a) Bi-directional GPLAR (b) Remove temporal kernel

Fig. 4.11 The left figure shows predictions of bi-directional GPLAR (red) against GPAR
running forward (green) and backward (orange) on EEG datasets of patient no.345. The
right figure shows predictions of bi-directional GPLAR on the same data after removing
kernels on temporal space.
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Fig. 4.12 Predictions of bi-directional GPLAR on exchange rate data set of year 2007. The
shown predictions are first few outputs fed to the model, while the remaining outputs are not
shown.

The Same test is run on the exchange rate datasets as shown in Fig. 4.12, where different
areas of outputs and different ordering of outputs are tried. To make sure we are not get-
ting the results by luck, we compare the performances of GPLAR, bi-directional GPLAR
with independent GPs, GPAR in a forward direction, GPAR in a backward direction, and
DGPs on the EEG data set averaged over 5 different patients and on exchange rate data set
averaged over 5 years. The results are shown in Fig. 4.13. Since the EEG datasets contains
almost noiseless measurements, GPAR in the forward direction performs better over closed-
downwards observations. However, they perform significantly worse on closed-upwards
observations. Bi-directional GPLAR would give the average performance between GPARs in
two directions but it is not worth since GPLAR would take much more time. Hence, situations
when noise is not dominant, one should use GPAR with natural outputs ordering. As for
exchange rate datasets, since the observations are much noisier and sometimes even contain
severe outliers, bi-directional GPLAR gives the best results for all four outputs (except for
“USD/MXN”, as correlations between inputs and outputs are sometimes hard to find for all
models). Bi-directional GPLAR also gives the best results averaged over all outputs with
closed-upwards and closed-downwards observations. It is obvious that bi-directional GPLAR
is better than deep GPs and independent GPs, and most of the time, independent GPs or deep
GPs perform worse than using mean of the test value.
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(a) Exchange rate data set (b) EEG data set

Fig. 4.13 SMSE over missing values of independent GPs (igp), GPAR in forward direction
(gpar_f), GPAR in backward direction (gpar_b), DGPs (dgp), GPLAR (gplar), and bi-
directional GPLAR (gplar_bi). The comparison is made separately on different outputs, such
that “’FZ,F1,F2’ and “USD/MXN,USD/NZD” are closed-upwards, “F5,F6” and “USD/JPY,
USD/AUD” are closed-downwards, and “F3,F4” are closed-between. The total column
denotes averaged performance over all kinds of outputs.
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4.4 GPLAR on Heterogeneous Outputs

4.4.1 Overview & Synthetic data

So far, we have only focus on the regression case where likelihoods are restricted to be
Gaussian. However, GPLAR can be extended to non-Gaussian likelihoods and even heteroge-
neous outputs where a combination of continuous, categorical, binary, or discrete likelihood
functions is presented. Since the likelihood expectation term in Eq .2.2 only requires the vari-
ational marginals, the final log-likelihood term can be computed analytically using quadrature
(Hensman, A. Matthews, et al., 2015) or approximated by Monte Carlo sampling (Gal et al.,
2015). In all following experiments, we first initialize the inducing points value from GPAR
posterior predictive mean where binary data is treated as continuous outputs from 0 to 1, and
categorical data is first one-hot encoded and then treated as continuous outputs likewise in
the binary case. We show that GPLAR is able to correct any bad behaviors of prediction
caused by this classification-regression conversion, and provide more informative results
than independent GPs.

We first draw data from 4 synthetic GPs similarly in section. 4.2.2, where relations with
previous outputs are made explicit by linear or non-linear kernels. In this experiment, the last
two outputs are converted to binary outputs by first transforming samples of evaluations of the
latent process to valid probability values using the sigmoid function, i.e. logistic probability,
and then labels are generated from a Bernoulli distribution. The process of drawing the third
output is shown as follows,

p( f3|θ3) = GP( f3;0,k(x,x′)+ k(h1:2(x),h1:2(x′)))

p(h3| f3,X,h1:2,σ
2) = ∏

n
N (h3,n; f3(xn,h1:2,n),σ

2
3 )

p(y3n = 1|h3n) = σ(h3n) where, σ(x) = 1/(1+ exp(x))

