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Abstract

Organ allocation for organ transplantation is a vital task because good allocation policies

promote patients’ lives significantly. Existing allocation policies have limitations due

to the ignorance of information about potential outcomes of allocating other donors to

recipients. Methods for estimating individual treatment effects (ITE), which has been

applied to various areas, are naturally applicable to overcome limitations that existing

allocation policies have. By considering organ donors as treatments, methods used

to estimate counterfactuals can be translated to estimate potential outcomes of organ

transplantation. The advantage of counterfactual estimation is that it is possible to

estimate all potential outcomes (counterfactuals) of transplantation using an organ from

all different types of donors for each recipient. Hence, there is more information for

each recipient, and a better allocation policy can be learned benefiting from additional

information. However, estimating counterfactuals is a challenging task, especially in our

case, since ground truth counterfactuals are never fully observed, and we have to deal

with non-one-hot high-dimensional treatments as well as handling bias for more than two

treatment types. In this paper, we propose a deep neural network to estimate potential

outcomes of organ transplantation, called Self-Clustering Counterfactual Network (SCCN).

Different from most of the existing works on ITE estimation, SCCN focuses on non-one-

hot high-dimensional treatments, and the model can merge similar treatment types,

which provides more interpretability of data. We show our proposed SCCN outperforms

benchmark models in various aspects. Besides, we propose an allocation policy naturally

driven from outputs of SCCN, called Matching First allocation policy. We show Matching

First produces comparable results to state-of-art allocation policies. Compared to the real

policy used by human experts, the policy extends the average survival time of recipients

for 12.4% and reduces the death rate for 35.2%.
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Introduction

Estimating counterfactuals is a primary task of estimating individual treatment effects

(ITE), which proposes the question of what would be the outcomes if different actions

have been applied. It is a fundamental problem that has been applied to various areas,

such as estimating heterogeneous effects of drugs [3, 26], verifying causal factors of certain

disease [11], and selection of treatments over time [5]. Organ allocation for organ trans-

plantation is another problem that estimating ITE is naturally applicable. By considering

organ donors as treatments, methods used to estimate counterfactuals can be translated

to estimate potential outcomes of organ transplantation, and estimated outcomes can

then be used to allocate organs.

The problem of our interests is that given a sequence of recipients waiting for organ

donors, for a newly arrived organ donor, we want to allocate the organ to a recipient

in the waiting sequence so that the overall benefit of the whole group of recipients is

maximized. Recent research on organ allocation mainly focuses on improving the accu-

racy of predictions of transplantation outcomes [18, 21], or producing better matching

of recipients and donors [34]. Most of the available works suggest allocation policy re-

garding scores/measurements evaluated based on predictions of the outcome of certain

recipient-donor pairs. One of the main limitations of existing works is that allocations are

only determined by transplantation outcomes of recipient-donor pairs but ignored lots of

information about potential outcomes. Considering the case where there are recipients A

and B, and two donors m and n arriving sequentially. Pair A-m, B-m, A-n, and B-n have

predicted outcomes of surviving 100 days, 80 days, 150 days, and 10 days respectively.

The optimal allocation policy is assigning donor m to recipient B and assigning donor n

to recipient A. However, most of the existing allocation policies will allocate donor m to

recipient A due to the arrival order of donors. When the allocator allocates donor m, it

does not know about the potential outcomes of allocating other donors to these recipients.
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To emphasis this kind of limitation, our work focuses on adapting counterfactual es-

timation methodology to solve the organ allocation problem. By considering donors as

treatments, we are able to estimate the outcomes of assigning different types of donors

to individual recipients. The advantage of counterfactual estimation methods is that,

for each recipient, it is possible to estimate all potential outcomes (counterfactuals) of

transplantation using organs from different types of donors. Hence, there would be more

information for each recipient, and a better allocation policy can be learned benefiting

from additional information.

