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Abstract

The exploration and exploitation trade-off dilemma has been at the heart of the reinforcement
learning research community for a very long time. In recent years, the SU algorithm was
created which achieved impressive results on hard tabular benchmarks and on the Atari
2600 domain. In this thesis we extend the original SU model by incorporating a secondary
Q-function that accounts for the information gain which we use in a linear combination with
the Q-function of the SU model to perform action selection. Based on this information-
theoretic approach we propose two algorithms SU-IG1 and SU-IG2 respectively. We conduct
experiments on these methods in the binary tree MDP environment where we find out
that both algorithms manage to solve the binary tree MDP consistently achieving similar
performance to that of the original SU model.
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Chapter 1

Introduction

One of the main purposes of artificial intelligence is to solve advanced real world challenges.
To solve these advanced real world challenges the researchers have turned to Reinforcement
Learning (RL) and games. In the past games such as Backgammon [Tesauro, 1994], Chess
[Campbell et al., 2002] , have served as an important stepping stones for improving RL and
more recently huge advancements have been made in more complex games such as Atari
[Mnih et al., 2013], Go (with AlphaGo [Silver et al., 2016] and AlphaGo Zero [Silver et al.,
2017]) and Starcraft [Vinyals et al., 2019].

Even though these algorithms have achieved extremely impressive results, the exploration
schemes that they used were naive and they needed enormous quantities of data. For example
in the case of [Silver et al., 2016], neural networks were trained over hundreds of billions to
trillions of simulated games. Thus, to solve real world complex problems in the future, we
need to design algorithms for our agents, to enable them to perform efficient decision making.
These agents must be able to find a balance between exploration and exploitation. Explo-
ration refers to performing an action with the objective of getting more information from the
unknown environment, while exploitation refers to taking advantage of the knowledge that
the agent has accumulated in the past with the purpose of selecting the optimal action. The
search for a balance between exploration and exploitation has been a very important topic
for the RL research community for a long time and it still continues to be ([Kaelbling et al.,
1996],[Sutton and Barto, 2018]).

In tabular settings, PSRL (Posterior Sampling for Reinforcement Learning) ([Strens, 2000],[Os-
band et al., 2013]) (which is also known as Thompson Sampling(TS)), has proven to be a
successful approach in balancing the exploration/exploitation trade-off, where it has managed
to achieve impressive results and close to optimal regret. Inspired by PSRL, the Successor
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Uncertainties (SU) [Janz et al., 2019] algorithm was created.

SU is a scalable, model-free and easy to implement Randomised Value Function (RVF)
algorithm, that has proven to be highly effective on hard tabular exploration problems and
on Atari 2600 where it managed to outperform its competitors such as Bootstrapped DQN
([Osband et al., 2016]) and Uncertainty Bellman Equation ([O’Donoghue et al., 2017]) on
36/49 games and on 43/49 games respectively.

As it is explained by [Janz et al., 2019], one of the possible weaknesses of the SU al-
gorithm is that it may underestimate the Q-function uncertainty. One way to combat that is
to use an information-theoretic approach to quantify the uncertainty. As it is explained in
4.2.1, Information Gain (IG) is a promising avenue for quantifying this uncertainty.

In this thesis we give a thorough explanation of the exploration vs exploitation trade-off
and we highlight the importance of efficient deep exploration. The main contribution of
this thesis is the creation of two algorithms that leverage the Information Gain (IG) quantity
in the Successor Uncertainties (SU) model. For this comparison the proposed methods
get compared with other similar algorithms of the RL literature in the binary tree MDP
environment.

The rest of this thesis is organized as follows: In Chapter 2, we introduce and motivate
the core concepts of RL, explain its framework as well and present some of the most well-
known algorithms in the RL literature such as SARSA and Q-learning. In the first part of
Chapter 3, we start by explaining how multi-arms bandits work by looking at some very
important RL algorithms such as epsilon-greedy, upper confidence bounds, TS as well as
gradient bandit algorithms while in the second part we explain the necessity for agents to
perform deep exploration and algorithms that do so, such as Bootstrapped DQN. In Chapter
4, we give more details into how the SU algorithm works and we present the extended models
as well as their implementation details. In Chapter 5, we show the experiments conducted on
the extended models and the results of these experiments. Finally, Chapter 6 summarizes the
work and discusses possible ideas for future work.



Chapter 2

Reinforcement Learning

In this Chapter, we motivate the subject of reinforcement learning, introduce its fundamental
principles and its framework. More specifically, we explain the concept of dynamic program-
ming and temporal difference learning and we introduce important RL algorithms such as
SARSA, expected SARSA and Q-learning.

2.1 Introduction to Reinforcement learning

If we think in terms of evolutionary history, all animals exhibit some kind of behavior: they
perform actions according to the inputs that they receive from their environment. Animals
adapt based on their observations and their behavior changes over time. This procedure
is called learning through experience and it has been vital for the evolution of the human
species in the past. Inspired by behaviorist psychology, RL was created as an area of machine
learning with the purpose of mimicking the way humans learn. It has revolutionized our
understanding of learning in the brain and it has been widely used in many fields as illustrated
in 2.1.

RL is one of three basic machine learning paradigms, alongside supervised learning and
unsupervised learning.

Supervised learning models learn from a training set of labeled examples provided by
a knowledgeable external supervisor while unsupervised learning is typically trying to find
a hidden structure based on the collection of unlabeled data. Both supervised learning and
unsupervised learning create models based on given data. On the other hand, similarly
to humans an RL agent creates data (also known as experience) by interacting with the
environment and makes decisions based on the knowledge that it has accumulated.
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Fig. 2.1 Influence of Reinforcement learning in many scientific fields

Some of the key differences between RL and the other ML paradigms are the following:

1. There is no supervisor that knows the optimal action, there is just a reward signal, thus
RL methods learn by trial and error.

2. The feedback is delayed, because the evaluation of an action can change according to
what happens in subsequent interactions.

3. Time really matters in RL, most of RL problems are sequential.

4. The agents actions affect the subsequent data that it receives, because by performing
specific actions it may explore different parts of the state space.
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2.2 The reinforcement learning framework

In standard reinforcement learning, an agent is placed in an environment, performs actions
and attains rewards as illustrated in 2.2. This agent-environment interaction can be modelled
as a Markov Decision Process (MDP).

In a MDP, the learner and the decision maker is called the agent while the thing it in-
teracts with, which comprises of everything outside the agent, is called the environment. The
agent interacts continuously with the environment by selecting actions, while the environment
based on these actions presents new situations to the agent. The environment also yields
rewards, and the purpose of the agent (also known as goal) is to learn through experience
how to select the actions that will make it attain the maximum possible reward in the long
run.

Fig. 2.2 Agent-Environment Interaction

The MDP can be expressed as a tuple (S , A , R, P, γ) where:

1. S is the state space.

2. A is the action space.

3. R(s,a) is a random variable which represents the reward in a state action pair (s,a),
where s ∈S and a ∈A

4. P : S×S×A→ [0,1] symbolizes the state-transition probability from a (s,a) pair to
the new state s′ where it is written as P(s′|s,a), where s ∈S and a ∈A .

5. γ ∈ [0,1] is the discount factor .
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2.2.1 Policies, Goals and Value Functions

The policy is a mapping from states, to probabilities of selecting each possible action. More
specifically a policy π : S×A→ [0,1] describes the probability of being in state s ∈S and
selecting an action a ∈A .

By iterating the MDP illustrated in 2.2 the agent follows a trajectory that visits a series
of states and accumulates a sequence of rewards.

The goal G (also known as return) is a random variable that is defined as the discounted sum
of rewards obtained by taking action a ∈A from state s ∈S and acting according to policy
π . It is formulated in the following equation:

Gπ
t = Rt+1 + γRt+2 + γ

2Rt+3 + ...=
∞

∑
k=0

γ
kRt+k+1, (2.1)

Most of the RL algorithms are dealing with value function estimations which evaluate a
specific state s or a state action pair (s,a). In RL there are two kind of value functions, the
state value functions and the state-action value functions.

