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Abstract

In this dissertation, our goal is to explore lossless DNA compression algorithms,

experiment with predictive probabilistic models for DNA sequences, and perform a

comprehensive analysis and comparison among different schemes. We omit lossy com-

pressors as well as reference-based and pre-trained models to ensure that the algorithms

are general and can also compress non-DNA files. The methods in this dissertation

are based on techniques that cleanly separate the compression task into probabilistic

models (predictors) and arithmetic coders (compressors). Existing methods based on

arithmetic coding have become state-of-the-art in lossless compression in many domains.

As a novel contribution, we implement probabilistic models ranging from traditional

machine learning models, such as Random Forests, to deep neural network models which

are not conventionally used with arithmetic coding. For each model, we supply a concise

and robust mathematical formalisation. As background research, we ran an exploratory

data analysis on DNA sequences that are referenced in Forensic Science and DNA com-

pression papers. We ascertain that DNA sequences exhibit particular structure, such

as repetitions, codon-dictionaries, and complementary palindromes. We leverage these

structural properties with a bi-directional LSTM model and a specific hyperparameter-

tuning technique.

This dissertation performs a compression ratio comparison on the E.Coli DNA se-

quence. The experiment shows promising results for our bi-directional LSTM, with a

state-of-the-art compression ratio, but at a prohibitive runtime cost. We also bench-

mark against a randomized sequence with the same unigram frequency distribution as

a DNA sequence. We find, as expected, that standard compression algorithms do not

compress DNA sequences as effectively as specialised algorithms. Our paper also per-

forms an extensive comparison on the multi-species large DNA corpus, investigating the

computation speed, compression ratio, and memory usage of several different DNA com-

pression algorithms. This comparison table provides insights into the trade-off between

speed and compression ratio for different compression methods.
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1 Introduction

1.1 Motivation

With the development of modern gene sequencing technology, we are generating increasingly

large amounts of genomics data. These new DNA sequencing technologies, such as next-

generation sequencing (NGS) and single-molecule sequencing, have enabled and advanced

genomics research and functional genomics to higher levels (Kuruppu et al., 2011). In turn,

databases like GenBank may double or triple in size every year (Bakr et al., 2013), and thus,

the electronic storage of DNA/nucleotide sequences has become increasingly important. The

ability to compress DNA sequences is one of the determining factors of how much DNA data

we can store in a data centre, how fast we can transmit DNA sequences across the world, and

how quickly we can access DNA data records. Data storage costs contribute a substantial

proportion of total cost in the creation and analysis of DNA sequences. DNA sequences are

composed of symbols from a 4-letter alphabet (one for each nucleotide), and each simple is

typically represented by an 8-bit ASCII symbol. Assembled sequences from contemporary

sequencing projects range from terabytes to petabytes in size (Bakr et al., 2013). As of June

2020, GenBank records hold data comprising approximately 427.8 billion bases from 217.1

million reported sequences. For set-based records (WGS/TSA/TLS), the size is on the order of

8.5 trillion bases from 1.7 billion sequences (Gen). While the increase in the DNA sequences

is still manageable due to a tremendous increase in the disk storage capacity, more efficient

DNA compression could help make better use of this capacity, and store larger collections

of genomics libraries. Efficient lossless compression techniques and data structures can help

efficiently store, access, transmit, and search these large datasets.

The goal of this DNA sequence compression project is to develop a novel compressor that

can losslessly compress DNA sequences better than contemporary general-purpose compres-

sion algorithms.
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1.2 Problem Description

There are two main branches of compression schemes, lossless compression and lossy com-

pression. A lossless compression algorithm encodes an input file X to an output file Y , such

that Y is expected to be smaller than X, andX must be fully recoverable from Y . Lossy com-

pression differs from lossless compression in that it is acceptable to recover an approximate

representation of X after decompression (Steinruecken, 2014a).

DNA sequences are composed of four bases: Adenine (A), Cytosine (C), Thymine (T),

Guanine (G). In some organisms, G is swapped for Uracil (U). Thus, each base (symbol)

of RNA and DNA can be represented by two bits 00, 01, 10, 11. Sequences of such bases

are commonly stored in formats such as FASTA/Multi-FASTA, FASTQ and SAM/BAM (Hosseini

et al., 2016).

Popular standard compression algorithms include compress, gzip, bzip2, and algorithms

in the PPM-family. These algorithms were designed to do well on human text, and they

often perform reasonably on other types of inputs, such as spreadsheets or program binaries.

However, these algorithms weren’t specifically designed for DNA, and are typically unable to

compress DNA better than 2 bits per character (BpC) (Bakr et al., 2013).

We evaluate how well we compress the DNA data through the average compression ratio

in units of “bits per base”, where each character is a nucleotide base. A uniformly random

sequence from a 4-symbol alphabet can be compressed with a rate of 2 BpC. However, as DNA

sequences are not completely random, we would expect to be able to compress DNA sequences

with a rate smaller than 2 BpC, given a sufficiently intelligent context-aware compression

algorithm. The basic criteria for success for this dissertation are to create an algorithm that

satisfies the following:

1. The program must be able to compress any input file, including non-DNA data (for

which the algorithm is not specifically designed).

2. The program can decompress any output file to recover the original input file perfectly,

i.e. it must be a lossless compression algorithm.
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3. The program is practically useful for compressing DNA sequences, i.e. the algorithm

must compress and decompress with reasonable usage of memory and CPU time, and

must compress better than the 2 BpC baseline.

1.3 Contributions

Existing state-of-the-art DNA compression algorithms are generally format-specific and un-

able to compress non-DNA files (or files outside of the format). The currently best perform-

ing algorithms utilize reference-based approaches, using external DNA sequences as reference

files. These algorithms typically cannot compress files outside of prespecified formats. For

instance, in SequenceSqueeze’s FASTQ-compression competition, James Bonfield’s Fqzcomp

dominates most of the contest’s categories – memory usage, speed, and ratio – while main-

taining total data integrity, but cannot compress generic text files (Holland and Lynch, 2013).

The objective of this dissertation is to design a compression algorithm that embeds a

reasonable prior and understanding of DNA characteristics, rather than to build the state-

of-the-art search system for sequence matching with reference files. Another main focus is

to explore and verify the effectiveness of compression algorithms that have not been conven-

tionally used. The novel contributions of this dissertation are:

Contribution 1: This dissertation scrutinises nucleotide sequences through the lens of the

Forensic, Scientific, and DNA Compression literature. We examine DNA sequences

from these literature, and confirm their characteristics through novel data analysis.

Contribution 2: We bring DNA-specific traits to existing algorithms by using desig-

nated hyper-parameter tuning, which leads to an increase in compression effectiveness for

DNA compression.

Contribution 3: We conduct a study comparing different lossless DNA compression

methods, including standard algorithms, recent methods, and our own approaches. We in-

vestigate and compare the speed, compression ratio, and memory usage of these algorithms.
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We also benchmark standard compressors on an artificially created pseudo-DNA sequence,

sampled from a uniform distribution over nucleotides.

Contribution 4: This dissertation presents a comparison table made using a large multi-

species DNA corpus, with DNA ranging from that of viruses to that of humans. Our

extensive comparison allows researchers to pick appropriate compressors for different types

and lengths of sequences.

Contribution 5: Algorithms adopted in this dissertation include online learning-capable

traditional machine learning methods (which are seldom used for compression), as well

as a neural network model that sacrifices speed for state-of-the-art compression power.

Contribution 6: This project provides a mathematical formalisation for every model,

providing deeper insight why specific models outperform or underperform on particular

types of data.

Contribution 7: We introduce the concept of a bi-directional context to DNA compres-

sion, which allows the compression algorithm to utilise the palindromic and complementary-

palindromic nature of the DNA sequences.

1.4 Dissertation Structure

This dissertation has 7 sections. Following the introduction, Section 2 discusses related

topics and common lossless compression techniques. We also include a discussion on state-

of-the-art DNA-specific compression. Section 3 explains the concept of arithmetic coding,

and how compression can be decomposed into a predictive model and an arithmetic coder.

Section 4 provides an in-depth explanation of DNA formats and data sets, and analyzes

DNA characteristics from multiple perspectives. Section 5 describes a few different models

for predictors, ranging from traditional machine learning methods to neural network online

learning models. We then continue with the family of context mixing models. Afterwards,

13



we present the results for comparison among algorithms in Section 6, and conclude the

dissertation in section 7. We make suggestions for future work in the same section.
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2 Literature Review

2.1 Lossless Compression Techniques

Many data compression algorithms and techniques exist in the lossless compression litera-

ture. Different formats of data sometimes have different algorithms dedicated to them; any

particular type of data may have various compression algorithms, with possibly different ap-

proaches. While we implement DNA compression with an Arithmetic Coder at its core, we

first briefly review a few different approaches to data compression.

2.1.1 Non-arithmetic Coding Algorithms

Run Length Encoding Algorithm (RLE): RLE is a rudimentary data transformation

technique that is used in some compression algorithm. The transform identifies sequences

of a repeating symbol (‘runs’) and replaces these with a tuple that encodes the symbol and

a count (the length of the run). Non-runs are encoded as is. How these RLE-transformed

representations are encoded to a sequence of bits depends on the choice of a final coding step,

which is often chosen based on convenience. The effectiveness of RLE is entirely based on

the repetitiveness and the length of these repetitions. For example, in a sequence “ATCGGG”,

GGG is a run and ATC is a non-run (Kodituwakku and Amarasinghe, 2010).

Huffman Encoding: Huffman Encoding is a technique for developing a fixed set of code-

words for symbols giving a fixed probability distribution over those symbols. The probability

distribution is often calculated from symbol frequencies. Code-words for each symbol are

assigned by the Huffman algorithm based on the probability distribution. Longer code-words

are assigned to symbols with smaller probabilities and shorter code-words are assigned to

larger probabilities. In practice, the Huffman algorithm constructs a binary tree, assigning

symbols as leaves based on probabilities and taking the binary labels of path from the

root to the leaf as code-words. Huffman Encoding calculates the probabilities from the

source then constructs a binary tree whose details are saved and transferred along with the
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compressed file. The tree typically needs to be transmitted, as it is needed for decompression

(Kodituwakku and Amarasinghe, 2010).

Dictionary Compression Algorithms: By definition, a dictionary is a structure similar

to a table which stores sets of words in a language using indexes instead to represent long or

common words. Frequently occurred string patterns are indexed and stored in the dictionary.

These index values are then used to represent the corresponding string patterns during the

compression process. Adaptive dictionary compress algorithms construct a dictionary as

they compress, and, thus, the decompression process does not require an attached dictionary.

Examples of a dictionary-based model include the Lempel-Zev algorithm (LZ), LZ77, and

the Lempel-Zev-Welch algorithm (LZW) (Kodituwakku and Amarasinghe, 2010).

Many well-known compression algorithms use a combination of the aforementioned al-

gorithms with other algorithms. Compress uses LZW. gzip uses LZ and Huffman Coding.

bzip2 uses Burrows–Wheeler transform (BWT), Move-to-Front (MTF), and Huffman Coding

(Bakr et al., 2013).

2.1.2 Arithmetic Coding Algorithm

While RLE, Huffman, and LZW are standard and well-known text compression algorithms, al-

gorithms based on arithmetic coding have typically outperformed other techniques in terms of

compression effectiveness, as evidenced by multiple independent benchmarks (Hutter, 2006;

Mahoney, 2011). The decoupling of probabilistic prediction and encoding provides substan-

tially more modeling flexibility than algorithms that are based on direct transformations of

the inputs. Compression based on arithmetic coding always consists of two parts: a predictor

and an arithmetic encoder/decoder. The better the prediction for the next symbol, the better

the compression. We provide a full description in a subsequent section. The most important

properties of arithmetic coding are as follows (Bell et al., 1989):

1. Arithmetic coding can code a symbol that has occurrence probability p in a number of

bits arbitrarily close to log 1
p
.
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2. Arithmetic coding allows the symbol probabilities to be different at each step.

3. Arithmetic coding requires minimal memory, regardless of the number of conditioning

classes in the model.