The training inputs are uniformly drawn ranging from [0.0,2.0], with N = 200. Nmissing = 50
observations for the last binary output are deliberately removed from interval [0.5,1.0]. The
remaining points are fed to the GPLAR model and independent GPs. The results are shown
in Fig. 4.14. It is observed that information learned from previous tasks (either continuous
or binary) has helped predictions at the last labeling task in GPLAR. The predictive mean
nearly recovered the true underlying process, and the uncertainty is greatly reduced. As
expected, the independent GPs failed to capture the dependencies and prior distribution was
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given in the missing area. Moreover, it is obvious that independent GP is only fitting to
the current binary output, while GPLAR would sense the change of latent process although
there is no change in the labeling sequence. For example, labels in the interval [0.55,0.60]
in Fig. 4.14a are all zeros, and independent GP gives consistent extreme predictive mean
being over-confident about the output. While the true underlying probability of being labeled
as 0 is actually not close to 0. GPLAR successfully learnt from previous tasks and reflect
this uncertainty, which pattern is also shown elsewhere when the true latent process has a
probability close to 0.5. The same conclusion can be drawn from the nonlinear case that
GPLAR recovers dependencies between outputs even when the outputs are a mixture of
binary and continuous values. It is also noticed that when the true dependency is drawn from
nonlinear kernels, a GPLAR with only linear kernels between outputs would fail to capture
the correlations.

(a) Linear kernel between outputs

(b) Nonlinear kernel between outputs

Fig. 4.14 GPLAR vs IGP on synthetic heterogeneous data. GPLAR predictions are green,
Independent GPs predictions are blue, and the true underlying process values are orange.
Observation points are denoted as black dots.

4.4.2 Real-data: Multi-label classification

In the multi-label classification framework, every single instance over the same input space
has multiple labeling tasks. GPLAR can be used to achieve transfer learning between the
multi-label tasks, and we used a real-data set to validate performance of our model against
the simple independent GPs. The data is collected from 29 various landmine fields, and
each point is consist of a 9-dimensional input feature vector extracted from radar images
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taken at that field and a binary label indicating whether it is a mine or not3. Unlike previous
experiments, where input is isotropic and 1-dimensional, this dataset has multi-dimensional
input and is heterotopic such that each task has a different set of inputs. The original sensing
problem aims to find landmines with minimum false alarms, we take 1−10 tasks, all col-
lected at foliated regions and hence share similar patterns of radar images.

For independent GPs and GPLAR, a randomly selected subset of data of various sizes is
used as training data, while the remaining is used for test. The area-under-curve (AUC),
which equals to the probability a randomly chosen positive instance is ranked higher than
a randomly chosen negative instance, is used as performance metrics. We run 100 and 50
independent trials for independent GPs and GPLAR respectively, and the trend of AUC
averaged over 10 tasks as the number of training data increases is shown in Fig. 4.15. It is
observed that both independent GPs and GPLAR are sensitive to the amount of training data,
and both have a large variance when the number of training data is low. However, on average
GPLAR significantly outperforms independent GPs and has a smaller variance compared
to independent GPs as the number of observations increases. The superiority of GPLAR
suggests that kernels between outputs have great benefits in predictions of all tasks.

Fig. 4.15 Averaged AUC over 10 tasks as a function of number of training data between
Independent GPs and GPLAR. Each curve connects mean of all trials, while the error bars of
IGP curve represent standard deviation, and each scatter point in GPLAR curve represents
each independent GPLAR trial.

3The Landmine data set is available at http://www.ee.duke.edu/~lcarin/LandmineData.zip.

http://www.ee.duke.edu/~lcarin/LandmineData.zip.
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4.4.3 Real-data: Heterogeneous Output

To compare with the large-scale experiments in Hensman, Fusi, et al. (2013) and Moreno-
Muñoz et al. (2018), we test GPLAR on the complete records of house properties sold
in the Greater London area in 20174. Each record contains the postcode of the property
and is transformed into a latitude-longitude 2-dimensional spatial point as input. We take
two observations, one multi-class and one continuous. Unlike the experiments done in
Moreno-Muñoz et al. (2018) where the first output only distinguish flat or non-flat properties
(binary), the first observation in our case is multi-class indicating whether the property is
flat, terraced, or semi-detached. The second output is the logarithm transformed sale price
of the house. It is possible that multiple records exist with the same postcode and property
type, for example, flats in one building, or properties sold multiple times in one year. Hence,
prices of these records are averaged, making observations of each spatial point distinct.
The complete datasets containing distinct records are shown in Fig. 4.16. A training set of
randomly selected 20,000 points is used with 200 inducing points, and the remaining 5,286
are for test predictions.

Fig. 4.16 London House Price dataset: property type (left) and sale price (right), presented
on a longitude-latitude map.

As mentioned in section. 4.4.1, we initialize inducing points of GPLAR from the posterior
predictive mean of GPAR acting as if the multi-class labels are a set of three continuous
outputs ranging from 0 to 1. GPLAR then imposes a robust maximum likelihood with these

4The London House Price data is available at https://www.gov.uk/government/statistical-data-sets/
price-paid-data-downloads.