The state value functions are functions of states the estimate how good it is for an agent to be
in a particular state. They are mostly used in model-based RL where the dynamics of the
model are known. The equation for the state value function is the following:

V π(s) = E[Gt |St = s] = E[
∞

∑
k=0

γ
kRt+k+1|St = s], (2.2)

The state-action value functions are functions of state and actions that estimate how good it
is for an agent to be in a particular state and perform a specific action. These value functions
are mostly used in model-free RL where the dynamics of the model are unknown. In the
tabular case, the complexity of computing the state-action value function is an order higher
than the complexity of the state value function, however as we explain later the state-action
value function is more practical when it comes to finding the optimal policy in a model-free
RL problem. The equation for the state-action value function is the following:

Qπ(s,a) = E[Gt |St = s,At = a] = E[
∞

∑
k=0

γ
kRt+k+1|St=s,At=a], (2.3)
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2.3 Dynamic Programming

Dynamic programming (DP) in RL refers to a collection of algorithms that can be used to
compute optimal policies given a perfect model of the environment as a MDP. Traditional DP
algorithms are not used in state of the art RL because they assume a perfect model (knowledge
of the dynamics of the environment), however they are still important theoretically because
they set the foundation for understanding the algorithms presented in this Chapter.

DP algorithms are obtained by turning Bellman equations as explained below, into update
rules that approximate the value functions.

Bellman Equation

In the dynamic programming there are two equations [Bellman, 1954] that express a relation-
ship between the value of a state and values of its successor states.

The first equation, known as Bellman expectation equation describes how expected re-
turns at each state-action pair (s,a) ∈S ×A are related to the expected returns at the next
state-action pair (s′,a′) ∈S ×A and it is computed by making simple manipulations on
2.1:

Qπ(s,a) = E[R(s,a)]+ γ EP,π [Qπ(s′,a′)], (2.4)

In most RL problems, the purpose is to find a policy π that maximises the expected return.
The second equation is the method that computes that and it known as the Bellman optimality
equation:

Q∗(s,a) = E[R(s,a)]+ γ EP[max
a′∈A

Q∗(s′,a′)], (2.5)

The following update rules are created from 2.4 and 2.5:

Qk+1(s,a) = E[R(s,a)]+ γ EP,π [Qk(s′,a′)] (2.6)

,Qk+1(s,a) = E[R(s,a)]+ γ EP[max
a′∈A

Qk(s′,a′)], (2.7)

These two equations work recursively and provide increasingly better approximations of Qπ
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and Q∗ respectively.

The equations in 2.7 can also be turned to the Bellman expectation operator T π and Bellman
optimality operator T respectively:

T πQ(s,a) := E[R(s,a)]+ γ EP,π [Q(s′,a′)] (2.8)

,T Q(s,a) := E[R(s,a)]+ γ EP[max
a′∈A

Q(s′,a′)], (2.9)

In [Bertsekas and Tsitsiklis, 1996] it is explained that these two operators can be turned
to contraction mappings that ensure that a unique fixed point exists for both the Bellman
operators described in 2.9 and these fixed points are Qπ and Q∗ respectively.

These Bellman operators are very important for explaining the algorithms that are introduced
in the next section.

2.4 Temporal Difference Learning

One of the most important ideas in RL is Temporal Difference (TD) learning. TD learning
is a combination of Monte Carlo and DP ideas. Similarly to Monte Carlo methods, TD
methods can learn directly from experience without needing to know the dynamics of the
environment and like DP, TD methods use bootstrap. They update estimates that are based in
part on previously learned estimates without waiting for a final outcome. More specifically
the approximation of the state-action value function is recursively updated based on the
following equation:

Qk+1(st ,at) = Qk(st ,at)+α[Rt+1 + γQk(st+1,at+1)−Qk(st ,at)], (2.10)

In this equation, Rt+1 + γQk(st+1,at+1) is the target value function, the quantity δt =

Rt+1 + γQk(st+1,at+1)−Qk(st ,at) is the error and a is the step-size. More specifically
the error is used to measure the difference between the estimated value of St and the target
value function which we are trying to move towards to. α is the learning rate which is
used for regulating how much we want to forget our previous estimate of the state-action
value function. In non-stationary problems we prefer a higher value of α while in stationary
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problems we prefer a lower one.

Two of the most popular algorithms are introduced, namely SARSA and Q-learning which
use the TD learning methodology to compute the state-action value function.

To start with, the difference between on-policy and off-policy methods is explained. On-
policy methods learn about policy π from experience sampled from the same policy π , while
off-policy methods learn about policy π from experience sampled from another policy µ . On
a higher level, on-policy learning is like learning "on the job" while off-policy learning is
like "looking over someone’s shoulder and trying to mimic their behaviour".

SARSA

SARSA [Rummery and Niranjan, 1994] is an on-policy algorithm, that takes its name from
how an agent interacts with the environment. An agent that starts in a state s, takes an action
a, gets a reward r, transitions to a new state s′ and selects a new action a′ hence the acronym
SARSA and it is formulated as a quintuple (st ,at ,rt+1,st+1,at+1. In SARSA, the concept of
bootstrapping is used, which means that the estimate for the state-action value function Q
is updated by the error δt so that the previous estimate moves towards a new estimate by a
factor of α which corresponds to the step size. SARSA uses the update function described in
2.10 and the pseudocode for the algorithm is presented below:

Algorithm 1 SARSA

1: Initialise Q(s,a) for all s ∈S , a ∈A
2: repeat(for each episode)
3: Initialise state s
4: repeat(for each step of the episode)
5: Choose action a from s using policy derived from Q
6: Take action a, observe reward R and transition to a new state s′

7: Q(s,a)← Q(s,a)+α[R(s,a)+ γQ(s′,a′)−Q(s,a)]
8: s← s′

9: until s is terminal
10: until convergence

An interesting variation to the SARSA algorithm is the expected SARSA algorithm which
takes into account how likely each action is under the current policy. Expected SARSA has
lower variance than SARSA because it eliminates the variance of the random selection for
at+1, however that comes at the cost of a more expensive computation of the expected value.
The update rule of expected SARSA is described as shown below:
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Qk+1(st ,at) = Qk(st ,at)+α[Rt+1 + γ ∑
at+1

π(at+1|st+1)Qk(st+1,at+1)−Qk(st ,at)], (2.11)

Q-learning

Q-learning [Watkins and Dayan, 1992] is an off-policy TD algorithm that is based on Bellman
optimality equation 2.5. Q-learning directly approximates the optimal state-action value
function q∗, independent of the policy being followed. This simplifies significantly the
analysis of the algorithm and enables proofs of early convergence. The policy still has an
effect on this algorithm because it determines which state-action pairs are visited and updated.
The update rule is shown below:

Qk+1(st ,at) = Qk(st ,at)+α[Rt+1 + γ max
at+1

Qk(st+1,at+1)−Qk(st ,at)], (2.12)

The pseudocode for the algorithm is presented below:

Algorithm 2 Q-Learning

1: Initialise Q(s,a) for all s ∈S , a ∈A
2: repeat (for each episode)
3: Initialise state s
4: repeat (for each step of the episode)
5: Choose action a from s using policy derived from Q
6: Take action a, observe reward R and transition to a new state s′

7: Q(s,a)← Q(s,a)+α[R(s,a)+ γ maxa Q(s′,a′)−Q(s,a)]
8: s← s′

9: until s is terminal
10: until convergence

TD learning aims to produce an estimate of the state-action value function for each separate
state-action pair by creating a look-up table. Unfortunately there are two major problems with
this tabular approach. First of all, if the state or action space is large, it becomes impractical
due to the large memory that would be required to store this information. Secondly, if the
state space is large, it is too slow to learn the value of each state individually because it will
be visited very few times, thus getting a reliable estimate will be very hard.

Both of these problems can be addressed with value function approximations that allow a



2.4 Temporal Difference Learning 11

parametrised representation of the state-action value function such as Q(s,a;θ)≈ Q(s,a).
Value function approximation is described in more detail in 3.2.1 .





