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Abstract

Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) are both popular

statistical inference methods in machine learning. MCMC is guaranteed to draw unbiased

samples from target distribution asymptotically but the samples are correlated and it often

requires long burn-in simulations, which makes it computationally expensive. VI, based

on optimisation, is more computationally efficient and we can draw independent samples

from the parametric approximation of the target distribution, but VI can perform poorly

when the target distribution is complicated and the parametric approximation is not able

to represent it well. Ergodic Inference (EI) is a hybrid method that combines MCMC and

VI to balance between computational cost and approximation bias. EI generates samples

from approximate distribution by running multiple Hamilton Monte Carlo (HMC) MCMC

chains, with initial distribution found by VI, for a fixed number of iterations. Then the

last states of these chains are independent approximate posterior samples. However, EI

tends to suffer from the mode collapse pathology because the hyperparameters of HMC

are tuned by optimizing a new objective resulting from ignoring the entropy term in the

evidence lower bound used by VI. The mode collapse pathology can be detrimental to the

performance of EI. However, it was found that if the initial distribution has high entropy,

the pathology can be avoided. In this work, we mitigate EI’s mode collapse pathology

by tuning an inflation parameter and then using it to scale the variational distribution

found by VI to increase the variance of the initial distribution. The inflation parameter

will be determined using Kernelized Stein Discrepancy (KSD) or max Sliced Kernelized

Stein Discrepancy (maxSKSD).
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Chapter 1

Background

In this chapter, we introduce the problem to deal with in this project and review some

previous methods that our proposed model is based on.

In probabilistic models, the distributions we would like to learn are most likely to be

very hard to work with analytically. As a concrete example, the posterior distribution

of parameters θ given dataset D and predictive distribution over new data point x∗ in

Bayesian Inference [1] are

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.1)

P (y∗|x∗,D) =

∫
P (y∗|x∗, θ)P (θ|D)dθ (1.2)

For almost all practical Bayesian Inference problems, the evidence (denominator of (1.1))

P (D) is intractable since it requires us to compute a complex integral with no analytical

solution and since the dimension of θ is usually very high, numerical integration is also

infeasible due to high computational cost. Consequently, the posterior distribution is

intractable and we have to use approximate inference methods.

In many complex models of interest, we have a target distribution π(x) which is im-

practical to work with analytically and it is also hard to draw samples from it directly.

Moreover, like in Bayesian Inference problem described above, the normalization constant

Z of the target distribution is often unknown, therefore, we can only work with an un-

normalized target π∗(x). In machine learning literature, Variational Inference (VI) [2]

and Markov Chain Monte Carlo (MCMC) [3] are two most popular statistical inference

methods to address this problem.
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1.1 Variational Inference

Variational Inference (VI) based on optimization aims at finding the member from a family

of parametric distributions, such as factorized Gaussian, that is most similar to the target

distribution in the sense that the Kullback-Leibler divergence (KL-divergence) between this

variational distribution and the target distribution is minimized. KL-divergence is always

non-negative with 0 being achieved if and only if the two distributions are the same, and KL-

divergence is an asymmetric measure between two distributions (DKL(p||π) 6= DKL(π||p)
in general).

Suppose we only consider using distribution from a family of parametric distributions

p(x; θ) to approximate the target distribution π(x) and we only know π(x) up to a nor-

malisation constant Z, π∗(x) = Zπ(x), where θ is the variational distribution parameters,

then our goal is to find the optimal variational distribution parameters θ∗ such that the

KL-divergence between p(x; θ) and π(x), DKL(p(x; θ)||π(x)) is minimized. Fortunately,

DKL(p(x; θ)||π(x)) can be minimized indirectly by maximizing the evidence lower bound

even without knowing the normalization constant:

θ∗ = argmin
θ
DKL(p(x; θ)||π(x))

= argmin
θ

Ep[log
p(x; θ)

π(x)
]

= argmin
θ

Ep[log
p(x; θ)

π∗(x)
]− logZ

= argmax
θ

Ep[log π∗(x)− log p(x; θ)]

(1.3)

The objective to maximize in the last line of (1.3) is the evidence lower bound LELBO, and

it is easy to show that LELBO = logZ−DKL(p(x; θ)||π(x)). Since KL-divergence is always

non-negative, LELBO is a lower bound of logZ. In Bayesian Inference, Z = P (D), which

is the evidence or marginal likelihood of the data. Maximizing LELBO can be viewed as a

way to indirectly maximize the marginal likelihood of the data. However, the marginal

likelihood of the data is not guaranteed to increase every time when LELBO increases. It

is worth noting that LELBO can be decomposed into two terms: the first term is expected

logarithm of the unnormalized target distribution with respect to p(x; θ), Ep[log π∗(x)],

and the second term is the entropy of p(x; θ), H(p) = −Ep[log(p(x; θ))]. The first term

should be reasonably high if p(x; θ) matches π well since the samples generated from

p(x; θ) should fall in high probability mass region of π(x) frequently if the variational

distribution is similar to the target. However, maximizing only the first term can result in

mode collapse problem. In an extreme case, if p is a fully flexible distribution, then the

variational distribution found after optimization would be a Dirac-Delta distribution at the
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mode of the target π. The second term prevents p from shrinking to the degenerate delta

solution since maximizing the entropy encourages a distribution with more uncertainty.

If the chosen family of distributions contains the true target distribution π, then the

variational approximation is unbiased (DKL(p(x; θ)||π(x)) = 0). However, in practice, to

ensure LELBO is tractable, we often can only work with some simple families of distribu-

tions such as factorized Gaussian to ensure the second term (H(p)) in LELBO is tractable.

Consequently, the family of distributions chosen is rarely rich enough to capture the target

for practical models and therefore the approximation bias is almost inevitable when VI

is used. When the expressiveness of the chosen family of distributions is not capable

of representing the target well, the approximation bias of VI can be large and it may

considerably hurt the performance of the model. While VI usually can only give us biased

estimates, the fact that it is based on optimization significantly reduces the computational

cost compared with methods based on sampling like Markov Chain Monte Carlo, which we

will discuss in next section. It is also worth noting that we can often generate independent

samples from the variational distribution when we are required to compute Monte Carlo

estimate based on the variational distribution, since the parametric family of distributions

is often simple enough for us to draw independent samples directly.

1.2 Markov Chain Monte Carlo and Hamiltonian Monte

Carlo

Markov Chain Monte Carlo (MCMC) is a simulation approach that builds a Markov Chain

with the target distribution π(x) as its stationary distribution by repeatedly applying an

appropriate transition operator xt ∼ T (xt|xt−1) that satisfies the Detailed Balance (DB)

condition: π(x)T (x′|x) = π(x′)T (x|x′). Typically, MCMC techniques achieve it by first

sampling an auxiliary random variable r from an auxiliary distribution qθ with parameters

θ, then constructing a new augmented samples (x′, r′) = fφ(xt−1, r) through some proper

deterministic function fφ with parameters φ and finally including a Metropolis-Hasting

correction step: xt = x′ with probability p = min{0, π(x′)qθ(r
′)

π(xt−1)qθ(r)
}, otherwise set xt = xt−1.

Note that the Metropolis-Hasting step does not require us to know the normalization

constant of π since π(x′)
π(xt−1)

= π∗(x′)
π∗(xt−1)

.

Traditional MCMC methods like Metropolis-Hasting algorithm is inefficient when dealing

with complex correlated high-dimensional target distribution because we have to use

transition operator that only proposes states close to the current state to avoid falling in

low target probability regions by taking a large random step. It results in highly correlated

samples and prevents the Markov chain to fully explore the target distribution. We can
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overcome this inefficiency by using Hamiltonian Monte Carlo [4], which utilizes the gradi-

ent information of log-target to allow the sampler to more efficiently explore the state space.

Hamiltonian Monte Carlo (HMC) is one of the most successful approaches in the MCMC

family. It can draw unbiased samples from the target distribution asymptotically without

knowing its normalization constant. This property is desirable because we often only

have an unnormalized target distribution π∗(x) in complex probabilistic models. HMC

introduces auxiliary momentum variables r with same dimensionality as the space of the

state x and it considers sampling as simulating time-evolution of a fictitious physical

system whose dynamics can explore the state space.

Let the augmented space containing state and momentum be the phase space z = (x, r)

and then we simulate the differential equation with respect to dz
dt

as follows:

dx

dt
=
∂H

∂r
dr

dt
= −∂H

∂x

(1.4)

where H(x, r) = U(x) +K(r), U(x) = − log π∗(x) is the potential energy, which is equal

to the negative logarithm of the unnormalized target, K(r) = 1
2
rTM−1r is called kinetic

energy and M is the mass matrix. In practice, we have to approximate the continuous time

system by discretising the differential equations. Thus, we used the leapfrog integrator

with discretisation step size hyperparameter and we implemented the vanilla leapfrog

integrator following [5] in this work:

Algorithm 1 Leapfrog

Input: x: state, r: momentum, φ1: step size, φ2: r variance, m: number of steps
Output: x′: new state, r′: new momentum

1: x∗ = x
2: r∗ = r
3: for t in 1 to m do
4: r∗ = r∗ − 1

2
φ1

∂
∂x
U(x∗)

5: x∗ = x∗ + φ1
φ2
r∗

6: r∗ = r∗ − 1
2
φ1

∂
∂x
U(x∗)

7: end for
8: x′ = x∗

9: r′ = r∗

10: return x′, r′

One can see from the leapfrog algorithm shown above that we only need to know the

unnormalized target π∗(x) to take advantage of the gradient information of log-target since

the score function of the target (gradient of log-target) can be computed without knowing
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the normalization constant: ∇x log π(x) = ∇xπ(x)
π(x)

= ∇xπ∗(x)
π∗(x)

= ∇x log π∗(x). If we can

simulate the differential equations perfectly, then the Hamiltonian H should be constant

([4]). However, since leapfrog integrator is a discrete approximation of the differential

equations, it does not preserve energy exactly and we need to incorporate a Metropolis-

Hasting correction step at the end of leapfrog to ensure the stationary distribution of the

Markov Chain is indeed the target: we accept the new state (z′ = (x′, r′)) with probability

min(1, e−H(x,r)+H(x′,r′)). If the simulation of the differential equations is very accurate then

the acceptance probability will be close to 1. HMC with length L repeats the leapfrog

integrator for L iterations and at each iteration, we resample the momentum to ensure

sufficient exploration of the target. The step sizes φ1 and momentum variances φ2 in

different iterations can be different.

Although HMC is more efficient than many traditional MCMC techniques by using

auxiliary momentum variables and simulating Hamiltonian dynamics to allow the par-

ticle to move longer distances in the target surface, it is still much more computational

demanding compared with VI, especially when dealing with complex high dimensional

distributions because it may take impractically many iterations to converge. Another

problem of HMC is that like other MCMC techniques, the samples generated by HMC are

correlated, which may result in high variance of the Monte Carlo estimator ([5]). Moreover,

careful tuning of the hyperparameters of HMC is critical for it to work well in practice.

