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Abstract

The medical setting produces a number of significant and unique challenges for machine
learning practitioners based on the accessibility of data alongside the need for clear and
transparent decision-making to ensure patient safety.

In this work we are primarily concerned with how we can augment clinical decision making
through the use of machine learning and analytics. While there are of course many frontiers
to be explored we tackle two key challenges: In the first case we consider the problem of
accurate and well calibrated prediction under covariate shift, a common issue in healthcare
and more generally when learning imitation policies using behavioural cloning. We propose
Transductive Dropout, leveraging the unlabelled data to regularise uncertainty information
over predictions in Bayesian neural networks. By tackling the problem of risk prediction for
prostate cancer patients across global populations we demonstrate significant improvement in
uncertainty calibration.

In the second we tackle the problem of using imitation learning specifically for the goal of
understanding clinicians. The aim being to produce transparent and interpretable generative
models of their behaviour in order to later support their decision making and catch anomalous
actions. We derive a variational Bayesian approach to Direct Policy Learning in order to
appropriately handle uncertainty in decision making as well as introducing InterPoLe, and
algorithm for Interpretable Policy Learning that uses evolving soft decision trees to generate
personal and interpretable policies that can be easily inspected. We apply these methods to
understanding the diagnosis of Alzheimer’s disease, as well as treating cystic fibrosis patients
in order to better understand the decision making process of doctors, uncovering insights that
simply were not possible before.
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Chapter 1

Introduction

In the age of big data, settling on a decision can be an overwhelming task for humans;
paradoxically the more information made available to someone the more it can complicate
the process (Malhotra, 1982), through both being unable to deal with the all aspects of the
information as well as potentially nuisance variables masking the signal. In the medical setting
the rise of electronic health records has led to an unprecedented amount of data being made
available to clinicians. As a result, cases of information overload have been noted where
missteps have been taken or important factors overlooked (Singh et al., 2013). In a cruel twist
it is often the patients most in need that are disproportionately highly affected; patients with
chronic and severe diseases are the ones routinely tested and surveyed, producing vast quantities
of data that need to be considered.

Machine learning provides an excellent opportunity to alleviate this problem by embracing
the increase in data and leveraging the power of modern tools to improve patient outcomes.
In this thesis we are interested in how we can best assist medical professionals by providing
information and augmenting their decision making process in order to consistently arrive at
the correct diagnosis and treatment while overcoming the unique challenges of the healthcare
setting.

We believe there are two ways that systems can support medical policies and decisions. The
first fits more traditionally within the current machine learning literature and is focused on
the accurate prediction of patient risk given all the available information that a human might
not be able to appropriately handle. While there are a plethora of modern supervised learning
techniques that can be applied to do just that (Litjens et al., 2017), there can be issues applying
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out-of-the-box algorithms due to the peculiarities of medical data sets and privacy concerns.
Consider for example the concrete case of trying to predict the risk of death for a group of
patients suffering from prostate cancer in a country where we have no labelled data. This
might be due to tight privacy regulations on medical data for example, however we do have
access to labelled examples from a different country which we could instead use to train a
model. It is well known that modern machine learning methods struggle to generalise well
and the populations of each country may differ in their underlying distribution of features (a
common problem, known as covariate shift) so a model purely trained on the labelled data may
perform poorly on the unlabelled data both in terms of accuracy and uncertainty estimation.
Our first contribution in this thesis then deals directly with this problem, introducing a new
Bayesian neural network scheme that produces better calibrated uncertainty and predictions
over covariate shifted data. While originally considered for the aforementioned scenario we
note that it is more broadly appropriate for the policy learning setting, since it is also well known
that covariate shift arises significantly in behavioural cloning since a lack of state dynamics
awareness can cause an agent to drift away from previously seen states (Osa et al., 2018).

While these directly predictive models are undeniably useful for clinicians there can be signifi-
cant issues when it comes to implementing them in practice. This is down to the fact that we
simply must be able to explain decisions in order to ensure the safety of patients, and when
the stakes are so high there needs be a level of accountability. It is not clear how this really
works when it is an algorithm is making or informing the decisions, even a transparent and
interpretable one (De Laat, 2018). The second way then we believe machine learning can
be used effectively is as a supportive tool that aims to essentially de-bug a doctor’s decision
making process. This involves learning to understand the doctor, to be able to describe why
they made particular actions and inspect what appear to be their goals and motivations. This
requires a generative model of their behaviour but more importantly an interpretable one that
we can see how they consider the environment to be behaving and how that translates into
actions. Armed with that model we can work with clinicians, supporting their decisions by
learning appropriate practice and being able to alert them if it appears they are taking unusual
steps or might have overlooked something. With this in mind the remaining contributions of
this thesis involve two models for learning transparent representations of an agent’s decision
making process - one with a focus on uncertainty quantification through the use of approximate
inference and one with a focus on complete interpretablity by using decision tress as the basis
for all policies.
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1.1 Contributions

In the course of this work we make a number of contributions that we highlight now:

1. A review of existing methods for imitation learning, highlighting particularly where
they fall short when it comes to applications in the medical setting.

2. Proposing Transductive Dropout, a novel method for improving uncertainty calibra-
tion under covariate shift, aimed at producing better risk scores when applying models
to new domains and which is appropriate for many behavioural cloning tasks in order to
better handle generalisation to new areas of the state-space.

3. Deriving a new stochastic variational inference scheme for learning an approximate
posterior in direct policy learning. This allows for a decomposition in the uncertainty
surrounding an agents actions and lets us capture the natural variation in practice that
arises.

4. Proposing InterPoLe, an algorithm for interpretable policy learning that uses a novel
soft decision tree architecture to learn an inherently interpretable description of an
agent’s policy and decision dynamics.

5. A demonstration of the potential of all of the proposed methods using real examples
from medical data to understand decision making and improve patient outcomes.

1.2 Outline of the Thesis

Following this introduction, in chapter 2 we briefly cover the general field of sequential
decision making an imitation learning. While many of these methods will be inappropriate for
the medical setting and even more so for learning an interpretable representation of a policy it
is important to understand the background and setting of our work in the current literature.

We will then move swiftly into our contributions; in chapter 3 we introduce Transductive
Dropout, a development of Bayesian neural networks for better calibrated uncertainty under
covariate shift. We explain the current issues with approximate Bayesian inference for neural
network models and show that by appropriately designing a posterior regularisation scheme we
can obtain better uncertainty estimates in this setting.
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In chapter 4 we introduce Variational DIPOLE. First we explain the model of DIPOLE Huyuk
et al. (2020) and how it can be used to capture a transparent description of the decision making
process. Then we build upon the method by showing how we can use a variational Bayesian
Expectation Maximisation algorithm to learn a full approximate posterior over the model
parameters instead of just the maximum likelihood estimate.

Moving on in chapter 5 we introduce InterPoLe, an algorithm for learning a more explicitly
interpretable policy in the form of evolving decision trees. We cover the current decision tree
architectures before introducing our new gating function for soft trees that allows for a more
traditional interpretation of the partitions. We show how this policy over beliefs induces a
decision tree policy over observations that transforms at every time-step and how this can be
used within a system for supporting clinicians such that they make fewer mistakes.

Having introduced our methods, in chapter 6 we apply all of them to a variety of real medical
problems. We demonstrate Transductive Dropout’s abilities in accurately quantifying uncer-
tainty for predicting prostate cancer mortality across globally diverse populations. We apply
Variational DIPOLE to the task of understanding how clinicians diagnose Alzheimer’s disease
and finally we use InterPoLe to gain insight into the treatment of patients suffering from cystic
fibrosis.

We conclude in chapter 7 with some final thoughts and directions for future work.



Chapter 2

Learning to Make Decisions

In this chapter we review the key concepts and related work required to understand our later
contributions and place it within the current literature. We will briefly cover the general ideas of
sequential decision making, which is primarily concerned with a fully online setting, optimising
a given reward that is provided to the agent. Then we will move to the imitation learning setting
that we most concern ourselves with, where we assume no reward is given and instead learning
is motivated through demonstrations provided from some expert that we wish to match.

2.1 Sequential Decision Making

Elementary concepts and results in this section can be considered quoted from Sutton and
Barto (2018) unless otherwise stated.

While sequential decision making can really describe any scenario that involves repeatedly
having to make decisions, in machine learning it tends to be synonymous with reinforcement
learning (RL), the framework by which an agent learns to act optimally in an environment
purely through interaction and feedback in the form of some real valued reward. Formally
the environment is considered to be a Markov decision process (MDP), defined by the tuple
⟨S,A,T,R,γ⟩, where:

• S is the set of states;

• A is the set of actions;
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• T : S×A→ ∆(S) is the transition function, where T (s′|s,a) is the probability of transi-
tioning into state s′ after taking action a in state s;

• R : S→ R is the reward function, where R(s) is the reward for being in state s, and;

• γ ∈ [0,1] is the discount factor.

In this case an agent interacts with the environment by observing a state and taking an action
before subsequently receiving a reward and transitioning to a new state, repeating the process
while following some policy π : S→ ∆(A). The goal then is to find the optimal policy that will
maximise the expected discounted sum of future rewards:

π
∗ = argmax

π

{Eπ,T [
∞

∑
t=0

γ
tR(st)]} (2.1)

A full review of RL would be beyond the scope of (and largely irrelevant to) this thesis since the
vast majority of recent work has revolved around the online setting where agents are free to test
out policies by interacting in the environment as much as they wish. Recently though the offline
setting has received a lot more attention as interest has shifted towards implementing these
systems in high impact environments in the real world including healthcare. Often in these
places interaction with the environment is costly, or completely inappropriate for an untrained
agent (we can’t let an ε-greedy agent randomly see what happens if we give a patient a drug
that could be harmful)

It is useful to define some important auxiliary functions that will simplify the handling of
optimal policies. Let the value of state s when following some policy π be given by:

Vπ(s) = Eπ,T [
∞

∑
t=0

γ
tR(st)|s0 = s], (2.2)

the expected sum of total discounted rewards following policy π , assuming a start in s. Similarly
we can extend the value to include which action is taken to arrive at the Q-function given by:
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Qπ(s,a) = Eπ [
∞

∑
t=0

γ
tR(st)|s0 = s,a0 = a], (2.3)

which defines the expected sum of total discounted rewards following policy π , assuming a
start in s and taking action a. An important point on the Q-function is that according to the
Bellman Optimality Theorem π is an optimal policy if and only if for all s:

π(s) ∈ argmax
a∈A

Qπ(s,a). (2.4)

This makes sense - if there is another action for which the Q-function is higher it would
surely be better to select that action instead. It also means obtaining the true Q-function is
sufficient to solve a given MDP. This has led to a number of very popular off-policy algorithms,
including the original Q-Learning (Watkins and Dayan, 1992), that aim to simply learn the
Q-function from experience. Modern deep-RL is essentially built on the foundation of function
approximators for the Q-function (Mnih et al., 2013; Van Hasselt et al., 2015). These algorithms
use the recursive nature of the Bellman equations to minimise the temporal-difference error
between the Q-values predicted by their networks and the actual reward received at every time
step. While they have been shown to be extremely powerful at learning a successful policy
across a variety of domains they do still have their limitations. In particular they are known
to require a very large amount of experience and interaction with the environment in order to
reach human level performance - in the order of many years (Arulkumaran et al., 2017). The
question of online exploration is also still not well answered, in order to learn well the agent
needs to be able to experience every part of the state space but it needs to balance this with
taking actions it knows are reasonable and current schemes that will randomly take actions
contribute to the long training times especially in complicated environments. Importantly for
our work in healthcare as well there is the required notion of a reward given at each step. It
is very hard to craft meaningful and useful rewards based on the state of patients, which we
also would not know to be accurate, without resorting to very sparse and not too informative
rewards like a mortality indicator. As such “core” RL will not play a huge role in our work
although it is very relevant for grounding concepts and when it comes to the inverse question.
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2.2 Imitation Learning

In the imitation learning framework, unlike in RL, the learning signal does not come through
some reward received from the environment but rather from a collected dataset of expert
demonstrations that show what the “correct” way to do a task is. We maintain the assumption
though that correctness is based on the demonstrator acting according to the optimal policy π∗

in the environment and that having learnt from a demonstrator our goal will still be to maximise
expected reward at some test time.