Chapter 3

Exploration vs Exploitation

A long-standing problem in the RL community is how to balance the trade-off between
exploration and exploitation. An RL agent at any state has to select an action to perform.
These actions can be either with the purpose of exploring or with the purpose of exploiting.
Exploiting refers to the agent using the knowledge that it has accumulated in the past with the
purpose of making the optimal decision based on what he knows, while exploring refers to
the agent acquiring more knowledge with the purpose of making the optimal decisions in the
future. The dilemma of whether to exploit or explore, happens all the time in our everyday
life, where some examples are:

1. Restaurant selection: Going to your favorite restaurant (exploit) vs Sampling a new
restaurant (explore).

2. Watching a movie : Watching your favorite movie (exploit) vs Watching a movie that
you have never seen before (explore).

RL aims to solve real-world problems such as these, where the optimal decision is not known
a priori, thus it uses an evaluative feedback of rewards to indicate how good an action was.
Exploiting in RL means getting the immediate best possible reward while exploring refers to
sacrificing immediate reward with the intention of getting better information which leads to
more rewards in the future. Sometimes, the best long-term strategy may involve short term
sacrifices for the sake of accumulating information.

In this Chapter, we study the trade-off of exploration vs exploitation in two sections. In
the first section, we simplify the problems that we are trying to solve in RL into a pure
decision making problem by introducing the concept of multi-armed bandits. To be more
precise in this first section we introduce and explain algorithms that approach the exploration
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and exploitation trade-off with an Explore-then-commit (ETC) approach. After that, we
dive deeper into more sophisticated algorithms that use the concept of "Optimism in the
face of uncertainty" to encourage continuous exploration and we finish the first section with
gradient bandit algorithms, which are methods that learn a numerical preference and use it for
action selection. In the second section, we explain why the bandit learning theory does not
adequately address the full reinforcement learning problem and we showcase the necessity
for deep exploration. Additionally, in this section, we explain the problems that occur when
tabular representations are used and how function approximations can solve these problems.
Then we showcase the concept of Randomized Value Functions (RVF) and the reason why
RVF algorithms incentivize deep exploration. Finally we conclude this section and this
chapter with the explanation of Bootstrapped DQNs which has achieved very impressive
results in problems which require deep exploration.

3.1 Exploration with Multi-Armed Bandits

The multi-armed bandit problem is a classic reinforcement learning problem that exemplifies
the exploration exploitation trade-off dilemma. More specifically in a multi-armed bandit
problem the agent has to select between many competing choices of which it has no idea
what rewards each one yields. To solve that, the agent selects actions with the purpose of
simultaneously learning and acquiring as much reward as possible. The agent’s goal is to
select the actions that maximize the expected reward. Thus, this problem can be thought
as a simplification for the MDP framework as it was introduced in Chapter 1 where the
simplication is that the agent does not transition between states. Because of this simplication,
a lot of research has been conducted in RL using multi-arm bandits trying to find the optimal
strategy for decision making. Even with this simplification, the problem of decision making
still remains very hard and explaining this framework is extremely important. The framework
for the multi-armed bandit is the following:

1. A multi-armed bandit is a tuple (A ,R)

2. A is a known set of actions (also known as "arms")

3. Ra(r) = P(R = r,A = a) is an unknown probability distribution over rewards

4. At each time step t, the agent selects an action At ∈A

5. Based on action selected, the environment generates a reward Rt ∼RAt

6. The goal of the agent is to maximize the cumulative reward in the long run ∑
t
τ=1 Rt
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In multi-armed bandits the action value function evaluates how much reward R we are
expected to get if we choose action a and it is defined as:

q(a) = E[R|A = a], (3.1)

and the optimal value q(a∗) is defined by taking the maximum over the q(a) values as shown:

q(a∗) = max
a∈A

q(a), (3.2)

Whenever we make a step, we get some opportunity loss which is known as regret and it is
computed as:

lt = E[q(a∗)−q(At)], (3.3)

and the totalregret is the total opportunity loss which is accumulated over time and is
defined as:

lt = E[
t

∑
τ=1

q(a∗)−q(At)], (3.4)

Trying to minimise the total regret is the same as what we showed in Chapter 2 with the
MDPs, where we tried to maximise the cumulative reward.

The gap ∆a is the difference in value between action a and optimal action a∗ as shown
below:

∆a = q∗−q(a), (3.5)

Regret can be expressed as a function of gaps and counts as shown below:

Lt = ∑
a∈A

E[Nt(a)]∆a, (3.6)
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where the count Nt(a) is the expected number of selections for action a.

Based on this framework, when an algorithm explores forever (uniform random explo-
ration), it accumulates regret over time, thus the algorithm cannot achieve better regret
than linear. The same thing holds for an algorithm that exploits forever (such as a greedy
algorithm), because it might lock-on to a sub-optimal action and thus the algorithm will not
do better than linear regret.

It has been proved that the performance of any algorithm is determined based on the similar-
ity of the optimal action to the other actions, thus it can be formally described by the gap
∆a and the similarity in distributions, which is measured by the KL-Divergence [Kullback
and Leibler, 1951] KL(Ra||Ra∗). The lower bound for asymptotic total regret is at least
logarithmic in the number of steps as it has been proved by [Lai and Robbins, 1985]:

lim
t−→∞

Lt ≥ log t ∑
a|∆a>0

∆a

KL(Ra||Ra∗)
, (3.7)

3.1.1 ε-greedy

One of the first and most basic algorithms that tries to balance exploration with exploitation
is the ε-greedy algorithm. The ε-greedy algorithm selects greedily an action (exploitation)
with probability 1-ε and selects randomly an action (exploration) with probability ε . In the
limit, as the number of steps increases, every action will be sampled an infinite amount of
times, thus ε-greedy ensures that in the limit, the algorithm will know which action is optimal
q(At) = q(a∗). Unfortunately, ε-greedy cannot surpass the linear regret because even when
it knows which is the optimal action, it still selects a suboptimal action with probability ε .

Decayed ε-greedy

A way to improve on the ε-greedy algorithm is to put a decay in ε so that it initially encourages
exploration while as the time progresses it shifts towards more and more exploitation. In the
limit this algorithm reaches a point where it always selects the optimal action q(At) = q(a∗),
thus decayed ε-greedy can reach logarithmic asymptotic total regret. Unfortunately in
practise, finding the correct ε requires knowledge of the gaps between the actions in advance
which in most of the cases are unknown.
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Optimistic Initial Values

ε-greedy methods depend to some extent on the initial action-value estimates Q1(a) which
means that these methods are statistically biased. For the methods that use a sample-average,
the bias disappears for each action after the first time it has been selected, however for the
methods that use a constant α the bias is permanent and decreases over time. This bias
becomes a set of parameters that has to be picked by the user, which can also be taken
advantage of to encourage exploration. By setting the initial values to the maximum possible
value and by using a greedy policy, we encourage the bandit to explore. Whichever actions
are initially selected the possible reward for picking them again in a subsequent action
selection will be lower than the other actions, thus the agent will switch to other actions. This
pattern will get repeated for the first episodes and the result of that is all the actions will be
tried several times before the value estimates converge.
This trick can be extremely effective on stationary problems, however it is not suited at all
for nonstationary problems because its drive for exploration is inherently temporary.

3.1.2 Upper confidence bounds

In the previous sections the algorithms used an explore-then-commit (ETC) methodology
which focuses on exploring at the early stages and exploiting at the later ones based on the
accumulated knowledge. The drawback with this methodology is that most of the important
problems that we want to solve in RL are non-stationary problems that require constant
exploration. To solve that there is a category of algorithms that use upper confidence bounds
(UCB) to encourage continuous exploration. To be more precise, these UCB algorithms
explore actions using the principle of "Optimism in the face of uncertainty". This principle
advocates the agent to pick the action that has the most potential of being the best, rather
than the one that is observed to be the best based on the current knowledge. Thus, UCB takes
into account both how close the estimates of the actions are to being optimal as well as the
uncertainties of those estimates. There are two approaches to compute the UCB, the first one
being the frequentist while the second one is the probabilistic approach.