The step sizes should have proper values to balance between insufficient exploration (too

small step sizes) and instability (too large step sizes).

1.3 Hamiltonian Ergodic Inference and the mode col-

lapse pathology

In previous two sections, we introduced two popular approximate inference methods VI

and HMC. We also discussed their drawbacks and the potential causes of the failure

of these two techniques. In short, approximation bias is almost inherent in VI and

MCMC is computationally demanding. In this section, we introduce a hybrid method

Ergodic Inference (EI), proposed in [6], that combines VI and MCMC to balance between

computational cost and approximation bias. More specifically, we focus on Ergodic

Inference that combines VI and HMC, which is called Hamiltonian Ergodic Inference

(HEI). HEI runs multiple finite length HMC chains with T HMC iterations and finally

returns the last states of theses chains, which form independent samples that can be used

to approximate the target distribution π(x). The initial samples of HEI are drawn from

the member of a family of parametric distributions qψ(x) whose parameters are tuned

by maximizing LELBO and we use P0(x;ψ) to denote this initial variational distribution.
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Furthermore, the HMC hyperparameters θ like step sizes and momentum variances are

also tuned using ideas borrowed from VI: since we do not have an analytic form for the

distribution of the final state of HMC (PT ), the entropy term in LELBO is intractable

and we can not tune the HMC hyperparameters θ by maximizing LELBO. Instead,

we tune the HMC hyperparameters θ by maximizing a new objective resulting from

dropping the intractable entropy term from LELBO, which is the expected logarithm of the

unnormalized target term described in section 1.1. The training scheme described above

can be summarized as follows:

max
θ
EPT (x;θ,ψ)[log π∗(x)]

max
ψ

EP0(x;ψ)[log π∗(x)− logP0(x;ψ)]
(1.5)

where π∗(x) is the unnormalized target distribution, and from now on we use LEI to

denote EPT (x;θ,ψ)[log π∗(x)].

As discussed in section 1.1, tuning HMC hyperparameters by maximizing LEI alone can

lead to mode collapse pathology and it was found in [6] that it is necessary for the initial dis-

tribution from which the initial states are sampled to have reasonably large entropy. More

specifically, they proposed that the entropy of the initial distribution should be greater than

the entropy of the target distribution (H(P0) > H(π)) because it will force EP0 [log π∗(x)]

to be less than Eπ[log π∗(x)]: since we have logZ = Eπ[log π∗(x)] + H(π) ≥ LELBO =

EP0 [log π∗(x)] + H(P0), then Eπ[log π∗(x)] − EP0 [log π∗(x)] ≥ H(P0) − H(π). Thus, if

H(P0) > H(π), we have Eπ[log π∗(x)] > EP0 [log π∗(x)]. It is more likely to avoid the mode

collapse pathology during maximization of LEI with Eπ[log π∗(x)] > EP0 [log π∗(x)], than

with Eπ[log π∗(x)] < EP0 [log π∗(x)], because we would expect the maximization of LEI

will push up EPT [log π∗(x)] from EP0 [log π∗(x)].

Unfortunately, variational approximation of π, found by LELBO maximization, tends

to underestimate the uncertainty ([7]) and the entropy of this initial variational distribu-

tion is usually not large enough to avoid the mode collapse pathology. We demonstrate

it by reproducing the toy experiment of using HEI to generate samples from a corre-

lated bi-variate Gaussian distribution from [6]. The target 2D Gaussian distribution is

N (x;0, [[2.0, 1.5], [1.5, 1.6]]). We use HMC with T = 30 iterations (each iteration contains

m = 5 leapfrog steps) and we consider different step sizes and momentum variances for

each HMC iteration and for each sample dimension. We examine the results of using three

different initial distributions: (a) P0 is a factorized Gaussian with entropy less than the

entropy of the target, P0 ∼ N (x;0, 0.52I), (b) P0 is a factorized Gaussian with entropy

greater than the entropy of the target, P0 ∼ N (x;0, 32I) and (c) P0 is the variational
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mean field approximation of π(x) tuned by maximizing LELBO. The histograms of samples

generated by HEI with these three different initial distributions are plotted in Figure

1.1 and Table 1.1 shows the expected negative log-target estimated using the final states

generated by HEI, −EP30 [log π(x)]. The ground-truth is estimated by independent samples

directly drawn from the Gaussian target.

Ground-truth

a, before training a, after training

b, before training b, after training

c, before training c, after training

Figure 1.1: Histograms of samples generated by trained HEI or untrained HEI with
different initial distributions

Figure 1.1 and Table 1.1 shows that HEI using initial distribution with small entropy

(a, c) tends to generate samples close to the mode and the mode collapse pathology

is more serious after optimizing LEI with respect to the HMC hyperparameters. The
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Ground-truth: −Eπ[log π(x)] = 2.8083
a b c

Before training 2.3563 9.8907 2.6000
After training 2.2948 2.8176 2.5089

Table 1.1: Expected negative log-target estimated using the final states generated by
trained HEI or untrained HEI, −EP30 [log π(x)]

entropy of the variational approximation of the target, found by LELBO maximization, is

also insufficient to avoid the pathology. While HEI using initial distribution with large

entropy (b) can result in overestimated uncertainty and unstable performance before

training of the HMC hyperparameters, it gives best convergence after training, suggest-

ing reasonably large entropy of the initial distribution is indeed crucial for HEI to work well.

As demonstrated by the toy Gaussian example, the variational approximation found

by LELBO maximization tends to have insufficient entropy for HEI to work well. Our goal

in this project is to improve the performance of HEI by finding an initial distribution

with sufficient entropy to avoid the mode collapse pathology. We propose to achieve

it using two techniques. The first one is to find the initial distribution by optimizing

another objective, α-divergence [8], instead of LELBO. Optimizing LELBO is equivalent

to optimizing α-divergence with α → 0 and with a lager α, such as α = 1, the initial

distribution found by α-divergence minimization with large α tends to have lager width

and it might help overcome the pathology. The second method is to multiply the marginal

variances of the initial distribution found by optimizing LELBO or α-divergence by a

reasonably large inflation value s. We also want a method to automatically tune s so

that PT can match π well. In this project, we try to achieve this goal by tuning s with

Kernelized Stein Discrepancy (KSD) or a modified version of KSD, called maxSKSD. We

will discuss these two techniques in detail in next chapter.

1.4 Related Work

Similar to HEI, there have been many attempts to combine VI and MCMC in recent years

to balance between approximation bias and computational cost. As discussed previously,

the intractable entropy term in LELBO prevents us from treating the family of distributions

of the final state of HMC p(xT) as a variational family in practice. [9] proposed to tackle

the intractability of H(p(xT)) by explicitly constructing a lower bound Laux of LELBO and

then optimize Laux directly. Laux can be computed as an expectation with respect to the

joint distribution of all intermediate states of HMC by subtracting non-negative expected

KL-divergence between p(x0:T−1|xT ) and r(x0:T−1|xT ) with respect to p(xT ) from LELBO,

where r(x0:T−1|xT ) is an auxiliary reverse model which approximates the reverse dynamics
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p(x0:T−1|xT ):

Laux = Ep(x0:T )[log π∗(xT ) + log r(x0:T−1)− log p(x0:T )]

= Ep(xT )[log π∗(xT )− log p(xT )]− Ep(x0:T )[log
p(x0:T−1|xT )

r(x0:T−1|xT )
]

= LELBO − Ep(xT )[DKL(p(x0:T−1|xT )||r(x0:T−1|xT ))]

≤ LELBO

(1.6)

The performance of this method highly depends on how well the reverse model approxi-

mates the reverse dynamics and in practice the reverse model can be specified in some

flexible parametric form, like a flexible Neural Network, to achieve good results. However,

unless the reverse model approximates the reverse dynamics perfectly, Laux is guaranteed to

be a biased approximate of LELBO. Since the choices of model to approximate the reverse

dynamics is limited in practice, Laux may be a loose lower bound of LELBO and it can signif-

icantly affect the performance. Another limitation is that it is expensive to use HMC with

multiple iterations in this method because we have to explicitly represent the acceptance

decision in Metropolis-Hasting correction step as an additional auxiliary binary random

variable ([10]). In particular, HMC used in [9] only involves one iteration with 16 leapfrog

steps. Moreover, as the length of the HMC grows, the dimensionality of the auxiliary ran-

dom variables x0:T−1 increases and DKL(p(x0:T−1|xT )||r(x0:T−1|xT )) tends to grow, which

makes Laux become looser and looser ([11]). This again prevents us from using longer chain.

Instead of trying to do variational inference with the final states of MCMC, [10] proposed

to simply run some HMC steps with initial distribution parameters tuned by standard

variational inference. However, they did not propose principled way to tune the HMC

hyperparameters. The tuning of these hyperparameters is important for HMC to achieve

good performance. Although the distribution of final states of HMC is guaranteed to have

lower KL-divergence to the target distribution than the initial distribution does ([12]), we

can not be confident that HMC with hyperparameters tuned manually would perform well

in complex models ([11]). [13] proposed to use Metropolis-adjusted Langevin dynamics to

fit Deep Latent Variable Model (DLVM) in a stochastic Expectation Maximization (EM)

fashion. However, like [10], they did not make attempt to tune MCMC hyperparameters.

Furthermore, this method requires simulating a Markov Chain for each observation in the

dataset, which makes it hard to scale to large datasets ([10]).

More recent works include [14] which is similar to [10] but it attempted to find a better

initial distribution than standard variational distribution by defining a new objective

LV CD with respect to the initial distribution parameters, which also incorporates feedback
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from the final states of the Markov Chain:

LV CD = DKL(p0(x)||π(x))−DKL(pT (x)||π(x)) +DKL(pT (x)||p0(x)) (1.7)

LV CD is a valid divergence and the last term in LV CD cancels the intractable entropy of pT

introduced by the second term, making LV CD tractable. The last term can also be viewed

as a regularization which reduces the discrepancy between pT and p0. Similar to [10],

the drawback of this method is that it also does not tune the MCMC hyperparameters.

Moreover, after writing LV CD in an alternative form: LV CD = Ep0(x)[log p0(x)−log π∗(x)]+

EpT (x)[log π∗(x)− log p0(x)], we can see that the second term in this form may slow down

the mixing of the Markov Chain since minimizing it encourages the final distribution to

be more similar to the initial distribution instead of the target distribution.

The idea of HEI is similar to [10] but it offers a way to tune Markov Chain hyper-

parameters by simply ignoring the intractable entropy term in LELBO. Although it may

result in unstable performance, we can still often get good results if the initial distribution

has sufficient entropy and in this work, we offer techniques to ensure sufficient entropy for

initial distribution and thereby improve the performance of HEI.
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Chapter 2

Methodology

In this chapter, we propose two techniques to find the initial distribution with sufficient

entropy for HEI. The first one is to tune the initial distribution parameters by minimizing

α-divergence [8] with a proper divergence parameter α, instead of maximizing LELBO.