2.2.1 Behavioural Cloning

In the simplest case of imitation learning we arrive at behavioural cloning (BC) (Bain and
Sammut, 1995). In this paradigm the environment is considered fully observed and an algorithm
is given a training data set comprising the states visited by an agent and their corresponding
actions. Based on this a purely discriminatory policy is learnt that regresses actions directly
on states, borrowing any appropriate model from the supervised learning literature. This has
its advantages and despite its simplicity has been shown to be quite effective in a number of
domains including flying drones (Giusti et al., 2015) and driving cars (Bojarski et al., 2016). The
primary reason for applying BC is that it requires no further interaction with the environment
before being immediately able to imitate the demonstrator.

The key issue with BC is that it lacks awareness of state dynamics - thus a greedy imitator
picking the most likely action every time can quite soon drift away from states that they have
seen in the logged data due to accumulating error. The further from previously seen states the
agent gets, the worse its performance will tend to be as well as modern supervised learning
methods often fail to generalise well outside of their training data (Ovadia et al., 2019).

Additionally in real-world problems it is often unreasonable to assume full observability and
Markovianity and so we may be concerned that we are not considering the full history up until
the current time step where an action is selected. This can be remedied slightly through the use
of recurrent models although this generally loses all pretence at interpretability, it is impractical
to gain insight from the latent states of an LSTM (Hochreiter and Schmidhuber, 1997).
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2.2.2 Inverse Reinforcement Learning

Introduced by Ng et al. (2000), inverse reinforcement learning (IRL) offers an alternative
approach for imitation learning. The principal concept is simple - given an MDP without the
reward function (MDP\R) but with some demonstration trajectories (D), determine the reward
R that the demonstrator appears to optimise. By itself this doesn’t elicit an imitator policy
although having obtained an estimated reward function this can be reached through running
any given (forward) RL algorithm (e.g. Q-learning).

While this approach appears a sensible way to understand the behaviour and motivations of a
demonstrator it is important to note that the IRL task is technically ill-posed. That is to say that
for any given MDP\R there will be an infinite number of reward functions for which D is an
optimal demonstration including in the simplest case a constant reward everywhere. Ng et al.
solves this heuristically by introducing the max-margin approach, aiming to learn a reward
function that gives high reward to the demonstrator while returning as low as possible reward
to all other policies. By assuming that the reward function is a linear combination of state
features: R = θ T f, they show that they’re searching for a parameter vector θ that induces a
policy that matches feature expectations (the expected amount of times a feature is seen should
be the same under the induced policy as in the demonstrations), requiring the use of an oracle
MDP solver.

Ziebart et al. (2008) build on this and introduce an alternative to the max-margin approach by
way of the maximum entropy principle which exponentially prefers rewards that grant higher
returns to expert trajectories than those that don’t. While the method for breaking ambiguities
is different, this retains the limitations of a linear reward and essentially the need for the
environment to be solvable in reasonable time.

Bayesian IRL

An altogether different approach through the use of Bayesian inference in order to reason about
the posterior distribution of the reward given some seen demonstrations. Having set a prior,
Ramachandran and Amir (2007) defines the likelihood of an action at a state as a Boltzmann
distribution given by an inverse temperature and the respective Q-values of each action. This
yields an intractable posterior distribution leading to a Markov chain Monte Carlo algorithm
using a random grid-walk to sample from the posterior. This maintains the use of a linear
reward and for each sample the likelihood needs to be calculated - meaning the MDP needs to
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be solved with the sampled reward in order to obtain the Q-values, rendering this impractical in
large environments.

While there have been several extensions that consider maximum a posteriori inference and
multiple reward functions (Choi and Kim, 2011b, 2012), the requirement to solve an inner loop
MDP significantly hinders a Bayesian approach to IRL. This is true even when the linearity of
reward is relaxed and Gaussian processes used for inference (Levine et al., 2011). Recently
Brown and Niekum (2019) has looked to solve this by introducing an alternative formulation
of the likelihood, one based on human recorded pairwise preferences over demonstrations that
significantly reduces the complexity of likelihood calculation but does necessitate that we have
these preferences available.

The Bayesian approach offers a principled way to deal with all possible reward functions and
also grants uncertainty information over agents preferences. That being said it can be hard to
produce meaningful insights from a nebulous reward even when uncertainty is attached. In
chapter 4 we show how a Bayesian approach to directly learning a behavioural policy allows
for much cleaner reasoning over uncertainty.

2.2.3 Adversarial Imitation Learning

While inferring a reward function is in of itself an important goal it has been noted that when
the goal is ultimately to obtain an imitator policy the IRL part can be done implicitly. This has
been popularised through the use of generative adversarial imitation learning (Ho and Ermon,
2016) which learns a policy through occupancy measure matching, and variants (Li et al., 2017)
have been shown to uncover some level of interpretability. Briefly the idea is to see the task
of imitation leaning as the composition RL ◦ IRL. They show that in the maximum-entropy
setting inferring some reward constrained by some regularising function Ω implicitly seeks
an optimal policy that minimises some divergence between the occupancy measures of the
induced policy and demonstrator policy. Where the divergence used depends on Ω and the
occupancy measure is given by:

ρπ(s,a) = π(a|s)
∞

∑
t=0

γ
tP(st = s|π), (2.5)
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and uniquely defines the policy. With an appropriate choice of Ω then they produce an objective
that minimises the Jensen-Shannon divergence (Gray, 2011) between occupancy measures, thus
minimising a true metric between the learnt and demonstrator policies allowing for potentially
exact policy matching that would not be possible under linear apprenticeship methods. In order
to solve this optimisation problem, Ho and Ermon draws a connection to generative adversarial
networks (GANs) (Goodfellow et al., 2014) by introducing a discriminator network whose job
is to distinguish trajectories generated between the policy network and the demonstrator based
on their state occupancy measures. The two networks can then be trained similarly to GANs to
find a saddle point of this mini-max objective.

While this can very effective, this family of algorithms require significant interaction with
the environment in order to calculate occupancy measures of the learnt policy, making them
unsuitable in the medical setting which is almost always offline. Additionally it inherits a lot
of the training instability of GANs and the assumption that the discriminator network reaches
optimality which is unlikely to be entirely true.

2.2.4 Direct Policy Learning

All the methods so far explicitly aim to produce a policy that excels at the given task at hand.
As such little attention has been paid to interpretable parameterisations, with most forms of π

being some form of neural network. This leads to very poor understanding of why the agent is
acting in the way they are. To address this issue Huyuk et al. (2020) introduce a method for
direct policy learning, that is one that learns a direct map from previous history into a predicted
action without relying on rewards as an intermediary. We distinguish this from BC in that there
is a relaxation of the Markovianity of the observations and an incorporation of a hidden latent
state to induce time dependency. It should be quickly noted that this has also been considered
in the area of robotic control where there have been a few model-based approaches in a fully
observable setting, with Ude et al. (2004) learning a kinematic model of the robot dynamics as
well as Van Den Berg et al. (2010) and Englert et al. (2013) learning autoregressive exogeneous
model, but that these are inappropriate for the healthcare setting given the setup.

The method of Huyuk et al. (which we shall expand on formally in chapter 4) involves specifi-
cally modelling the decision dynamics of the demonstrator. They assume that the demonstrator
thinks about the environment as an Input-Output Hidden Markov Model (IOHMM) (Bengio
and Frasconi, 1995) and that they accumulate all the information from the past history of
observations in a trajectory in the form of a belief distribution over the hidden states of the
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IOHMM. They then parameterise a policy from the belief directly into actions by way of
“mean-vectors” on the belief simplex that represent all the possible actions, the likelihood of
each being the relative distance from the belief at each time step.

This method has a number of key benefits that existing methods in imitation learning do not.
Firstly it operates in an entirely offline manor, secondly its parameterisation is interpretable,
and thirdly it copes with partially observed environments. Crucially this method, and the ones
introduced in chapters 4 and 5, specifically capture the cognitive dynamics of the decision
maker and not that of the environment. This is important for our objective to learn a descriptive
model of an agent’s observed behaviour, to understand how they are effectively behaving
under a certain (interpretable) parameterisation. This makes us not concerned with the true
environment (which will be too complicated for the decision maker themselves to comprehend).



Chapter 3

Transductive Dropout: Calibrating
Uncertainty under Covariate Shift

The content of this chapter has already been published at the International Conference on
Machine Learning 2020 in Chan et al. (2020). However, as all of the work was conducted
during the course of the MPhil and has not been submitted in any capacity for assessment as
part of this or any other degree it is appropriate for inclusion here.

In this chapter we offer a solution to the general problem of calibrating uncertainty under
covariate shift in a supervised setting through Bayesian neural networks (Neal, 2012) - a
highly significant problem in the medical setting. These models aim to solve the uncertainty
quantification problem by learning neural networks via Bayesian inference and encapsulate the
prediction uncertainty in the posterior predictive distribution, which is typically intractable and
has to be approximated (Blundell et al., 2015; Graves, 2011). While existing approximation
methods are able to produce reliable uncertainty estimates over in-distribution data, it has been
shown that they tend to be over-confident under covariate shift (Ovadia et al., 2019). Thus we
propose Transductive Dropout, a method leveraging information from the unlabelled target
data to find a better approximation to the posterior. We make the following observation: a
point being in the target data is an indication that the model should output higher uncertainty
because the target distribution is not well-represented by training data due to covariate shift.
Therefore, we use whether the data come from training or target set as a “pseudo-label” of
model confidence. This naturally leads to a posterior regularisation term which we incorporate
into the variational approximation objective.



3.1 Overview of Related Methods 14

As established in Chapter 2, simple behavioural cloning suffers significantly from this exact
issue, happening when the agent drifts away from the area of the state space seen from the
demonstrator. A particularly serious case occurs when this happens without anyone noticing
- if it is clear to everyone that this is new ground and we don’t know what is going on this is
useful information that can inform a decision. On the other hand if from the point of view
of the model everything looks fine and it confidently predicts an incorrect action this could
lead to a lot of unfortunate behaviour. Thus our method has great application to the policy
learning setting, as correctly calibrated uncertainty is crucial here in knowing when it will be
appropriate to trust the model predictions.