However, estimating potential outcomes is a challenging task. The problem of ITE estima-

tion differs from traditional supervised problems, as described by Spirtes [27]. A major

challenge of estimating counterfactuals is that we only observe their reaction to one of the

possible actions/treatments for each unit/patient. The entire vector of all possible out-

comes is never observed for each unit/patient, since we only observe the factual outcome

while all other counterfactual outcomes are not observed. The problem is typically solved

using multi-task models [2, 26, 36]. Some recent works also manage the problem using

generative adversarial networks (GAN) [33].

Another challenge is that data of ITE studies often suffer from selection bias. Estimating

ITE is an important sub-field of causal inference. According to Pearl [22], Randomized

Controlled Trial (RTC) is the only proper method for learning causal relationships, where

treatment assignments are not depending on individual patients. However, because of

financial and ethical issues, researches of ITE estimation usually use observational studies,

in which treatment assignments depend on patient features and data contains selection

biases. For instance, HER-2 targeted therapies are only applied to HER-2 positive breast

cancer patients, so we never observe outcomes of applying HER-2 targeted therapies

to other types of breast cancer patients. The biased data makes it difficult to estimate

outcomes for certain subgroups of patients. To handle selection biases, previous studies

[17] use the estimated probability of receiving treatment, called propensity scores, to re-

weight data. Some other recent works [9, 12, 32] use representation learning to eliminate

selection biases.

Besides, the problem is even more challenging in our case. Different from most of ex-

isting ITE estimation studies [2, 4, 26, 32, 36], in which treatments are binary, we focus

on non-one-hot high-dimensional treatments, as donor features are normally very high-

dimensional and not necessarily one-hot. Therefore, in our case, we have to deal with



3

high-dimensional treatments as well as handle bias for multiple treatment types. In order

to eliminate selection biases, many existing ITE studies on binary treatments use KL-

divergence or integral probability metric (IPM) [19, 28] to balance distributions of patient

groups. However, KL-divergence and IPM only take two distributions, so these studies

cannot be naturally extended to high-dimensional treatment cases. Although some of the

other studies [33] are able to be extended to one-hot high-dimensional treatment cases,

there is rarely researches that actually focus on non-one-hot high-dimensional treatments.

In this paper, we propose a matching neural network, named Self-Clustering Counterfac-

tual Network (SCCN), that attempts to estimate potential outcomes for each recipient if

given different types of organ donors. We treat donors as high-dimensional treatments.

Donors are clustered as different types, and counterfactuals are estimated regarding dif-

ferent types of donors. The clustering is a soft assignment so that we know the confidence

level and can apply probability analysis in later steps. Both the counterfactual model and

the clustering model are jointly trained so that the clustering is problem specific. Besides,

we drive an allocation policy, called Matching First allocation policy. Allocations are based

on potential outcomes estimated. We show that SCCN outperforms benchmark models in

various aspects, and SCCN has the ability to merge similar donor clusters. We also show

that the Matching First allocation policy produces comparable results to state-of-art allo-

cation policies. Besides, compared to real policy determined by human experts, Matching

First extends the average survival time of recipients for about 12.4% and improves the

death rate for about 35.2%.

We summarize our contributions as follows:

1. We propose a novel allocation policy based on estimated potential outcomes, which

overcomes some limitations of existing allocation policies.

2. We introduce a method of handling non-one-hot high-dimensional treatments in

ITE estimation, as well as a method to learn balanced representation for more than

two types of treatments, to reduce selection bias.

3. We propose a network with the ability to merge similar treatment types, which gives

more freedom for hyperparameter tuning as well as more interpretability of data.



Related Works

Previous works in both ITE estimation and organ transplantation are closely related to our

work. Because the problem of our consideration lays in between these two fields, we refer

to works in both fields.