4. Arithmetic coding is fast.

5. Arithmetic coding runs sequentially and cannot be parallelised.

An important advantage is that by using arithmetic coding, each symbol can add a “fractional

number of bits” to the output (Bell et al., 1989). In general, arithmetic coding achieves good

compression results when combined with a context-aware predictive model (such as PPM),

and a context mixing model (such as PAQ).

2.2 DNA-specific Compression

There are numerous compressors specifically designed for DNA formats, e.g. FASTQ/SAM.

Two main types of these genomics sequence compressors are reference-based methods and

reference-free methods. Many of these DNA-specific compressors have been submitted to the

SequenceSqueeze DNA compression competition (Holland and Lynch, 2013).

2.2.1 Reference-free Methods

The basic idea of reference-free DNA sequence compression is the exploitation of structural

properties, such as palindromes, as well as statistical properties of the sequences.

For example, Biocompress is similar to the LZ compression technique, but contains some

DNA-specific modifications. The algorithm detects repeats and complementary palindromes

in the DNA input sequence. Biocompress then encodes these repeats and palindromes using

the index of the occurrence along with the type and length of the repeat/palindrome. As an

extension, the Biocompress-2 algorithm adds an order-2 contextual frequency learner and

arithmetic coder, for cases when no significant repetition or palindrome is present (Hosseini

et al., 2016).
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However, the top performers in the SequenceSqueeze competition are Quip (Jones et al.,

2012), SCALCE (Hach et al., 2012), and Fastzq (Hosseini et al., 2016).

Quip is mainly used for compressing files in the FASTQ format, but it also supports the SAM

and BAM file formats. Quip exploits “codons” – the natural triplets trait of DNA sequence,

supported with arithmetic coding. Quip utilises order-3 models and high order Markov chains

and has two main variants, Quip-r (reference-based compression) and Quip-a (assembly-based

compression). For Quip-a, the model assembles a reference data based on the first 2.5 millions

characters (Hosseini et al., 2016).

SCALCE is a boosting technique that achieves higher compression effectiveness and speed

through symbol reorganisation. The scheme uses the locally consistent parsing (LCP) tech-

nique to derive long core substrings which are shared between the symbols in the source.

The technique then reorganises the file by bucketing these core substrings into buckets and

compressing the result with LZ variants in each bucket (Hosseini et al., 2016).

Fastqz scheme is an arithmetic coding-based method. Fastqz tunes context models/pre-

dictors to the data format, such as FASTQ, by specifying the context models in ZPAQ format

through the libzpaq compression library. ZPAQ is a part of PAQ family, a group of state-

of-the-art context mixing models that use an adaptive ensemble of multiple context models

in combination with bit-wise predictions. Fastqz then utilises a byte-wise coder with ZPAQ

predictors to achieve high compression ratio (Hosseini et al., 2016).

Below, we show a performance comparison of these methods on 2 sampled human DNA

sequences SRR027520_1 and SRR065390_1 to gain a better understanding of their relative

weaknesses and strengths (Bonfield and Mahoney, 2013).
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Table 1: SequenceSqueeze Competition Performance

Program Performance (fraction of original size) Memory usage (MB)

SRR027520 SRR065390 SRR027520 SRR065390

SCALCE -slow 0.2572 0.1635 5162 5257
DSRC -slow 0.2477 0.1524 1058 1965
Quip -slow 0.2219 0.1584 777 775
Fastzq -slow 0.2195 0.1340 1459 1527
gzip 0.3535 0.2805 1 1
bzip2 0.2905 0.2250 7 7

Understanding how each of these models leverages DNA-characteristics is helpful for

building a successful reference-less DNA compression model.

2.2.2 Reference-based Methods

Reference-based DNA compression models have a set of reference sequences to accompany

both the compression and the decompression process. Therefore, these models specialise

in sequence-matching between reference and target sequences, aligning the sequences and

encoding any mismatches between the sequences. Example methods in this category include

CRAM (Fritz et al., 2011) and Goby (Bonfield and Mahoney, 2013), which are format-specific

to FASTQ files. Because of the access to reference sequences, these methods can reach much

higher compression ratios than reference-less methods.

When not limited to FASTQ, and given access to a large reference genome (4 GB), the

DNAzip algorithm provides state-of-the-art performance for compressing James Watson’s

genome data set (Christley et al., 2009). DNAzip leverages the high similarity between dif-

ferent human genomes, saving only the differences to the DNA reference sequence. These

differences in the data are separated into three types:

1. Substitutions of single nucleotides (SNPs): the changed letter is recorded along with

the position in the sequence.

2. Insertions of multiple nucleotides: the sequence of nucleotide letters to be inserted is
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recorded along with the position of insertion.

3. Deletions of multiple nucleotides: the length of the deletion is recorded along with the

position of deletion.

After finding and recording these differences, multiple post-processing techniques are used

to achieve a high compression ratio. These techniques include variable integers for positions

(VINT), delta positions (DELTA), SNP mapping (DBSNP) and k-mer partitioning (KMER). With

3 GB of DNA sequences as reference and 1.2 GB of SNPs as reference, DNAzip can compress

3 GB of DNA sequences into a 4MB file (Christley et al., 2009; Hosseini et al., 2016).

2.3 Other Related Topics

The following two areas are closely related to lossless DNA compression: Lossy DNA Com-

pression, and Human Knowledge Compression.

Human Knowledge Compression: The field of human knowledge compression is mo-

tivated by the concept that a better compression ratio implies higher intelligence, thus

measuring intelligence by the size of compressed files. Lossless data compression requires

the compressor to comprehend and predict intrinsic patterns in the files. Thus, for a com-

pressor to outperform another on an unknown input that represents a large collection of

human knowledge, it needs to be “more intelligent” than the other compressor. The Hutter

Prize is the most well-known competition in this field. Hutter posits that a good snapshot

of the human world knowledge is represented by the online encyclopedia Wikipedia. enwik9

is a representative 1 GB extract from Wikipedia. The current state-of-the-art compressor

in this area uses a dictionary for preprocessing and a context mixing model (CMX) for com-

pression. Table 2 below, except for durilca, are past winners of the Hutter Prize (Hutter,

2006).

20



Table 2: Hutter Prize Contestants and Winners on enwik8

Program Performance Resource

Size BpC Time Memory

phda9 15,242,496 1.225 5h 1048MB
decomp8 15,932,968 1.278 9h 936MB
paq8hp12 16,481,655 1.319 9h 936MB
paq8hp5 16,898,402 1.366 5h 900MB
durilca0.5h 17,958,687 1.444 30min 1650MB
paq8f 18,289,559 1.466 5h 854MB

Lossy DNA Compression: Unlike lossless compression, lossy compression can result in

much smaller output files because the original file only needs to be partially recoverable. For

example, LEON utilises a probabilistic de Bruijn graph/bloom filter. All information that

is included in the compressed file (except for the bloom filter) is encoded with arithmetic

coding. On 20 samples of human sequences file, LEON achieves a compression of 1/11.4

of the original size compared to gzip’s 1/2.59 (Benoit et al., 2015) at a 14.37% loss of

accuracy. While extremely powerful, LEON cannot fully recover the original file without

errors. However, DNA sequences display high redundancy across reads, i.e most of their

characteristics remain the same even if some symbols are lost or replaced. Lossy compression

may, for some purposes, be deemed sufficient (Hosseini et al., 2016).
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3 Arithmetic Coding

An arithmetic coding encodes, the target sequence as a sub-interval within the real number

interval [0, 1). This sub-interval shrinks in size as the target sequence increases in length,

which leads to more number of bits required to represent the location of the interval. Each

symbol to be encoded reduces the interval size depending on the probability of the symbol,

with the constraint that the probability cannot be 0 (Witten et al., 1987).

In this section, we describe an arithmetic coding algorithm that allows for an almost

optimal compression output when given an input sequence and a corresponding sequence of

probability distributions. The output sequence will have a length (in bits) that is roughly

equal to the input sequence’s Shannon information content. Arithmetic coding provides a

unique advantage by cleanly separating the data modelling task from the code generation

task. This separation allows us to focus on data modelling for our compression methods, and

leave the rest to an arithmetic coder (Steinruecken, 2014b).

Overall, the two main components of such a compression process are the arithmetic coder

and a predictor model. The model is identical for both compression and decompression. The

general structure of an arithmetic coding process is shown in Figure 1:
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Figure 1: An illustration of arithmetic coding process (Moffat et al., 1998)

3.1 Arithmetic Coder

Both compression and decompression processes rely fundamentally on the cumulative prob-

ability range. During encoding, the encoder first calculates cumulative probabilities and

generates an array of intervals, one for each symbol in the source alphabet. As the encoder

reads symbol-by-symbol from the input sequence, it selects the interval corresponding to

that symbol from the cumulative probability range. The coder may update the predictor

based on the symbol read. The selected interval is then further split into sub-intervals using

the probabilities of each symbol. The encoder then reads the next symbol and repeats the

process by choosing the next sub-ranges. Each symbol from the source is read once until

the end of the sequence. Any real number that lies within this final interval contains the

information of the entire input sequence. The binary representation of such a number is the

output sequence of the arithmetic encoder. During decoding, the encoded output can be

decoded using the same probability distribution and predictor update model as the encoding

process, reproducing the same sequence of internal states, and the original input sequence
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(Kodituwakku and Amarasinghe, 2010).

3.1.1 Probability Table and Encoding

Before the encoding or decoding process begins, we initiate the range for encoding and

decoding to be the semi-open interval 0 ≤ x < 1 or [0, 1). This range narrows as we parse the

target sequence symbol-by-symbol based on the probability allotted for the given symbol.

Witten et al. (1987) give an example where the vocabulary only contains {a, e, i, o, u, !},

each with fixed probability as shown in Table 3.

Table 3: A example of static model with symbols {a, e, i, o, u, !},

Symbol Probability Range
a .2 [0.0,0.2)
e .3 [0.2,0.5)
i .1 [0.5,0.6)
o .2 [0.6,0.8)
u .1 [0.8,0.9)
! .1 [0.9,1.0)

Witten et al. (1987) illustrates that to transmit eai, the encoder and decoder initialise

to [0, 1). When encoder reads e, it reduces the encoding range to [0.2, 0.5), which is the

allocated range for e in Table 3. The encoder reads a which is allocated [0, 0.2). Thus our

new range is the range [0, 0.2) within the range [0.2, 0.5), which is [0.2, 0.26). Next, we parse

i so we have to zoom into the range [0.5, 0.6) of [0.2, 0.26), which further reduces our range

to [0.23, 0.236).

DNA sequences have only 4 symbols: A, T, C, G. Wang et al. (2019) provides an example

for encoding a sequence ‘CGTA’ using a fixed probability model with the following probabilities

p(A) = p(T) = 0.2, p(C) = 0.5, p(G) = 0.1. Again, the coder initialises the interval to [0, 1),

and by reading the first symbol ‘C’, the interval narrows to [0.2, 0.7). Next, reading ‘G’ reduces

the interval to [0.55, 0.6) and the process continues. Because each subsequent interval is a

subset of the preceding interval, the interval becomes narrower after every symbol. After

encoding ‘A’, the coder reaches the final interval of [0.59, 0.592), within which we can select
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any value (such as the middle value 0.591) to represent the original input sequence. For

the best compression, the output of the target sequence is the binary value stream of the

interval. The interval selection procedure of an arithmetic encoder for a sequence ‘CGTA’ is

demonstrated in Figure 2 (Wang et al., 2019).

Figure 2: An example of an arithmetic encoding process when encoding a sequence ‘CGTA’,
with a static probability value for each base: p(A)=p(T)=0.2, p(C)=0.5, p(G)=0.1 (Wang
et al., 2019)

Note that instead of a probability distribution over symbols, we can have a frequency

table that records the occurrence counts of each character. We can convert such a frequency

table into a probability distribution, for example by summing up the total count and dividing

each character’s count by the total. Another way to attain a distribution from a frequency

table is to use a Dirichlet process. A dynamically updated frequency table is often used as a

rudimentary adaptive predictor model.