3.1 Overview of Related Methods

Utilising unlabelled data to improve uncertainty estimate under covariate shift is a previ-
ously less explored area in the literature. Here we highlight some of the key methods in the
surrounding fields to contextualise our work.

Bayesian Uncertainty Estimate for Neural Networks Bayesian methodology has been ap-
plied to quantify the predictive uncertainty of neural networks leading to a large family of
methods known as Bayesian Neural Networks (BNNs). A BNN learns a posterior distribu-
tion over parameters that encapsulates the model uncertainty. Due the complexity of deep
neural networks, the exact posterior is usually intractable. Hence, much of the research in
BNN literature is devoted to finding better approximate inference algorithms for the posterior.
Popular approximate Bayesian approaches include dropout-based variational inference (Gal
and Ghahramani, 2016; Kingma et al., 2015) and Stochastic Variational Bayesian Inference
(Blundell et al., 2015; Graves, 2011; Louizos and Welling, 2017). These methods are known to
achieve reliable uncertainty estimate in i.i.d scenario. However, recent research has cast doubt
about the validity of these uncertainty estimates under covariate shift (Ovadia et al., 2019).
Moreover, the above methods do not make use of any unlabelled data for training or inference.

Semi-Supervised Learning Semi-supervised learning (SSL) covers the broad field of learn-
ing from both labelled and unlabelled data (Zhu and Goldberg, 2009). It’s generally separated
into two with most of the work covering inductive SSL which aims to use the unlabelled data
to learn a general mapping from the features to the outcome. Many recent works encourage
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the model to generalise better by using a regularisation term computed on the unlabelled data
(Berthelot et al., 2019). This includes entropy minimisation which encourages the model to
produce confident predictions on unlabelled data (Grandvalet and Bengio, 2005; Jean et al.,
2018; Lee, 2013) and consistency regularisation which ensures the predictions for slightly
perturbed data stay similar (Sajjadi et al., 2016). The other split covers transductive SSL where
the aim is to make predictions over only the unlabelled points given with no need to generalise
further. As we will show later, the proposed Transductive Dropout fits more into this framework,
using the unlabelled data as a regulariser in order to induce a better variational approximation
to the intractable posterior distribution.

However, our work is significantly different from traditional SSL in several ways. First, we
note that most existing works in SSL focus entirely on using unlabelled data to improve
predictive performance (e.g. accuracy), but much less thoughts have been given to improving
the uncertainty estimate for those predictions, which is the focus of this paper. Furthermore, our
work explicitly addresses the issue of covariate shift between source and target data whereas
traditional SSL often assumes that they are i.i.d. In addition, most of the recent work in
SSL considers problems like image classification and natural language processing where the
methods can leverage the complicated dependencies in the features - we don’t consider this a
focus and develop a method that works appropriately for tabular data as well.

Unsupervised Domain Adaptation Unsupervised domain adaptation (UDA) is the task of
training models to achieve better performance on a target domain, with access to only unlabelled
data in the target domain and labelled data from a (different) source domain. (Kouw and Loog,
2019) contains a detailed review of popular UDA methods. As with SSL, existing works on
UDA centre around improving predictive performance rather than producing well-calibrated
uncertainty estimates. Our work contributes to the UDA literature by proposing a method to
improve the uncertainty estimates on the predictions made in the target domain.

Transfer Learning In the setting of transfer learning (Torrey and Shavlik, 2010) the task
does involve a change in distribution over features but typically also involves some amount
of labels on the target set (known as one-shot or few-shot learning). This has led to a lot of
work that uses the training set to learn a useful prior for a second model that can be trained on
the labelled data in the target set (Karbalayghareh et al., 2018; Raina et al., 2006). Given the
complete lack of labels in our target data set this is inapplicable for our problem.
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3.2 Notation and Problem Setup

Let x∈Rd be a d-dimensional feature vector, and y∈Y be the prediction target; where Y =R
for regression targets, and Y = {1, . . . ,K} for K-class classification targets. We are presented
with two sources of training data: a labelled data set DL, and an unlabelled data set DU . The
labelled data set comprises a collection of n feature-label pairs, i.e., DL = {(xi,yi)}n

i=1, whereas
the unlabelled set comprises a collection of m feature instances DU = {x j}m

j=1.

We assume that DL = {(xi,yi)}n
i=1 consists of i.i.d samples of features and labels drawn from

the distribution

(xi,yi)∼ p(x)× p(y|x), ∀i ∈ {1, . . . ,n},

where both p(x) and p(y|x) are unknown, and could only be accessed empirically through DL.
We will refer to p(x) as the feature distribution — feature instances in the unlabelled data set
are assumed to be drawn from a shifted feature distribution as follows:

x j ∼ p′(x), ∀ j ∈ {1, . . . ,m},

where p′(x) ̸= p(x), whereas the unobserved labels in the data set DU , i.e., the blue dots in
Figure 3.2 corresponding to {y j}m

j=1, are generated from the same conditional distribution y j ∼
p(y|x j). Note that even though the feature distributions p′(x) and p(x) differ, the conditional
p(y|x) is invariant across the two data sets. This situation is commonly known as covariate
shift (Shimodaira, 2000). We denote the entirety of observed data D = {DL∪DU}.

3.2.1 Learning from (and for) unlabelled data

Our key objective is to use the (source) labelled data set DL to train a model that would be
applied to the (target) unlabelled data set DU . However, since the feature distributions in DL and
DU mismatch, we cannot expect a model trained on DL to perfectly generalise to DU . Thus, we
aim at training the model to learn which prediction instances can be confidently transferred from
DL to DU , and which cannot be confidently generalised across the two distributions. To this
end, we train the model to score its uncertainty on predictions issued for all feature instances in
D = {DL∪DU}.
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Taking a Bayesian approach to uncertainty estimation, for a model with parameter θ and a test
point x∗ ∼ p′(x), the Bayesian posterior distribution over y∗ is

p(y∗|x∗,D)︸ ︷︷ ︸
Total uncertainty

=
∫

p(y∗|x∗,θ)︸ ︷︷ ︸
Data

uncertainty

p(θ |D)︸ ︷︷ ︸
Model

uncertainty

dθ . (3.1)

The posterior decomposition in (3.1) comprises two types of uncertainty (Malinin and Gales,
2018): data uncertainty, also referred to as aleatoric uncertainty, is the variance of the true
conditional distribution p(y|x), reflecting the inherent ambiguity or noise in the true labels y
(Gal et al., 2017). The second type of uncertainty, model uncertainty, pertains to the model’s
epistemic uncertainty created by the lack of training examples in the vicinity of the test feature
x∗. Since the conditional p(y|x) is invariant across the source and target distributions, it is the
model uncertainty that we focus on.

3.2.2 Standard approximate Bayesian falls short

A true Bayesian model (with appropriate priors) would completely capture model uncertainty
in DU by simply training the model on DL in a supervised fashion, while completely ignoring
the unlabelled data in DU (Sugiyama and Storkey, 2007). However, exact Bayesian inference
in neural networks is generally intractable (and computationally expensive), hence existing
practical solutions to Bayesian modelling rely on approximate inference schemes, for example
based on Monte Carlo dropout (MCDP) (Gal and Ghahramani, 2016).

While approximate inference via MCDP — with appropriate hyper-parameter tuning — pro-
vides reliable uncertainty estimates for in-distribution data (i.e., feature instances in DL), it has
been shown in Ovadia et al. (2019) that these methods lead to miscalibrated estimates of uncer-
tainty for out-of-distribution data. In the next Section, we develop an approximate Bayesian
scheme that makes use of the unlabelled data in DU to provide more accurate uncertainty
estimates on the predictions made for features instances drawn from the shifted distribution
p′(x).
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Fig. 3.1 High-level depiction of our approach. We first generate our augmented data set with
pseudo-labels before feeding forward to make predictions and then back-propagating both
errors through the network.

3.3 Transductive Regularisation

How can we use our knowledge of the unlabelled data in DU to improve the uncertainty
estimates on predictions made for the target distribution p′(x)? In this Section, we develop an
approximate Bayesian method tailored to this task. Here, we regard a neural network (NN) as a
distribution p(y|x,θ) that assigns a probability to each possible output y.

3.3.1 Variational inference with posterior regularisation

In a Bayesian framework, we specify a prior distribution p(θ) on the NN parameters, and
obtain the posterior p(θ |D) via Bayes rule. In practice, the posteriors p(θ |D) and p(y|x,D)

in (3.1) are both intractable. To address this issue, we use variational inference, whereby we
use a surrogate distribution qφ (θ) parameterised by φ to approximate p(θ |D). The parameter
φ is obtained by minimising the KL-divergence between p and q as follows (Graves, 2011):

φ
∗ = argmin

φ

KL
[
qφ (θ)||p(θ |D)

]
. (3.2)

In practice the KL divergence is not minimised directly, rather it is achieved my maximising
the Evidence Lower BOund (ELBO), which can be written as:

F (D ,φ) = Eqφ

[
log p(D |θ)

]
−KL

[
qφ (θ) || p(θ)

]
, (3.3)
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being seen as the balance of two terms. The objective being to maximise the log-likelihood
under the surrogate distribution (first term) while regularising the approximation to not be
too far from the prior (second term). Variational inference also leads to an approximate
posterior predictive distribution qφ (y|x,D), obtained by replacing p(θ |D) in (3.1) with its
variational counterpart qφ (θ). Note that the unlabelled data in DU is ancillary to the optimisation
problem in (3.2), since mere evidence maximisation would render p(θ |DL) as the only relevant
conditional for finding the variational parameter φ . Hence, the vanilla variational Bayes is
insufficient in our setup as it cannot capitalise on our knowledge of the unlabelled data in DU .

To incorporate the unlabelled data in DU into our inference machine, we resort to posterior
regularisation (Zhu et al., 2014). That is, instead of computing the variational posterior that
best matches the true posterior in KL distance, we add a regulariser Ω to the objective in (3.2),
i.e.,

φ
∗ = argmin

φ

KL
[

qφ (θ) || p(θ |D)
]
+Ω(qφ (θ |D)), (3.4)

in order to explicitly influence the learned variational posterior so that it produces the desired
uncertainty profiles, i.e., posterior variance, over the target feature distribution p′(x).

What do our sought-after uncertainty profiles look like? In order to design the regulariser
Ω, we first need to specify the influences it needs to exert on the learned variational posterior
qφ . Let E[q ] and V[q ] denote the mean and variance of a given distribution q, respectively.
A “good” variational posterior is one that matches the true posterior p(θ |D), and induces
the following uncertainty profile: for any pair of features x,x′ ∼ p′(x) drawn from the target
distribution, the variational posterior satisfies the following condition:

V[qφ (y|x,D) ]≥ V[qφ (y|x′,D) ]⇔ p(x′)≥ p(x). (3.5)

That is, the variance of the variational posterior, which quantifies the model’s uncertainty, should
be smaller for target test points that are close (in distribution) to the labelled data in DL, and vice
versa. The key idea behind our posterior regularisation approach is that the augmentation of
labelled and unlabelled data serve as “pseudo-labels” of model confidence — by regarding the
condition in (3.5) as an auxiliary classification task wherein qφ predicts whether a feature x is
drawn from the source or target distributions, we can “train” qφ to make this binary prediction
via its variance. Building on this insight, the rest of this Section builds a regulariser Ω that
enables qφ to discriminate source and target features.
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Fig. 3.2 Pictorial depiction of transductive dropout inference. (a) Here, we depict an
exemplary one-dimensional feature space, along with the corresponding variational posterior
qφ (y|x) and feature-dependent dropout rate p(x). Transductive dropout inference operates by
adapting the dropout rate so that it induces larger posterior variance for regions with dense
concentration of unlabelled data, but low density for labelled data (small p(x′) for some
x′ ∼ p′(x)). (b) This panel shows an exemplary realisation of labelled and unlabelled data
sets for the same example in panel (a). Red dots are fully observed, whereas for blue ones,
we only observe the locations but not the outputs on the y-axis. The typical behaviour of the
transductive dropout is to increase the dropout rates in regions where unlabelled data are denser
than labelled data, creating more variability in the Monte carlo samples of the network outputs.
Here, exemplary instances of test-time dropout applied to the network architecture for different
values of the feature x are depicted.