Frequentist approach

In the frequentist approach the UCB algorithm initially estimates an upper confidence bound
Ut(a) for each action value such that q(a)≤ Qt(a)+Ut(a). The upper confidence Ut(a) is
chosen depending on the number of times N(a) that the action has been selected. If N(a) is
small then Ut(a) must be large because the estimated value still has a lot of uncertainty while
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If N(a) is large then Ut(a) must be small because the estimated value is accurate. Finally,
the action is selected by maximising the UCB as shown in the following equation:

At = argmax
a∈A

Qt(a)+Ut(a), (3.8)

There are many variations of the UCB algorithm, where one of them is the UCB1 Auer et al.
[2000], which selects actions as shown in the following equation:

At = argmax
a∈A

Qt(a)+

√
2log t
Nt(a)

, (3.9)

The UCB1 algorithm has proved to achieve logarithmic asymptotic total regret equal to:

lim
t−→∞

Lt ≤ 8log t ∑
a|∆a>0

∆a, (3.10)

It is important to note that the UCB that is used in the UCB1 algorithm is very weak because
it is produced by the Hoeffding’s inequality [Hoeffding, 1963] which does not make any
assumption about the reward distribution for the bandits. This in turn means that when more
specific distributions are chosen, tighter bounds can be generated.

Bayesian approach

In the Bayesian approach, the bandits take advantage of the prior knowledge they have
about the rewards p(Ra) to construct a UCB. If the prior knowledge that we have is accurate
and reliable, then the Bayesian approaches are expected to work better than the Frequentist
approaches. The framework for this problem which is also known as Bayesian bandits is the
following:
Initially, we assume a distribution p(Q|w) over the action-value functions with parameter
w which acts as our likelihood. Then, by using Bayesian methods the posterior distribution
over the weights w is computed p(w|R1, ...,Rt) which acts as our prior. By using the Bayes
rule and multiplying the prior with the likelihood we get the posterior distribution over the
action-values:
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p(Q(a)|R1,R2, ...,Rt−1) = p(Q(a)|w)p(w|R1, ...,Rt), (3.11)

From the computed posterior, we can now estimate the upper confidence bound and our
action selection step will become as shown below:

At = argmax
a∈A

Qt(a)+ c(σ(a)), (3.12)

where c is the number of standard deviations that we want to add to our action-value estimate.
Higher value of c encourages more exploration while lower value of c encourages more
exploitation.

A second way to take advantage of the computed posterior distribution 3.11 is to do probabil-
ity matching. In probability matching, we select an action a according to the probability that
this action a is the optimal action,so a policy is created as shown below:

π(a) = p[Q(a) = max
a′

Q(a′)|R1, ...,Rt−1], (3.13)

Probability matching is a heuristic that is optimistic in the face of uncertainty because
the uncertain actions have a higher probability of taking the maximum value. The way
that probability matching is implemented in practise is an algorithm known as Thompson
Sampling.

3.1.3 Thompson Sampling

Thompson sampling (TS), is a sample-based probability matching algorithm that has the
following policy:

π(a) = E[1(Q(a) = max
a′

Q(a′))|R1, ...,Rt−1], (3.14)

The algorithm uses Bayes rule as mentioned in the previous section to compute the posterior
distribution. Then it samples an action-value function Q(a) from the posterior and it selects
an action by maximising the sample:



20 Exploration vs Exploitation

At = argmax
a∈A

Q(a), (3.15)

It has been proved that in the case of Bernoulli bandits TS achieves Lai and Robins lower
bound on regret 3.7.

TS and UCB algorithms share the same principle of "Optimism in the face of uncertainty"
and has been proved that one can translate regret bounds established for UCB algorithms to
Bayesian regret bounds for TS [Russo and Roy, 2013].

Applying Thompson Sampling to a MDP

TS can be applied to an MDP by using PSRL (Posterior Sampling for Reinforcement
Learning), a method that is based on two components:

1. In the first step, a distribution over rewards and transition dynamics PT̂ is obtained
using a Bayesian modelling approach, treating rewards and transition probabilities as
random variables.

2. In the second step, the PSRL algorithm , samples T̂ ∼ PT̂ , computes the optimal policy
π̂ with respect to the sampled T̂ , and follows π̂ for the duration of a single episode.
The collected data are then used to update the PT̂ model and the whole process is
iterated until convergence.

While PSRL works very well on tabular problems, it does not scale well enough beyond
that because the second step becomes very expensive.

This large computational cost of TS in RL has motivated researchers to come up with approx-
imations. A common approach is to work with the posterior distribution over Q-functions
rather than with the posterior distribution over transition distributions. This approach is
known as Randomised Value Functions (RVF) [Osband et al., 2017] and it is explained in
details in section 3.2.2.



3.1 Exploration with Multi-Armed Bandits 21

3.1.4 Gradient Bandit Algorithms

The methods that we previously used, estimate the action values and use these estimates
for action selection. While this is a good approach, it is not the only approach that can
be used. Gradient bandit algorithms learn a numerical preference for each action a which
is denoted as Ht(a). The higher the numerical preference is the more often that action is
selected, however this numerical value has no interpretation in terms of reward value and
the only that is important is the relative preference of one action over another. The action
probabilities in this model are determined according to a soft-max distribution such as Gibbs
or Boltzmann as shown below:

P(At = a) =
eHt(a)

∑
k
b=1 eHt(b)

= πt(a), (3.16)

where πt(a) stands for the probability of selecting action a at time step t. The action prefer-
ences are initially set to the same value so that all actions have an equal probability of being
selected.

By combining the theory mentioned above and the idea of stochastic gradient ascend the
bandit gradient algorithm is produced. On each time step, after selecting an action At and
receiving the reward Rt , the action preferences are updated as shown below:

Ht+1(At) = Ht(At)+α(Rt− R̄t)(1−πt(At)), and (3.17)

Ht+1(a) = Ht(a)−α(Rt− R̄t)(πt(a)), ∀ a ̸= At (3.18)

where a is the step-size parameter, and R̄t ∈R is the average of all the rewards up to and
including time t. The important term here is R̄t because it acts as a baseline with which the
reward is compared. If the reward surpasses this baseline, then the probability of taking
the action At in the future is increased while if the reward is below it the probability gets
decreased. The actions that were not selected, always move in the opposite direction of the
selected action.
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3.2 Deep Exploration

As described in the first section, the bandit methods select actions without thinking about
the delayed consequences. When these methods are applied to a RL problem they usually
select the action at only if the expected value Q(st ,at) is large or the observed rewards and/or
transitions are expected to provide useful information. This approach is called in the RL
literature as myopic exploration, because it incentivizes exploration over a single time step.
Due to their myopic exploration the bandits do not fully address the RL problem, where
selecting an action can be desirable even if it does not yield immediate rewards or information
just because this action may place the agent in a state that can lead to subsequent learning
opportunities or rewards. This is the core reason and motivation behind deep exploration.
The agent needs to consider how the actions influence downstream learning opportunities.
So, the agent needs to search deep in his decision tree.

3.2.1 Value function approximation

In all the methods that we described in Chapter 2, we used a tabular representation for the
value functions, however when it comes to real world complex problems these representations
are both expensive and impractical. They are impractical because they do not generalize well.
An example of the impracticality is, if we have a robot that moves on a grid we may not want
it to count as different states, positions that are one millimeter apart from one another. They
are also expensive because in these problems we need a lot of memory to store them and a
lot of computational power to manage them. To combat these problems, we turn to value
function approximations.

In value function approximation the value function is represented in a parameterized func-
tional form with weight vector w∈Rd . We write v̂(s,w)≈ vπ(s) to represent the approximate
value of state s given weight vector w. The most common function approximators v̂ in RL
are those that are based on a linear combination of features or on artificial neural networks.

Prediction Objective

In the tabular case there was no need for an error term because the value function could
be equal to the true value function. That is not the case when we use a value function
approximation because an update at one state affects many other states and it is not possible
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to get the true value for all the states. By assumption the states are far more than the weights,
so making one state’s estimate more accurate means that we make another state’s estimate
less accurate. This in turn leads to an error term which is called the Mean Squared Value
Error and is denoted as V E:

V E(w) = ∑
s∈S

µ(s)[vπ(s)− v̂(s,w)]2 (3.19)

where µ(s)≥ 0 represents how much we care about the error in each state s. The squared
root of this measure gives a rough measure of how much the approximate values differ from
the true values. In RL lowering this error does not guarantee us that we will find the optimal
policy which is what we are trying to find, however minimizing this quantity can be very
fruitful.