3.1.2 Binary Value Stream and Renormalisation

In Section 3.1.1, we determined that our encoded message for the sequence ‘CGTA’ must

be within the interval [0.59, 0.592). Within this interval, for instance, we can pick 0.5904,

0.5908, 0.5912, or 0.5916, which are all equal in length. This redundancy implies that the use

of decimal digits in this way can lead to inefficiency. To produce a compressed binary output

25



sequence, we represent a point within the final interval with a fixed-point binary number

using minimal precision. We could use 0.100101111 (303/512 = 0.5917 in decimal) which

only costs 9 bits. Note that if there are any zeroes in the tail, they must be specified in the

binary form to prevent the message from being ambiguous unless the size of the compressed

stream is included.

Our 9 bits output, however, is still larger than the information content of the message,

which we can calculate as
∑
− log2 (pi) = − log2(0.5)−log2(0.1)−log2(0.2)−log2(0.2) = 8.966

bits, leading to about 0.4% inefficiency. This inefficiency becomes insignificant for longer

sequences, and is rarely a concern in practice.

In technical terms, Moffat et al. (1998) assume the coding interval to be reflected through

two variables L and R, where L is the lower-bound and R is the interval size. They are

represented by unsigned b-bit integers, where b might typically be 32 or 64. Thus, the

encoded target can be represented by [L,L + R) at any given state. Because imprecise

coding interval division can lead to a loss in compression effectiveness, we maintain R to be

as large as possible while keeping R in the interval of 2b−2 < R ≤ 2b−1 before each coding

step. This is accomplised by periodically renormalising R. We illustrate the renormalisation

process of L,R for the encoder in Figure 3 and for the decoder in Figure 4 (Moffat et al.,

1998).
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Figure 3: Algorithm encoder renormalisation (Moffat et al., 1998)

Figure 4: Algorithm decoder renormalisation (Moffat et al., 1998)

For renormalisation in the encoding process, if both L and L + R are less than or equal

to 2b−1, we will output a 0-bit then adjust L and R afterwards. Similarly, if both L and
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L+R are larger than or equal to 2b−1, we will output a 1-bit and adjust L and R accordingly.

When neither of the above happens and R ≤ 2b−2, our encoding interval [L,L + R) must

straddle 2b−1. In this case, we add 1 to the variable bits_outstanding so the next 0 or 1

bit output is followed by one more opposing bit, e.g. 100 or 011 for bits_outstanding = 2

(Moffat et al., 1998).

Below, we provide an illustration of the process for the model dividing the interval [0, 1)

into three one-thirds ranges. Each one-third interval is then approximated with 8-bit preci-

sion, which, due to known precision, can be encoded as binary ranges for our use (Witten

et al., 1987; MacKay, 2003).

Table 4: Renormalisation Example in 8-bit

Sym. Prob. Interval in 8-bit precision Range To Output Post-renorm. Range
In fractions In Binary

A 1/3 [0, 85/256) [0.00000000,0.01010101) 00000000–01010100 0 00000000–10101001
B 1/3 [85/256, 171/256) [0.01010101,0.10101011) 01010101–10101010 None 01010101–10101010
C 1/3 [171/256, 1) [0.10101011,1.00000000) 10101011–11111111 1 01010110–11111111

3.2 Predictor Model

As shown in section 3.1.1, the compression effectiveness of arithmetic coding depends primar-

ily on the predictive power of its probability table. Predictors are either static or context-

aware algorithms that populate the probability table. This provides an arithmetic coding

method with high flexibility, as the predictor algorithm can range from the simplest frequency

table to a complex deep learning model.

3.2.1 Context-free/Static Predictors

We start with a static predictor model, which is a simple model whose frequencies or prob-

abilities for each symbol are fixed. For instance, one might estimate symbol frequencies for

each English character from a corpus, as exemplified in Figure 5.
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Figure 5: An example of static predictors: A fixed frequency table computed from the Brown
Corpus to estimate English symbol frequency (Witten et al., 1987)

Nevertheless, basing symbol frequencies on counts from a corpus means that some symbols

will have a zero frequency count. A classic method is to give these symbols a frequency equal

to one, so the predictor still works in a file with all possible 256 symbols. For a frequency

table, a simplistic implementation might normalise to a certain total number, such as 8, 000,

for ease of conversion to a probability table (Witten et al., 1987).

However, using a static model for arithmetic coding has glaring disadvantages. The

arithmetic coder will only perform well in highly specific circumstances and perform poorly

for general-purpose tasks. Especially for English text, the probability for the next character

depends heavily on the preceding characters. Using a static predictor will lead to a loss in

compression effectiveness (Cleary and Witten, 1984). Under general conditions, Witten et al.

(1987) claim that static predictors will not provide a higher compression ratio than adaptive

predictors which we describe in the next section.
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3.2.2 Context-based/Adaptive Predictors

Unlike a static model, an adaptive predictor model learns the symbol frequencies/probabilities

as it processes through the target sequence. A simple adaptive predictor initialise each symbol

in the alphabet with a count of 1 to reflect a lack of prior information, and then update the

model as each symbol is read, to better reflect the observed frequencies. Given that the

encoder and the decoder utilise the same updating algorithm and the same initial values for

the frequency table model (or same prior probabilities for a probability table model), their

predictors will produce identical predictions at every step. The encoder updates its copy of

the predictor after reading and encoding the next symbol. The decoder identifies the next

symbol with the current model, and then updates the predictor with the newly decoded

symbol. Thus, the two processes are in perfect correspondence, allowing lossless compression

of the target sequence and its full recovery via decompression (Witten et al., 1987).

Updating the predictor, however, can be computationally expensive. To use adaptive

predictors in a frequency table model, the cumulative total has to be maintained for every

update to ascertain that the updated model will not experience an integer overflow. One

way to prevent this situation is to rescale all frequencies down when a count exceeds a safe

threshold. For the probability table model, we also need to update the entire table anytime

there is a context or model update, leading to longer computation time (Witten et al., 1987).

Another important trait is that both arithmetic encoding and decoding are performed in

a single pass through the target sequence. Thus, the model updates and statistics can only

be collected from the preceding portion of the sequence. Throughout the process, the model

is updated continually symbol-by-symbol. Well-known examples of context-based predictors

include Langdon and Rissanen’s fixed-order Markov models (Rissanen, 1976) and Cleary and

Witten’s classical PPM approach (Cleary and Witten, 1984).
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4 Data

4.1 Common DNA Files Format

In bioinformatics, handling a profusion of ambiguous and often poorly defined file formats can

be a challenge. Over time, several formats have achieved the status of a de-facto standard,

most of which are ad-hoc human-readable formats. Bill Pearson defined the FASTA sequence

file format as an input format for Pearson’s FASTA toolsets. FASTA has over time evolved to

become a consensus DNA sequence format. Later on, the FASTQ format for DNA emerged as

a natural extension for the FASTA format and has become another ubiquitous de-facto format

for data exchange among differed tools. FASTQ extends the FASTA format by storing numeric

quality scores for each nucleotide in the DNA sequence. However, the FASTQ format suffers

from the lack of clear definition (Cock et al., 2010). Li et al. (2009) invented the Sequence

Alignment Map (SAM) as a generic alignment format to store read alignments against given

reference sequences. For DNA-specific compression, the state-of-the-art compressors often

convert FASTA or FASTQ files to SAM files before performing the actual compression (Bonfield

and Mahoney, 2013).

4.1.1 FASTA

The FASTA format is a classical text-based representation for DNA sequences or amino acid

(protein) sequences. Each amino acid or nucleotide in the sequence is represented by a

single-letter code (A, T, C, G for DNA). Sequence names and comments may precede the

DNA sequence in FASTA format. The header line of the file is called the description line

(defline), beginning with ‘>’ and followed by any additional comments. The next line is

the sequence line as shown in Figure 6. Multiple FASTA files of different DNA sequences can

be concatenated into a single “Multi-FASTA” file. There are also special characters such as

N which means “either A,C,T,U,G” or B which means not A (Pearson and Lipman, 1988).
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Figure 6: An example of a FASTA file (Hosseini et al., 2016)

4.1.2 FASTQ

Unlike FASTA, FASTQ represents nucleotide sequences with alphabets and includes a quality

score, represented by an ASCII character, for each symbol. FASTQ is the de facto standard

for output of the high-throughput sequencing instruments. The FASTQ format has four main

components:

1. A sequence identifier.

2. The raw sequence letters.

3. A ‘+’ character, optionally followed by the same sequence identifier.

4. The quality scores.

An example of data in FASTQ format is shown in Figure 7. Each ASCII character in the

quality values corresponds to a value Qsanger = −10 log10 p where p is the probability that

the corresponding raw symbol is incorrect. Standard compressors, including Gzip and bzip2,

treat FASTQ as a text file, resulting in poor compression ratios. FASTQ-specific compressors

typically compress different fields (identifier, sequence, +, and quality scores) separately.

These algorithms include DSRC, Quip, and Fqzcomp (Hosseini et al., 2016).
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Figure 7: An example of a FASTQ file (Hosseini et al., 2016)

4.1.3 SAM

Sequence Alignment Map (SAM) represents a nucleotide sequence as differences to a known

reference sequence in a text-based format. There are two main components for a DNA

sequence in SAM format, as shown in Figure 8:

1. A header which starts with an @ character.

2. The alignment section, which contains a total of 11 fields, including QNAME, CIGAR,

SEQ and QUAL.

A related format is BAM: a binary version of SAM, compressed using the Blocked GNU Zip

Format tool (BGZF) (Hosseini et al., 2016).

Figure 8: An example of a SAM file (Hosseini et al., 2016)

4.1.4 BLAST

Another common format is the Basic Local Alignment Search Tool (BLAST). BLAST constructs

a lookup table for the query and then scans for the heuristic points for significant local

alignments in the database (Chen et al., 2015).
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4.2 Datasets

Our analysis is performed on a standard corpus that is commonly used for compression

benchmarks. We perform the majority of our analysis on the E.Coli file from the Can-

terbury corpus: it contains the genome of the Escherichia Coli bacterium. The E.Coli file

can be found here: http://corpus.canterbury.ac.nz/descriptions/#large. The corpus

collection on this website contains three corpora: the Canterbury corpus, the Calgary corpus,

and the Large corpus. The contents are shown in Table 5.

Table 5: The Large Corpus

File Abbrev Category Size

E.coli E.coli Complete genome of the E. Coli bacterium 4638690
bible.txt bible The King James version of the bible 4047392
world192.txt world The CIA world fact book 2473400

Another corpus that is commonly used for compression benchmarks is the DNA cor-

pus: http://people.unipmn.it/manzini/dnacorpus/. The DNA corpus contains DNA

sequences that were used to test the compression algorithms in A Simple and Fast DNA

compression algorithm by Manzini and Rastero (2004). The DNA corpus includes a va-

riety of nucleotide sequences from very short mitochondrial DNA sequences to long and

highly repetitive sex chromosomes sequences. Unfortunately, the Manzini’s and Rastero’s

DNA corpus is limited to 4 species, all belonging to the eukarya domain, which poorly re-

flects the diversity of the DNA sequences. Pratas and Pinho (2018) proposed a new DNA

sequence corpus with 534, 263, 017 bases (509.5MB, later updated to 685.6MB) from 15

DNA sequences (updated to 17) varying in sizes, domains and kingdoms. This includes

DNA sequences from multiple virus types (phage, virus, mimivirus), archaea, bacteria and

eukaryota (protozoan, fungi, amoebozoa, plant, and animalia). The corpus is available at

https://tinyurl.com/DNAcorpus and the details are shown in Table 6.
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Table 6: The DNA Corpus

Name Species name Type Size

OrSa Oriza sativa Eukaryota, plant 43,262,523
HoSa Homo sapiens Eukaryota, animalia 189,752,667
GaGa Gallus gallus Eukaryota, animalia 148,532,294
AnCa Antilo capra Eukaryota, animalia 142,189,675
DaRe Danio rerio Eukaryota, animalia 62,565,020
DrMe Drosophila miranda Eukaryota, animalia 32,181,429
EnIn Entamoeba invadens Eukaryota, amoebozoa 26,403,087
WaMe Wallemia muriae Eukaryota, fungi 9,144,43
ScPo Schizosaccharomyces pombe Eukaryota, fungi 10,652,155
PlFa Plasmodium falciparum Eukaryota, protozoan 8,986,712
EsCo Escherichia coli Bacteria 4,641,652
HePy Helicobacter pylori Bacteria 1,667,825
AeCa Aeropyrum camini Archaea 1,591,049
HaHi Haloarcula hispanica Archaea 3,890,005
YeMi Yellowstone lake mimivirus Virus, mimivirus 73,689
BuEb Bundibugyo ebolavirus Virus 18,940
AgPh Aggregatibacter phage S1249 Virus, phage 43,970

As shown in Table 5 and Table 6, both corpora contain the E.Coli file which we will

use as the main benchmark. For both corpora, each nucleotide sequence only contains the

characters A, T, C, and G.