The other one is to multiply the marginal variances of the initial distribution found by

Variational Inference or α-divergence minimization by a inflation parameter s tuned by

optimizing Kernelized Stein Discrepancy (KSD) [15] or a modified version of KSD: Max

Sliced Kernelized Stein Discrepancy (maxSKSD) [16].

2.1 α-divergence Minimization

α-divergence is a generalization of KL-divergence and its divergence parameter α controls

the width of the approximate distribution p(x). With large positive α, p(x) tends to

cover all modes of the target π(x) while with small α, p(x) is attracted to the mode

of π(x) with largest probability mass. There are also two special cases: when α → 0,

minimizing α-divergence is equivalent to maximizing LELBO (VI) while when α = 1,

minimizing α-divergence is equivalent to Expectation Propagation (EP) [17] (ie. minimize

DKL(π(x)||p(x))). To demonstrate the differences among the widths of approximate distri-

butions with different divergence parameters α we reproduce the toy example of using a 2D

Gaussian with diagonal covariance matrix to approximate the posterior distribution of the

weights in a simple 2D linear regression model from [8]. Furthermore, we set the output

values of the artificial dataset in a way such that we can compute the solution analytically.

The analytical mean of the approximate distribution is 0 and the two diagonal elements

in the analytical diagonal covariance matrix are the same due to the artificial choice of

the output values. We plot the values of the diagonal elements in the covariance matrix,

found by analytical computation or stochastic minimization of Monte Carlo estimate of

α-divergence, against α in Figure 2.1. We can see from Figure 2.1 that the width of the

approximate distribution grows as α increases and this property may be useful to avoid
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Figure 2.1: Values of diagonal elements of covariance matrix vs α

the mode collapse pathology of HEI since we may find an initial distribution with lager

width using α-divergence minimization with a proper α. In particular, with α > 0, we can

find an initial distribution with larger width than standard variational distribution found

by LELBO maximization.

For our purpose, we minimize α-divergence with α = 1 to find a variational initial

distribution with larger width than that obtained by LELBO maximization. It is equivalent

to maximizing the following objective: {logEP0(x)[(
π(x)
P0(x)

)α]}|α=1 = logEP0(x)[
π(x)
P0(x)

]. Note

that to maximize this objective, we also only need to know the unnormalized target

distribution π∗(x):

Lα=1 = logEP0(x)[(
π∗(x)

P0(x)
)] = logEP0(x)[(

Zπ(x)

P0(x)
)] = logZ + logEP0(x)[(

π(x)

P0(x)
)] (2.1)

Since logZ is irrelevant to parameters of P0, what we really maximize in practice is Lα=1.

However, direct stochastic minimization of Lα with large α (like α = 1) and large number of

samples can lead to unstable performance due to poor signal to noise ratio of Monte Carlo

gradient estimate of initial distribution parameters ([18]). This can be seen from Figure

2.1: the difference between the estimated values of the diagonal elements and the analytical

solution becomes larger as α grows, suggesting the optimization is more unstable as α

increases. Therefore, for our experiments, we also construct an alternative version of the

gradient estimator with less variance by applying the double reparameterization trick from

[19] in case the standard gradient estimator is unstable. Let’s use φ to denote the initial
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distribution parameters. Lα=1 in practice can be written as Ex1:K
[log( 1

K

∑K
i=1(

π∗(xi)
pφ(xi)

))],

where x1:K ∼
∏

i pφ(xi) and xi in practice is sampled using reparameterization trick ([20])

to take advantage of the auto-differentiation technique: xi = f(εi, φ), where f is some

deterministic function and ε is standard Gaussian noise with same dimensionality as xi.

Let’s use wi to denote π∗(xi)
pφ(xi)

. Then Ex1:K
[log( 1

K

∑K
i=1(

π∗(xi)
pφ(xi)

))] = Eε1:K [log( 1
K

∑K
i=1wi)]

and its gradient with respect to φ is:

∇φEε1:K [log(
1

K

K∑
i=1

wi)] = Eε1:K [
K∑
1

(
1∑K

j=1wj
∇φwi)]

= Eε1:K [
K∑
1

(
wi∑K
j=1wj

(−∇φ log pφ(xi) + (∇xi logwi)(∇φxi)]

(2.2)

Note that the gradient contains term −∇φ log pφ(xi), which can contribute significant vari-

ance to the gradient estimator ([21]). Thus, we adopt the technique from [19] which treats
wi∑K
j=1 wj

(−∇φ log pφ(xi)) as a REINFORCE gradient term ([22]) and uses an additional

application of reparameterization trick to rewrite this term into a more stable form that

typically has lower variance (detailed derivation is included in Appendix A):

∇φEε1:k [log(
1

K

K∑
i=1

wi)] = Eε1:K [
K∑
1

(
wi∑K
j=1wj

)2(∇xi logwi)(∇φxi)] (2.3)

We again consider using HEI to generate samples from the correlated bi-variate Gaussian

distribution mentioned in section 1.3 (π(x) ∼ N (0, [[2.0, 1.5], [1.5, 1.6]])), but this time

we use initial distribution obtained from optimizing Lα=1 and we consider both cases

of using standard gradient estimator (non-DReG) and using Doubly-Reparameterized

gradient estimator (DReG) (we call the corresponding objective DReG-Lα=1). The results

are plotted in Figure 2.2. Figure 2.2 shows that with initial distribution tuned by α-

divergence minimization with α = 1, the pathology is overcome to some extent for this 2D

Gaussian example but HEI still does not converge to the target exactly. Furthermore, HEI

using DReG version of gradient estimator of initial distribution parameters demonstrates

better convergence (ground-truth: −Eπ[log π(x)] = 2.8083) than using standard gradient

estimator, suggesting DReG gradient estimator has lower variance and results in more

stable performance. This difference can also be seen from the mean parameters of the

two initial distributions. The mean of initial distribution found with DReG gradient

estimator is [−0.0118,−0.0078]T , which is very close to the mean of the target (0 = [0, 0]T ).

However, the mean of initial distribution found with standard gradient estimator is

[−0.4492, 0.4697]T , which is noticeably different from the mean of the target.
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non-DReG, −EP30 [log π(x)] = 2.6615 DReG, −EP30 [log π(x)] = 2.7328

Figure 2.2: Histograms of samples generated by HEIs with initial distribution tuned by
maximizing non-DReG-Lα=1 or DReG-Lα=1

2.2 Kernelized Stein Discrepancy

In case the width of the initial distribution found by Lα=1 maximization is still not

large enough for sufficient entropy, we also incorporate an inflation parameter s into our

model. The idea is to multiply the marginal variances of the distribution found by LELBO

maximization (equivalent to Lα=0 maximization) or Lα=1 maximization by s to construct

an initial distribution with sufficient entropy. We use Kernelized Stein Discrepancy (KSD)

[15] to tune s so that it has a proper value that avoids the mode collapse pathology and

meanwhile also ensures stable performance. KSD, which has closed-form solution, is a

special case of Stein Discrepancy computed in a reproducing kernel Hilbert space (RKHS).

2.2.1 Stein Discrepancy

Stein Discrepancy can be viewed as a special case of integral probability metric (IPM)

[23] which is defined as follows:

dH(p, π) = sup
h∈H
|Ep[h(x)]− Eπ[h(x)]| (2.4)

where H is a family of real-valued test functions. IPM measures the maximum discrepancy

between expectations with respect to approximate distribution p and target distribution

π over functions in class H. Suppose (pn)n≥1 is a sequence of sample measures, then

the convergence of dH(p, π) to zero implies the (pn)n≥1 converges weakly to π, if H is

expressive enough. Note that the term Eπ[h(x)] in (2.4) is intractable in practical models

since it requires us to evaluate an integral under the target π(x). We also assume there is

no trivial way to compute Monte Carlo estimate of this term in practice since if we can

easily generate high quality samples from π(x), it is unnecessary for us to find p(x) to

approximate π(x). However, if we can find a function class H such that for any h ∈ H,

23



Eπ[h(x)] = 0, then we can avoid this intractability. [24] proposed to achieve it by applying

the Stein operator of distribution π, Aπ, to set of functions F such that for any function

h ∈ H = AπF , Eπ[h(x)] = 0 and they called F satisfying this property Stein set. Moreover,

they considered vector-valued functions instead of real-valued functions. The (Langevin)

Stein operator Aπ of distribution π, with smooth density and support X ⊂ RD, acting on

vector-valued functions (f : X → RD) is defined as

Aπf(x) = f(x)T sπ(x) +∇T
x · f(x) (2.5)

where sπ(x) is the score function of π (derivative of logarithm of π(x)): sπ(x) =

∇x log π(x) = ∇xπ(x)
π(x)

and ∇T
x is the divergence operator. In particular they defined a func-

tion family F∗ called Classical Stein set such that H = AπF∗ satisfies the desired property:

A function f : X → RD is said to be in the Classical Stein set if f(x)Tn(x) = 0,∀x ∈ ∂X ,

where n(x) is the outward unit normal vector to the boundary ∂X . [24] showed that for

any f in the Classical Stein set F :

Eπ[Aπf(x)] = 0 (2.6)

Therefore, by choosing H to be function families defined by applying the Stein operator

to functions belonging to the Classical Stein set, we can avoid computing the intractable

integral with respect to π and we only need to deal with Ep[Aπf(x)]. However, the

optimization in general still has no closed form solution since the Classical Stein set is still

very expressive, which leads to intractability of the supremum. Thus, we need to further

restrict our consideration to a Stein set, which allows the optimization to have closed form

solution and meanwhile allows H to remain sufficiently expressive.

2.2.2 Kernelized Stein Discrepancy

[15] proposed to use a Kernel Stein set to allow the optimization to have closed form

solution for Stein Discrepancy. In particular, they considered family of vector-valued

functions in the unit ball of vector-valued reproducing kernel Hilbert spaces (RKHS)

related to smooth positive definite kernel k(x,x′) which is in the Stein class of p. The

Stein class of p is defined as the family of real-valued functions f : X → R satisfying∫
x∈X ∇x(f(x)p(x))dx = 0. Note that if the kernel k(x,x′) is in the Stein Class of p, so

is any functions in the real-valued RKHS related to kernel k(x,x′). The Stein class of p

can also be defined for vector-valued functions: we define Fp as family of vector-valued

functions f : X → RD with each component fi : X → R in the Stein class of p. One can

show that the vector-valued test functions from unit norm vector-valued RKHS related to

k(x,x′) form a Stein class of p, Fkp , and with these test functions, (2.6) is satisfied under
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mild conditions (ie. Fkp is a Stein set) [25]. Furthermore, the optimization has closed form.