SGD in Value function approximation

One of the most popular methods that can help to minimize the V E is stochastic gradient
descent (SGD). After each time we observe a state, the weight vector is adjusted by a small
amount in the direction that would reduce the error the most as it is shown in the following
expression:

wt+1 = wt +α[vπ(St)− v̂(St ,wt)]∇v̂(St ,wt) (3.20)

where α is the step-size parameter and ∇ f (w) denotes the column vector of partial derivatives
of the expression with respect to the components of the vector.

SGD methods have been proven to be successful both in the linear and the non-linear
cases of value function approximation.

To summarize, in value function approximation the agent maintains a point estimate of
a function mapping state-action pairs to expected cumulative reward. This estimate approxi-
mates the agent’s expectation of the true value function and uses this expectation to perform
action selection. The hope of value function approximation is that this process converges
quickly on a mode in which the agent selects optimal or near optimal actions while the new
observations reinforce the dominant value estimates.

By using this value function estimate to guide actions the agent can operate according
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to a greedy policy in which, at any state, the agent performs the action that maximizes the
estimated value function. Unfortunately, this policy does not investigate poorly-understood
actions that have been assigned with unattractive point estimates which may lead the agent
to forgo enormous potential value because some actions remain unexplored. Thus, value
function approximation does not solve the problem of deep exploration.

3.2.2 Randomized Value Functions

Build upon value function approximations, RVFs encourage deep exploration.

RVFs are inspired by Thompson Sampling as it was described in 3.1.3 and they work
in two steps:

1. In the first step they directly model a distribution over Q functions, PQ̂.

2. In the second step, the agent acts greedily with respect to a sample Q ∼ PQ̂ which
is drawn at the beginning of each episode, which removes the main computational
bottleneck that existed when sampling from the transition distributions.

At a high level, RVFs sample from a proxy of the posterior distribution over value
functions. RVFs incentivize experimentation with actions that the agent is uncertain about,
where this uncertainty translates into variance in the sampled value estimate. This randomness
often generates positive bias and because of that it promotes deep exploration.

3.2.3 Deep Q-Networks

Deep Q-networks (DQN) were designed with the aim of learning successful policies directly
from high-dimensional sensory inputs using end-to-end RL.

In [Mnih et al., 2015] the authors approximate the optimal state-action value function
Q∗ with a deep Convolutional Neural Network (CNN) which achieves performance equal to
that of human professionals in the Atari 2600 games. CNNs were used due to past results
that prove that they are a promising method for effectively processing visual images ([Lee
et al., 2009], [Krizhevsky et al.])

DQN architecture

The DQN architecture consists of three convolutional layers followed by a non-linear fully
connected layer. The figure that is illustrated below is taken from [Mnih et al., 2015]:
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Fig. 3.1 Q-network architecture

DQN model

DQN models the optimal state-action value function Q∗(s,a;θ) where s ∈S , a ∈A and θ

the Q-network parameters. It initially considers the state s as the input of the network and the
number of nodes of the output layer corresponds to the number of actions that the agent can
perform. For a specific input state, each individual action gets assigned a Q-function value
just by performing a single forward pass through the network.

In DQN, we parameterize the Q-network using the deep CNN as it is depicted in 3.1, in which
θi are the parameters of the Q-network at iteration i. To perform experience replay, at each
time step, we store the agent’s experience as et = (st ,at ,rt ,st+1) in the replay buffer and we
get a dataset D that contains the agents experience e1, ...,et . During the learning phase, we ap-
ply Q-learning updates on samples (or mini-batches) of experience (s,a,r,s′)∼U(D),drawn
uniformly at random from the pool of stored samples. The Q-learning update at each iteration
results in the following loss function:

L(θi) =E(s,a,r,s′)∼U(D)[r+ γ max
a′

Q(s′,a′;θ
−
i )−Q(s,a;θi)

2
], (3.21)

where γ is the discount parameter, θi are the Q network parameters at iteration i and θ
−
i are

the parameters used to compute the target at iteration i. The parameters of the target are
updated with the Q network parameters every C steps while in between individual updates
they remain fixed.
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By differentiating the loss function with respect to the weights we get the following gradient:

∇θiL(θi) =E(s,a,r,s′)[(r+ γ max
a′

Q(s′,a′;θ
−
i )−Q(s,a;θi))+∇θiQ(s,a;θi)] (3.22)

Instead of computing the expectation in the above gradient, it is more preferable to optimize
the loss function with SGD.

The DQN algorithm improves upon the standard online Q-learning in two ways and makes it
more suitable for training large neural networks:

1. 1) Experience Replay: Experience replay is a technique that at each time step t
stores the agent’s experiences in the form of tuples et = (st ,at ,rt ,st+1) in a dataset
D = (e1, ...,et). Then for the optimization step, random samples or mini-batches
are sampled from the D. The advantages that this method has over the traditional
Q-learning are two. Firstly, every step of experience can be used into more than one
update of the weights, thus it is data efficient. Secondly, taking experiences randomly
breaks the correlation between consecutive samples resulting into a reduced variance.
Finally, the distribution is averaged over many of its previous states leading to more
smooth learning without unwanted oscillations or divergences in the parameters.

2. 2) Network cloning: Every C updates, the Q-network is cloned and we obtain a target
network Q̂ which is used for generating the targets yi for the subsequent C updates to
Q.

3.2.4 Bootstrapped Deep Q-Networks

Bootstrapped DQN modifies DQN to approximate a distribution over Q-values via the boot-
strap principle. Bootstrapped DQN performs deep exploration which leads to a substantial
improvement in learning speed and cumulative performance across most Atari games.

The bootstrap principle is to approximate a distribution with a sample distribution as men-
tioned in [Efron and Tibshirani, 1993]. The most common way to implement bootstrap
is to take as input a dataset D of size N and generate a sampled dataset D̃ also of size N
drawn uniformly with replacement from D. The bootstrap serves as a great form of data-
based simulation and it also fancies strong convergence guarantees ([Bickel and Freedman,
1981],[Fushiki, 2005])
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At the start of each episode, bootstrapped DQN samples a single Q-value function from
its approximate posterior. Then, the agent follows the policy which is optimal based on
that sample for the duration of the episode. This is a natural adaptation of the Thompson
Sampling heuristic to RL that promotes deep exploration.

The algorithm creates K ∈ N bootstrapped estimates of the Q-value function in paral-
lel. Each of these value function heads Qk(s,a;θ) is trained against its own target network
Qk(s,a;θ−) providing a temporally extended estimate of the value uncertainty via TD es-
timates. A flag is stored w1, ..,wK ∈ {0,1} which indicates which data belong to which
bootstrap head. A bootstrap sample is approximated by selecting k ∈ 1, ..,K uniformly at
random and following Qk for the duration of that episode.

Bootstrapped DQN explores in a similar way as PSRL with the difference being, that
bootstrapped DQN directly samples a value function meaning that it does not require further
planning steps. Bootstrapped DQN uses random initialization of the network weights as
a prior to induce diversity which leads to the agent trying random actions. When a head
finds a good state and generalizes to it, some of the heads will learn from it, because of the
bootstrapping. Eventually, other heads will either find better states or end up learning the
best good states found by the other heads. So, the architecture explores well and once a head
achieves the optimal policy, it will eventually lead all the other heads to achieve that same
policy.

One special case of bootstrapped DQN where the algorithm would not perform as de-
sired is the following. In bootstrapped DQN, if the rewards are sparse (for example as we
will see in the environment presented in Chapter 5.1 , then bootstrapping the targets will
not generate any diversity and thus the algorithm will not be able to learn efficiently. To
solve that [Osband et al., 2018] provided a solution which is to add a random untrainable
prior function to each member of the ensemble. This prior function provides the necessary
diversity that is required for the algorithm to work as intended.





Chapter 4

Information Theoretic exploration with
Successor Uncertainties

The first section of this Chapter explains and motivates the SU framework and its practical
implementation as presented in Janz et al. [2019]. The second part of this Chapter introduces
the usefulness of Information Gain (IG) as a way to guide exploration. The third section in-
troduces and explains two algorithms that combine the SU framework with the IG principles.
These two algorithms and the experiments that are conducted in the subsequent Chapter are
the main contributions of this thesis.