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
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Input Kernel Output Linear Output Nonlinear

Output Variance Lengthscales Variance Variance Lengthscales

Flat 0.1884 [0.021, 0.026]
Terraced 0.3489 [0.026, 0.030] [4.388] 0.3186 [0.921]
Semi-detached 0.0001 [1000., 1000.] [0.890 1.547] 0.0001 [10000, 9714.]

Table 4.4 Hyperparameter values of kernels learnt by GPAR on London House Price datasets

three latent processes. As shown in Fig. 4.17, the inducing points after optimization has a bet-
ter representation or summary of the overall observations (The meaning of color is explained
in the captions of Fig. 4.17). For properties of type flat, more inducing points are located
in the centre of London. For properties of type terraced, more inducing points are moved
to the northeast, or spread out in the southern part. As for semi-detached properties, more
inducing points are located in the northwest. All the inducing points after optimization gain a
more reasonable spatial meaning reflecting the true distribution of houses. This suggests that
our optimization strategy of inducing points has corrected the error brought by treatments of
multi-class labels as continuous values in GPAR. An interesting and unexpected finding of
GPAR is that when the first three latent processes are treated as continuous values from 0 to
1, GPAR still finds the particular relationship between the three outputs such that property
type can only be one of them. If one looks at the hyperparameter values of kernels of the
third output in Table. 4.4, variance of temporal kernel is pushed to zero and lengthscales
along both longitude and latitude are pushed to large numbers. The same phenomenon can
be observed with the nonlinear kernel between the third and first two outputs, indicating the
third output is learnt to completely depend linearly on the first two outputs.

During test predictions, GPLAR would produce S = 100 samples for each test point. For
each sample, we take the corresponding class with the maximum latent process value. Finally,
the modal class over all samples will give the predicted class of that test point. Accuracy of
multi-class property type, SMSE of the real-valued house sale price, and log-density of both
outputs are presented in Table. 4.5. It is observed that GPLAR has better performance than in-
dependent GPs evaluated by all metrics, indicating improvement of performance after adding
kernels between outputs in large-scale datasets and heterogeneous real datasets, such that
property type of a house has information for predicting the sale price of the house, and vise
versa. Fig. 4.18 shows that GPLAR has successfully recovered the distribution of type and
sales-price and with well-calibrated uncertainty. For example, the middle area has a lighter
color (indicating high uncertainty) compared to darker colors on the periphery. Because the
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(a) GPAR

(b) GPLAR

Fig. 4.17 The x-axis is longitude and the y-axis is latitude. The inducing points locations
are labeled as red dots if the inducing values of first three latent process has largest value
corresponding to flat, as blue dots if it is terraced, and as green dots if it is semi-detached.
Figure (a) shows inducing points in GPAR and Figure (b) shows the optimized inducing
points learnt by GPLAR. Both figures have the lighter and smaller scatter points denoting
true observations in the background.

type is more mixed-up in the centre part, while more separated away from centre as observed
from Fig. 4.16. Similarly, the predicted price distribution also matches with true observations.
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Output Binary Continuous

Accuracy HLL SMSE HLL

IGP 0.6416 -2.655 0.6122 -0.8820
GPLAR 0.6672 -2.444 0.5949 -0.8566

Table 4.5 SMSE/accuracy and HLL for heterogeneous outputs: IGP vs GPLAR for the
London House Price datasets

Fig. 4.18 GPLAR predictions of London House property type (left) and easy-normalized
log-sale price (right) evaluated at 100×100 grid points over longitude-latitude space. The
left figure shows the color corresponding to the latent process having the largest value (Flat,
terraced or semi-detached), and the darkness of color denotes uncertainty, the darker the
more certain.



Chapter 5

Conclusion

Our work mainly extended the Gaussian Process Autoregressive Regression model raised by
Requeima et al. (2018) to deal with noisy outputs using a fully Bayesian approach, which also
enables the resulting model to work with non-Gaussian or even heterogeneous likelihoods.

We utilized the inference scheme applied to the DGPs, where variational distributions are
introduced over the non-linear GP mappings to deal with the intractability raised after hid-
den variables are made explicit in the new GPLAR model. GPLAR with efficient sparse
approximation is proved to be more robust to noisy observations than GPAR with denoising
effect, when the latter can be unstable and give under-fitting or over-fitting outcomes. A
significant difference with DGPs in the inference scheme which requires careful treatment is
the initialization and optimization of inducing points and locations. We made optimization
of inducing points and locations possible and effective which are assumed to have the ability
to correct the mistakes resulted from the posterior predictive mean of GPAR. This ability is
further validated by experiments over synthetic data and real datasets.