In conclusion, by choosing H to be AπFkp , we can get a special case of Stein Discrepancy

with closed form solution for optimization, which is KSD (in fact the formula for KSD

given below is the square of the corresponding Stein Discrepancy), S2(p, π). Suppose π

and p are smooth densities and the kernel k(x,x′) is in the Stein class of p, then

S2(p, π) = sup
f∈Fkp

E2
p [Aπf(x)] = Ex,x′∼p[uπ(x,x′)] (2.7)

where uπ(x,x′) = sπ(x)Tk(x,x′)sπ(x′) + sπ(x)T∇x′k(x,x′) +∇xk(x,x′)T sπ(x′) +

trace(∇x,x′k(x,x′)). Note S2(p, π) depends on the target π only through the score function

sπ(x) = ∇x log π(x) which can be computed without knowing the normalization constant,

and it is a desired property for our purpose since we usually only have unnormalized target

π∗ in complex models. One can show that Ep[Aπf(x)] = Ep[(sπ(x) − sp(x))T f(x)] [24].

Intuitively, this suggests KSD can be seen as an objective comparing the difference between

the score functions of π and p. In this work, KSD is estimated using V-statistic as described

in [26] with samples drawn from p: Ŝ2
v (p, π) = 1

n2

∑
i,j[uπ(xi,xj)]. It can be shown that

if k(x,x′) is integrally strictly positive definite and ||p(x)(sπ(x)− sp(x))||22 ≤ ∞ (which

may not hold if p(x) has a heavy tail), S2(p, π) is a valid discrepancy measure between

distributions (ie. S(p, π) ≥ 0 and S2(p, π) = 0 if and only if p = π). The kernel k(x,x′)

used in this work is the RBF kernel, k(x,x′) = exp(− 1
2h2
||x− x′||22), which is in the Stein

class of distributions that have smooth densities supported on RD. The bandwidth of the

kernel h is chosen to be the median of the data distances.

Despite of the nice theoretical results described above, the expressive power of RKHS

declines when dimension of the state space increases ([27]) and more samples may be

required to estimate KSD in high dimension, which limits its ability to scale to high dimen-

sional data since the cost of computing KSD is quadratic in sample size, which becomes

impractical quickly as the sample size increases. Furthermore, KSD based on common

kernels such as RBF kernel and Matern kernel may not be able to detect non-convergence

in high dimensions ([25]). We will describe in next section a modified version of KSD

proposed in [16], which can mitigate some of the curse-of-dimensionality problems of KSD.

The training scheme of HEI-KSD can now be summarized as follows:

max
ψ

DReG-Lα=1 or max
ψ

LELBO (equivalent to max
ψ

Lα=0)

max
θ
LEI

min
s
S2(PT , π

∗)

(2.8)
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where θ is the HMC (with T iterations) hyperparameters and ψ is the initial distribution

parameters. We again use the 2D Gaussian example to carry out a simple test for this new

training scheme. We consider initial distributions tuned by maximizing LELBO (maximizing

Lα=0) or by maximizing DReG-Lα=1.

α = 0, −EP30 [log π(x)] = 2.7990, s = 5.8869 α = 1, −EP30 [log π(x)] = 2.8079, s = 1.3762

Figure 2.3: Histograms of samples generated by HEI-KSDs with initial distributions tuned
by maximizing LELBO (maximizing Lα=0) or maximizing DReG-Lα=1

Figure 2.3 shows the results generated by HEI-KSD. We can see that HEI-KSD successfully

avoids the pathology and is able to converge to the target distribution (ground-truth:

−Eπ[log π(x)] = 2.8083) no matter which method is used to tune the initial distribution,

suggesting the performance of HEI indeed can be improved by incorporating the inflation

parameter tuned by KSD into the model.

2.3 Max Sliced Kernelized Stein Discrepancy

As mentioned before, KSD suffers from curse-of-dimensionality. To address this problem,

[16] proposed a modified version of KSD, which is called Max Sliced Kernelized Stein

Discrepancy (maxSKSD), and it also has a closed form solution for optimization.

2.3.1 Sliced Stein Discrepancy

To derive maxSKSD, we first introduce Sliced Stein Discrepancy (SSD). There are two

sources that contribute to the curse-of-dimensionality problem: one of them is the score

function sπ(x) and the other one is the test function f(x), where x is supported on X ⊂ RD.

[16] dealt with the first source by projecting sπ(x) onto a slicing direction r (r ∈ RD):

srπ(x) = sπ(x)T r, which is equivalent to slicing the target π through the slicing direction

at x. Then it can be proved that π = p a.e. if and only if srπ(x) = srp(x) for all r. The

second source is addressed by projecting the input of test function f , x, to reduce the

dimensionality of the input. Note that this time we can not project x onto r again since
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this will cost information loss as the optimal test function corresponding to the projected

score is proportional to srπ(x) − srp(x). Instead, we project x onto infinitely many test

directions g and then take the average over g. More specifically, suppose π and p are two

D-dimensional distributions and we define the test functions f(x; r,g) : RD → R to be

frg(xTg), where frg takes one-dimensional input, then the SSD between p and π is

S(p, π) = Epr,pg [ sup
frg∈Fp

Ep[s
r
π(x)frg(xTg) + rTg∇xT gfrg(xTg)]] (2.9)

where pr(r) and pg(g) are two uniform distributions over the hypersphere SD−1 respectively.

Fp denotes the Stein Class of p and frg ∈ Fp represents f(·; r,g) ∈ Fp. One can show that

SSD is a valid discrepancy between two distributions under mild conditions. However, for

practical high-dimensional models, the standard Monte-Carlo estimate of S(p, π) requires

us to average over samples of r and g which live in high-dimensional hypersphere and this

usually requires a very large sample size for accurate estimation. To address this problem

of scalability, [16] showed that one can relax the requirement of considering infinitely many

slicing directions by using finitely many slicing directions from an orthogonal basis Or

of RD, such as the standard orthonormal basis consisting of D one-hot vectors, and the

computational cost can be further reduced by only using the optimal test direction gr

corresponding to each slicing direction r. The resulting relaxed SSD is called maxSSD

and its formula is shown as follows:

Smax(p, π) =
∑
r∈Or

sup
frgr∈F ,gr∈SD−1

Ep[s
r
π(x)frgr(x

Tgr) + rTgr∇xT gr
frgr(x

Tgr)] (2.10)

The maxSSD can also be shown as a valid discrepancy under mild conditions. As discussed

previously, using the slicing direction as the test direction can cause trouble and it is

necessary for us to find optimal g for each r, gr, when computing maxSSD. This can be

demonstrated by the counterexample in [16], in which Or is the standard orthonormal

basis of RD and g is set to be equal to r for each r. It is found that the corresponding

discrepancy under this setting between two distinct distributions with same marginals is

not able to detect the difference between the two distributions, and thus the discrepancy

in this case is not valid.

2.3.2 Sliced Kernelized Stein Discreancy

SSD is still infeasible due to the intractability of supremum without further restriction

on the family of test functions. Thus, we apply the kernel trick again to obtain a

closed form solution. In detail, suppose Hrg is a real-valued RKHS related to kernel

k(x,x′; r,g) = krg(xTg,x′Tg), which is in the Stein Class of p and bounded for all r and
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g, then we introduce following quantities:

ξπ,r,g(x, ·) = srπ(x)krg(xTg, ·) + rTg∇xT gkrg(xTg, ·)

hπ,r,g(x,y) = srπ(x)krg(xTg,yTg)srπ(y) + rTgsrπ(y)∇xT gkrg(xTg,yTg)+

rTgsrπ(x)∇yT gkrg(xTg,yTg) + (rTg)2∇2
xT g,yT gkrg(xTg,yTg)

(2.11)

With standard orthonormal basis of RD and given Ep[hπ,r,g(x,x)] <∞ and some other mild

conditions, the Sliced Kernelized Stein Discrepancy (SKSD) between two D-dimensional

distributions p and π is then defined as:

SKo(p, π) =
∑
r∈Or

∫
SD−1

pg(g)D2
rg(p, π)dg (2.12)

whereD2
rg(p, π) has closed form solution: D2

rg(p, π) = || supfrg∈Hrg,||frg||≤1Ep[s
r
π(x)frg(xTg)+

rTg∇xT gfrg(xTg)]||2 = ||Ep[ξπ,r,g(x)]||2Hrg
= Ex,x′∼p[hπ,r,g(x,x′)]. SKo(p, π) is a valid dis-

crepancy under mild conditions. Like SSD, we can only use the optimal test direction gr

corresponding to each slicing direction r instead of computing integral over g to reduce

the computational cost. The resulting discrepancy is named maxSKSD and its equation is

given below:

SKmax(p, π) =
∑
r∈Or

sup
gr

D2
rgr

(p, π) (2.13)

For maxSKSD, the kernel used is again the RBF kernel with bandwidth chosen according

to median heuristic and we estimate maxSKSD again using V-statistic: ˆSKmax,v(p, π) =
1
N2

∑
r∈Or

∑
i,j hπ,r,gr(xi,xj), where {xi}N1 is a set of i.i.d samples drawn from p.

Now we have HEI-maxSKSD model which tunes the inflation parameter s by mini-

mizing maxSKSD and we carry out a simple test for this model by using it to generate

samples again from the 2D Gaussian density described in previous sections. Figure 2.4

shows the histograms of samples generated by HEI-maxSKSD and one can see that the

results are close to the ground-truth (−Eπ[log π(x)] = 2.8083) no matter which objective

(LELBO (α = 0) or DReG-Lα=1) is used for tuning the initial distribution parameters.

It is also worth noting that each test direction is very close to its corresponding slicing

direction (for α = 0, g1 = [0.9993, 0.0375]T ,g2 = [−0.1609, 0.9870]T and for α = 1,

g1 = [0.9961, 0.0882]T ,g2 = [0.0219, 0.9998]T ), suggesting that for this example, finding

the optimal inflation parameter using maxSKSD may be seen as matching the marginals

between P30 and π.
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α = 0, −EP30 [log π(x)] = 2.7971, s = 5.8482 α = 1, −EP30 [log π(x)] = 2.7983, s = 1.6369

Figure 2.4: Histograms of samples generated by HEI-maxSKSDs with initial distributions
tuned by maximizing LELBO or maximizing DReG-Lα=1

2.4 Related Work

KSD was first proposed to develop a Goodness of Fit test ([15, 26]) and in recent years,

many researches explore opportunities of applying KSD to solve other inferential tasks and

develop corresponding techniques. Techniques related to KSD are applied in various area,

such as Variational Inference ([28]) and training generative adversarial networks ([29]).

In this section, we discuss two techniques related to KSD: Kernel Test of Goodness of

Fit and Stochastic Variational Gradient Descent. Note that these techniques can also be

developed based on maxSKSD as demonstrated in [16].