4.3 DNA Traits Analysis

In FASTA files, DNA sequences are composed from four possible main characters: A, T, C,

and G. Within a nucleotide sequence, three-letter sub-strings such as AGC and GCT are called

codons, and in a living cell, each codon identifies the synthesis of one (out of 20 possible)

amino acids. There are 4 ∗ 4 ∗ 4 = 64 possible combinations, so some codons may produce

the same amino acid. In each organism, each cell contains the same DNA sequences that

make up the organism’s genome. These genomes are organised into chromosomes for higher

life forms such as humans (Bakr et al., 2013).

DNA sequences are not random sequences. If the DNA sequences are completely ran-
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domised with a uniform distribution of nucleotide occurrences, then it would be most effi-

cient and logical to store them with a trivial 2-bit code, as no code could do better than

2 BpC. But DNA sequences guide physical processes, such as the expression of proteins in

living organisms, which means it is structured in a non-random way. For example, there are

often repeated substrings within DNA sequences, for example ACACAC. There can also be

approximate repeats, such as AACGAACC or AAATAA. In a DNA sequence, A and T are com-

plements of each other, as are C and G. For the DNA sequence AAACGT, the complementary

sequence would be TTTGCA. There is something special about this example, because when we

read TTTGCA backwards, we would obtain back the original sequence ACGTTT. ACGTTT is then

denoted as the “palindrome” or reverse complement of AAACGT. Some sequences (like AATT)

are their own reverse complements (Bakr et al., 2013).

Within the same species, collections of DNA sequences are also highly redundant. Con-

sider that only approximately 0.1% of the 3 GB human genome is specific to each human;

the remaining 2.997 GB is essentially shared across all humans (Bakr et al., 2013).

4.3.1 DNA Traits in Forensic Literature

Some substrings of a longer DNA sequence are genes that encode specific proteins or par-

ticular genetic traits of an organism. However, some strings are just repeats of previous

substrings and do not appear to have clear genetic benefits. Watson and Crick dub these

regions as ‘Stutter / Junk DNA’ (Gen and Suhaib Ahmed, 2014).

Alex Jeffrey states that these varying number of repeats can form a pattern that is unique

to each individual, and appear more frequently in certain chromosomes. These patterns allow

scientists to:

1. Figure out paternal/maternal relationships through checking stutter inheritance or lack

thereof.

2. Match DNA from a crime scene, whether from hair strain, white blood cell, or a single

cell of cheek membrane found in saliva.
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3. Research ancestry and heritage of groups of people.

4. Analyse linkage for diagnosis of genetic disorders.

Technically, these stutters are also called tandem repeats. Tandem repeats account for

approximately 20% of the human genome. When the repeats are 2–6 bp in length, such

as ‘GATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATA,’ they are called micro-satellites or

short tandem repeats (STR). When the repeat sequences are 7–80 bp in length, they are called

mini-satellites or variable number tandem repeats (VNTR) (Gen and Suhaib Ahmed, 2014).

These STRs tend to be consecutive, rather than spread out. Bacterial DNA and viral RNA

have fewer STRs, and generally shorter repeats.

4.3.2 Confirmation through Exploratory Data Analysis

We perform an exploratory data analysis (EDA) on the E.Coli file, which contains around

4.6 million DNA nucleotides. This analysis allows us to statistically confirm the DNA-specific

traits mentioned in section 4.3 and section 4.3.1. We used Python3 for this task. We also

produced an artificial sequence of identical length, composed of randomly sampled and iden-

tically distributed nucleotides. This artificial sequence provided us with a counter-factual

benchmark to check whether the aforementioned characteristics of DNA occur by chance or

are a measurable signal that differs from randomness. The “fake E.Coli” sequence also serves

as an interesting benchmark for the compression comparison.

First, we examine the N-gram occurrence counts of the sequences. Recall that three-letter

sub-strings within the DNA sequences are called codons (e.g. AGC and GCT). Because the

distribution of codons is imbalanced by nature, a comparison between real and counterfeit

E.Coli should show a skew in the distribution for certain 3-gram strings. To substantiate

this claim with evidence, we look at the N-gram counts for N=2, 3, 6 for both E.Coli and

the artificial random sequence. We then provide the N-gram strings and counts for the top 3

(most common) and bottom 3 (least common) N-grams. Details are provided in Table 7,

which shows a significant skew in distributions for certain 3-grams and even more drastically
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for 6-grams. The 6-gram sequences with highest frequency in real E.Coli is cgccag with a

count of 5392, while the highest frequency in the control sequence is gccccg with a count of

only 1329. The table confirms our hypothesis that the E.Coli DNA sequence favors certain

triplet patterns. This finding leads to the hypothesis that using contextual hyperparameters

that are multiples of 3 might lead to better predictions.

Next, we look at short tandem repeats (STRs), where each repeat is 2–6 bp in length. Note

that a sequence with more than 6 total repeats (such as GATAGATAGATAGATAGATAGATAGATA)

rarely occurs in bacteria and prokaryotic microorganisms. Only human and animal DNA

sequences contain STRs that extend over 30 repeats. There are 16 core locations for STRs on

the human genome that are used by forensic scientists to perform analyses. Even 13 exact

matches of STRs provide more than 99.99% confidence that two samples come from the same

person (Gen and Suhaib Ahmed, 2014). For each STRs of length N, we observe the count,

the longest number of repeats, and the average number of repeats for E.Coli and the control

sequence in Table 8. We can see that there is a significant skew in the number of STRs for

lengths 3, 6, and 9. We also find that the E.Coli sequence has an unusually high number of

repeats of the length 8.

We also look at single-nucleotide repetitions, such as the length-4 repetition AAAA. We

want to see if natural DNA has a significantly higher number of single symbol repetitions.

In Table 9, we show that E.Coli does have more single nucleotide repeats than the control

sequence, especially for the order of 6, 7, and 8, where the counts are about twice of those of

the control sequence.

Finally, we look for the complementary palindrome characteristic in the sequences. AATT

and TCGA are examples of complementary palindromes. Taking a sample sequence of the

length of 30, 000 from the same region of both files, we count the number of complementary

palindromes in each. E.Coli has 10, 278 palindromes and the control sequence has 9, 942. In

the same interval, the number of complementary palindrome in E.Coli file is 49, 995 and in

the control file is 49, 803. This illustrates that real DNA file has the characteristics of both

complementary and generic palindrome, although not to a statistically significant extent.
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5 Method

5.1 Prediction by Partial Matching (PPM)

PPM is often used as the benchmark for adaptive predictors. The PPM algorithm utilises a

Markov model, modeling the occurrence probability of a given symbol conditional on a context

of the symbols immediately preceding it. The PPM model is parameterised by its order, which

is the number of symbols in the largest context used for the next symbol prediction. PPM

is an adaptive model that maintains an up-to-date set of context-dependent symbol counts

(often in a tree-like data structure). These counts are used to compute the probability for

the next symbol in the sequence.

A basic PPM variant might allocate an initial count of 1 to the possibility of occurrence

for each symbol in a context in which the symbol has not occurred in. Denote ci(ϕ) as the

number of times the symbol ϕ occurs in the context i for each symbol in the alphabet (256

types in ASCII). We use Ci as the number of times that we see context i, i.e. Σϕci(ϕ). PPM

models the occurrence probability of symbol p in context i as follows:

pi(ϕ) =
ci(ϕ)

1 + C
, when ci(ϕ) > 0

When a character occurrence is novel in a given context or ci(ϕ) = 0, PPM computes an

escape probability as the remaining probability when accounting for all seen characters:

pi(ESC) = 1−
∑

ϕ∈A,c(ϕ)>0

pi(ϕ) =
1

1 + C

PPM then “escapes” to the next shorter context, and uses that context’s probability distribu-

tion: pi(ϕ) = pi(ESC) ∗ pshorter(i)(ϕ). Given a to be the dictionary size of the coding symbols

A (256 for ASCII) and q to be the number of symbols occurred so far in context i, a total of

a− q symbols haven’t appeared in context i. Each novel symbol is then allocated the overall
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coding probability

p(ϕ) =
1

1 + C
· 1

a− q
, c(ϕ) = 0

Another technique classes a symbol in a given context i as novel unless the symbol has

occurred twice in the given context. This technique hypothesises that the first occurrence

could be a one-off event due to an error or other anomalies. If a symbol exists twice in the

same context, then it is much more likely to exist again in the same context. As such, a

probability of an already twice-occurred symbol is modelled as:

p∗i (ϕ) =
c∗i (ϕ)− 1

C∗
, when c∗i (ϕ) > 1

Thus, the escape probability is

1−
∑

ϕ∈A,c∗i (ϕ)>1

p∗i (ϕ) =
q∗

C∗

We then allocate to every novel character the overall coding probability

p∗(ϕ) =
q∗

C∗
· 1

a∗ − q∗
, c∗(ϕ) 6 1

(Cleary and Witten, 1984).

To give an example, we consider the input sequence abracadabra containing only lower

case letters. Given each symbol in the sequence, PPM will represent the probability of each

symbol occurring by constructing a probability distribution. There is no prior information

for the first symbol in the sequence, so a general strategy is to assign a uniform distribution.

Given that the first symbol is a, we will assign a slightly higher probability for a when

predicting the second character given we already observed it once in history. After we parse

the entire abracadabra sequence, we can predict the likelihood for the next symbol by

searching the input history for the longest matching sequence to the recent input. For

abracadabra, the closest match to the last four letters abra starting at eighth position is
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the abra string occurring at the first position. Given the longest match, we can predict that

the following character would likely be the character following the matched sequence. For

abra, the first sequence precedes the symbol c at the fifth position. Thus, it is reasonable to

predict the next symbol in the sequence abracadabra to be a c. This is an example of an

order-4 matching. The longer the order, the better the predictions, given a sufficiently long

input sequence (Knoll and de Freitas, 2012).

Figure 9: PPM model after processing the string “abracadabra” using up to the second order
model (Knoll and de Freitas, 2012).

42



5.2 Traditional Machine Learning Approaches

5.2.1 Naïve Bayes Classifier

Bayesian classifiers base the likelihood for each class on its feature vector. The Naïve Bayes

classifier simplifies the learning process by assuming independence between classes, i.e. P (X |

C) =
∏n

i=1 P (Xi | C) where X = (X1, · · · , Xn) is a feature vector and C is a class. While

this independence assumption may be unrealistic in practice, Naïve Bayes classifiers are

popular and give a baseline accuracy that sets a benchmark for more complex classifiers.

Naïve Bayes classifiers are also highly versatile, with applications in various fields ranging

from bioinformatics to natural language processing.

In mathematical terms, we denote a Bayes or Bayes-optimal classifier as h∗(x). Given

a feature vector, the Bayes classifier uses the class posterior probabilities as discriminant

functions, i.e. f ∗i (x) = P (C = i | X = x). By applying Bayes rule, we have

P (C = i | X = x) =
P (X = x | C = i)P (C = i)

P (X = x)

where we can ignore P (X = x) as it is identical for every class, providing us with Bayes

discriminant functions

f ∗i (x) = P (X = x | C = i)P (C = i)

where we denote P (X = x | C = i) as the class-conditional probability distribution (CPD).