RVFs as discussed in Chapter 3, have proven to be quite successful in practise, leading
to algorithms that achieve efficient exploration. Many of the latest exploration methods
such as ([Moerland et al., 2017],[O’Donoghue et al., 2017] [Azizzadenesheli and Anandku-
mar, 2018]) can be interpreted as the combination of RVFs with neural network function
approximations. While the neural network function approximations are necessary for scaling
problems, they do introduce conceptual difficulties that were not present before in PSRL and
tabular RVF methods. To be more precise, getting a posterior distribution over Q-functions
is not trivial because we perform off-policy RL, which means that we do not have direct
access to the data in the forms of inputs and output values for the Q-function. As noted
in the Janz et al. [2019], many methods that combined RVF with neural network function
approximations ignored these difficulties, which made them suffer from either one of the
following two problems:

1. The distribution over Q-functions ignores the dependencies between function values
such as those given by the Bellman equation.

2. The distribution captures these dependencies but at a large computational cost.
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SU has managed to solve this problem since it captures the dependencies given by the
Bellman equation while also having a low computational cost. SU is a highly scalable, cheap
and easy to implement RVF algorithm. SU has managed to outperform its competitors on
tabular benchmarks and Atari games.

4.1 Successor Uncertainties Framework

SU uses a probabilistic model over Q-functions that directly takes into account the correla-
tions that exist between Q-function values as induced by the Bellman equation.

In the SU framework, we initially assume that we are given an embedding function φ :
S×A −→Rd , such that for all (s,a), ∥φ(s,a)∥2 = 1 and φ(s,a) > 0 elementwise. In addi-
tion to that, we also assume a linear Gaussian reward model rt+1 = w⊤φ(st ,at)+ εt , where
φ(st ,at) is a feature representation of states and actions and εt ∼N (ε|0,β ) is the Gaussian
noise.

This previous linear model results into the following linear model for the Q-function:

Qπ(st ,at) = E

[
∞

∑
i=t

γ
i−trt+1

]
= E

[
∞

∑
i=t

γ
i−tw⊤φ(st ,at)

]
= w⊤ψ(st ,at), (4.1)

where ψ(st ,at) are known in the literature as successor features ([Dayan, 1993],[Barreto
et al., 2016]), i.e. the discounted expected occurrences of φ(st ,at) under policy π .

The first quantity, ψ(st ,at) = φ(st ,at) + γE[ψ(st+1,at+1)] which is an estimator of the
successor features can be obtained by applying standard temporal different learning tech-
niques as they were presented in Chapter 2.

The other quantity, w can be estimated by regressing embeddings of observed states φ(st ,at)

onto the corresponding rewards. More specifically by assuming a Gaussian prior over the
weights p(w) =N (0,θ I) and p(rt+1|w) =N (rt+1|w⊤φ(s,a),β ) as the likelihood, we infer
the posterior distribution p(w|rt+1) = N(w|µw,Σw).

This induces a fully correlated Gaussian posterior for the Q-function given by:

Q̂π
SU ∼N (Ψ̂π

µw,Ψ̂
π

Σw(Ψ̂
π)⊤), (4.2)
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where Ψ̂π = [ψ̂π(s,a)]⊤(s,a)∈(S,A). This is our SU model for the Q-function.

The covariance matrix Σw can be updated online according to Bayes Rule:

p(w|µnew,Σnew) ∝ p(rt+1|w)p(w), (4.3)

which is equal to:

Σ
−1
new = Σ

−1 +β
−1

φ(st ,at)φ(st ,at)
⊤, (4.4)

In the case where the embedding function φ is not known beforehand, it can be jointly
estimated with the other quantities with the usage of network function approximations.

To be more exact, we want to estimate the Q-function of some given policy π , where
φ̂ : S×A−→Rd

+ is the current estimate of φ , (st ,at) is the state action pair observed at time
step t and rt+1 is the reward attained after selecting action at in state st . To achieve that, the
SU algorithm jointly learns φ̂ and ψ̂ by using the relationships between φt ,ψπ

t and E[Rt+1].
Thus the problem becomes an optimization problem where the loss is defined below:

L(φ̂ , ψ̂, ŵ) = ∥ψ̂t− φ̂t− γ(ψ̂t+1)∥
2
2 +(µwφt− rt+1)

2 +(µwψt− γµ
⊤
w ψt+1− rt+1)

2, (4.5)

The object above includes three different loss terms that we want to minimize. The first
one is the TD error for the successor features, also known as successor feature loss which
enforces ψ to converge to the discounted expected feature occurrence of φ . The second term
is known as the reward loss and it sets the values of µw and φ so that the error in the reward
prediction is low. The third and last term is the TD error in the estimation of the Q-function
and it enforces ψ to have good values for predicting the Q-function values.

The first two losses stem directly from the definition of the SU model. If we assume
that there exists a (ReLU) network that achieves zero successor feature and reward loss then
the third term would be unnecessary. In practise it was observed that finding these optimal
solutions is very difficult so they added the Q value loss which lead to improved performance.
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4.1.1 SU Neural network model

In the practical implementation of the SU model, the initial features φ(st ,at) and the successor
features ψ(st ,at) are computed through the usage of a multi-head neural network. In that
network each head represents a possible combination of an action value and feature type (φ
or ψ). The output of each head is multiplied by µw so that we can get predictions for the
reward and the Q-function. This multi-head neural network is illustrated as shown bellow:

Fig. 4.1 SU model

where in the case that we have a tabular environment, the input for the model is based on
the one-hot encoding of the state while in the case of the Atari games the input is given by a
convolutional neural network.

4.2 Information-theoretic exploration

In this section, we introduce basic concepts of Information Theory and we explain how
incorporating them can lead RL problems to achieve more efficient exploration. More specif-
ically, we introduce the concepts of entropy, Kullback-Leibler (KL) divergence and mutual
information (MI). The definitions introduced here are based on Chapter 2 of [Cov] when all
the random variables are discrete and on Chapter 5 of [Gray, 2011] for the general random
variable case.
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Entropy

In information theory, the entropy of a random variable can be interpreted as the average level
of "uncertainty" "information" or "randomness" that can be associated with the variable’s
possible outcomes. Information entropy as a concept was introduced by Claude Shannon in
[Shannon, 1948].

Given a discrete random variable X , that can take as possible values x ∈X with a probability
mass function p(x) = Pr(X = x), the entropy of X is denoted as H(X) and it is defined as
shown below:

H(X) =− ∑
x∈X

p(x) log p(x) (4.6)

where Σ denotes the sum over all the variable’s possible outcomes and log is the logarithm
with a base that varies between different applications. To be more precise, the base of 2
which is the most common base gives the unit of bits, a base of e gives the "natural units" nats
while a base of 10 gives a unit called "dits" or "hartleys". An equivalent definition of entropy
is the expected value of the random variable log 1

p(X) as shown in the following equation.

H(X) = Ep log
1

p(X)
(4.7)

where this definition is related to the definition of entropy in thermodynamics.

The notion of entropy can extend to two variables with the definition of the joint entropy.
The joint entropy H(X ,Y ) of a pair of discrete random variables (X ,Y ) is defined with a
joint distribution p(x,y) in the same way as the entropy of a single random variable as shown
below:

H(X ,Y ) =− ∑
x∈X

∑
y∈Y

p(x,y) log p(x,y) (4.8)

The conditional entropy of a random variable given another random variable is defined
as the expected value of the entropies of the conditional distributions, averaged over the
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conditioning random variable.

H(Y |X) =− ∑
x∈X

∑
y∈Y

p(x,y) log p(x|y) (4.9)

It has been proven that the entropy of two random variables is equal to the entropy of the one
plus the conditional entropy of the other as shown:

H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y ), (4.10)

Kullback-Leibler Divergence

The KL divergence (also known as relative entropy) is a measure of dissimilarity between
two distributions. For two discrete probability distributions with probability mass function
p(x) and q(x) the KL divergence is defined as:

D(p||q) = ∑
x∈X

p(x) log
p(x)
q(x)

, (4.11)

Some important properties of the KL divergence are:

1. KL divergence is non-negative, and it achieves equality if and only if the two distribu-
tions are the same p(x) = q(x)

2. KL divergence is non-symmetric which means that D(p||q) ̸= D(q||p)

3. The KL divergence is well-defined for continuous distributions, and thus it is invariant
under parameter transformations.