2.4.1 Kernel Test of Goodness of Fit

KSD can be used to construct a Goodness of Fit test (GOF) with null hypothesis:

H0 : p = π, which can be used to assess how well the approximate distribution p in the

model matches the true target π. In particular, [15] used U-statistic of KSD, Ŝu(p, π), to

achieve this task:

Ŝu(p, π) =
1

n(n− 1)

∑
1≤i6=j≤n

uπ(xi,xj) (2.14)

where uπ(x,x′) = sπ(x)Tk(x,x′)sπ(x′) + sπ(x)T∇x′k(x,x′) +∇xk(x,x′)T sπ(x′) +

trace(∇x,x′k(x,x′)). Note that U-statistic is an unbiased estimator of KSD but it may

be negative, while V-statistic is always non-negative but it is biased. [15] showed that

Ŝu(p, π) has well-defined limit distribution under mild conditions:

1. If p 6= π, then
√
n(Ŝu(p, π)−S(p, π))

d→ N (0, σ2
u), where σ2

u = V arx∼p(Ex′∼p[uπ(x,x′)]) 6=
0

2. If p = π, then we have a degenerated U-statistic with σu = 0 and nŜu(p, π)
d→∑∞

j=1 cj(Z
2
j − 1), where {Zj} are i.i.d standard Gaussian random variables and {cj} are
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eigenvalues of kernel uπ(x,x′) under p.

Based on the above theoretical result, we can construct a bootstrap GOF test based

on KSD. We first compute Ŝu(p, π) according to (2.14). Then we draw random weights

from multinomial distributions {(wm1 , ..., wmn )}Mm=1 ∼ Mult(n; 1
n
, ..., 1

n
) and compute the

bootstrap samples Ŝmu (p, π) =
∑

i6=j(w
m
i − 1

n
)(wmj − 1

n
)uπ(xi,xj), for m = 1, ...,M . With

these quantities, we can reject the null hypothesis H0 : p = π if the proportion of the

bootstrap samples Ŝmu (p, π) that are greater than Ŝu(p, π) is less than the significance level

α.

2.4.2 Stein Variational Gradient Descent

Instead of direct minimization of KSD, [30] proposed a particle inference algorithm based

on KSD, called Stein Variational Gradient Descent (SVGD), which relates KSD to the

gradient of KL divergence between approximate distribution p and the target π. SVGD

defines a series of deterministic mapping for a set of particles, which leads to steepest de-

scent of KL divergence in RKHSHd from particles’ underlying distribution p to the target π.

Given a perturbation φ(x), let T (x) = x + εφ(x), where x ∼ p(x), and the density

of z = T (x) be p[T ](z), then we have

∇εDKL(p[T ]||π)|ε=0 = −Ep[Aπφ(x)] (2.15)

From the above equation, we can see that if the perturbation is in RKHS, then the optimal

test function in KSD is the optimal perturbation function. In detail, the steepest descent

direction in KL divergence is given by

φ∗(·) = Ep[∇x log π(x)k(x, ·) +∇xk(x, ·)] (2.16)

Note that π(x) in (2.16) can be replaced by the unnormalized target π∗(x) since∇x log π(x) =

∇x log π∗(x). In practice, (2.16) can be estimated by Monte Carlo, starting from a set

of initial particles. The first term in (2.16) with ∇x log π(x) drives the particle towards

modes of the target while the second term encourages diversity. When descent in KL

divergence equals to zero, the particles stop moving, and KSD equals to zero, implying

p(x) = π(x) a.e.. It is worth noting that in the special case where there is only one particle

and ∇xk(x,x′) = 0 when x = x′, SVGD is equivalent to maximizing log π(x) with gradient

ascent.
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Chapter 3

2D Experiments Analysis

In this chapter, we demonstrate the application of HEI-KSD and HEI-maxSKSD to

generate samples from various bivariate distributions. In particular, we consider six

benchmark 2D densities (the log-unnormalized-probability density functions of the six

distributions are shown in Appendix B) and their ground-truths are estimated by Rejection

Sampling. Figure 3.1 shows the histograms of these six distributions and Table 3.1 shows

their corresponding −Eπ[log π∗(x)].

i ii iii iv v vi

Figure 3.1: Ground-truth histograms of six bivariate distributions generated by rejection
sampling

i ii iii iv v vi

−Eπ[log π∗(x)] 2.0075 0.8511 0.9282 0.4994 -0.1703 0.1483

Table 3.1: Ground truth −Eπ[log π∗(x)] estimated by rejection sampling for six bivariate
distributions

3.1 Setup of Experiments

The initial distributions for HMC are assumed to be factorized Gaussian and we consider

finding the initial distributions in two ways by either maximizing LELBO (α = 0) or

maximizing DReG-Lα=1. The HMC used contains 30 iterations and each iteration includes

5 leapfrog steps. We consider different step sizes and momentum variances for each HMC

iteration and for each dimension of samples. The step sizes and momentum variances
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are tuned by maximizing LEI = EP30 [π
∗(x)]. We use Adam [31], with hyperparameters

β1 = 0.9, β2 = 0.99, ε = 10−8, as the stochastic optimization algorithm. For each

distribution, we run Adam either for 500 parameter updates with step size 0.02 or for

200 parameter updates with step size 0.05. However, for each distribution, we fix the

number of parameter updates and Adam step size across all different training schemes.

The HMC step sizes are randomly initialized according to a uniform distribution over

(0.01, 0.025) and the momentum variances are all initialized to be 1. The mean and

covariance of initial distribution P0 are initialized to be 0 and I respectively. To evaluate

the performance of different models in 2D experiments, we compare the histograms

generated by different models with the ground-truth histograms and we also compare

−EP30 [log π∗(x)] with ground-truth −Eπ[log π∗(x)] estimated by rejection sampling. We

use 100000 samples generated from each model to plot the corresponding histogram and

estimate −EP30 [log π∗(x)].

3.2 Experimental Results

We consider six different models: (a) vanilla HEI with initial distribution tuned by

maximizing LELBO, (b) HEI with initial distribution tuned by maximizing DReG-Lα=1, (c)

HEI-KSD with initial distribution tuned by maximizing LELBO, (d) HEI-maxSKSD with

initial distribution tuned by maximizing LELBO, (e) HEI-KSD with initial distribution

tuned by maximizing DReG-Lα=1, (f) HEI-maxSKSD with initial distribution tuned by

maximizing DReG-Lα=1.

i ii iii iv v vi

(a) 1.9944 1.0315 0.9183 0.4846 0.0435 0.1345
(b) 2.0431 2.6602 0.9197 0.4981 -0.0510 0.6757
(c) 2.0036 0.8044 0.9191 0.4933 -0.1897 0.1640
(d) 2.0034 0.8719 0.9183 0.4983 -0.1813 0.2614
(e) 2.0834 1.4890 0.9205 0.4999 -0.1284 0.1547
(f) 2.0171 1.4476 0.9190 0.4986 -0.1375 0.6036

Table 3.2: −EP30 [log π∗(x)] of different models for six bivariate distributions

i ii iii iv v vi

(c) 1.8141 0.4441 4.8171 7.6005 22.8417 0.4812
(d) 1.4636 0.6521 3.1584 20.4322 12.0305 4.6885
(e) 2.9839 0.9014 0.1357 7.3995 4.2350 1.0694
(f) 2.4196 0.8354 3.6206 4.7707 4.8167 0.7032

Table 3.3: optimal inflation value s of HEI-KSD/maxSKSD models for six bivariate
distributions
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i ii iii iv v vi

Figure 3.2: Histograms of six bivariate distributions generated by model a (vanilla HEI,
α = 0)

i ii iii iv v vi

Figure 3.3: Histograms of six bivariate distributions generated by model b (vanilla HEI,
α = 1)

i ii iii iv v vi

Figure 3.4: Histograms of six bivariate distributions generated by model c (HEI-KSD,
α = 0)

i ii iii iv v vi

Figure 3.5: Histograms of six bivariate distributions generated by model d (HEI-maxSKSD,
α = 0)

i ii iii iv v vi

Figure 3.6: Histograms of six bivariate distributions generated by model e (HEI-KSD,
α = 1)
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i ii iii iv v vi

Figure 3.7: Histograms of six bivariate distributions generated by model f (HEI-maxSKSD,
α = 1)

Table 3.2 shows −EP30 [log π∗(x)] estimated by different models and Table 3.3 shows the

optimal inflation values applied to the marginal variances of initial distributions for HEI-

KSD or HEI-maxSKSD models (c, d, e and f). The histograms of the six distributions

generated by model (a), (b), (c), (d), (e) and (f) are plotted in Figure 3.2, 3.3, 3.4, 3.5,

3.6 and 3.7 respectively.

Comparing these results with the ground-truth shown previously, one can see that HEI-

KSD/maxSKSD models (c, d, e and f) are capable of preventing the mode collapse

pathology (especially for distribution iv and v), and in general they result in better

convergence than HEI models without inflation parameter (a, b). For distributions that

are relatively easy for model a and b to approximate, such as i, iii and iv, model c, d, e,

and f also work very well. However, for distributions that model a and b perform poorly,

model c, d, e and f can still achieve good performance. For example, model a and b both

fail to converge to target distribution v due to mode collapse pathology, however, model c,

d, e and f all avoid the pathology and result in good convergence.

In general, HEI-KSD or HEI-maxSKSD with initial distribution tuned by maximizing

Lα=0 (model c and d) achieve higher performance than the other models and in partic-

ular, model c shows good convergence for all six distributions. Although model e and f

perform well for most distributions, they both overestimate −EP30 [log π∗(x)] for distribu-

tion ii and model f overestimates −EP30 [log π∗(x)] for distribution vi, suggesting tuning

initial distribution with DReG-Lα=1 maximization might still lead to unstable performance.

HEI-maxSKSD shows no advantage against HEI-KSD in these 2D experiments. In-

stead, HEI-KSD performs slightly better than HEI-maxSKSD in these 2D experiments.

For example, model (c) and (e) show better convergence for distribution vi than model

(d) and (f) respectively, suggesting in low dimension problems, KSD can work well and

models using maxSKSD may not outperform models using KSD.

It is also worth noting that the optimal test directions G = [g1,g2]T of HEI-maxSKSD

models are close to the standard orthonormal basis of R2, suggesting tuning inflation
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parameter with maxSKSD is similar to matching the marginals between P30 and π for

these 2D experiments. Moreover, if we fix G to be the standard orthonormal basis of

R2 during optimization, the results are comparable to that of HEI-maxSKSD. Although

the corresponding objective might be useful in some cases, it is not a valid discrepancy

measure, as shown in [16].