3.3.2 Posterior regularisation via transductive dropout

As discussed above, we seek a variational posterior that best fits the labelled data in DL, and
discriminates source and target data. Before proceeding, we first define an augmented data set
D̃ = {(xk,yk,zk)}n+m

k=1 , where

(xk,yk,zk) =

(xk,yk,0), ∀ (xk,yk) ∈DL,

(xk−n+1,∗,1), ∀ xk−n+1 ∈DU ,

where ∗ corresponds to a missing value for the label y. In addition, we define the monotonic
function g : R+→ [0,1] as a map from positive real values to the unit interval. Given the varia-
tional distribution qφ , our prediction of whether the feature x comes from the source or target
distributions is

ẑφ (x) ≜ g
(
V[qφ (y|x,D) ]

)
, (3.6)
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which follows directly from the condition in (3.5). Given (3.6), we define the regulariser Ω in
(3.4) as the cross-entropy loss between predicted and true auxiliary variables, ẑ and z, i.e.,

Ω(qφ (θ |D̃)) =
n

∑
k=1

log
(
1− ẑφ (xk)

)
+

n+m

∑
k=n+1

log
(
ẑφ (xk)

)
. (3.7)

Thus, our variational posterior is obtained by plugging the regulariser Ω(qφ (θ |D̃)) in (3.4)
and solving for φ , with the optional inclusion of a hyperparamter λ to control the level of
regularisation. The exact choice of g can as well be controlled although from our experiments
it made little difference, and we settled on g(x) = 1− 1

1+x . We note that this regularisation
scheme addresses the issue of over-confident predictions on the target set without taking the
naive approach of just increasing the variance everywhere — it is balanced by the location of
the source data set that will lower the variance in our appropriately confident locations. Since
the regulariser above solves the transductive learning problem of classifying source and target
data in a way that resembles semi-supervised learning (Rohrbach et al., 2013), we call Ω a
transductive regulariser. In what follows, we propose a practical way to implement transductive
regularisation within the MCDP approximate inference framework.

Transductive Dropout. We extend the MCDP approximate inference scheme in Gal and
Ghahramani (2016) by applying our posterior regularisation penalty, and allowing the dropout
rates to vary per data point, dependent on the feature values. By enabling the dropout
rates to be a function of x, we provide more degrees-of-freedom to flexibly craft the pos-
terior variance V[qφ ] so that it accurately discriminates source and target data points.

Let p be the dropout rate of the underlying NN model. We parameterise p to be dependent on
the feature value x as follows. Let vβ (.) be a neural network with a sigmoid output layer and
parameters β , i.e., vβ : Rd→ [0,1] maps feature values to dropout rates so that p = vβ (x). This
equates approximately to a surrogate distribution over the weights:

qφ (w) =
N

∏
i=1

(1− vβ (x))
wi
mi vβ (x)

mi−wi
mi (3.8)

for wi ∈ {mi,0}, 0 otherwise, where w = {wi}i is the set of weights for the NN modelling the
conditional distribution qφ (y|x,D). Bear in mind this is not exactly the case but is reflective
of the approximation and we use a concrete relaxation of the Bernoulli distribution to allow
for the reparameterisation trick to get derivatives as detailed in Gal et al. (2017). This leaves
an optimisation objective (of the form in (3.4)) over the variational parameters φ = {β ,m}.
Using the equivalence between KL minimisation and squared loss minimisation under dropout
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regularisation, we can write the objective function in (3.4) as

R(φ) = ∑
xi∈DL

∥E[qφ (yi |xi)]∥2
2 +Ω(qφ (θ |D̃)), (3.9)

with the possibility of adding an ℓ2 regulariser ∥φ∥2
2 as well. As we can see, this objective

incorporates both labelled and unlabelled data: the data set DL contributes to the first term,
which is concerned with fitting the observed labels drawn from the source distribution, whereas
the second term, which depends on the entire augmented data set D̃ , makes sure that the induced
variational posterior is aware of the mismatch between source and target feature distributions.
We can see that this scheme, as depicted in figure 3.1, acts in a similar way to (3.3), primarily
optimising the likelihood of the data under the approximation while constrained by a requlariser
on the form of the distribution, only now the regulariser induces more specific behaviour and
makes use of DU .

The regulariser in (3.9) can be computed in backpropagation using sample estimates of the
posterior variance as follows. Let φ̃ be the current estimate of the variational parameters at a
given iteration of the gradient descent procedure. To evaluate the model loss and gradients, we
use the MCDP forward pass to sample M outputs {ŷ1

k , . . . , ŷ
M
k } for every xk in D̃ , and compute

a Monte Carlo sample estimate of the transductive regularisation term as follows:

Ω̂(q
φ̃
(θ |D̃)) = g

(
1
M

M

∑
m=1

(ŷm
k − ȳk)

2

)
. (3.10)

Computations of the estimator in (3.10) only involve the forward pass, and evaluating its
gradients is straightforward.

Key insights Figure 3.2 provides a pictorial depiction of our transductive dropout inference
procedure applied to an exemplary, one-dimensional feature space. A key insight is that
transductive dropout inference learns to adapt the dropout rate so that it induces larger posterior
uncertainty for regions with dense concentration of unlabelled data, but low density for labelled
data.



Chapter 4

An Approximate Bayesian Approach to
Direct Policy Learning

In chapter 2 we discuss that Huyuk et al. (2020) introduce their algorithm DIPOLE for direct
policy learning by modelling the agent’s decision dynamics as an IOHMM and their policy
in terms of distances to “mean-vectors” on the belief simplex. This produces a transparent
representation of how the agent arrives at their actions and allows us to inspect important
aspects that we simply could not using for example deep behavioural cloning methods. What
is conspicuously absent however is a handling of the associated uncertainty in the decision
dynamics as only the maximum likelihood estimator of the model parameters is learnt. For the
purpose of understanding the agent it is important for us to be able to capture when we are
unsure about their actions due to both not seeing enough example data but also when there is
natural variation in how they act.

To that end we now derive and establish a stochastic variational inference scheme for learning
the posterior distribution over both the model parameters and latent hidden states.

4.1 Preliminaries

Let us first formally introduce the decision dynamics model that we will use to represent how the
agent both interacts with, and understands, the environment, which was established in Huyuk
et al. (2020). We consider such a decision-making environment with partial observability, where
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decisions are made over discrete time steps. At each time step t ∈ N+, the decision-maker
takes an action at chosen from the finite action space A and observes an outcome zt from the
finite observation space Z. We are interested in inferring the policy πb of the decision-maker
(i.e. the behaviour policy) given an observational data set D = {(a(i)1 ,z(i)1 , . . . ,a(i)

τ(i)
,z(i)

τ(i)
)}n

i=1 of

n-many demonstrations from the decision-maker, where a(i)t is the action taken, and z(i)t is the
observation made, at step t during the ith demonstration, with τ(i) the (max) time horizon of
the given demonstration.1

Denote by ht = (a1,z1, . . . ,at−1,zt−1) the observed history at the beginning of time step t, with
h1 = /0. Let Ht = (A×Z)t−1 indicate the set of all possible histories at the beginning of time
step t, with H1 = { /0}. Finally, let H = ∪∞

t=1Ht denote the set of all possible histories. Then, a
proper policy acting in the decision-making environment that is described would be a mapping
π : H→ ∆(A) from observed histories to action distributions, where π(a|h) is the probability
of taking action a having observed history h.

The space of H becomes exponentially complicated over time and so we require some method
to simplify a handling of all past possible histories. To do so we assume that the decision-maker
acts with respect to their belief over some underlying (unobserved) state of the environment
and that crucially they aggregate all available information into this belief. This gives rise to an
Input-Output Hidden Markov Model (IOHMM) (Bengio and Frasconi, 1995) over the belief
dynamics of the decision-maker.

Formally, an IOHMM is identified by the tuple (S,A,Z,b1,T,O), where:

• S is the finite set of (unobservable) states;

• A is the previously defined set of actions;

• Z is the previously defined set of observations;

• b1 ∈ ∆(S) is the initial state distribution, where b1(s) denotes the probability of state s
being the initial state;

• T : S×A→ ∆(S) is the transition function, where T (s′|s,a) is the probability of transi-
tioning into state s′ after taking action a in state s; and

• O : A× S→ ∆(Z) is the observation function, where O(z|a,s′) is the probability of
observing z after taking action a and transitioning into state s.

1For brevity, we will omit indices (i) unless explicitly required.
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Among the elements of this tuple, the spaces S, A, and Z are known, while the parameters
b1, T , and O are unknown. The belief bt ∈ ∆(S) at the beginning of each time step t can be
defined such that bt(s) = P(st = s|ht) is the probability of state s being the current state given
the observed history ht so far. Note that the initial state distribution b1 also doubles as the initial
belief for each trajectory/demonstration. Given action at and observation zt , the subsequent
belief bt+1 can easily be expressed in terms of the current belief bt :

bt+1(s′) ∝ ∑
s∈S

bt(s)T (s′|s,at)O(zt |at ,s′) . (4.1)

4.1.1 Parameterising Policies

Having introduced beliefs, as well as a map from histories into beliefs, policies can now be
reasonably defined as mappings π : ∆(S)→ ∆(A) from beliefs to action distributions, where
π(a|b) is the probability of taking action a when the current belief is b. We parameterise
policies in terms of |A|-many “mean” vectors, each corresponding to an action in A, and living
(like the belief b) on the |S|-dimensional simplex. Which action is taken then is defined by the
belief’s relative distances from the actions’ mean vectors, formalised through the radial basis
function kernel (Park and Sandberg, 1991) such that:

π(a|b) = e−η∥b−µa∥2

∑a′∈A e−η∥b−µa′∥2 , (4.2)

where η ≥ 0 is the inverse temperature, ∥ · ∥ the ℓ2-norm, and µa ∈ R|S| the mean vector
corresponding to a ∈ A.

Intuitively, these mean vectors are interpreted in terms of the decision boundaries (and decision
regions) that they induce over the belief space ∆(S). Given a belief, the action whose corre-
sponding mean is the closest one to that belief is more likely to be taken than any other action.
Hence, the beliefs that are closest to the mean of a particular action form a decision region
where that action is the most likely one to be taken, and similarly the lines that are equidistant
to the means of two actions form the decision boundary between those two actions.