Hence, the Bayes classifier, given example x, finds the maximum a posteriori probability

(MAP) hypothesis.

h∗(x) = arg max
i
P (X = x | C = i)P (C = i)

Nevertheless, when the feature space is high-dimensional, the direct estimation of P (X =

x | C = i) from the examples can be often difficult. Thus, Naïve Bayes NB(x) is a commonly

used simplification. Naïve Bayes simplifies the calculation by assuming that, given the class,
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features are independent. Naïve Bayes is defined by discriminant functions (Rish et al., 2001):

fNBi (x) = Πn
j=1P (Xj = xj | C = i)P (C = i)

5.2.2 Decision Tree Classifier

A decision tree classifier is a member of the table look-up rules classifier family which utilises

multi-stage decision making approaches. The core idea is to convert a decision table to

optimal decision trees through sequential approaches, breaking up several complex decisions

into a cascade of simpler decisions. As such, hierarchical approaches are the key emphasis.

These approaches permit the rejection of class labels at intermediate stages while constructing

multi-stage classifiers.

Safavian and Landgrebe (1991) present a non-parametric method for feature space hier-

archical partitioning. The method involves the concept of average mutual information. We

denote the average mutual information from observed event Xk at a node k in a tree T about

class Ck as

Ik (Ck;Xk) =
∑
CkXk

p (Cki, Xkj) · log2

∫
p (Cki | Xkj)

p (Cki)

Each Xk measures node k’s selected feature with either of the two outcomes: higher or lower

than the associated threshold of the node k selected feature.

We then express the average mutual information between the partitioning tree T and the

class C as

I(C;T ) =
L∑
k=1

pk′Ik (Ck′Xk)

where L is the number of tree T internal nodes and pk is class Ck probability. For a decision

tree classifier T , the average mutual information I(C;T ) directly relates to the probability
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of misclassification pe, as follows:

I(C;T ) ≥ −
∑m

j=1 [p (Cj) · log2 p (Cj)] + pe log2 pe + (1− pe)

log2 (1− pe) + pe∗ log2(m− 1)

This equality represents the minimum required I(C;T ) for the desired probability of misclas-

sification pe. As such, at each node k, a decision tree classifier T has to maximise average mu-

tual information gain (AMIG). When I(C;T ) increases above the minimum required I(C;T )

for the specified probability of error, the optimisation algorithms then reaches termination

(Safavian and Landgrebe, 1991).

5.2.3 Random Forest Classifier

A random forest classifier is an ensemble classifier, similar to context mixing methods. The

building blocks for random forest classifiers are decision tree classifiers constructed from

independently sampled random vectors. As such, the classifier utilises a combination of

randomly selected features at each node to construct a decision tree. Each tree then has one

vote to cast for the input vector classification. Data sampling is done through a bagging

method, which bootstraps training data by randomly sampling with replacement N samples

(the size of the data). The success of random forest relies on hyper-parameter selections and

the method used for pruning.

Quinlan’s Information Gain Ratio criterion and Breiman’s Gini Index are popular at-

tribute selection measure for decision tree induction. The Gini Index evaluates an attribute’s

impurity with respect to the classes and is commonly used to select attributes.

In mathematical terms, the Gini index for assigning a training set T to a class Ci is

expressed as ∑
j 6=i

(f (Ci,T) / | T |) (f (Cj,T) / | T |)

where f (Ci,T) / | T | is the probability that the selected case is from the class Ci.

Through this method, we use a combination of features to grow a tree up to specified
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maximum depth without being pruned. This lack of pruning is a stark contrast between

random forest classifier and decision tree classifier, whose effectiveness depends heavily on

the choice of pruning methods. The random forest effectiveness, however, depends highly on

the hyperparameters, though Breiman illustrates that the generalisation error will converge

as the number of decision trees increase. This eliminates the need for pruning and also

eliminates the overfitting problem due to the Strong Law of Large Numbers. As such, a

random forest classifier’s success depends heavily on the pre-specified number of decision

trees (N) and the number of features (K). The classifier then searches for best split only

from selected features and consists only of N trees. For new data classification, the input

data pass through each of the N trees, and each tree casts a vote into a ballot for the most

likely class (Pal, 2005).

5.3 Neural Network Approach

5.3.1 Recurrent Neural Network

General classification models like Markov-based models operate under the same principle as

the N-gram approach, i.e. using a length N context for probabilistic modelling. Instead of

taking into account only preceding texts, the recurrent neural network (RNN) generalises the

context-based language model further. RNN learns short term memory representation from

the data through neurons with recurrent connections. Shallow feed-forward neural networks

with 1-hidden layer have been effective at clustering texts. By leveraging a deep architecture,

an RNN can cluster similar histories and context together (Mikolov et al., 2011).
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Figure 10: Simple recurrent neural network (Mikolov et al., 2011)

We illustrate the RNN architecture in Figure 10.We concatenate the vectorw(t) and s(t−1)

to form x(t). w(t) represents the current word with size equivalent to vocabulary size, using

1 of N coding. s(t − 1) is the values from the previous time step in the hidden layer.

An RNN’s deep architecture is structured into input, hidden, and output layers and utilises

backpropagation for training. These three layers are computed as follows:

x(t) =
[
w(t)T s(t− 1)T

]T
sj(t) = f (

∑
i xi(t)uji)

yk(t) = g
(∑

j sj(t)vkj

)
where f(z) is the sigmoid activation function and g(z) is the softmax activation function. The

softmax function ensures that the output layer generates a probability distribution output

that sums to 1 and each probability is greater than 0.

f(z) =
1

1 + e−z
, g (zm) =

ezm∑
k e

zk

In the output layer, we collect an error vector from the cross-entropy criterion. Afterwards,

the error vector is backpropagated to the hidden layer. For RNNs, we use backpropagation

through time (BPTT) as an extension of the backpropagation algorithm. In truncated BPTT,
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the method propagates the error back in time through recurrent networks for τ numbers of

steps. This allows information from multiple steps of hidden layers to be incorporated into

the network through BPTT (Mikolov et al., 2011).

5.3.2 Long-short Term Memory (LSTM) and stateful LSTM

LSTMs provide a natural extension of RNNs. During the process of backpropagation, the

error function’s gradient is propagated through steps of hidden layers of neural networks in

time. In practically relevant cases, this gradient is multiplied by a scaling factor larger or

smaller than one, which results in either exploding gradient or vanishing gradient due to

the exponential compounding effect. The gradient from the previous step then overshadows

the current step gradient or gets completely overshadowed. In natural language processing

context, the position in the sentence is the time step, so either only the last word matters or

last word is completely irrelevant (Hochreiter and Schmidhuber, 1997).

This decaying error backflow causes an extensive problem to the computation time for

recurrent backpropagation when storing information over time intervals with extensive length.

To solve these gradient-related problems, Hochreiter and Schmidhuber (1997) introduce “Long

Short-Term Memory” (LSTM), an efficient and novel gradient-based method for truncating

gradient without hurting the learning process.

48



Figure 11: LSTM memory cell with gating units (Sundermeyer et al., 2012)

For standard neural network i, the unit contains exclusively the input activation ai and

the output activation bi. These input-output activations correlate when a tanh activation

function is utilised through

bi = tanh (ai)�

Improving upon the RNN architecture, the LSTM adds multiple intermediate steps. The

model multiplies the output of the activation function on ai by a factor bi. Because of the

recurrent self-connection, the result is then added by the multiplication between the previous

time step’s inner activation value and b�. The final result is then fed to another activation

function after rescaled by bω, which returns bi. Denoted by the small white circles in Figure 11,

the factors bi, bφ, bω ∈ (0, 1) are controlled by the blue circle units depicting input, output,

and forget gate in the Figure 11. The previous hidden layer’s activations, the current layer’s

activations from preceding time steps, and the LSTM unit’s inner activation are then summed

by the gating units. A logistic sigmoid function squashes the gating units’ output, which

afterwards are set respectively to b2, bφ, or bω, (Sundermeyer et al., 2012).

For this paper, we utilise the LSTM architecture of Bellard (2019). The LSTM architecture

49



contains L layers of LSTM cells with L ranging from 1 up to 7. The output of the corresponding

cells from previous layers along with the previous symbol is taken as the input for each cell.

The LSTM cell, for each layer l = 1 . . . L, is defined as follows:

ft,l = sigm
(
LayerNorm

(
W f
l [ht−1,l;ht,0; . . . ;ht,l−1]

))
it,l = sigm

(
LayerNorm

(
W i
l [ht−1,l;ht,0; . . . ;ht,l−1]

))
ot,l = sigm (LayerNorm (W ◦

l [ht−1,l;ht,0; . . . ;ht,l−1]))

jt,l = tanh
(
LayerNorm

(
W j
l [ht−1,l;ht,0; . . . ;ht,l−1]

))
ct,l = ft,l � ct−1,l + min (1− ft,l, it,l)� jt,l

ht,l = ot,l � ct,l

where � is the element-wise multiplication. The model sets the input of the first layer, such

as:

ht,0 = One (st−1)

The model computes probabilities pt for the symbol at time t as:

pt = softmax (W e [ht,1; . . . ;ht,L] + be)

W f
i ,W

i
i ,W

o
i ,W

j
i ,W

e, be are learned parameters. ct,l and ht,l are vectors of size Nc. We set

h−1,l and c−1,1 to the zero vector. the concatenation of vectors a0 to an is represented by

[a0; . . . ; an]. y = One(k) is a Ns-size vector such as yi = 0 for i 6= k and yk = 1
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For the above model, the y =LayerNorm(x) is defined as followed:

yi =
(xi − µ)

σ + ε
gi + bi with i = 0 . . . N − 1

µ =
1

N

N−1∑
i=0

xi

σ =

√√√√ 1

N

N−1∑
i=0

(xi − µ)2

ε = 10−5

where g and b are per-instance learned parameters. This LayerNorm layer normalisation

operation provides a significant increase in performance compared to non-normalised LSTM.

The output variant from it,l can be used directly by the cell equation ct,l to ensure that

the cell-state is bounded. Since the model only trains with up to 2 epochs per training data

(each data seen at most twice), the chance of overfitting is low, and no dropout layer is

necessary. For the training method, the model uses regular truncated backpropagation on

prespecified numbers of consecutive time steps. For a stateful LSTM model, we set ct,l and ht,l

(the initial states of the training segment) to the previous segment’s last values. We specify

the training batch size B. The smaller the batch, the better the performance. However,

larger batches make matrix operations more efficient, improving the computation speed but

compromising accuracy. No gradient clipping is used, and the optimiser utilised is Adam with

β1 = 0, β2 = 0.9999 and 2ε = 10−5 (Bellard, 2019).

5.4 Attention Heads and Transformer

Instead of relying on a recurrent neural network architecture for global input-output de-

pendence, the transformer model opts for an attention-based mechanism. The attention

mechanisms provide significantly higher room for optimisation through parallelisation. These

mechanisms also disregard the distance in the input/output sequences, which leads to better

dependency modelling in transduction and sequence modelling for various tasks (Bellard,
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2019).

For our dissertation, we utilise Bellard (2019) transformer model. the model contains a

tunable number of L transformer cell layers. Below, we illustrate the overall structure for

each layer l = 1 . . . L, attention head i = 1 . . . Nh, and backward time-step j = 0 . . .M − 1

qt,l,i = W q
l,iht,l−1

kt,l,i,j = W k
l,iht−j,l−1

vt,l,i,j = W v
l,iht−j,l−1

at,l,i,j = k>t,l,i,j (qt,l,i + ui) + w>i,min(j,dmax) (qt,l,i + vi)

rt,l,i = softmax

(
at,l,i√
dkey

)

ut,l,i =
M−1∑
k=0

rt,l,i,k · vt,l,i,k

ot,l = LayerNorm (W p
l · [ut,l,1; . . . ;ut,l,Nh

] + ht,l−1)

et,l = W g
l · ReLU

(
W f
l ot,l + bfl

)
ht,l = LayerNorm (et,l + ot,l)

The model sets the first layer input:

ht,0 = W ei ·One (st−1)

and compute probabilities pt for the symbol at time t:

pt = softmax (W eoht,L + beo)

W q
l,i,W

k
l,i,W

v
l,i, ui, wi,j, vi,W

p
l ,W

f
l , b

f
l ,W

g
l ,W

ei,W eo, beo are learned parameters. ht,l and ot,l

have a dimension of dmodel . qt,l,i and kt,l,i have a dimension of dkey = dmodel
Nh
· vt,l,i has a

dimension of dvalue = dkey · bfl has a dimension of dinner (Bellard, 2019).