3.3 Advantage of LEI Against KSD and maxSKSD

−EP30 [log π∗(x)] = 2.8137 −EP30 [log π∗(x)] = 2.5945 −EP30 [log π∗(x)] = 6.8780

Figure 3.8: Histograms of three bivariate distributions generated by model that tuning
HMC hyperparameters and inflation by minimizing KSD (model g). α = 0

−EP30 [log π∗(x)] = 2.7877 −EP30 [log π∗(x)] = 2.8610 −EP30 [log π∗(x)] = 3.9807

Figure 3.9: Histograms of three bivariate distributions generated by model that tuning
HMC hyperparameters and inflation by minimizing maxSKSD (model h). α = 0

Instead of tuning HMC hyperparameters with LEI maximization, they can also be tuned

by minimizing KSD or maxSKSD along with the inflation parameter. In some cases, it

can give us comparable result as that obtained by HEI-KSD/maxSKSD. However, we find

that tuning HMC hyperparameters and inflation s with KSD or maxSKSD minimization

can result in unstable performance for complex distributions. To demonstrate it, we show

results obtained by tuning HMC hyperparameters and inflation parameter with KSD

or maxSKSD for the correlated Gaussian described in previous chapters, distribution

ii and distribution iii (the initial distributions are tuned by maximizing LELBO). The

ground-truth −EP30 [log π∗(x)] for these three distributions are 2.8083, 0.8511 and 0.9282

respectively. We refer model that tuning HMC hyperparameters and inflation parameter
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with KSD as model g and model that tuning HMC hyperparameters and inflation parame-

ter with maxSKSD as model h.

−EP30 [log π∗(x)] = 2.5174 −EP30 [log π∗(x)] = 0.9192

Figure 3.10: Histograms of distribution ii and iii generated by model g with pretrained
parameters from model c as initialization. α = 0

−EP30 [log π∗(x)] = 2.7317 −EP30 [log π∗(x)] = 0.9148

Figure 3.11: Histograms of distribution ii and iii generated by model h with pretrained
parameters from model d as initialization. α = 0

Figure 3.8 and 3.9 show results of model g and model h for these three distributions

respectively. For relatively simple distributions, like correlated Gaussian, model g and

model h both can work well. However, both models fail to converge to the target for

more complex distributions, like distribution ii and iii, suggesting tuning many parameters

with KSD or maxSKSD can lead to poor performance. Furthermore, even with good

parameters initialization, model g and h can diverge. For distribution ii and iii, Figure

3.10 and 3.11 show results of model g and model h with pretrained HEI-KSD (model c in

previous section) parameters and pretrained HEI-maxSKSD (model d in previous section)

parameters as initialization respectively. With good initial parameters, model g and h both

are able to converge for distribution iii, but both of them still diverge for distribution ii.

It further implies LEI is a better objective to use for tuning HMC hyperparameters. LEI

has power of driving samples from the approximate distribution close to the modes of the

target. While KSD or maxSKSD lack this power, they instead seek to find approximate
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distribution with score function similar to that of the target distribution, which may lead

to unstable performance during optimization.
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Chapter 4

Application in Deep Latent Variable

Models

In this chapter, we apply HEI-KSD/maxSKSD to improve the performance of Deep Latent

Variable Models, a class of Deep Generative Models which model complex data using

neural networks. In particular, we explore whether we can train improved probabilistic

model using HEI-KSD and HEI-maxSKSD training scheme, compared with model trained

using vanilla HEI training scheme.

4.1 Deep Latent Variable Model

Deep Latent Variable Model (DLVM) assumes that each observation in our dataset

xn ∈ RD can be generated from a corresponding latent variable zn ∈ RK (K is usually

much less than D). The generative process assumed is that we first sample zn from a

prior distribution p(zn) and then generate xn according to the conditional distribution

p(xn|zn), which we call the likelihood function. Usually the prior is assumed to be a

standard Gaussian distribution (p(zn) ∼ N (0, I)) and the likelihood function is modelled

using a neural network with parameter θ. Our goal is to find the set of parameters θ∗ that

maximizes the marginal likelihood (or partition) of the dataset {xn}Nn=1:

Z = p({xn}Nn=1) =

∫
p({zn}Nn=1)pθ({xn}Nn=1|{zn}Nn=1)dz1:N

=
N∏
n=1

∫
p(zn)pθ(xn|zn)dzn

(4.1)

To avoid numerical issue, in practice we instead try to maximize the log marginal likelihood

(or log-partition) of the data: logZ =
∑N

n=1 log
∫
p(zn)pθ(xn|zn)dzn. However, the log-

partition is intractable since it involves complicated integrals with respect to latent

variables, which often live in high dimension.
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4.1.1 Variational Autoencoder

To address this intractability, [20] proposed to use Variational Inference to define a

variational distribution qφ(zn|xn) with parameters φ, to approximate the true posterior

distribution p(zn|xn), which is the target distribution. They call the method Variational

Autoencoder (VAE). In particular, they used a factorized Gaussian distribution to model

the true posterior. For each observation xn, the mean and the diagonal covariance matrix

of qφ(zn|xn) are obtained using another neural network with parameters φ. With this

approximate posterior distribution of latent variable, we can then obtain the evidence

lower bound of the log-partition of dataset:

LELBO =
1

N

N∑
n=1

Eqφ(zn|xn)[log p(xn, zn)− log qφ(zn|xn)] (4.2)

Unlike the true posterior which involves the intractable partition in the denominator,

the unnormalized true posterior p(xn, zn) = p(zn)pθ(xn|zn) can be computed analytically,

and since it is easy to generate samples from the factorized Gaussian distribution, a

Monte Carlo estimate of LELBO, L̂ELBO, can be easily computed. In practice, θ and φ

can be trained jointly by maximizing L̂ELBO using Stochastic Gradient Descent based

optimization algorithm and the reparametrization trick [20] is applied to generate samples

from qφ(zn|xn) in order to take advantage of the auto differentiation technique.

As discussed in Chapter 1, the approximation bias of VAE is inevitable unless the true pos-

terior does follow a factorized Gaussian distribution, which is unrealistic. The performance

of VAE highly depends on how well qφ[zn|xn] models the true posterior distribution.

4.1.2 Importance Weighted Autoencoder (IWAE)

[32] proposed to improve the performance of VAE using a tighter lower bound to the

log-partition of the dataset as the training objective: the k-sample importance weighting

estimate of log p({xn}Nn=1), which is given below.

LkIWAE =
1

N

N∑
n=1

Eqφ(zn|xn)[log
1

k

k∑
i=1

pθ(xn, z
i
n)

qφ(zin|xn)
] (4.3)

It can be shown that LkIWAE is a lower bound to the log-partition and the tightness of the

bound improves as more samples are used. VAE can be seen as a special case of IWAE:

when k = 1, LELBO is recovered. It is worth noting that maximizing LkIWAE is equivalent

to minimizing α-divergence with α = 1 between qφ(z1:N |x1:N) and p(z1:N |x1:N) ([8]). In

practice, we use Doubly Reparametrized IWAE objective DReG-LkIWAE [19] to reduce the
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variance in the gradient estimate of the IWAE objective:

DReG-L̂kIWAE =
1

N

N∑
n=1

k∑
i=1

[(
win∑k
j=1w

j
n

)2 logwin] (4.4)

where win = pθ(xn,z
i
n)

qφ(zin|xn)
and the term ( win∑k

j=1 w
j
n
)2 in front of logwin is treated as constant

during optimization. Note that this objective is the same as DReG-Lα=1 shown in Section

2.1.

Since training IWAE is equivalent to minimizing α-divergence with α = 1, IWAE may

prefer more dispersed approximate posterior than VAE, in which maximizing LELBO is

equivalent to minimizing α-divergence with α = 0.

4.1.3 Training DLVM with HEI-KSD and HEI-maxSKSD

We again can use HMC to reduce the approximation bias of VAE or IWAE and thus improve

the performance of DLVM. In particular, for each observation xn in the dataset, HEI

takes its approximate posterior in VAE or IWAE model, qφ(zn|xn), as initial distribution

q0 and generates initial samples from the initial distribution, then it runs multiple HMC

for T transitions with the unnormalized target π∗ being the unnormalized true posterior

distribution pθ(xn, zn) = p(zn)pθ(xn|zn). The final states of HMC (qT ) can then be used

to approximate the true posterior. The EI objective for training HMC hyperparamters ψ

in this case can be written as follows:

LEI =
1

N

N∑
n=1

EqT (zn|xn;φ,θ,ψ)[log pθ(xn, zn)] (4.5)

Unlike VAE or IWAE in which the model parameters θ (decoder/generative network

parameters) are trained along with the encoder/inferential network parameters φ, the

model (decoder/generative network) parameters θ now are also trained to maximize LEI

along with the HMC hyperparameters ψ, since if we trained θ along with φ by optimizing

LELBO or DReG-LkIWAE, the optimal model parameters θ̂ will be the same as that obtained

in VAE or IWAE. In conclusion, the training scheme of HEI applied to DLVM can be

summarized as follows:

max
φ

LELBO or max
φ

DReG-LkIWAE

max
ψ,θ

LEI
(4.6)

As discussed previously, optimizing LEI can result in mode collapse pathology if the initial

distribution has small entropy, which is detrimental to the performance of the model since
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if the approximate distribution qT (zn|xn;φ, θ, ψ) does not match the target pθ(zn|xn) well,

pθ(zn|xn) may in turn try to fit the poor approximate distribution qT (zn|xn;φ, θ, ψ) during

optimization, resulting in poorly trained model parameters. We deduce that HEI with

initial distribution q0 trained by optimizing LkIWAE (α = 1) may suffer less from the mode

collapse pathology than HEI with q0 trained by optimizing LELBO (α = 0), since the initial

distribution in the former HEI tends to have larger width. However, as we see in the 2D

experiments, the entropy of the initial distribution trained by optimizing Lα=1 may still

not be enough to avoid the pathology for some distributions. Thus, we again incorporate

an inflation parameter s into our model so that the mean of the initial distribution is

the same as that in vanilla HEI, but the marginal variances of the initial distribution is

obtained by multiplying the marginal variances of the approximate distribution in vanilla

HEI by s. s is again trained by minimizing KSD or maxSKSD between qT (zn|xn;φ, θ, ψ, s)

and the unnormalized target π∗ = pθ(zn,xn). The resulting method is called HEI-KSD or

HEI-maxSKSD. We hope the entropy of the initial distribution of HEI-KSD/maxSKSD is

large enough to avoid the pathology but also is not too large to ruin the convergence of

HMC. The training scheme of HEI-KSD/maxSKSD is summarized as follows:

max
φ

LELBO or max
φ

DReG-LkIWAE

max
ψ,θ

LEI

min
s
S2(qT (zn|xn;φ, θ, ψ, s), pθ(zn,xn)) or min

s
SKmax(qT (zn|xn;φ, θ, ψ, s), pθ(zn,xn))

(4.7)

where S2 and SKmax represent KSD and maxSKSD respectively.