The inverse temperature η controls how “smooth” the decision boundaries between the regions
are (i.e. how smooth the transitions are between regions). Larger ηs induce more deterministic
policies (where behavior changes more abruptly between decision boundaries), whereas smaller
ηs induce more stochastic policies. In the extremes, η = 0 describes the case where actions
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are taken uniformly at random regardless of the given belief, and η = ∞ recovers the case of
actions being taken deterministically per decision regions.

4.2 Learning the Approximate Posterior

With the model defined, we come to our contribution, where our aim is now to reason about the
unknown quantities given our observational dataset. Specifically, in order to coherently deal
with uncertainty appropriately we would like to uncover the posterior distribution of the model
parameters, as well as the belief over the underlying states denoted by s, given our data. The
task is then summarised as:

Given : D ,S,A,Z

Determine : p(b1,T,O,η ,{µa}a∈A,s|D) .

For simplicity we shall denote the collection of all the unknown parameters by θ = (b1,T,O,η ,

{µa}a∈A). Given the complication of the model a simple application of Bayes rule yields a
completely intractable posterior and so we shall have to resort to variational inference methods
for learning a principled approximation to the distribution.

Central to Bayesian learning is the quantity log p(D), the log marginal evidence of the observed
data, which in our model is similarly intractable to evaluate. However by introducing an
auxiliary distribution over θ and s,q(θ ,s) we can lower bound it using Jensen’s inequality:

log p(D) = log
∫ ∫

p(D ,θ ,s)dθds (4.3)

= log
∫ ∫

q(θ ,s)
p(D ,θ ,s)

q(θ ,s)
dθds (4.4)

≥
∫ ∫

q(θ ,s) log
p(D ,θ ,s)

q(θ ,s)
dθds. (4.5)

We assume a factorisation q(θ ,s) = q(θ)q(s), leading to:
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log p(D)≥
∫ ∫

q(θ)q(s) log
p(D ,s|θ)p(θ)

q(θ)q(s)
dθds (4.6)

=
∫ ∫

q(θ)q(s)
[

log
p(θ)
q(θ)

+ log
p(D ,s|θ)

q(s)

]
dθds (4.7)

=
∫ ∫

q(θ)q(s)
[

log
p(θ)
q(θ)

]
dθds+

∫ ∫
q(θ)q(s)

[
log

p(D ,s|θ)
q(s)

]
dθds (4.8)

=
∫

q(θ)
[

log
p(θ)
q(θ)

+
∫

q(s) log
p(D ,s|θ)

q(s)
ds
]
dθ (4.9)

= F (q(θ),q(s)) (4.10)

where F (q(θ),q(s)) is the ELBO (as similarly defined in the Chapter 3). It can be seen that
maximising with respect to q(θ) and q(s) results in minimising the KL divergence between the
surrogate distributions and the true posterior, KL

[
q(θ ,s)||p(θ ,s|D)

]
.

Now the question becomes what would be an appropriate form for q(s,θ) to take? For q(s) it is
simple to use a categorical distribution over the possible states, while in order to approximate
the posterior distribution, whose components have restricted domains we employ a mean-field
factorisation given by:

b1(·)∼ Dirichlet({αb1
s }s∈S),

T (·|s,a)∼ Dirichlet({αT
s,a,s′}s′∈S),

O(·|s,a)∼ Dirichlet({αO
s,a,z}z∈Z),

η ∼ Gamma(αη ,β η),

µa ∼N (µ̄a,σa).

We denote this joint distribution qφ (θ), taking φ to be the collection of all the given parameters.

Given the factorisation between latent variables s and model parameters θ we can make use
of a variational Bayesian expectation maximisation algorithm for iteratively updating each of
the distributions separately. Variational Bayesian methods have previously been applied to
HMM inference (effectively learning b1, T , and O) in Beal (2003). We extend those methods to
direct policy learning (by jointly learning η and µas as well). While the E-step remains broadly
similar, for a joint solution we have to depart significantly from those methods in the M-step as
the policy breaks the conjugate-exponential properties of traditional HMMs.
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4.2.1 The Variational Bayesian E-Step

This is the more familiar of the two steps, where we hold qφ (θ) constant and update q(s) in
order to increase the ELBO. Taking the variational derivative of F (q(θ),q(s)) with respect to
q(s)) and setting to zero we have that:

logq(s) = Eq(θ)[log p(D ,s|θ)]−C (4.11)

= Eq(θ)

[ n

∑
i=1

(
logb1(s1)+

τ

∑
t=1

logπγ(at |bt)+
τ

∑
t=1

logO(zt |st ,at)+

τ−1

∑
t=1

logT (st+1|st ,at)
)]
−C

(4.12)

=
n

∑
i=1

(
Eq(b1)

[
logb1(s1)

]
+

τ

∑
t=1

Eq(O)

[
logO(zt |st ,at)

]
+

τ−1

∑
t=1

Eq(T )
[

logT (st+1|st ,at)
])
−C

(4.13)

which should look familiar in that it is the same objective that is solved by the traditional
forward-backward algorithm for Hidden Markov Models (Rabiner and Juang, 1986). There is a
small difference though in that the parameters are now taken to be the expected value of the log
of the parameters, which is now what we need to work with. They can be calculated as:

b̂1(s) = exp
[
ψ(αb1

s )−ψ

( |S|
∑
i=1

α
b1
si

)]
, (4.14)

T̂ (s′|s,a) = exp
[
ψ(αT

s,a,s′)−ψ

( |S|
∑
i=1

α
T
s,a,si

)]
, (4.15)

Ô(z|s,a) = exp
[
ψ(αO

s,a,z)−ψ

( |Z|
∑
i=1

α
Z
s,a,zi

)]
, (4.16)

where ψ is the digamma function (Beal, 2003). These result in sub-normalised probabilities
that will change the normalisation constant in the forward messages but otherwise will not
have an effect on the posterior . Thus the E-step consists simply of evaluating the expected
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value of the log of the belief dynamics parameters before running the usual forward-backward
algorithm to get state marginals.

4.2.2 The Variational Bayesian M-Step

Handling the maximisation step is slightly more complicated, in that there is no closed-form
solution to be applied. Beal (2003) leveraged the conjugate-exponential properties of the
Dirichlet distribution and likelihood to derive simple update rules for the variational parameters.
In our model, the introduction of the policy completely breaks this conjugacy and renders
such a solution impossible. Thus we will have to resort to a stochastic variational inference
optimisation procedure based on a Monte Carlo approximation of the ELBO. We can re-write
the ELBO as:

F (q(θ),q(s)) = Eq(θ)

[
Eq(s)

[
p(D |s,θ)

]]
−KL(q(θ)||p(θ))−KL(q(s)||p(s)). (4.17)

Holding q(s) constant in the M-step we’re interested in optimising:

F (q(θ)) = Eq(θ)

[
∑
s

p(D |s,θ)q(s)
]

︸ ︷︷ ︸
Monte Carlo estimate

−KL(q(θ)||p(θ))︸ ︷︷ ︸
Analytically tractable

. (4.18)

Instead of the traditional route of fully optimising this quantity at every step and saturating the
bound, we will satisfy ourselves with simply taking a single gradient step in the right direction
and wait for convergence. This requires gradients of (4.18) with respect to φ - fortunately given
our choice of qφ (θ), the second (KL) term is analytically tractable. The first (expected log
likelihood) term is not however, but can be easily approximated through Monte Carlo sampling.
This, alongside the reparameterisation trick for pathwise gradients (Kingma and Welling, 2013),
allows us to get low-variance estimators for the gradient of the ELBO with respect to φ . We
should note that the standard reparameterisation trick applies to neither Dirichlet nor Gamma
distributions, although more recent work on implicit pathwise gradient estimators (Figurnov
et al., 2018) has now made them possible.
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4.3 Disentangling Uncertainty in Actions

The combination of a parameterised policy that is inherently stochastic alongside a probabilistic
treatment of the model parameters allows for a useful factorisation of the uncertainty over the
predictive distribution that was not previously possible, which we obtain by integrating out the
parameters:

π(a|b)︸ ︷︷ ︸
Total

=
∫

π(a|b,µ,η)︸ ︷︷ ︸
Data

q(µ,η)︸ ︷︷ ︸
Policy

q(b|T,O,b1)q(T,O,b1)︸ ︷︷ ︸
Dynamics

dθ , (4.19)

where q(b|T,O,b1) is the predictive distribution over the belief given the past history of the
trajectory and the dynamics (note as a repeated application of equation 4.1 it is a deterministic
map to a distribution over states given the dynamics parameters). The data uncertainty reveals
where there is intrinsic uncertainty and variation in practice in the observed data, while the
policy and dynamics uncertainty tell us where we may have uncertainty in the decision-makers
belief system due to a lack of information. This second type of uncertainty is equally important,
both to drive potential future data acquisition but also to point out if natural inequalities in both
actions and transitions do arise in the data.

4.4 On the Implementation

The training procedure is then summarised in algorithm 1. The only real potential difficulties
arise in the evaluation of the gradient, because of the belief system the dynamics have a
compounding effect as you progress through a trajectory. This means we have to differentiate
through all the beliefs leading to computational complexity that scales at O(τ2). Fortunately
though this can be handled simply by modern automatic differentiation packages, which in
many cases also automatically reparamteterise samples to allow for easy gradients of φ .
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Result: Parameters φ of variational distribution
Input: D ,S,A,Z ;
Initialise φ ;
Set learning rate λ ;
while not converged do

Calculate expected values of θ̂ ;
Forward-backward algorithm for q(s) ; ▷ VBE-step
Sample θ ;
Evaluate ∇φF (q(θ));
φ ← φ +λ∇φF (q(θ)) ; ▷ VBM-step

end
Return: φ

Algorithm 1: Variational DIPOLE



Chapter 5

InterPoLe: Soft Decision Trees for
Building Interpretable Policies

Having examined how we can appropriately handle uncertainty in policy learning, we now turn
to the question of how we can produce policies that are the most interpretable and useful to
the medical community, remembering our aim is to understand the general decision making
process of the doctors. Certainly neural networks are a hard sell and in Variational DIPOLE
policies are still defined in terms of slightly abstract “distances” in the belief space.

With this in mind we propose InterPoLe, an algorithm for interpretable policy learning where
given the actions and observations of an agent we learn an interpretable representation of their
empirical decision making process. Specifically we use a novel soft decision tree architecture
to parameterise their policy from an internal representation (or belief ) into actions in a com-
prehensible, hierarchical structure of simple binary questions. These internal decision maker
dynamics model a policy from beliefs into actions - modelling how confidence in the underlying
state of the environment translates into behaviour. This makes intuitive sense, a doctor does not
treat a patient exactly because their temperature is high, rather having seen their temperature is
high they are confident the patient is ill and so they then treat them. However it is important
to also consider how this translates into reacting to observations and we show that using the
learnt dynamics we can at every time step induce a new decision tree over observations. We
see this as a system to help and augment the decision making process of clinicians as it is
important to feedback information to doctors about what it is they look like they’re doing - this
is summarised in figure 5.1.



33

Table 5.1 Summary of the key features of related work.