52



5.5 Bi-directional LSTMmodel with Convolutional Neural Network

Layer and Attention Head

Given our model in section 5.3.2 and section 5.4, however, DNA compression is an online-

learning task. The transformer is an extremely powerful model but requires a large amount

of data to reach full potential. On the other hand, LSTM is one-directional and cannot capture

the full palindromic nature of DNA analysed in section 4.3.2.

To fully utilise section 4.3.2, we create a bi-directional LSTM with multiple hyperparam-

eters tuning to suit the DNA characteristics. The model is the same as section 5.3.2, but

instead of feeding only ht,l to the LSTM cell, in each layer, we feed both forward [ht,0; ...;ht,l−1]

and backward [ht,l−1; ...;ht,0] into separate LSTM and combine the result through concatena-

tion. Like section 5.3.2, we perform layer normalization between layers. An example of 2

layers bi-directional LSTM model implementation in Tensorflow2.0 is shown in Figure 12.

Figure 12: Bi-directional LSTM model in Keras/Tensorflow

We can combine this architecture with the attention head described in section 5.4. We

then experiment with up to 4 layers with normalisation between layers and with both stateful

and stateless models using various hyperparameters adjusted for speed or closeness to DNA
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characteristics.

Standard LSTM also has another issue where temporal modelling is performed on the

input feature xt. It is possible to better understand temporal structure between successive

time steps by using higher-level modelling of xt to deconstruct underlying factors of input

variation. Sainath et al. (2015) show that CNN can provide a higher-level understanding of

discriminatively trained features while removing variation within the input. Sainath et al.

propose an architecture where a few fully connected CNNs precede layers of LSTM, resulting in

the CLDNN architect, as shown in Figure 13.
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Figure 13: CLDNN Architecture (Sainath et al., 2015)

Because DNA characteristics have 4 symbols A, T, C, G, both 1-D and 2-D CNN seem to

be an appropriate choice for preprocessing the sequence for the LSTM architecture.
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5.6 Context Mixing Model: PAQ Family

As an evolution of well-known PPM in section 5.1, PAQ is an umbrella term for a family of

context mixing algorithm. Compression-ratio wise, PPM data compression methods have been

state-of-the-art benchmark up to the 1990s. PAQ family has since dominated compression

benchmarks. While in general, compression algorithms are required to balance a trade-off

between computation speed, compression ratio, and memory usage. PAQ8, especially, has

achieved record-breaking compression rations without trading significant time and memory

usage (Knoll and de Freitas, 2012).

PAQ has achieved incredible performance and huge success in the compression commu-

nity. However, there is an obvious lack of comparison against machine learning methods in

both scientific papers and publications. The reason is that the inner-workings of PAQ are

rarely explained. Knoll and Freitas Mahoney (2005) claims that aside from their paper, only

incomplete high-level descriptions of PAQ1–PAQ6 exist, same with the famous PAQ8. This is

due to the available C++ source code, which is optimised to be as close to machine language

as possible. Therefore, it is difficult to extract actual algorithms and architecture details

of PAQ8 (Mahoney, 2005). Our dissertation aims to provide clarification to both machine

learning-based algorithms in section 5 and to PAQ family algorithms for efficient comparison.

5.6.1 PAQ1-6: Adaptive Model Mixing

Matt Mahoney first develops PAQ1 in January 2002, which uses the following contexts:

1. Similar to PPM, the general-purpose model consist of eight contexts of length 0 to 7

bytes. Each context includes 0 to 7 bits of the current byte preceding the predicted bit.

2. PAQ1 uses unigram and bigram models, i.e. two word-oriented contexts of length 0 or 1.

These include whole words preceding the predicted word and are case sensitive, with

alphabets from a to z.

3. To model 2-D data like databases or images, two fixed-length record models are utilised.
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These two contexts are the column number as well as the above byte. Detecting a

consecutive series of a uniform stride of 4 identical byte values determines the record

length.

4. One match context to locate the last 8-bytes or longer matched context for predicting

the bit following the match.

These models use semi-stationary update, except for match. PAQ represents state (n0, n1)

in 8-bit value to estimate large counts. The models are mixed, hench the name context

mixing model, and the weights are empirically tune where the eight length n general purpose

contexts have weights w = (n+ 1)2 (Mahoney, 2005).

PAQ4 is introduced in October 2003 through the inclusion of an adaptive weighting model

for 18 contexts. The 3-bit context containing the previous whole byte’s 3 most significant

bits select 8 weight sets to be used by the mixer (Mahoney, 2005).

PAQ5 is introduced in December 2003 through the inclusion of a second mixer. The second

mixer selects weights by last two bytes’ two most significant bits which forms a 4-bit context.

For analog data (8 and 16 bit mono and stereo audio, 24 -bit color images and 8 -bit data ),

6 new models are added where noisy low order bits contexts are discarded (Mahoney, 2005).

PAQ6 is introduced in December 2003 through the inclusion of non-stationary/run-length

models. This provides an update to the semi-stationary models of original PAQ. PAQ6 adds

a model to translates relative CALL operands for Intel executable code. It also adds 10

general-purpose contexts with 4 addition long context match models, 7 analog models with

including FAX image model, 9 sparse models, 5 record models, and 6 word models which

includes sparse bigrams (Mahoney, 2005).

5.6.2 PAQ8-ZPAQ: Architecture and Model

From PAQ8 onward, the algorithms utilise neural networks for weight mixing. PAQ8 is still the

model with best compression ration in PAQ family using a weighted combination of multiple

models’ prediction. Most important addition is the incorporation of non-contiguous context
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matched, which improves noise robustness compared to traditional PPM model. Much like

RNN and LSTM, PAQ8 can capture long-term dependencies since all of its models predict the

next bit on the bit-level context. This allows PAQ8 to generalise well compared to PPM, which

makes byte-level predictions. PAQ8 also performs reasonably against specific data types like

spreadsheets or images (Knoll and de Freitas, 2012).

However, PAQ8 architecture also varies based on the version. This also extends to algo-

rithms which may change to suit the data compressed. Image data, for instance, requires

fewer prediction models. The most famous version of PAQ8 is PAQ8l which is a stable re-

leased version in March 2007 by Matt Mahoney. PAQ8l provides the best compression ratio

and robust architecture. The version submitted to Hutter prize also includes dictionary pre-

processing and word-level modelling which is not present in PAQ8l. Figure 14 provides a

high-level overview of the PAQ8l architecture. In total, PAQ8l utilises 552 prediction models,

combined through the model mixer into a single prediction, An adaptive probability map

(APM), which typically reduce prediction error by 1%, then preprocesses the prediction before

feeding it the arithmetic coder. APM is also known by another name as secondary symbol

estimation (Knoll and de Freitas, 2012).

Figure 14: PAQ8 architecture (Knoll and de Freitas, 2012)

We provide an illustration of the PAQ8l model mixer architecture in Figure 15. The

model highly resembles a single hidden layer neural network model. The subtle difference

separating the model from a standard neural network is that the first and second layers’

weights are trained independently for each node and online as the algorithm runs. While

backpropagation and truncated backpropagation trains the nodes in the multi-layer network

together, separate training minimises the predictive cross-entropy error. Unless the data is

stationary, however, the parameters will not converge to fixed values. This makes PAQ8l a
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half-ensemble, half neural network model, which is designed to handle both stationary and

non-stationary data.

Figure 15: PAQ8 model mixer architecture (Knoll and de Freitas, 2012)

Another significant difference between neural network and PAQ8l lies in the hidden nodes

which are partitioned into seven different sets. Each set size is shown in the rectangles in

Figure 15, where the leftmost rectangle is denoted as set 1 and the rightmost as set 7. From

each set, a single node is selected for each bit in the data file. For each bit in the data, the

only updated edges are the 7 weights connect each group to the output node in Figure 15.

This implies that, for each bit, the model only updates 552 × 7 = 3, 864 compared to the

552 × 3, 080 = 1, 700, 160 weights in the first layer. The reduction in weight update greatly

improves the computation speed by multiple magnitudes compared to neural network models,

which can be seen in section 6.3.

For both hidden and output layers, each of the PAQ8l model mixer’s node is a Bernoulli

logistic model:

p (yt | xt,w) = Ber
(
yt | sigm

(
wTxt

))
where xt ∈ [0, 1]np is the predictor vector at time t, w ∈ Rnp is the vector of weights,

yt ∈ {0, 1} is the next bit in the data to be compressed, and sigm(η) = 1/ (1 + e−η) is the

sigmoid or logistic function. The number of predictors, np, is equal to 552 for the model’s

first layer and 7 for the model’s second layer.
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Let πt = sigm
(
wTxt

)
. The t−th bit negative log-likelihood is given by

NLL(w) = − log
[
π
I(yt=1)
t × (1− πt)I(yt=0)

]
= − [yt log πt + (1− yt) log (1− πt)]

where the indicator function is denoted by I(·). The coding error/ cross-entropy error function

term at time t is denoted as the last expression. The first order updates then update the

logistic regression weights online:

wt = wt−1 − η∇NLL (wt−1) = wt−1 − η (πt − yt)xt

To ensure ongoing adaptation, the step size η is held constant.

PAQ9 updates upon PAQ8 by utilising an LZP preprocessor for faster processing of highly

redundant files. PAQ9 codes literals as 9 bits and context length 12+ matches as 1 bit. The

biggest difference from PAQ8 is that the context mixing architecture is a 2-input mixers chain

instead of multiple input single mixer. The sparse order-1 contexts are mixed with gaps of

3 to 0, orders 2 − −6, unigram, and then bigram respectively. Compared to PAQ8, PAQ9

trades compression performance for improved computation speed and reduced memory use

(Mahoney, 2011).

ZPAQ model is the latest member of PAQ family which has a total of 255 components,

about half of that of PAQ8. Like other PAQ models, each component predicts the output for

the next bit. A 32-bit context as well as the prediction output of earlier components on the

list are used as the next component’s input. The final component then outputs a prediction

to an arithmetic coder which encodes the next bit for the encoding process and decodes the

next bit for the decoding process. ZPAQ’s components are listed below (Mahoney, 2011):

1. Context Model CM: A user-specified size table maps the context to a prediction. The

table entry contains a count where the prediction is adjusted so that the prediction

error is proportionate to 1/count. This count ranges from 4 to 1020 and is incremented

up to the limit specified by the user.
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2. Constant CONST: A specified fixed and constant prediction.

3. Indirect context model ICM: A user-specified size hash table maps the context to an

8 bit state/ bit history. The ICM uses a high count, fixed limit to map history to

prediction where the history contains the number of recent binary bits and the value

of the latest bit (0 or 1).

4. MATCH: MATCH is composed of the user-specified size output buffer and pointer table.

MATCH maps context to the pointer where the same context was most recently observed

in the buffer. In proportion to the matching length, MATCH predicts the corresponding

after the last observed match.

5. AVG: The user-specified weight mixing AVG combines the two predictions together. This

mixer is in stretcher or logistic domain log(p/(1− p)).

6. MIX2: Selected by a context, the user-specified size table of weights performs weighted

averaging on the stretch predictions. Selected weight is updated after each prediction

to improve input prediction, using prespecified adaptation rate.

7. MIX: MIX is similar to a MIX2. MIX, however, is performed over a user-specified earlier

predictions array with a single weight per input per context.

8. Secondary symbol estimation SSE: From two adjacent 2-D table entries, a stretched

input prediction together with a context interpolates a prediction output. As with a

CM, SSE then updates the table to minimise the prediction error arising from the closer

of the two entries. The probability dimension of the table is fixed at 64, but the table

size, initial counts, and maximum counts are specified by the user, which leads to a

different rate of adaptation.