Information Gain

Information gain (IG) or mutual information (MI) is a measure of dependence between two
random variables. To be more exact IG quantifies the amount of information that one random
variable contains about another random variable. It can also be explained as the reduction in
the uncertainty of one random variable due to the knowledge of the other.
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If there are two random variables X and Y with a joint probability mass function p(x,y)
and marginal probability mass functions p(x) and p(y) respectively, then the IG I(X ;Y ) is
defined as the relative entropy between the joint distribution and the product distribution
p(x)p(y) as shown:

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
, (4.12)

The aforementioned equation can be equivalently expressed as the difference between the
marginal entropy and the conditional entropy as shown:

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X), (4.13)

4.2.1 Motivation for Information Gain

As it was stated in Chapter 3, the reason that we want to explore in the first place is so that we
can accumulate more information. Whenever we explore, we forego immediate rewards so
that we can learn more about the environment and use this knowledge to get more rewards in
the future. Thus, the value of information can be perceived as a secondary auxiliary reward
that motivates us to visit more uncertain states. The IG is higher in the states that we are
most uncertain, thus it makes sense for us to use it as a quantity that guides us in terms
of which action to pick next so that we can explore. In this thesis, we leverage this idea
in combination with the original SU framework in hopes of improving the SU model by
creating an algorithm that explores more efficiently.

4.3 Information Theoretic approach to Successor Uncer-
tainties

In this section, we present the main contribution of this thesis, which is the creation of two
information-theoretic algorithms that extend the original SU model. The two new algorithms
that we present, leverage the information gain in two different ways with the purpose of
improving the exploration aspect of the SU algorithm. In these two algorithms we extend
the original SU algorithm by also computing an auxiliary reward which accounts for the IG
between states. Our hopes are that in the limit, these algorithms should both converge to the
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normal Q function as per SU but before they do they will give an exploration bonus to the
state-action pairs that we have the most uncertainty about. We name these methods SU-IG1
and SU-IG2. The main difference of these two methods is in the way that they compute the IG.

In both algorithms, at every time step we sample a state action pair (s,a) from the re-
play buffer and we compute two Q functions. We compute Q using Expected Sarsa as it is
computed in the original SU model and we also compute the expected cumulative discounted
information gain function QIG. The computation of this function is treated as solving a
second independent MDP.

To be more precise, whenever we want to select an action at any given state we have
two things to estimate: the Q function for the reward and the QIG function for the auxiliary
reward which accounts for the information gain.

4.3.1 Successor Uncertainties - Information Gain 1st Algorithm

In the first algorithm which we call SU-IG1, we compute the IG quantity as the reduction of
the uncertainty in the Gaussian distribution of the Q-function.

The expected cumulative discounted information gain QIG is computed as shown below:

Qπ
IG(st ,at) = E

[
∞

∑
i=t

γ
i−trIG(s,a)

]
, (4.14)

where rIG(s,a) is defined as an auxiliary reward for the IG accumulated when the state-action
pair (s,a) is used to update the Q-function, as shown below:

rIG(s,a) := IG(Q;s,a), (4.15)

Based on the definition of IG that we gave in equation 4.13, we compute that IG(Q;s,a) =
H(Q)−H(Q|s,a), which stands for the information gained about Q when the state-action
pair (s,a) is selected to update the Q-function distribution from N (m,S) to N (m,S′) where
m and S are the mean and the covariance matrix of the Q-function distribution respectively.
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Thus, rIG(s,a) can be written as a function that depends only on S and S′ which can be
defined as IG(S,S′) as shown in the following equation:

IG(S,S′) =
1
2

log(1+(φ ′)⊤S(φ ′)) (4.16)

where φ ′ are the information gain features and they are computed through a multi-head neural
network as shown in figure 4.2. The proof that 4.16 holds is shown in the first section of the
Appendix.

The way we select the optimal action a∗ in any state s is through the following equation:

a∗ = argmax
a

(Q+λQIG) (4.17)

where λ determines how much we want to factor the information gain of the successor states.

The loss function is computed similarly to 4.5. The only difference here is the addition of
one more term that accounts for the QIG loss which is equal to (QIG− γQIG− rIG)

2.

Neural Network Model

In the practical implementation of the SU-IG1 algorithm, the initial features φ(st ,at) and the
successor features ψ(st ,at) are computed through the usage of a multi-head neural network
similarly to how they were computed in the SU model. The only additional quantity that
needs to be computed is the φ ′(st ,at) which is computed by adding an additional hidden layer
that gets as input the output of the initial hidden layer. Thus based on this the multi-head
neural network for the SU-IG1 is illustrated below:
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Fig. 4.2 SU-IG1 model

Similarly to the SU model, SU-IG1 learns the neural network parameters and m by optimizing
the loss function.

4.3.2 Successor Uncertainties - Information Gain 2nd Algorithm

In the second algorithm, which we name SU-IG2, QIG is computed similarly to equation
4.14 with the difference being on the computation of the IG.

In the SU-IG1 algorithm, the IG is computed as the reduction of the uncertainty in the
Gaussian distribution of the Q-function, while in SU-IG2 the IG is computed as the reduction
of the uncertainty in the Bernoulli distribution of the optimal action.

On the SU-IG2 algorithm, rIG(s,a) is defined as an auxiliary reward and it is computed based
on the probability of an action at a specific state being optimal as shown below:

rIG(s,a) := IG(aopt ;s,a), (4.18)

Similarly to SU-IG1, based on the definition of IG that we gave in equation 4.13 we compute
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the IG quantity and it is equal to IG(aopt ;s,a) = H(aopt |s)−H(aopt |s,a).

Thus, rIG(s,a) is written as shown in the following equation:

rIG(s,a) = H(aopt |s)−H(aopt |s,a), (4.19)

where the first term is constant with respect to a. If we focus on two actions per state, we
compute the probability distribution for the first entropy H(aopt |s) as shown:

p(aopt |s) = Ber(a|p(Q(s,a1)> Q(s,a2))), (4.20)

with the Bernoulli distribution being computed by the following equation:

p(Q(s,a1)> Q(s,a2)) = Ψ

(
m1−m2√

S11 +S22−S12−S21

)
(4.21)

where m and S are the mean and covariance matrix of the Q-function posterior distribution,
while Ψ(z) is the Gaussian Cumulative distribution function (CDF). The probability distri-
bution p(aopt|s,a) is computed analogously to Equation 4.20, using the updated Q-function
posterior, which is computed for taking action a in state s.

The rest of the algorithm works in the same way as SU-IG1.





Chapter 5

Experiments and Results

In this Chapter, we conduct experiments on the algorithms that we developed in Chapter 4
using the binary tree MDP environment where we measure their performance in comparison
to methods that combine Q-function modeling with neural network function approximation.

5.1 Environment

The environment that we use to evaluate the performance of the algorithms is the binary tree
MDP of size L, as it is shown in the following figure:

Fig. 5.1 Binary Tree MDP

This environment consists of 2L+1 states S that are one-hot encoded. The actions which are
two A = a1,a2 are mapped to movements {UP , DOWN} according to a random mapping
drawn independently for each state. The agent receives a reward of one when he reaches state
S2L and zero otherwise. The states with odd indices and S2L are terminal states. For an agent
to solve the MDP and find the reward, it needs to make L consecutive correct decisions.
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5.2 Experiments

In this part of the thesis, we compare the algorithms that we created with other similar
methods from the RL literature. The methods that we are comparing with are methods
that combine the Q function models with neural network function approximation. This
category has two popular subclasses, methods that rely on Bayesian linear Q-function models
such as SU Janz et al. [2019], Bayesian Deep Q-Networks(BDQN) [Azizzadenesheli and
Anandkumar, 2018], Uncertainty Bellman Equation (UBE) [O’Donoghue et al., 2017] and
methods that that are based on bootstrapping such as Bootstrapped DQN [Osband et al.,
2016]. For this comparison to be fair, we use the same hyperparameters for all the algorithms
without tuning them for any specific method.