Work Dynamics Observability Direct Black-box

Choi and Kim (2011b) Known Fully No No
Ramachandran and Amir (2007) Known Fully No No

Ziebart et al. (2008) Known Fully No No
Choi and Kim (2011a) Known Partially No No

Makino and Takeuchi (2012) Unknown Partially No No
Ho and Ermon (2016) Online Partially Yes Yes

Li et al. (2017) Online Partially Yes Yes
Englert et al. (2013) Unknown Fully Yes No

Ude et al. (2004) Unknown Fully Yes No
Van Den Berg et al. (2010) Unknown Fully Yes No

(Ours) Unknown Partially Yes No

Why are decision trees better? In the medical community, guidelines are almost exclusively
given in the form of decision trees (Chou et al., 2007; Qaseem et al., 2012), as clinicians agree
they are the best way to simply break down steps and guidance in order to limit confusion.
Interestingly though while they are set on expert advice, they are often left vague such that there
is room for individual medical professionals to use their own judgement, leading to substantial
variability in clinical practice (O’Sullivan et al., 2018). An additional use for our method, other
than attempting to understand the decision making process of individual doctors, would allow
for quantifying exactly how they appear to implement these guidelines. This information could
be used when reviewing and updating advice, particularly in seeing how closely it appears they
are being followed.

Being in the medical setting, we are reminded that this places several key restrictions on the
types of methods that are applicable: (1) It must be offline, there is no capacity to allow an agent
(especially an untrained one) to interact with the environment and real patients in order to collect
data; (2) It must work in a partially-observable environment, as clearly we are nowhere close
to a full understanding of this setting and many aspects of patients true health are unavailable
most of the time; and (3) it must directly parameterise an interpretable policy, we require
that humans can follow and understand the policy, being able to explain the actions in order to
compare with their own decision making process. Table 5.1 then summarises the position of our
algorithm within the current literature (and methods mentioned in chapted 2) with respect to
these desiderata. We note that we are the first to directly work in a model-free/offline, partially
observed setting with a focus on interpretability.
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Fig. 5.1 Our method in practice. Using only action/observation pair trajectories we learn the
transition (T ) and observation (O) functions of the IOHMM belief model as well as a decision
tree policy (πb) from the state space (S) to the action space (A). Once learnt, these dynamics
induce a new decision tree policy (πZ) from the observation space (Z), that adaptively changes
over the course of each trajectory. It is then important to share with the original agent how we
believe they are acting so they can properly align their intentions and actions as well as catch
potential oversights.

5.1 Belief-policy learning directly

We adopt the decision dynamics model of chapter 4, that is to say we still assume that the
agent considers an IOHMM model of the environment. However we will no longer assume
the same parameterisation of the policy π , instead we model the policy of the agent to be a
soft decision tree πγ : ∆(S) 7→ ∆(A); we will leave the exact details of the architecture for later,
for the moment it is sufficient to assume πγ is a function that takes in a belief over states and
outputs a probability distribution over actions while being differentiable w.r.t. its parameters γ .
Given this parameterisation of the decision dynamics we now discuss how they can be jointly
optimised, unlike in chapter 4 we don’t seek a posterior distribution over the parameters, simply
their maximum likelihood estimate. The task amounts to learning b1,T,O, and γ once we are
given D ,S,A, and Z. We can do this by making use of a standard (non variational Bayesian)
EM algorithm.

Notationally, let θ = (b1,T,O,γ) be the collection of all objects we would like to estimate, we
need to also consider the set of true but unobserved state trajectories, s, such that we can define
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the complete likelihood of parameters θ given both D and s, given by1:

logL(θ ;D ,s) = logP(D ,s|θ)

=
n

∑
i=1

[
logb1(s1)+

τ

∑
t=1

logπγ(at |bt)+
τ

∑
t=1

logO(zt |st ,at)+
τ−1

∑
t=1

logT (st+1|st ,at)
]
. (5.1)

Without access to s this is of course impossible to evaluate or optimise and so we introduce an
auxiliary objective, given an estimate of the parameters θ̂ ′ we define the expected log-likelihood
as:

Q(θ , θ̂ ′) = Es|D ,θ̂ ′ logL(θ ;D ,s) (5.2)

= ∑
s

logL(θ ;D ,s)P(s|D , θ̂ ′). (5.3)

The optimisation procedure is summarised in algorithm 2 and proceeds as follows: first given a
set of parameters we calculate and fix the posterior distributions over states, P(s|D , θ̂ ′), using
the forward-backward algorithm; second, given this posterior, we calculate the gradient of
the expected log-likelihood ∇θ Q(θ , θ̂ ′) and find a new value of θ such that it increases, for
example by taking a single step of gradient ascent. The calculation of the gradient is easily
handled by automatic differentiation packages, as beliefs are calculated successively in a feed
forward manner they can be back-propagated through.

Result: Maximum likelihood estimator for θ

Input: D ,S,A,Z ;
Initialise θ̂ ;
Set learning rate λ ;
while not converged do

Calculate P(s|D , θ̂); ▷ E-step
Evaluate ∇θ Q(θ , θ̂);
θ̂ ← θ̂ +λ∇θ Q(θ , θ̂) ; ▷ M-step

end
Return: θ̂

Algorithm 2: InterPoLe

1Again we drop the trajectory index i for brevity unless explicitely required
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5.2 Soft Decision Trees for Unstructured Data

We now discuss the decision tree architecture that we shall use in the algorithm. Decision trees
are unparalleled in the machine learning landscape for their interpretability and clarity in how
predictions are made, their hierarchical structure of simple binary questions makes it easy to
follow the decision making process. By comparison, neural networks and kernel methods rely
on complex abstractions that while achieving state-of-the-art performance are difficult, if not
impossible, to comprehend. Unfortunately, classical decision trees are fundamentally discrete
objects, they are traversed deterministically until you arrive at a leaf node that returns a single
class, making them incompatible with gradient based optimisation methods.

In general a decision tree is a hierarchical tree structure comprising of individual nodes. For
some input, x ∈ Rd , each non-leaf node n will apply some decision rule, or gating function,
gn(x) that determines which path out of its children to return (Loh, 2011). Most of the more
recent work revolves around how we can design an interesting gating function, which is the
area our architecture focuses on also.

In most classical and typical hard decision trees, gn(x) inspects a single feature of x to divide the
space. Extending to more than one feature, multivariate linear trees take a linear combination of
features to discriminate (John, 1996), and can be simply extended to non-linear combinations
as well (Guo and Gelfand, 1992). In soft decision trees gn(x) becomes probabilistic. Beginning
with the hierarchical mixture of experts, (Jordan and Jacobs, 1994) introduce using generalised
linear models as the gating function that outputs a probability for weighting the nodes children.
Most commonly, logistic regression is used, where gn(x) outputs a linear combination of the
features passed through a sigmoid function. This idea is extended in (Irsoy et al., 2012) where
they use that gating function but also learn where it is appropriate to split nodes and grow the
tree. Most recently they have been used as well to build on a neural network model but learn an
interpretable representation (Frosst and Hinton, 2017). Our model differs from previous work
significantly in the parameterisation of gn(x).

Formally let πγ : Rd 7→ ∆({1, . . . ,k}) be a soft decision tree of depth L and parameters γ ,
comprising of layers l = {1, . . . ,L} each containing 2l−1 nodes. Let ni, j denote the jth node
of the ith layer, as well as nl

i, j and nr
i, j denote the node’s left and right children respectively

should they exist. Each non-leaf node is connected to two children in the subsequent layer
which have them as a unique parent. A forward pass through a node consists of calculating a
split probability p = gn(x) ∈ [0,1] and returning a weighted sum of the values returned by their
children, thus a forward pass of the tree starts at the root node and returns a weighted sum of
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the leaf node values which we consider a categorical distribution parameterised by a vector
of length k passed through a softmax function. Ultimately then the predictive distribution of
the tree can be decomposed into a mixture of categoricals where the mixing proportions are
calculated based on the input. In this work we introduce a new parameterisation of the split
probability, given by:

gn(x) =
d

∏
i

1
1+ exp(−αi(xi−ηi))

, (5.4)

where for each dimension of the input, i∈ {1, . . . ,d} there is an associated real valued steepness
parameter αi and location parameter ηi. We can understand the relationship between this
architecture and a classical decision tree by observing that at each node every dimension of the
input is passed through a soft step function, the location of which is set by the η parameter,
while the steepness and direction is set by α , then taking the product at the end acts as a soft
AND gate (all dimensions must be close to one for p to be also). Crucially, this allows us to
recover the rules of classical decision trees as the α parameters goes to ±∞, and further means
a trained soft tree can be hardened, approximated well by an equivalent classical decision tree
(replace with a hard step function with the location given by η and the direction given by the
sign of α).

5.3 Evolving Policies in the Observation Space

While a description of an agent’s policy in terms of beliefs is useful for understanding why an
agent makes its decisions, the nature of the hidden states produces an abstraction such that it is
non-obvious how interaction with the environment affects the decision making process. Thus
we note that the learnt dynamics induce at every time point a possible different policy over
observations. This can be seen considering that beliefs are continually updated at each time
step given by:

bt+1(s′) ∝ ∑
s∈S

bt(s)T (s′|s,at)O(zt |s,at), (5.5)

which given the learnt values of T and O defines a function f : Z×∆(S)×A 7→ ∆(S) which
takes in an observation as well as a belief state and action taken and returns the new belief state.
We denote it as f (z;bt ,at) which allows us to define the generalised inverse f−1(bt+1;bt ,at) =

{z : f (z;bt ,at) = bt+1}. Intuitively this inverse function answers the question as to if an agent is
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Fig. 5.2 Example trajectory. An example trajectory from the cystic fibrosis data we introduce
later. Starting in the beginning, initial observations suggest a severe case and treatment is given
over a few time steps, then the observations improve and the belief moves towards the mild
state where treatment is not deemed necessary. Note that each time step is a result of a unique
history and induces a different observation decision tree every time.

in a state and takes an action, what observation from the environment would cause its belief to
update in a specific way. We can then define the observation policy at some belief and previous
action as: πZ;bt ,at (zt) = πγ( f (zt ;bt ,at)).

While every type of policy over the belief space induces some observation policy, passing f
and f−1 through the policy can be tricky. The decision tree structure allows us to handle this
easily as the policy can be broken down into successive simple rules. We will assume to be
dealing with a hardened tree since inverting a probabilistic traversal of the tree adds practical
though not theoretic complication. Given the decision tree structure of the policy over beliefs,
an equivalent policy over observations can be obtained by sequentially going through every
condition of every node, which will amount to whether the next belief bt+1 is in some decision
region D, and replacing the condition with: zt ∈ DZ = { f−1(bt+1;bt ,at) : bt+1 ∈ D}. We thus
arrive at a sequential set of rules, defined over the observation space that dictate which action
should be taken. Figure 5.2 shows an example of how this appears in practice.
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5.4 Feature Importance in Error Detection

We have shown that InterPoLe can be used to obtain from past demonstrations an interpretable
representation of the decision maker’s empirical decision dynamics. Moving forward then the
task becomes slightly different; with this description in hand and assuming the decision maker
aims to continue to follow this policy, can we detect when they deviate, and moreover where
specifically the deviation comes from?