4.2 Setup of Experiments

Figure 4.1: Example of image of binzrized MNIST

We consider training HEI-KSD and HEI-maxSKSD on dynamically binarized MNIST
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training set, which contains 60000 observations. Each observation is a binarized image of

handwritten digit with 28 × 28 pixels and each pixel is either white or black. Figure 4.1

shows an example of such handwritten digit. The likelihood pθ(xn|zn) (decoder) is assumed

to be a Bernoulli distribution over all 28× 28 = 784 pixels, and it is modelled by a neural

network which outputs the probability that each pixel is white. The approximate posterior

pθ,ψ,φ,s(zn|xn) is modelled by a neural network with parameters φ (encoder) followed by a

finite-length HMC with hyperparameters ψ. This neural network trained by optimizing

LELBO or LkIWAE outputs the variational mean and covariance for variational factorized

Gaussian and then the initial distribution q0 for HMC is the factorized Gaussian whose

marginial variances are obtained by multiplying the variational marginal variances by the

inflation parameter s. The mean of this factorized Gaussian is still the variational mean.

Then we pass the samples generated from q0 to the HMC, which outputs the final samples

(qT = pθ,ψ,φ,s(zn|xn)) that can be used to approximate the posterior.

We use HMC with length T = 30 and we only consider optimizing its step sizes which

are assumed to be different for each sample dimension and for each HMC iteration. The

momentum variances are fixed to be 1 for all sample dimensions and for all HMC iterations.

We follow similar architecture of the two neural networks (encoder and decoder) used

in [6] and the detailed architecture is included in Appendix C. We set the dimension

of the latent variable zn to be 32. we use Adam (β1 = 0.9, β2 = 0.99, ε = 10−8) as

the optimization algorithm with initial learning rate being 0.0002, which decays expo-

nentially every 1000 updates with rate 0.97. We train HEI-KSD/maxSKSD for 50000

updates with mini-batch size being 128. Each HMC step size is initialized randomly

according to a uniform distribution over (0.03, 0.06) and we force each step size to be

greater than 0.01 during optimization. The encoder and decoder parameters φ, θ are

initialized through pre-training. We perform standard VAE or DReG-IWAE training

on φ and θ by maximizing LELBO or LkIWAE for 100000 updates before we switch to

HEI-KSD/maxSKSD training. The pre-training is much less computationally expensive

than training HEI-KSD/maxSKSD since it does not involve sampling from HMC. Thus

it is worth initializing θ and φ with reasonable values through pre-training at a small

additional cost. For each update, we use 1 sample and 30 samples for each observa-

tion in the mini-batch to estimate LEI and KSD/maxSKSD respectively. For update of

φ, if we train it by maximizing LELBO (α = 0), then we use 1 sample. Alternatively,

if we train φ by maximizing LkIWAE (α = 1), then we use k = 5 samples to estimate L5
IWAE.

To evaluate the performances of our models, we consider test them on the 10000 prebinarised

MNIST test images used in [32] and we use Hamiltonian Annealed Importance Sampling

(HAIS) [33] to estimate the ground-truth log marginal likelihood of the prebinarized test
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set:

Z =
10000∏
n=1

∫
p(zn)pθ∗(xn|zn)dzn (4.8)

where {xn}10000n=1 are observations in the test set and θ∗ represents the trained model

parameters (decoder parameters). We use 1000 annealed steps and 5 leapfrog iterations

per annealed step and we tune the HAIS step size to keep acceptance ratio around 65%.

4.3 Experimental Results

(a) average log-partiton vs inflation
value

(b) average Eq30 [log pθ(xn, zn)] vs in-
flation value

(c) mean and standard er-
ror of −Eq30 [log pθ(xn, zn)] +
Epθ(zn|xn)[log pθ(xn, zn)] vs inflation
value

Figure 4.2: Performance of HEI based models vs values of inflation parameters. α = 0

To see whether HEI-KSD or HEI-maxSKSD can find an inflation parameter with proper

value so that the performance is improved, we first compare performances of HEI-KSD

or HEI-maxSKSD models with performances of HEI models with different fixed inflation

parameters, that is the initial distribution has the same mean as variational distribution

but has the marginal variances that are obtained by multiplying the marginal variances of

variational distribution by fixed inflation parameter. We consider fixed inflation parameters

from the following set {2x; 0 ≤ x ≤ 10 and x ∈ Z}. Figure 4.2 plots the performances

(average log-partition (logZ) over 200 randomly sampled images from test set, estimated

by HAIS with 100 parallel chains for each image) of different models (HEI with different

43



fixed inflation parameters, HEI-KSD, HEI-maxSKSD) with variational distribution trained

by maximizing LELBO (α = 0). It also plots 1
200

∑200
n=1Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] for

these models, where {xn}200n=1 are the 200 randomly chosen images from the test set.

Moreover, to examine the convergence of these models, it also plots the empirical mean

and standard error of −Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] + Epθ(zn|xn)[log pθ(xn, zn)] over 200

randomly chosen test images, where π(zn) = pθ(zn|xn) are approximated by HAIS. Figure

4.3 shows same plots for models with variational distribution trained by maximizing Lk=5
IWAE

(α = 1).

From Figure 4.2 (a) and 4.3 (a), we can see that with moderate inflation values (roughly

(a) average log-partiton vs inflation
value

(b) average Eq30 [log pθ(xn, zn)] vs in-
flation value

(c) mean and standard er-
ror of −Eq30 [log pθ(xn, zn)] +
Epθ(zn|xn)[log pθ(xn, zn)] vs inflation
value

Figure 4.3: Performance of HEI based models vs values of inflation parameters. α = 1

4 to 126 for α = 0 and 4 to 32 for α = 1), the performances of HEI models are comparable

and are better than HEI models trained with too small or too large fixed inflation values.

No matter which method is used to train the variational approximation of the target

(α = 0 or α = 1), the optimal inflation values found by HEI-KSD or HEI-maxSKSD

fall in the range of inflation values which result in improved model performance and

they are close to each other. Plot (b) from two figures show that with inflation values

increasing, 1
200

∑200
n=1Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] keeps decreasing, even when the per-

formance (log-partition) is in fact improved. It suggests Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] is
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not a good metric to look at for model evaluation. However, it can give us some clue of the

approximate posterior. With too small inflation, 1
200

∑200
n=1Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] is

high, suggesting the approximate posterior suffers from mode collapse. On the other hand,

if the inflation is too large, 1
200

∑200
n=1Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] drops significantly,

suggesting the finite length HMC is unable to move to the high probability region of the

target due to overdispersed initial distribution and thus the approximate posterior has

overly large uncertainty. In plot (c), HEI-KSD and HEI-maxSKSD demonstrate good

convergence since the mean of −Eq30(zn|xn;θ,φ,ψ,s)[log pθ(xn, zn)] + Epθ(zn|xn)[log pθ(xn, zn)]

over 200 test images is close to 0 and the corresponding standard error is small. The

pattern seen in plot (c) is consistent with what we observe in plot (b): HEIs with small

fixed inflation values seem to underestimate the uncertainty of the target (mode collapse)

while HEIs with large inflation values seem to overestimate the uncertainty of the target.

Note that the log-partition of HEIs with inflation values that seem to result in moderate

levels of overestimation of target uncertainty can still be good, suggesting the robustness of

the decoder is improved with moderately large inflation values and it holds true even when

the inflation values are larger than that required for convergence. It is also worth noting

that the performance (log-partition) and convergence of vanilla HEI (with fixed inflation

1) with variational distribution tuned by maximizing DReG-LIWAEk=5 are both better

than vanilla HEI with variational distribution tuned by maximizing LELBO, suggesting

α-divergence minimization with α = 1 results in approximate distribution with larger width

than α-divergence minimization with α = 0, which may explain why the optimal inflation

values found by HEI-KSD and HEI-maxSKSD with variational distribution trained by

maximizing LELBO are larger than those found by HEI-KSD and HEI-maxSKSD with

variational distribution trained by maximizing Lk=5
IWAE.

To have a closer look at how HMC behaves for each model, in Figure 4.4, we plot

HMC step size against HMC iteration number (30 iterations in total), for models shown in

Figure 4.2, and for 1 out of 32 latent dimensions. The models that have high performances,

including the models with inflation tuned by optimizing KSD or maxSKSD, have moderate

inflation values (4 = 22 to 128 = 27). We can see that the behaviours of step sizes of these

good models are similar: the chains take large global steps for a few initial iterations to

move to the high target probability regions, and then make smaller local moves. This may

improve the robustness of the model trained as the HMC chains won’t always generate

samples close to the mode of the target, instead they may provide a variety of different

latent variables such that the decoder has to learn to deal with not just one, but multiple

latent representations of the data. For models with too small inflation values, the HMC

chains are lack of exploration of the target. In particular, the step sizes of vanilla HEI

(s = 1) are all close to 0.01 which is the minimum value we force the step sizes to be
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greater than, suggesting that vanilla HEI has poor mixing and it prefers distribution that

is close to the initial distribution, which is the variational approximation of the target.

We deduce that this insufficiency of exploration will be more severe if we do not force step

sizes to be greater than 0.01 during optimization. On the contrary, for too large inflation

values, the initial distributions are too different from the target and it is very hard for

HMC with just 30 steps to converge to the target. Thus, most step sizes tend to be much

larger than those in well performed models, suggesting HMCs are making every effort to

return to the high probability regions of the target.

(a) s = 20 (b) s = 21 (c) s = 22 (d) s = 23

(e) s = 24 (f) s = 25 (g) s = 26 (h) s = 27

(i) s = 28 (j) s = 29 (k) s = 210 (l) ksd: s = 7.0586

(m) maxsksd: s =
6.7855

Figure 4.4: Step size vs HMC layer number for difference inflation values, shown for only
one dimension out of the 32 latent dimensions. α = 0

Table 4.1 shows average log-partition estimated by HAIS over the whole test set for different

models. We can see that vanilla HEI outperforms VAE and IWAE, suggesting VAE and

IWAE can be improved by further running HMC tuned by LEI since the resulting approx-

imate distributions are closer to the target than variational approximations. For vanilla

HEI, tuning initial distribution by maximizing Lk=5
IWAE (vanilla HEI (α = 1)) gives us better

result than maximizing LELBO (vanilla HEI (α = 0)), suggesting its initial distribution
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has larger width. However, after using KSD or maxSKSD to tune the inflation parameter,

the performances of models are comparable and are better than vanilla HEI no matter

which method is used to tune the variational distribution, suggesting the proper inflation

parameter contributes most to improving the performance. Like in 2D experiments, we

also tried to tune HMC hyperparameters ψ along with inflation s using KSD or maxSKSD

instead of LEI (the variational distribution is tuned by maximizing LELBO (α = 0)) but it

leads to divergence, suggesting optimization using KSD or maxSKSD as objective to tune

many parameters may be unstable. We also used pretrained parameters from HEI-KSD or

HEI-maxSKSD as a proper initialization and then switched to using KSD or maxSKSD

to train ψ and s, but it still leads to divergence, which further shows the advantage of

LEI against KSD or maxSKSD in training ψ. However, with pretrained initialization,

the model using maxSKSD to train ψ and s has better performance than that uses KSD,

suggesting maxSKSD may mitigate the curse-of-dimensionality problem of KSD to some

extent.

log-partition

VAE (α = 0) -85.1022
DReG-IWAE (α = 1) -83.7528
vanilla HEI (α = 0) -83.4882
vanilla HEI (α = 1) -82.4565
HEI-KSD (α = 0) -81.9872

HEI-maxSKSD (α = 0) -81.9176
HEI-KSD (α = 1) -81.8755

HEI-maxSKSD (α = 1) -82.0090
KSD (ψ+s), α = 0 -193.6095

maxSKSD (ψ+s), α = 0 -261.5302
KSD (ψ+s), α = 0, pretrain -226.1570

maxSKSD (ψ+s), α = 0, pretrain -125.0672

Table 4.1: Log marginal likelihoods of the whole test set for different models

4.4 Imputation Task

In addition to estimating the average test set log-partition, we also carried out an imputation

task, similar to the one in [16], for model evaluation. We first randomly selected 100

test images and removed the pixels in the lower half of the images. Then we imputed

the values of missing pixels by (approximate) posterior sampling from the DLVM models.