9. Indirect secondary symbol estimation ISSE: Previous step sends ISSE a prediction and

a context, mapped to a 8 bit state/ bit history like in ICM. The context of MIX2 maps
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to the bit history with input prediction and constant CONST. ISSE provides adjustment

for the input prediction by utilising the current context’s bit history.
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6 Results

Except for available existing compressors, every model in this paper follows the arithmetic

coding technique described in section 3. The main difference is that the predictor model

varies, instantiating the different methods described in section 5. We will compare their

compression effectiveness, performances over time during training, and finally their compres-

sion speeds.

6.1 Performance Comparison Against Benchmark

In this section, we compare different models, both existing compressors and our own exper-

imental models. Our predictor models include a default frequency table (FreqTable), PPM,

Decision Tree (DCT), Random Forest, LSTM, LSTM+1/2D-CNN, LSTM-stateful, LSTM-stateless,

bi-directional LSTM, and bi-LSTM+Attention. The available existing compressors include

Gzip, Bzip2, 7Zip, PAQ8, PAQ9, ZPAQ, and NNCP. We also include SBE, which stands for single

block encoding, a technique that turns each symbol sequence into strings of only position,

such as AATAT to A11010 and T11; this allows us to benchmark the compression ratio when

there is no correlation between symbols. Each model may be accompanied by values of signif-

icant hyperparameters that significantly affect the performance of the models. Again, BpC

represents Bits per Character, and by default we use 8-bit system, so uncompressed files have

a BpC of 8.

In section 4.3.2, we saw that every character in DNA sequences of natural origin has

roughly the same distribution. For both E.Coli and the artificial control sequence, the

distribution of each symbol is as follows: A:24.6% T:24.6% C:25.4% G:25.4%. Because there

are only 4 symbols, we can convert these symbols into 2-bit codewords: 00, 01, 10, and 11,

which reduces the compressed size by a factor of 4, yielding a compression ratio of 2 BpC

without any algorithm. As such, an intelligent algorithm should be able to compress better

than 2 BpC using contextual information.

At the same time, an intelligent algorithm should not fail on the random control sequence.
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Table 10: Compression size table of various algorithms for the artificial control sequence

Model Specification Size BpC
Original Compressed

Control uncompressed 4638690 4638690 8.000
Gzip 9 4638690 1325921 2.287
Bzip2 9 4638690 1268262 2.187
7zip tzip 4638690 1267529 2.186
PAQ8a 8 4638690 1161904 2.004
PAQ9a 9 4638690 1167729 2.014
ZPAQ method 5 4638690 1163192 2.006
SBE static 4638690 1165761 2.011
FreqTable static 4638690 1165702 2.010
FreqTable adaptive 4638690 1162577 2.005
PPM 3 4638690 1159829 2.000
LSTM layer=2 hidden=32 batch=16 (20,20) 4638690 1161220 2.003

In Table 10, we first compare different compressors against the control sequence file.

Looking at BpC, we observe that standard compressors Bzip2, Gzip, and 7zip are all

unable to discern that there is no significance to the sequencing pattern (all significantly above

2 BpC). On the other hand, PAQ family, PPM, and LSTM all exhibit the ability to understand

that only the distribution, not context, matters for optimal compression of this file.

For LSTM, layer is the total number of LSTM layers, hidden is the number of LSTM cells

in each layer. batch is the batch size during training (the training size is always 100, 000).

The final two numbers are time steps and segment length. For the above LSTM, the batch

input dimension is (16, 20, 20) for the first layer then (16, 20, 32) for the following layers.

Because all non-standard algorithms pass the test on the artificial control sequence, we

will now compare them on the E.Coli compression task. Below, we record significant results

from our experiments in the Table 11 below, mostly with the best hyperparameters for each

model. For the full result table, please refer to Appendix 7.2 where we compare a total of

63 models in Table 13 and Table 14. Note that the LSTM hyperparameters are specified as

previously mentioned, except for bi-directional LSTM. In bi-LSTM, the number of LSTM cells is

effectively doubled. For instance, for a hidden= 32 batch=16 (20, 20) model, the first layer
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input dimension would be (16, 20, 20), but the one of the next layer would be (16, 20, 64).

For attention-based models, head is the number of attention heads used.

Table 11 provides several insights into the DNA compression problem. First, the sim-

plest/fastest model FreqTable’s compressed file (2.010 BpC) is only 6.25% larger than the

best compressed file (1.892 BpC). However, standard algorithms bzip2, gzip, and 7zip, show

comparatively poor performances with over 2.1 BpC. For traditional machine learning algo-

rithms, PPM, Naïve Bayes, and Random Forest perform better than the baseline of 2 BpC;

only the decision tree model performs worse than the baseline. PPM, using a context of length

3, is the best of these at 1.964 BpC. While not shown, using context lengths that are not in

multiples of 3 reduces the performance. The PAQ family, which is state-of-the-art on multiple

benchmarks, has impressive performance with PAQ8l having as low as 1.900 BpC. PAQ9 and

ZPAQ trade some compression ratio for better speed.

Moving on to neural network models, we observe the significance of optimizing hyperpa-

rameters. The most basic 1-layer LSTM model already has a better performance of 1.956 BpC

compared to the PPM model at 1.964 BpC. By adding a Convolutional Neural Network layer

(CNN), we improve the performance to 1.947 for 1D and to 1.933 for 2D. The NNCP compressor

is a stateful-LSTM model written in C++ and optimised for speed and online updating with its

own LSTM library. As such, it can train with a batch size as small as 8 without taking up

over 24 hours. Optimising the timesteps and segment length to a multiple of 3 (24, 24) and

reducing batch to 8 gives us a state-of-the-art compression result at 1.885 BpC.

We also use the same specification as the model for enwik9 compression, but since the

model is too complex, our compression is sub-optimal at 1.948 BpC. We also implement

our own stateful-LSTM model in Python3. We check that the result is comparable to NNCP

by matching its parameters with layer=4, hidden=352, batch=16, and (20, 20). While

our compression takes significantly longer, we actually have a slightly better BpC at 1.893

compared to NNCP’s 1.895 under identical hyperparameters. Given timesteps 80 and segment

length 6, our trade-off from stateful to stateless LSTM is significant from 1.920 to 1.903 BpC.

However, this trade-off is justified as it allows us to use a bi-directional LSTM model, which
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Table 11: Compression size table of various algorithms for E.Coli file

Model Specification Size BpC
Original Compressed

Ecoli uncompressed 4638695 4638695 8.000
Gzip 9 4638695 1299059 2.240
Bzip2 9 4638695 1251004 2.158
7zip tzip 4638695 1238459 2.136
PAQ8a 8 4638695 1102585 1.902
PAQ8l 8 4638695 1101724 1.900
PAQ9a 9 4638695 1115068 1.923
LPAQ9l 9 4638695 1109862 1.914
ZPAQ method 5 4638695 1114292 1.922
SBE static 4638695 1165778 2.011
FreqTable static 4638695 1165644 2.010
FreqTable adaptive 4638695 1162480 2.005
PPM (3) 4638695 1138627 1.964
DCT (128) 4638695 1169095 2.016
NaïveBayes (64) 4638695 1145339 1.975
RandomForest (128) estimators=20 + 10 per 100,000 4638695 1147840 1.980
LSTM layer=1 hidden=256 batch=250 (20,20) 4638695 1133963 1.956
LSTM+1DCNN layer=2 hidden=32 batch=250 (40,6) 4638695 1128797 1.947
LSTM+2DCNN layer=2 hidden=32 batch=250 (40,6) 4638695 1120802 1.933
LSTM (NNCP-enwik9) layer=7 hidden=512 batch=16 (20,20) 4638695 1129396 1.948
LSTM (NNCP) layer=4 hidden=352 batch=8 (24,24) 4638695 1093223 1.885
LSTM (NNCP) layer=4 hidden=352 batch=16 (20,20) 4638695 1098677 1.895
LSTM-Stateful layer=4 hidden=352 batch=16 (20,20) 4638695 1097728 1.893
LSTM-Stateful layer=4 hidden=32 batch=250 (80,6) 4638695 1103429 1.903
LSTM-Stateful layer=4 hidden=32 batch=250 (40,6) 4638695 1112934 1.919
LSTM-Stateless layer=4 hidden=32 batch=250 (80,6) 4638695 1113065 1.920
Bi-LSTM layer=4 hidden=32 batch=250 (120,3) 4638695 1101875 1.900
Bi-LSTM+Attention layer=2 hidden=32 head=3 (40,6) 4638695 1123789 1.938
TRFCP layer=4 hidden=256 head=8 (32,32) 4638695 1109507 1.913
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improves the performance to 1.900 and, if tuned properly, can likely bring the performance

up further. Finally, we also try a simple attention model in combination with bi-LSTM, which

gives a seemingly poor performance but our hyperparameters are also not optimal. For the

pure attention-based transformer model, the performance at 1.913 BpC is worse than that of

most of the LSTM models.

6.2 Categorical Accuracy Plot over Training Period

Next, we want to compare the performance over time during the compression of the E.Coli

sequence. Again, there are only four symbols: A, T, C, and G. Therefore, the base categorical

accuracy is 25%. Better categorical accuracy leads to better compression ratio since arith-

metic coder codes a symbol with probability p in a number of bits arbitrarily close to − log p.

All algorithms we compare are LSTM-based and are trained every 100, 000 symbols on E.Coli

sequence. Each 10% is the accuracy recorded at about every 460, 000 symbols or 5 training

sets. For comparability, each LSTM has training batch equal to 250, timesteps equal to 40,

segment length equal to 6, and 2–4 layers of LSTM. In total, we compare stateful LSTM 2–4

layers, 1, 2D-CNN+LSTM, 2-layer LSTM with attention, and bi-directional LSTM in Figure 16.
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Figure 16: Categorical accuracy for various algorithms plotted over the training period during
online training

From Figure 16, we can see that increasing the number of layers leads to better perfor-

mance, especially during the first 10%–30%. In the first 10% alone, the performance increases

from 28.51% to 31.60% to 34.05% when the number of layer increases from 2 to 3 to 4. For

the whole file, this leads to a compression ratio increase from 1.928 to 1.925 to 1.919, re-

spectively. The performance of 1, 2D- and BDA are about the same with worse performance

than the 2-layer LSTM, since 1D-LSTM (1.947 BpC) falters off significantly at the end and

2D/CNN-LSTM (1.933 BpC) have poor performance in the beginning. Note that we only take

the probability at every 10% point, so it might not be an accurate representation. This is

why BDA seems to have better accuracy than the 2-layer stateful LSTM, but is outperformed

compression-ratio wise. We can see that using bi-directional LSTM significantly improves per-

formance consistence-wise and accuracy-wise. Although this leads to only a slightly better
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BpC at 1.915, the categorical accuracy is higher than the 4-layer stateful-LSTM across the

board.

6.3 Time vs. Performance on the DNA corpus

Finally, we want to see the trade-off between time and performance. We saw in section 6.1

and section 6.2 that LSTM-based models have the best compression ratio BpC-wise, especially

when incorporating 3-grams and bi-directional traits. We want to provide some practical

suggestions by illustrating the trade-off between compression ratio and time on various DNA

sequences that are commonly stored. To do this, we use the 3-gram PPM, PAQ8l, and LSTM

compression via C++ NNPC, to compress the 700MB DNA corpus (Pratas and Pinho, 2018).

While we would prefer to include our own bi-directional model, we accept that our implemen-

tation in Python is currently very inefficient and would take impractically long to decompress.

We provide an extensive comparison in Table 12, as well as the overall result. We observe

that gzip is outperformed even by the 2 BpC baseline where we simply replace A,T,C,G, with

00,01,10,11. However, this trade-off is justified as gzip can handle non A,T,C,G symbols. Over-

all, we see that there is a large jump in both compression rates and compression times from

gzip to PPM and from PPM to PAQ8l. The jump from gzip to PPM trades 5.5 times increase in

compression time for a 7.34% smaller compressed file (about 12.94MB smaller than gzip).