The probabilistic interpretation of the soft decision tree allows for a formalism through which
we can identify unexpected actions and inform when it is appropriate to alert users to potential
mistakes. We assume that θ is a sufficient statistic for D , in that once we’ve trained the model
we can make no further use of D , and that the agent should be acting according to the policy. It
is then simple to set a threshold ε and wait for the agent to make a new action at at some belief
bt , if πγ(at |bt)< ε we can send an alert that this action appears sufficiently unlikely that we are
concerned. The more interesting question is whether we can see how a potential mistake might
have been made. We make the further assumption that the agent’s new action at is arrived at by
following the policy tree πγ , but allowing for the fact that a mistake may have happened at one
of the nodes and was incorrectly followed. We wish to identify potential nodes of interest.

Let πni, j denote the sub-tree consisting of node ni, j and all of its descendants, this can be thought
of as returning the probability of actions given you start at a particular place in the tree. Fix the
belief state bt , according to the policy let the optimal action a′ = argmax

a
{πγ(a|bt)}. We can

assume a′ ̸= at , otherwise the action would not be of further interest.

Define:

ra(ni, j) = (p−q) log
( p(1−q)

q(1− p)

)
,

where p = πnr
i, j
(a|bt) and q = πnl

i, j
(a|bt), to be the relative importance of node ni, j for making

action a in belief state bt . We can think about this as a simplification of the action space to
A′ = {a,A\a} and taking the symmetric KL divergence between the two predictive distributions
of the action, i.e. it is equivalently defined:

ra(ni, j) = KL
(
πnr

i, j
(a|bt)||πnl

i, j
(a|bt)

)
+KL

(
πnl

i, j
(a|bt)||πnr

i, j
(a|bt)

)
.
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Note that if ra(ni, j) = 0 there is no difference in the prediction of the two children and as
such that node has no relevance for the decision as either path has an equivalent probability of
picking action a. Further the larger the value of ra(ni, j) the greater the difference in probability
of picking a by taking the different path, making the node important in arriving at action a.

With notation defined, let us stop to consider what properties interesting nodes would have.
Firstly the values of both ra′(ni, j) and rat (ni, j) should be large - we are searching for a node
that splits the path with a′ on one side and at on the other. This will also ensure that either
πnr

i, j
(at |bt) or πnl

i, j
(at |bt) is large, which is necessary to explain how the agent arrived at at .

Thus with these metrics we can order the nodes by their importance in what would have been
the expected action, ra′(ni, j), before filtering those for which there is not a clear path to at . This
will provide our most likely points of departure from the tree, allowing us to inspect the nodes
and where in the feature space they define their partitions.



Chapter 6

Insights on Medical Data: Understanding
Clinical Decision Making

In this chapter we take the methods introduced in chapters 3, 4, and 5 and we apply them to
real medical case studies to demonstrate their applicability and benefits in supporting clinical
decision making.

6.1 Predicting Prostate Cancer Mortality with Transductive
Dropout

Similarly to chapter 3, the content of this first section of the chapter has already been published
in Chan et al. (2020)

Background Prostate cancer is the third most common cancer in men, with half a million
new cases each year around the world (Quinn and Babb, 2002). It is far more common
among the elderly with around 75% of cases occur in men aged over 65 years. Therefore,
prostate cancer is expected to bring increasing healthcare burden to countries with ageing
population (Hsing et al., 2000). The latest clinical guideline for prostate cancer treatment
recommends watchful waiting or non-invasive treatment for early-stage patients who have low
mortality rate (Heidenreich et al., 2011). Surgery (Radical Prostatectomy) is recommended
instead for high-risk patients whose health condition deteriorates rapidly. The patient’s survival
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outlook therefore plays an important role in the treatment decisions. Hence, improved accuracy
and uncertainty quantification for mortality prediction will help clinicians to design effective
treatment plans and improve patients’ life expectancy.

Dataset We consider the problem of predicting and estimating the uncertainty of the mortality
rate for patients with prostate cancer. Our training data consists of 240,486 patients enrolled
in the American SEER program (SEER, 2019), while for our target data we consider a group
of 10,086 patients enrolled in the British Prostate Cancer UK program (UK, 2019). For both
sets of patients we have identical covariate data with information concerning the age, PSA, and
Gleason scores as well as what clinical stage they’re at and which, if any, treatment they are
receiving. Note that while we have the same features for both sets this is an area where we
expect a level of covariate shift given the different programs and the transition from American
to British patients. Indeed we do see this, without giving a full break down of the summary
statistics, patients in the Prostate Cancer UK are in general older with higher Gleason scores
though not as far along in the clinical stages.

Benchmarks We compare our method against competitive methods from the probabilistic
deep learning literature based on their prevalence and applicability. While we consider this
work quite different to semi-supervised learning, which do not usually consider improving
uncertainty estimates, we also include MixMatch as a benchmark (Berthelot et al., 2019). The
methods we consider are:

1. MLP - Standard feed forward neural network to benchmark accuracy.

2. Dropout - Monte Carlo dropout with rate 0.5 (Gal and Ghahramani, 2016; Srivastava
et al., 2014)

3. Concrete Dropout - Dropout with the rate treated as an additional variational parameter
and is optimised with respect to the ELBO (Gal et al., 2017).

4. Ensemble - Ensemble of feed forward MLPs (Lakshminarayanan et al., 2017) with
K = 10 the number of models in the ensemble.

5. MixMatch - We implement a version of the MixMatch algorithm (Berthelot et al., 2019)
where we perform one round of label guessing and mixup and without sharpening. As
the base predictive model we use a MC Dropout network.
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Table 6.1 Area under the ROC curve for two tasks, first correctly predicting the mortality rate
of patients in the test set and secondly predicting whether for a given patient the model will
make an error. We also report the average confidence interval (CI) length over test predictions,
the average standard deviation at miss-classified points (MSD), and the increased number of
patients receiving treatment (INPT) using the associated uncertainty in the model and a risk
level of 15%.

METHOD TEST PERF. ERROR PRED. CI WIDTH MSD INPT

MLP 0.720 ± 0.012 N/A N/A N/A N/A

MC DROPOUT 0.729 ± 0.016 0.730 ± 0.016 0.093 0.025 8

CONCRETE

DROPOUT 0.791 ± 0.012 0.794 ± 0.012 0.151 0.066 76

ENSEMBLE 0.761 ± 0.014 0.782 ± 0.014 0.037 0.018 8

MIXMATCH 0.728 ± 0.016 0.726 ± 0.016 0.082 0.021 0

LL 0.723 ± 0.014 0.696 ± 0.014 0.073 0.028 22

TDNR 0.836 ± 0.010 0.808 ± 0.011 0.197 0.068 18

TRANSDUCTIVE

DROPOUT 0.861 ± 0.009 0.857 ± 0.009 0.130 0.110 189

6. Last Layer Approximations (LL) - Approximate inference for only the parameters of the
last layer of the network (Riquelme et al., 2018), using Dropout.

7. Transductive Dropout - No Regularisation (TDNR) - We implement transductive dropout
as described above but without the addition of our variance regulariser to show that the
gains are not just down to the ability to adapt the dropout rate to the input.

For all of the neural networks we consider the same architecture of two fully connected
hidden layers of 128 units each and tanh activation function. The initial weights are randomly
drawn from N(0, 0.1) and all networks are trained using Adam (Kingma and Ba, 2015).
Hyperparameter optimisation remains an open problem under covariate shift - we used a
validation set consisting of 10% of the labelled data selected, not entirely randomly, but based
on propensity score matching in order to obtain a set more reflective of the target data. With
this, hyperparemeters were selected for all model through grid search.

Evaluation metrics We consider five evaluation metrics for a comprehensive understanding
of the model performance. First, we consider the prediction accuracy as measured by AUROC
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shown as “TEST PERF.” in table 6.1 (Bewick et al., 2004). Second, we consider the standard
deviation of the posterior predictive distribution as a (unnormalised) predictor for whether or
not the model will make an error on a given input. The corresponding AUROC score (“ERROR
PRED”) measures the agreement between model uncertainty and the chance to predict wrongly,
and hence reflects whether the model is well-calibrated. Third, we present the average width of
the 95% predictive interval as a measure of general model confidence on unlabelled data (“CI
WIDTH”). Next, we show the standard deviation of the predictive distribution on misclassified
data (“MISCLASSIFIED SD”). Finally, we show the increased number of patients receiving
treatment (INPT) using the associated uncertainty in the model and a risk level of 15%. All
quantities related to the posterior distribution are estimated by MC sampling.

Main results First, we note that transductive dropout yields an improvement in the AUROC
on the mortality prediction against the other benchmarks, demonstrating that our improved
uncertainty calibration does not come at the cost of mean accuracy. Our focus though is on the
calibration of our uncertainty estimates. While ultimately it is impossible to properly test how
close uncertainty predictions are to what would be the true uncertainty, we test by using the
posterior predictive variance to classify whether or not the model will make a mistake. The
intuition here is that if the model is appropriately uncertain the variance will be high when a
mistake is likely and low when not, thus a high performance on using variance as a predictor for
when the model will make a mistake should demonstrate appropriate uncertainty estimates. Here
we see that transductive dropout significantly outperforms the other benchmarks, suggesting
that in general the high variance predictions are indeed associated with those that are more
likely to be wrong. We additionally focus on these predictions that each method gets wrong
and look at the average standard deviation at each of these points. Here transductive dropout
shows on average it’s much less confident about its incorrect predictions than the the other
benchmarks, which is the preferred behaviour. It is important to note that this is not at the
expense of confidence over all predictions as we show that both concrete dropout and TDNR
both have on average larger confidence intervals than transductive dropout.

Impact on patients Given our motivations we also ground the performance of our method
in how it could be used in real world decision making on the treatments offered to patients.
There are many reasons treatment options may not be offered to patients including cost and
potential side effects, as such there will usually be an associated risk level which a patient
must be above in order to receive treatment. It’s thus very damaging to patients for a model to
confidently predict them to be low risk when they are indeed not. In Table 6.1 we set a 15%
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Fig. 6.1 Improved patient outcome We show how many more patients, for a risk threshold of
50%, correctly receive treatment as the size of the confidence interval on the prediction of risk
changes.

threshold, and show how many more patient would receive treatment if we consider coverage
of the 95% confidence interval on the patients risk, with the assumption that these cases can
be handed off to a human expert who will correctly classify them. We see that transductive
dropout results in a large increase in previously patients misclassified as low risk receiving
treatment and we develop the impact on treatment options further in Figure 6.1. Here we set a
treatment risk threshold at 50% and show how the size of any predicted confidence intervals
over a patients risk impacts the increased number of patients correctly receiving treatment.
Naturally for all methods as the confidence interval grows the number of now correctly treated
patients increases but transductive dropout consistently outperforms the other benchmarks as it
is less often confidently incorrect in its risk prediction.