In all the experiments that are conducted in this Chapter, we compute for each algorithm the
median number of episodes that are required to learn the optimal policy on the tree MDP.
We use 5 seeds for each experiment and 5000 as the number of episodes for each seed. Blue
points indicate that all 5 seeds succeeded within 5000 episodes,orange indicate that only
some of the runs succeeded while red indicates that all runs failed. Dashed lines correspond
to the median number of episodes that a uniform exploration policy requires. Lastly, the
hyperparameters that we used for these experiments are provided in the Appendix B. It is
important to note that in the case of Bootstrapped DQN, we use a prior as it was discussed in
3.2.4.

Figures 5.2 and 5.3 show the empirical performance of the UBE and BDQN algorithms
in comparison to an agent that uses a uniform exploration policy in the binary tree MDP
environment.

0 5 10 15 20 25
problem scale L

0

2500

5000

m
ed

ia
n 

le
ar

ni
ng

 ti
m

e

Bayesian Deep Q-Networks

Fig. 5.2 Median number of episodes required for BDQN algorithm to find the optimal policy
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Fig. 5.3 Median number of episodes required for UBE algorithm to find the optimal policy

As it can be observed from these two figures both BDQN and UBE fail to outperform the
uniform exploration policy. For UBE the reason for this low performance is explained in
[Janz et al., 2019], where it states that any algorithm that combines factorised symmetric
distributions with posterior sampling such as UBE, can solve the binary tree MDP with
probability of at most 2−L per episode. BDQN seems to be suffering from similar problems.

Figures 5.4, 5.5, 5.6 and 5.7 show the empirical performance of SU, SU-IG1, SU-IG2
and Bootstrapped DQN algorithms in comparison to an agent that uses a uniform exploration
policy in the binary tree MDP environment.
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Fig. 5.4 Median number of episodes required for SU algorithm to find the optimal policy
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Fig. 5.5 Median number of episodes required for SU-IG 1 algorithm to find the optimal
policy
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Fig. 5.6 Median number of episodes required for SU-IG 2 algorithm to find the optimal
policy
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Fig. 5.7 Median number of episodes required for Bootstrapped DQN algorithm to find the
optimal policy

As it can be observed from these four figures, all four algorithms massively outperform the
BDQN and UBE algorithms by consistently managing to find the reward even when the
environment has a size of L = 100. All four methods manage to succeed on large scale
binary trees with a very sparse reward structure and randomised action effects. However as
it is noted in [Janz et al., 2019], for Bootstrapped DQN to achieve the same performance it
requires significantly more computations. Both SU-IG1 and SU-IG2 need more computations
because they do the same thing as the SU algorithm with the addition of computing an
additional Q-function that accounts for the IG. Thus, the best suited algorithm for this
particular environment is SU. Between SU-IG1 and SU-IG2 there are very minor differences
in performance which can be attributed to the randomization of the seeds.



Chapter 6

Conclusions

In this thesis we started by explaining the framework and the core concepts of RL where we
introduced some of the most well-known algorithms of the RL literature such as SARSA
and Q-learning. After that, we explained the exploration/exploitation trade-off dilemma in
the context of multi-armed bandits and we motivated the necessity for deep exploration in
real-world complex problems. Additionally, we explained and motivated various algorithms
that perform deep exploration such as SU and Bootstrapped DQN.

6.1 Main contributions

The main contribution of this thesis is the development of two algorithms that leverage the
IG with the purpose of improving the exploration aspect of the SU algorithm and perform
deep exploration. Both algorithms treat IG as an auxiliary reward and they create a separate
Q-function QIG that promotes exploration. The difference in these two algorithms is in the
computation of the IG. In SU-IG1, the IG is computed as the reduction of the uncertainty
in the Gaussian distribution of the Q-function, while in SU-IG2 the IG is computed as the
reduction of the uncertainty in the Bernoulli distribution of the optimal action. Experiments
were conducted on these two algorithms that show both of the algorithms succeeding in
solving the binary tree MDP environment with the algorithm’s performances being similar to
that of the SU algorithm. According to these observations, the addition of the IG did not lead
to substantial improvements over the SU algorithm’s performance, however the experiments
were limited to a particular environment setting. Thus, there is still room for research that
can be conducted on the utilization of the IG in the SU framework and beyond.
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6.2 Future work

Some interesting ideas for future work are the following:

First of all, it would be interesting to create environments that fit more the information-
theoretic approach of this thesis. To be more precise, an idea would be, to carefully construct
environments that require exploration strategies that take advantage of the information gain.
Deploying the proposed algorithms of this thesis in such an environment could provide
interesting results.

Another promising direction for research, is to scale the algorithm to more complex problems,
such as ones that have more actions. As we proved in Chapter 4, for a two action setting,
we can find an analytic solution that computes the probability of an action being optimal by
using a bivariate Gaussian. That is not the case with multiple action, because in that setting
the distribution becomes multivariate and finding the probability that one action is better than
all the others does not have an analytic solution. In that case, approximations could be found
that approximate the probability of an action being optimal.

Another interesting thing to consider is proving theoretically whether it makes sense to
discount IG when we compute the QIG function. Discounting in the traditional RL frame-
work has both practical and theoretical usefulness. It has practical usefulness because it
stops the Q-function values from exploding and it has theoretical usefulness because it makes
sense to prefer rewards in the present rather than rewards in the future. Similarly to that, QIG

can explode without discounting and because IG acts as an auxiliary reward it also intuitively
makes sense to prefer getting information earlier rather than later because you will be able to
use the knowledge earlier leading to higher rewards. Thus, finding if its worth discounting
IG could be an interesting research avenue for the future.
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Appendix A

Computation of the IG for the SU-IG1
algorithm

In this part of the Appendix we prove that the equation 4.16 holds. We start this proof
by writing some definitions. The differential entropy of a Gaussian distribution N(µ,Σ) is
defined as:

H(N(µ,Σ)) =
1
2

log(2πeΣ), (A.1)

Based on 4.13 we get the following equation which is equal to the information we gain about
the Q function when we use a state-action pair (s,a) to update its distribution from N(µ,Σ)

to N(µ,Σ′):

IG(Σ,Σ′) = H(N(µ,Σ))−H(N(µ,Σ′)), (A.2)

By multiplying both sides by 2 and then using the logarithmic properties we get:

2IG(Σ,Σ′) = log
(

Σ

Σ′

)
, (A.3)

Then we replace the covariance matrix Σ and the updated covariance matrix Σ′ with the
precision matrices P−1 and P+φφ⊤ respectively based of the definition of the precision
matrix Σ = P−1 and we get the following equation:
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2IG(Σ,Σ′) = log

(
P−1

(P+φ ′φ ′⊤)
−1

)
, (A.4)

where φ ′ are the information gain features which are computed through the multi-head neural
network as it shown in 4.2. By inverting we get:

2IG(Σ,Σ′) = log

(
P+φ ′φ ′⊤

P

)
, (A.5)

The numerator of the fraction P+φ ′φ ′⊤ can be simplified by using linear algebra properties:

P+φ
′
φ
′⊤ = P(I +P−1

φ
′
φ
′⊤) = P(I +φ

′⊤
Σφ
′) (A.6)

which simplifies equation A.5 to the desired equation:

IG(Σ,Σ′) =
1
2

log(1+(φ ′)⊤Σ(φ ′)) (A.7)



Appendix B

Hyperparameter selection

The hyperparameters that are used for the SU and SU-IG experiments in Chapter 5 are shown
in the following Table:

Number of episodes 5000
Prior variance θ 10−4

Likelihood variance β 10−3

Feature size 50
Gradient steps per episode 10

Covariance matrix decay factor ζ 1
Table B.1 Hyperparameters for SU and SU-IG experiments

The hyperparameters that are used for the Bootstrapped-DQN experiments in Chapter 5 are
shown in the following Table:

Number of episodes 5000
Ensemble size K 10

Bootstrap probability 0.5
Gradient steps per episode 10

Table B.2 Hyperparameters for Bootstrapped DQN experiments

Hyperparameter values do not affect UBE and BDQN performance because both algorithms
perform uniformly random exploration.
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