The jump from PPM to PAQ8l increases compression time by a factor of six for a 8.97% smaller

compressed file (or about 14.65MB). Using LSTM instead of PAQ8l, however, increases the

compression time by over 10 times for only 0.28% better compression (0.43MB). While the

LSTM significantly outperforms PAQ8l in the large text compression benchmark, it only slightly

outperforms PAQ8l because we compress each file separately, unlike enwik8 or enwik9 which

are a single file. The compression speed is benchmarked on NVIDIA GeForce GTX 1660Ti,

except for LSTM on large files which are run on NVIDIA Tesla K40c due to memory and other

constraints. As such, the actual compression time of LSTM is closer to 15− 20 times that of

PAQ8l. Assuming 1 terabyte of DNA files, we would trade off 1400 more hours to reduce the

size from 238.12 GB to 216.75 GB. However, with multiple GPUs, e.g. 100 GPUs can reduce
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the time overhead to 14 hours, which might be worth the cost of storing an extra 12 GB in

the cloud over multiple years. For memory, PAQ8l uses a total of 1.64MB while LSTM uses

83.68MB. The memory usage is constant throughout the process so care must be taken to

ensure that the GPUs are capable of running the compressors.
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7 Conclusion and Future Work

7.1 Conclusion

This dissertation provides a comprehensive analysis and comparison of multiple lossless DNA

compression algorithms. We also provides a concise mathematical formalisation for each

compression scheme, giving some insight into its characteristics and inner workings. We

conducted a basic analysis of some characteristics of DNA sequences, to understand how

different algorithms leverage different DNA traits. This dissertation also contributes a survey

on the current DNA compression literature.

Our exploratory analysis of DNA data features confirmed multiple hypotheses. For exam-

ple, we established that DNA sequences exhibit a “codon-dictionaries nature”, where 3-letter

triplets in the sequence will form a semantic unit (an amino-acid codon), with a skewed dis-

tribution towards certain codons. This dissertation also ascertains that nucleotide sequences

have an abnormally high number of length-3n repeats, as well as a higher number of single

symbol repeats than a random sequence with the same symbol distribution. Our extensive

hyperparameter-tuning experiments illustrate that, for each compression method, using 3n-

gram contexts leads to better compression ratios when compressing DNA sequences. The

data analysis also shows that DNA sequences exhibit palindromic and complementary palin-

dromic traits, although not to the same extent as 3n-gram characteristics. To leverage this

particular characteristic, we propose a bi-directional context concept for DNA compres-

sion. Combining this concept with an LSTM results in our novel bi-directional LSTM or bi-LSTM.

Our dissertation extensively tests bi-LSTM and finds its performance to be superior compared

to a normal LSTM (when hyperparameters are otherwise kept similar). Porting the bi-LSTM

code from Python to C++, and adjusting the code to be in line with machine language would

likely provide state-of-the-art compression for DNA (in terms of compression ratio, though

at the cost of a long training time).

Our goal was to explore and expand the field of permissive and general DNA compression
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algorithms, rather than building DNA-only compressors that fail on other data. As such,

we deprioritised from reference-based sequence matching algorithms and pretrained neural

network models. Our dissertation also inspects online learning-capable traditional machine

learning algorithms and attention-based neural network models, which are unconventional

created for compression. To best compare these algorithms, we created an overview compar-

ison on the E.Coli DNA sequence, and an extensive comparison on the multi-species large

DNA corpus.

Our overview study in Table 11 explores the limit of currently achievable compression

ratios, where an LSTM model emerges as a clear winner when we reduce batch-size. However,

reducing batch-size significantly increases computation time, which prevents us from testing

our bi-LSTM model with the same hyperparameters, due to the slow speed of our Python

implementation. Nevertheless, bi-LSTM is shown to have a better compression ratio than

LSTM for the same hyperparameters, especially in our performance comparison during online

training in Figure 16.

For a more holistic comparison, we investigate and compare the computation speed, com-

pression ratio, and memory usage of DNA compression algorithms. Our benchmark on an

artificially generated DNA file in Table 10 shows that standard compressors including bzip2,

gzip, and 7zip are not practically useful for DNA compression. Table 12 tests increasingly

complex compressors on a myriad of DNA from those of virus to human and other mam-

mals. This table provides a useful trade-off in speed and compression ratio, proving that no

single compressor is state-of-the-art in every aspect. We can observe that PAQ8l provides

near-optimal performance (1.734 BpC) for a relatively low-speed trade-off, but PPM still pro-

vides the best speed to compression ratio for a useful compressor (BpC≤ 2). PAQ8l tends to

perform better than LSTM in highly repetitive DNA sequences, such as human DNA (Homo

Sapien or HoSa). Given this comparison table, specialised researchers can make an informed

choice when picking appropriate compression methods for DNA sequences of specific sizes or

of selected species.
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7.2 Future Work

In this dissertation, we introduced the concept of bi-directional contexts to DNA compression,

allowing compression algorithms to utilise the palindromic and complementary-palindromic

nature of DNA sequences. We show that, given the same hyperparameters, the bi-LSTM will

have better compression ratio than the standard stateful LSTM. Our compression algorithm

is written in Python, which is far removed from optimised machine code. This leads to a

great reduction in computation speed during the training process, about 5–10 times that of an

optimised program binary. Possible future work can be done on implementing and optimising

the bi-LSTM compression scheme in C++, which is closer tomachine language. The C++ bi-LSTM

should probably be tested on enwik8 and enwik9 to compete in Matt Mahoney’s large text

compression benchmark (Mahoney, 2011). Natural language might also exhibit some bi-

directional traits, so it could be interesting to test if the bi-LSTM model could outperform the

traditional stateful LSTM model, which is currently in 3rd place on the benchmark. Additional

work could be done on optimising training process parallelisation, to improve the algorithm’s

speed when using multiple GPUs. Better parallelisation can significantly reduce compression

time, which would help increase the practicality of the bi-LSTM compression scheme.
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Table 13: Full table of various compression algorithms for E.Coli file (Part 1)

Model Specification Size BpC
Original Compressed

Ecoli uncompressed 4638695 4638695 8.000
Gzip 9 4638695 1299059 2.240
Bzip2 9 4638695 1251004 2.158
7zip tzip 4638695 1238459 2.136
PAQ8a 8 4638695 1102585 1.902
PAQ8l 8 4638695 1101724 1.900
PAQ9a 9 4638695 1115068 1.923
LPAQ9l 9 4638695 1109862 1.914
ZPAQ 4638695 1637985 2.825
ZPAQ method 5 4638695 1114292 1.922
SBE static 4638695 1165778 2.011
FreqTable static 4638695 1165644 2.010
FreqTable adaptive 4638695 1162480 2.005
PPM (3) 4638695 1138627 1.964
DCT (128) 4638695 1169095 2.016
NaïveBayes 4638695 1145339 1.975
NaïveBayes (6) 4638695 1151124 1.985
NaïveBayes (6) 256 4638695 1150929 1.985
NaïveBayes (64) 4638695 1217974 2.101
NaïveBayes (64) 1000 4638695 1327415 2.289
RandomForest (6) estimators=50 4638695 1211435 2.089
RandomForest (64) estimators=50 4638695 1221173 2.106
RandomForest (64) estimators=20 + 10 per 100,000 4638695 1176852 2.030
RandomForest (128) estimators=10 + 10 per 100,000 4638695 1152274 1.987
RandomForest (128) estimators=20 + 10 per 100,000 4638695 1147840 1.980
LSTM layer=1 hidden=64 batch=250 (20,20) 4638695 1179672 2.034
LSTM layer=1 hidden=160 batch=250 (20,20) 4638695 1173204 2.023
LSTM layer=1 hidden=256 batch=250 (20,20) 4638695 1133963 1.956
LSTM layer=1 hidden=512 batch=250 (20,20) 4638695 1138251 1.963
LSTM+1DCNN layer=2 hidden=32 batch=250 (40,6) 4638695 1128797 1.947
LSTM+1DCNN layer=2 hidden=64 batch=250 (40,6) 4638695 1128797 1.950
LSTM+2DCNN layer=2 hidden=32 batch=250 (40,6) 4638695 1120802 1.933
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Table 14: Full table of various compression algorithms for E.Coli file (Part 2)

Model Specification Size BpC
Original Compressed

LSTM (NNCP+enwik9) layer=7 hidden=512 batch=16 (20,20) 4638695 1129396 1.948
LSTM (NNCP) layer=2 hidden=32 batch=16 (20,20) 4638695 1118429 1.929
LSTM (NNCP) layer=3 hidden=32 batch=64 (20,20) 4638695 1140565 1.967
LSTM (NNCP) layer=2 hidden=32 batch=16 (20,20) 4638695 1111045 1.916
LSTM (NNCP) layer=4 hidden=90 batch=250 (60,6) 4638695 1194606 2.060
LSTM (NNCP) layer=4 hidden=90 batch=250 (60,6) 4638695 1203370 2.075
LSTM (NNCP) layer=4 hidden=352 batch=16 (20,20) 4638695 1098677 1.895
LSTM (NNCP) layer=4 hidden=352 batch=16 (60,6) 4638695 1108255 1.911
LSTM (NNCP) layer=4 hidden=352 batch=16 (120,3) 4638695 1109507 1.924
LSTM (NNCP) layer=4 hidden=352 batch=16 (20,20) 4638695 1098677 1.895
LSTM (NNCP) layer=4 hidden=352 batch=8 (20,20) 4638695 1093594 1.886
LSTM (NNCP) layer=4 hidden=352 batch=8 (24,24) 4638695 1093223 1.885
LSTM (NNCP) layer=4 hidden=352 batch=16 (24,24) 4638695 1099237 1.895
LSTM (NNCP) layer=4 hidden=352 batch=16 (30,30) 4638695 1099517 1.896
LSTM (NNCP) layer=5 hidden=352 batch=16 (30,30) 4638695 1099996 1.897
LSTM-Stateful layer=4 hidden=352 batch=16 (20,20) 4638695 1097728 1.893
LSTM-Stateful layer=4 hidden=32 batch=250 (80,6) 4638695 1103429 1.903
LSTM-Stateful layer=2 hidden=32 batch=250 (40,6) 4638695 1117952 1.928
LSTM-Stateful layer=3 hidden=32 batch=250 (40,6) 4638695 1115932 1.925
LSTM-Stateful layer=4 hidden=32 batch=250 (40,6) 4638695 1112934 1.919
LSTM-Stateless layer=4 hidden=32 batch=250 (40,6) 4638695 1119377 1.931
LSTM-Stateless layer=4 hidden=32 batch=250 (60,12) 4638695 1118641 1.929
LSTM-Stateless layer=4 hidden=32 batch=250 (60,6) 4638695 1119489 1.931
LSTM-Stateless layer=4 hidden=32 batch=250 (60,6) 4638695 1113652 1.921
LSTM-Stateless layer=5 hidden=32 batch=250 (60,6) 4638695 1116077 1.925
LSTM-Stateless layer=4 hidden=32 batch=250 (80,6) 4638695 1113065 1.920
LSTM-Stateless layer=5 hidden=32 batch=250 (60,6) 4638695 1118316 1.929
Bi-LSTM layer=4 hidden=32 batch=250 (100,6) 4638695 1108978 1.913
Bi-LSTM layer=4 hidden=32 batch=250 (120,3) 4638695 1106151 1.908
Bi-LSTM layer=4 hidden=32 batch=250 (120,3) 4638695 1101875 1.900
Bi-LSTM layer=4 hidden=32 batch=250 (80,6) 4638695 1109196 1.913
Bi-LSTM layer=4 hidden=32 batch=250 (40,6) 4638695 1110173 1.915
Bi-LSTM layer=4 hidden=352 batch=250 (80,6) 4638695 1114590 1.922
Bi-LSTM layer=6 hidden=32 batch=250 (120,6) 4638695 1097047 1.892
Bi-LSTM+Attention layer=2 hidden=32 head=3 (40,6) 4638695 1123789 1.938
TRFCP layer=4 hidden=256 head=8 (32,32) 4638695 1109507 1.913
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