How does the covariate-shift affect uncertainty? Of interest is to consider how the covariate
shift has actually impacted our models performance. To that end we consider the feature
distribution of those points misclassified by the model to see how it compares to both source
and target sets. One of the most important factors affecting both the treatment and survival of
prostate cancer patient is the age at diagnosis (Bechis et al., 2011). Studies have shown that
older patients tend to have worse survival outlook and are more likely to receive surgery (Hall
et al., 2005). In our source data, the average age at diagnosis is 66 years old moving up to
70 in the target set. Comparing to the distribution over ages for incorrectly predicted cases,
where the average is 74, we see that it is for the patients who are considerably older than those
usually seen in the training data that the model is less sure about. We see a similar story in
their PSA scores (measurements of prostate specific antigen in the patients blood). PSA score
is known to be a highly sensitive indicator for the risk level and severity of prostate cancer,
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and it is widely adopted in cancer screening and monitoring (Grimm et al., 2012). Again we
see an increase in the average from 14.8 to 18.4 from source to target set but for those that are
incorrectly classified the mean is much higher at 28.6. The percentage of patients receiving
surgery in the incorrectly classified group is twice that of those correctly classified, suggesting
that our models are least confident in areas which we might think are the most at risk given
domain knowledge - the more elderly with high levels of PSA. The model struggles with them
(is much less confident) though as they are values which don’t have high density in the training
data, demonstrating that blind application of a model to a covariate shifted data set may easily
yield surprisingly incorrect predictions. Fortunately transductive dropout tends to return high
uncertainty over its predictions on this covariate shifted data such that the practitioner can
suitably inform any decisions to be taken as a result of these predictions.

6.2 Diagnosing Alzheimer’s Disease with Variational Direct
Policy Learning

Dataset We use data form the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Con-
taining information taken every six months of 1737 patients who are suspected to be suffering
from dementia, the dataset includes a variety of relevant coginitive tests and MRI scan results as
well as biomarker information (Marinescu et al., 2018). At each visit every patient is diagnosed
with one of normal cognitive function (NCF), mild cognitive impairment (MCI), or dementia.
Cleaning the data by removing patients with missing scores and those whose follow-up visits
occur significantly after the six-month normal period leaves us with 1626 patients with full
information and trajectories of about three to four visits each.

Method We’re interested in learning how the doctor behaves as they diagnose a given patient.
The state space then consists of the three diagnoses, namely NCF, MCI, and dementia (which
are recorded in order for us to match later but which we don’t have access to for training). For
the action space, we consider simply either ordering an MRI or not. Cognitive measurements
are always taken regardless of whether an MRI is ordered or not and they can be categorised into
one of three groups: “normal function” (for scores of 0), “questionable impairment” (for scores
between 0.5 and 2.5), and “very mild to severe dementia” (for scores between 3.0 and 18.0)
(O’Bryant et al., 2008). MRI outcomes are also categorised into one of four groups: “average”,
“above average”, and “below average” hippocampus volume, as well as “not ordered”. In total
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Fig. 6.2 Example patient trajectories. Uncertainty is represented as plots of 1000 Monte Carlo
samples of the parameters indicating the posterior predictive density.

then we have |A|= 12 consisting of various cognitive measurement categories and the MRI
outcomes.

In this setup we are only considering two actions so we fix η = 1 and simply allow the
distance between mean-vectors to determine the stochasticity of the learnt policy. We then learn
φ\{αη ,β η} as in algorithm 1 though using Adam as our gradient update scheme (Kingma and
Ba, 2015).

Example Patients In figure 6.2 we plot the belief trajectories of two example patients that
have different uncertainty associated with them. Patient A follows a reasonably typical path,
while they are not scanned initially on the first follow up they are: these results appear positive
and so the belief moves reasonably towards the NCF. The doctor then performs another scan to
be sure which again confirms that there are no issues and the doctor can confidently diagnose
that there doesn’t appear to be any issues.

The path of Patient B however is much more unusual. They receive an MRI scan immediately
which indicates there may be issues and so the doctor’s belief moves considerably towards
dementia, this in itself is not an unusual thing to happen. What is unusual is that the second
MRI actual reveals a completely normal scan which causes a very large change in belief towards
NCF, which is then confirmed by a third scan. This is a very unusual case where the doctors
sees a large change in belief from dementia toward NCF - usually there would not be conflicting
evidence from consecutive scans and so we actually see a lot more uncertainty surrounding
this transition reflected in figure 6.2, where the sampled trajectory paths actually vary quite
considerably for Patient B, unlike for Patient A.
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Fig. 6.3 Observation policies. An example of how the belief policy induces a different
observation policy at different time steps based on how the beliefs have evolved. At the end of
the trajectory the doctor is more concerned about their health and so the space of observations
that would lead them to prescribe treatment is much larger. Note the start at t = 2 as it is the
first action taken after an observation.

6.3 Understanding Treatment of Cystic Fibrosis with Inter-
PoLe

Dataset We now explore modelling the decision making process of doctors treating patients
with Cystic Fibrosis (CF) making use of data from the UK Cystic Fibrosis Registry, which
is sponsored and hosted by the UK Cystic Fibrosis Trust. This consists of information on
10,995 patients during annual check-ups between 2008 and 2015 with covariates including
demographics, genetic mutations, lung function scores, bacterial infections, and therapeutic
interventions.

Setup Our goal is to model the decision making process of the doctors prescribing antibiotics
to the patients. Bacterial lung infections are a common and serious complication for cystic
fibrosis patients (Lyczak et al., 2002), though they can often be treated effectively by antibiotics
it is important that they are spotted early. We split the state space into four, representing the
underlying condition of the patient and consider a single action to be the decision to prescribe
antibiotic or not on the part of the doctor. For the observations at each time point we consider
the continuous valued forced expiratory volume (FEV1% Predicted) score of the patient as well
as the binary indicator of the smoking status of the patient. As such we consider the observation
function for every state-action pair to be parameterised by a set of means and variances for a
Gaussian distribution over the FEV score and a probability for a Bernoulli distribution over the
smoking status. InterPoLe is run on these trajectories until convergence using gradient ascent
with step size 1×10−4. An example of how the observation tree evolves is shown in figure 6.3.
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Fig. 6.4 FEV1% distributions over learnt states.

State Average FEV1% Infection Rate

1 96.2 0.643
2 76.2 0.805
3 61.7 0.827
4 35.2 0.903

Table 6.2 Average FEV1%’s and infection rates over learnt states.

Uncovering CF progression stages We see in this case that our model learns a representation
of the state space that is closely tied to current guidelines on CF progression stages. The FEV1
biomarker is considered the main measure of illness severity in CF patients (Sanders et al.,
2010), where the lower the score the more severe the illness, and is used to guide clinical and
therapeutic decisions (Braun and Merlo, 2011). In figure 6.4, we plot density estimates for the
FEV1 given the learned states and table 6.2 shows the accompanying mean value for those
trajectories believed to be in that state alongside the true bacterial infection rate. The mean
FEV1 values of the different states broadly align with cutoff values used in clinical guidelines
on referring patients for lung-transplants (Braun and Merlo, 2011), allowing us to match them
with current understandings of CF progression stages.

Highlighting impactful treatments and raising questions towards patient safety The
nature of the decision dynamics allows us to further examine the effect of the actions taken, it
is possible to see the resultant change in belief at every time step and so can pick out which
actions at specific times have a higher impact on the change in belief. Unsurprisingly perhaps
the resultant change in belief after prescribing antibiotics is on average 10% greater than
the change when not, since we might expect the intervention to have an impact and perhaps
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decrease the severity of the illness when we next make some observation. On top of this though
we can pick out the timesteps in each trajectory where we see surprisingly large changes in
belief; in one example patient we see the belief over their state is very unsure over the course
of four timesteps before they are finally prescribed antibiotics. This then results in a significant
change in belief to state one (low severity) and we see an accompanying increase in their FEV1.
Interestingly, InterPoLe would have predicted the patient be prescribed antibiotics earlier, at
time step two. Indeed the decision not to prescribe then is predicted to have a probability of
only about 20%, potentially flagging the action for further inspection. Thus it makes it possible
to ask the question: “Our model suggests that under similar circumstances, normally you would
prescribe a patient antibiotics if their FEV1 was below 65, yet this patient was on 62 and you
did not; was this an intentional decision?”. This kind of scrutiny is important to be able to ask
to ensure that that patients remain safe and are treated correctly. We make it clear though that
there should not be an assumption of wrongdoing - our model can learn the general process but
there will often be uncaptured nuance to individual treatments, the important thing is to be able
to feedback to doctors that this is what is expected and they should be able to explain why it is
not necessarily appropriate.

Capturing personalisation of treatment Medicine is increasingly moving away from a one-
size-fits-all approach to treatment (Graham, 2016) and by splitting the data along demographics
and running InterPoLe separately, we can model apparent changes in the way different people
are treated. We examined how male and female patients were treated differently considering
that female patients generally face worse outcomes than male ones, especially with infections
(Harness-Brumley et al., 2014) and find this reflected in the FEV1 cutoffs for antibiotic
prescriptions at the initial timestep and belief. While it seemed smoking overruled the effect of
gender where in both cases 78.8 is the cutoff, for non-smokers men would seemingly only be
prescribed antibiotics if their FEV1 was below 73.3 while women would receive them below
76.3, suggesting a consequently higher willingness to prescribe to female patients given their
increased risk.



Chapter 7

Conclusions

In this thesis we introduced three methods for providing more insight into policy learning for
agents in offline sequential decision making, with an emphasis on the unique challenges faced
by the healthcare setting.

Starting in chapter 3 we introduced Transductive Dropout, a method for using unlabelled data
to calibrate the variance of Bayesian neural networks by introducing the auxiliary task of
using the posterior predicted variance to discriminate between source and target distributions.
We showed that this amounts to performing posterior regularisation in approximate Bayesian
inference and results in more useful uncertainty predictions. We examined an instantiation
of this framework within MCDP, transductive dropout, and in chapter 6 we demonstrate its
applicability in the real task of predicting prostate cancer mortality, where it outperforms the
tested benchmarks and demonstrates a higher level of appropriate uncertainty calibration. This
can be usefully applied in the behavioural cloning setting where covariate shift is a serious
issue due to the compounding error in action selection.

Then in chapter 4 we address the issue of uncertainty quantification in DIPOLE by extending
the method of Huyuk et al. (2020) to learn a full approximate posterior over the parameters
instead of just the MLE. This is done using a variational Bayesian EM algorithm that makes use
of pathwise implicit derivatives to obtain gradients of the ELBO. In chapter 6 we demonstrate
how this method can be used for understanding the diagnosis of Alzheimer’s disease and
explore a couple of example patient trajectories.

In chapter 5 we introduced a novel algorithm, InterPoLe, for learning interpretable representa-
tions of an agent’s decision dynamics in an offline, partially observed environment by learning
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a noovel soft decision tree policy over beliefs and showing how this results in an evolving
observation policy over time. In chapter 6 we demonstrated its applicability on real medical
data and the modelling of prescribing antibiotics to patients with cystic fibrosis, allowing us to
talk quantitatively about underlying themes, and uncovering known trends, of treatment.

We note that in chapter 6, we don’t compare our methods of Variational DIPOLE or InterPoLe
with other known baselines. The reason for this is simple - in the offline, partially observed
setting with no rewards there simply aren’t comparable methods for gaining insight into the
decision making process. The only methods that can be reasonably applied are behavioural
cloning options (like a neural network or standard decision tree) that just don’t provide the
kinds of insights that we were looking for. It is our hope that this, and our continued work in
the area, will inspire more methods in the area that focus on an understanding of an agent and
not just focused on beating the state-of-the-art on toy game problems.
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