We computed the label accuracy for the imputed test images (detailed setup can be

found in Appendix D). A good model should give imputed images that are similar to

the original images. Thus, it should achieve high label accuracy. Table 4.2 shows the

label accuracy of the imputed images for different models. DReG-IWAE has considerably

47



label accuracy

VAE (α = 0) 0.7694
DReG-IWAE (α = 1) 0.6805
vanilla HEI (α = 0) 0.7984
HEI-KSD (α = 0) 0.8151

HEI-maxSKSD (α = 0) 0.8157
vanilla HEI (α = 1) 0.8133
HEI-KSD (α = 1) 0.8179

HEI-maSKSD (α = 1) 0.8287

Table 4.2: Label accuracy for imputed images

lower label accuracy than the other models. It may suggest inferential network (encoder)

of DReG-IWAE is poorly trained compared with the other models, so that it is easy to

generate samples around wrong modes. The label accuracy of VAE is noticeably worse than

HEI based models, suggesting its approximate posterior samples are also often generated

around wrong modes. For α = 0 or α = 1, HEI-KSD and HEI-maxSKSD show better

performance than vanilla HEI since the label accuracy of HEI-KSD and HEI-maxSKSD

are both higher than vanilla HEI. For some test images with missing pixels, HEI-KSD

and HEI-maxSKSD can achieve considerably higher label accuracy than vanilla HEI and

also have approximate posteriors that are able to capture the multi-modality nature of

the true posterior. Figure 4.5 shows an example of this phenomenon. We can see that for

vanilla HEI the imputed images generated are stuck around a wrong mode. However, for

HEI-KSD and HEI-maxSKSD, the imputed images generated are mostly correct and they

also demonstrate higher imputation diversity than vanilla HEI.

imputed images from vanilla HEI (α = 0)

imputed images from HEI-KSD (α = 0)

imputed images from HEI-maxSKSD (α = 0)

Figure 4.5: Imputed images for a test example from different models. The first two images
in each subfigure are the original image and image with lower half removed respectively
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Chapter 5

Conclusions and Future Work

This chapter summarizes conclusions made in this work and proposes some possible future

work.

In Chapter 1, we introduced vanilla HEI and relevant concepts. We also demonstrated the

case where HEI fails due to mode collapse pathology and showed that this pathology can

be overcome by using initial distribution with sufficiently large entropy. In Chapter 2 we

proposed two methods to find the initial distribution with enough entropy to overcome

the pathology. One is to tune the initial distribution parameters using α-divergence

minimization with α = 1 so that the initial distribution can have larger width than that

obtained by VI. The other method is to use initial distribution with same mean as the

variational distribution but with marginal variances obtained by multiplying the marginal

variances of the variational distribution by an inflation parameter s, which is tuned by

KSD or maxSKSD minimization. We call these models HEI-KSD or HEI-maxSKSD. In

chapter 3 and 4, we applied HEI-KSD and HEI-maxSKSD to sample from 2D densities

and to train DLVM respectively. We found that for these two applications, HEI-KSD and

HEI-maxSKSD can successfully overcome the mode collapse pathology of HEI and achieve

better performance.

KSD suffers from curse-of-dimensionality. Possible future work includes applying HEI-KSD

and HEI-maxSKSD in higher dimension problems than considered in this work. For exam-

ple, it would be interesting to apply HEI-KSD and HEI-maxSKSD to fit Bayesian Neural

Network, in which the target distribution is the posterior of the network weights. Then we

can investigate whether HEI-KSD will be affected by curse-of-dimensionality and whether

HEI-maxSKSD can show advantage against HEI-KSD for such high dimensional target. It

would also be interesting to investigate the performance of HEI-KSD and HEI-maxSKSD

based on kernel different from RBF kernel. For instance, IMQ kernel proposed in [25] may

be a good choice.
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Appendix A

Derivation of DReG-Lα=1

Let wi = π∗(xi)
pφ(xi)

and x1:K ∼
∏

i pφ(xi) can be sampled using reparameterization trick:

xi = x(εi;φ), then

Lα=1 = Ex1:K
[log

1

K

K∑
i=1

wi] = Eε1:K [log
1

K

K∑
i=1

wi] (A.1)

The gradient of Lα=1 is

∇φEε1:K [log
1

K

K∑
i=1

wi] = Eε1:K [
K∑
i=1

1∑K
j=1wj

∇φwi]

= Eε1:K [
K∑
i=1

wi∑K
j=1wj

(−∇φ log pφ(xi) + (∇xi logwi)(∇φxi))]

(A.2)

Now we would like to rewrite the term Eε1:K [
∑K

i=1
wi∑K
j=1 wj

∇φ log pφ(xi)] to a form with less

variance.

Eε1:K [
K∑
i=1

wi∑K
j=1wj

∇φ log pφ(xi)] =
K∑
i=1

Eε1:K [
wi∑K
j=1wj

∇φ log pφ(xi)]

=
K∑
i=1

Ex1:K
[

wi∑K
j=1wj

∇φ log pφ(xi)]

=
K∑
i=1

Ex−ixi [
wi∑K
j=1wj

∇φ log pφ(xi)]

(A.3)

where x−i represents x1:i−1 ∪ xi+1:K . The equation above can be rewritten by taking ad-

vantage of the equivalence between the REINFORCE gradient and the reparameterization
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trick gradient (proved in [19]):

Exi [
wi∑K
j=1wj

∇φ log pφ(xi)] = Eεi [∇xi(
wi∑K
j=1wj

)∇φxi]

= Eεi [(
wi∑K
j=1wj

− w2
i

(
∑K

j=1wj)
2
)(∇xi logwi)(∇φxi)]

(A.4)

Plugging A.4 into A.2, we can get

∇φEε1:K [log
1

K

K∑
i=1

wi] =
K∑
i=1

Eεi [(−
wi∑K
j=1wj

+
w2
i

(
∑K

j=1wj)
2

+
wi∑K
j=1wj

)(∇xi logwi)(∇φxi)]

=
K∑
i=1

Eεi [
w2
i

(
∑K

j=1wj)
2
(∇xi logwi)(∇φxi)]

= Eε1:K [
K∑
i=1

(
wi∑K
j=1wj

)2(∇xi logwi)(∇φxi)]

(A.5)

Therefore, the gradient of DReG-Lα=1 with respect to φ is Eε1:K [
∑K

i=1(
wi∑K
j=1 wj

)2(∇xi logwi)(∇φxi)].
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Appendix B

2D densities used in Chapter 3

Table B.1 shows the log-unnormalized-densities of the distributions used in chapter 3.

Label Name unnormlized log-density (log π∗(x))

i Laplace −|x1 − 5| − |x2 − 5|
ii Dual Moon −3.125(

√
x21 + x22 − 2)2 + log[e−0.5(

x1+2
0.6

)2 + e−0.5(
x1−2
0.6

)2 ]

iii Gaussian Mixture log[
∑7

i=1 e
−0.5[(x1−5 cos( 2iπ7 ))2+(x2−5 sin( 2iπ7 ))2]]

iv Wave1 −0.5(x2+sin(0.5πx1)
0.4

)2

v Wave2 e−0.5(
x2+sin(0.5πx1)

0.35
)2 + e−0.5(

−x2−sin(0.5πx1)+3e
− 0.5

0.36 (x1−1)2

0.35
)2

vi Wave3 e−0.5(
x2+sin(0.5πx1)

0.4
)2 + e−0.5(

−x2−sin(0.5πx1)+
3

1+e
−x1−1

0.3
0.35

)2

Table B.1: log-unnormalized-densities used in chapter 3. State space is x = [x1, x2]
T
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Appendix C

Network Architecture Used in

Chapter 4

The dimension of latent variables considered in this work is 32. We follow similar encoder

and decoder network architecture as that used in [6]. The encoder network consists of

three convolutional layers and 1 fully connected multilayer perceptron (MLP). The filters

of convolutional layers have width 5 and stride 2 and the three convolutional layers have 16,

32 and 32 channels respectively. The output of the third convolutional layer is converted

to a vector with dimension 512 and then it is passed to the MLP. The MLP has one hidden

layer with 500 hidden units and an output layer with 64 neurons (32 neurons for the mean

of the factorized Gaussian and 32 neurons for the log-variance of the factorized Gaussian).

All activation functions are ReLU except for the output layer which uses a linear activation.

The decoder consists of a MLP with one hidden layer with 500 hidden units and an output

layer with 512 neurons and three deconvolutional layers whose filters have width 5. The

intermediate dimensions of the three deconvolutional layers and the output dimension are

(4× 4× 32), (7× 7× 32), (14× 14× 16) and (28× 28× 1) respectively. All activations

are again ReLU except for the output layer which used sigmoid activation.
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Appendix D

Setup of The Imputation Task in

Section 4.4

To carry out the imputation task, we follow [16] which uses approximate Gibbs sampler. In

detail, we denote observed and missing pixels as xo and xm respectively. We use qφ,ψ,θ(z|x)

to represent encoder+HMC in HEI based models and qφ(z|x) to represent encoder in

VAE or IWAE. The decoder is represented by pθ(x|z). For each sampler, we applies the

following procedure repeatedly:

(1) Generate latent samples: z ∼ qφ,ψ,θ(z|xo,xm) (HEI based models) or qφ(z|xo,xm)

(VAE, IWAE).

(2) Reconstruction: x∗ ∼ pθ(x
∗|z).

(3) Imputation: xm ← x∗m.

We maintain 200 parallel samplers for each of the 100 randomly selected test images

and for each sampler we repeat the above procedure for 500 iterations. Then we set the

imputation label of each imputed image to be the same as its nearest neighbour from the

training set.
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