We further extended the GPLAR model to bi-directional version, since the original settings
of GPLAR would largely depend on the ordering of outputs which restricts the modeling
power. It is realized that bi-directional GPLAR has better predictive mean, since infor-
mation that flows in both directions empowers asymmetric correlations between outputs
and makes learning easier than single ordering where updates of variational parameters in
the first few channels would be hard when outputs dimension becomes larger and chain of
GPs becomes longer. Experiments on real datasets verified the superiority of bi-directional
GPLAR on insensitivity to locations of missing values, either in preceding or later part of
the outputs. Real datasets with heterogeneous outputs containing both continuous and multi-
class type are run with GPLAR that showed prominent improvement over independent GPs
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indicating GPLAR’s ability of knowledge transfer between regression and classification tasks.

Apart from the novel GPLAR model, we also made a comprehensive overview of the current
literature over multi-output Gaussian Process models. Differences lie in how latent processes
are being shared, either implicitly combined using a matrix, wrapped in a hierarchical way,
or explicitly using outputs as inputs in an autoregressive way. The richness of autoregressive
models in specifying any combination of linear or nonlinear kernels between outputs or
between outputs and inputs makes them more powerful than linear coregionalization model
or DGPs.

5.1 Limitations

Although the results have shown great success of GPLAR and its alternatives in predictions
and inference, especially when the observations have large noises or when there are missing
values, it still has some drawbacks and limitations that require careful human intervenes.

Sensitivity of initialization of hyperparameters As it is long realized, methods that use
local stochastic optimization steps on non-convex objective functions can easily be trapped
in local optimum. Apart from sensitivity to initialization of inducing locations which is
solved by using k-means clustering when input dimension is high or initialized from the
posterior predictive mean of GPAR for preceding channels, GPLAR is particularly sensitive
to hyperparameter initial values and design of kernels. For example, the EEG datasets are
much smoother than exchange rate datasets, and GPLAR would perform better if squared
exponential kernel and rational quadratic kernel are used over the temporal space for these
two tasks respectively. Furthermore, the landmine datasets have extremely imbalanced labels
such that positive instances are far fewer than the negative ones, and hence requiring a
careful selection of values of lengthscales and variances. Both choices of hyperparameters’
initial value and design of kernels would need expert knowledge which is prohibitive when
one wishes to build models that easily generalize to all conditions without much human
intervention.

Balancing contribution of input and other outputs As mentioned before in section. 4.3.2,
by specifying both kernels over inputs and over outputs, autoregressive model would need to
balance the contributions. If the mapping can already achieve decent results by only utilizing
the input information, model would struggle when the test points are far away from the
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training input space and observations of other output would have played a crucial role that
requires dependencies between outputs already discovered. This balance is also sensitive to
initialization of hyperparameters such that if variances of kernels between outputs are much
smaller than variances of input kernels, GPLAR would start like independent GPs and be
trapped inside such local optimum.

Large training time as output dimension increases Although the model can scale-up
with large-scale datasets, the training time still grows as the dimension of outputs increases.
Since the GP modelling of later outputs depend on outputs of previous GPs, the training pro-
cess is sequential which cannot be paralyzed or distributed to utilize the efficient calculations
brought by GPU.

5.2 Future work

Additive GPLAR One of the alternatives of GPLAR discussed in section. 3.3, additive
GPLAR, is designed to deal with poorly calibrated uncertainty of GPLAR, however, the
number of latent processes and their corresponding number of variational parameters increase
significantly as the number of outputs increases and hence requires more careful treatments.
The performance over real datasets also did not show its advantages over original GPLAR
or bi-directional GPLAR. However, its explicit separation of hidden variables should pro-
vide better interpretation ability, and more flexibility should be achieved by not internally
connecting the inducing points over input. Further work can be done to explore the additive
GPLAR and improve its inference scheme.

GPLAR with Bayesian Network GPLAR can be extended to work with the Bayesian
network, where uncertainty and structures of correlations between outputs and inputs can
also be modeled instead of directly using fully connected graphs. Gaussian Process Networks
raised by Friedman et al. (2013) only puts a Gaussian Process prior over the network and
allows for structural learning. It can be extended to combine with GPLAR and then kernels
between some unrelated outputs can be relaxed. For example, the landmine detection tasks in
section. 4.4.2 contains labels collected from foliated regions and regions that are bare earth
or desert. If networks are learnt to discover the distinction between the two regions which
share no common knowledge, outputs of foliated regions would not be fed to regions on
desert and as a result, benefits the modeling.
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