For traditional ITE estimation, a separate model is learned for each treatment. In this

approach, selection bias is not taken into consideration. Learned models are biased to-

wards distributions of corresponding treatments’ populations. Another typical approach

is considering treatment as a feature. In this approach, a single model is learned to esti-

mate all counterfactuals or treatment effects, and distributions of different treatments’

populations are adjusted to handle selection biases. For instance, Wager & Athey [30] use

random forest, and Johansson et al. [12] and Shalit et al. [26] use deep neural nets to solve

treatment effects estimation problem under this single model methodology. Besides, Alaa

& Schaar [2] and Alaa et al. [3] use multi-task approaches, such as a multi-task Gaussian

process, to estimate treatment effects. Our work is most similar to works of Alaa et al. [3]

and Shalit et al. [26]. In all our work and these two works, deep neural networks with

multiple branches are used to estimate potential outcomes. In our works, each branch of

the deep neural network is used to perform one task: estimating the potential outcome

of certain treatment. Shared layers are added before branching the network to learn

representations [26] or capture "commonality" among learning tasks [3]. In Shalit’s work

[26], selection bias is lessened by balancing distributions of learned representations of

different treatments. IPM is minimized between representation distributions to force

distributions to be similar. On the other hand, in Alaa’s work [3], selection bias is treated

by a separate propensity network. Dropout layers are added in the network, with dropout

probability calculated based on outputs of the propensity network. Under this setting,

dropout probability is different for each training sample. Samples that lay in a region

of poor treatment assignment overlap have higher dropout probability, so such samples

have less impact on the model.
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Methods high-dimensional treatments non-one-hot treatments handling bias non-fixed number of treatment types

[2]
p

[3]
p

[12]
p

[26]
p

[30]
p

[33]
p

SCCN
p p p p

Table 2.1 Comparison of SCCN to existing methods on ITE estimation.

There are also other novel works on counterfactual estimation and selection bias elim-

ination. In the work of Yoon et al. [33], counterfactual estimation and selection bias

are resolved using GAN. In their proposed model GANITE, A GAN is built to generate

unbiased datasets, while another GAN is trained using generated unbiased datasets to

estimate potential outcomes. It is shown in the original paper that GANITE performs

well, particularly when the dataset has high biases. Besides, it is proposed by Alaa et al.

[2], regularizing posterior variance is a better way of ameliorating selection bias in some

cases, instead of minimizing distributional distance. One main problem of minimizing

the distributional distance to eliminate selection bias is that biased data are often highly

informative and predictive. For instance, in the medical setting, the reason why data is

biased is that doctors assign treatments based on predictive features.

Unlike many existing ITE estimation works, our work focuses on non-one-hot high-

dimensional treatments, and we investigate balancing distributions of learned repre-

sentations for more than two treatment types. Besides, in distinction from existing works,

in which the number of treatment types is fixed, our proposed model has the ability to

merge similar treatment types, which provides more interpretability of data.

On the other hand, our work is closely related to organ transplantation and organ alloca-

tion. Previous works on organ transplantation focus on developing a more accurate risk

model for predicting survival after transplantation [18, 21]. In the work of Nilsson et al.

[21], a deep neural net is proposed with classification and regression trees to predict trans-

plantation outcomes and evaluate the impact of recipient-donor variables on survival.

It is shown that the deep neural net model outperforms other existing scoring models

[18, 21]. Instead of improving the accuracy of prediction of survival, other works focus on

improving recipient-donor matching [34]. Yoon et al. [34] partition recipient-donor fea-

ture space into subspaces and use a separate prediction model for each subspace. In this

architecture, each independent prediction model is trained to solve a more specific and
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less general sub-problem. Therefore, models for subspaces of matched recipient-donor

pairs are expected to be more robust than models trained to solve the general problem.



Problem Formulation

We aim to investigate methods designed for estimating counterfactuals on solving organ

allocation problem. The principal goal is to estimate potential outcomes for each recipi-

ent, given different types of donors. Inherited from conventional setups of ITE estimation

problem, in our case, we consider recipients as patients, donors as different types of

treatments, and all potential outcomes of receiving organs from all types of donors as

factual and counterfactuals.

Consider a population of recipients where each recipient is described by a feature vector

r ∈R, in which R ⊆ Rdr and dr is the number of features for each recipient r. Consider

another population of donors where each donor is described by a feature vector o ∈O , in

which O ⊆Rdo and do is the number of features for each donor. Let y ∈Y ⊆Rk denote a

counterfactual vector of certain recipient. By considering o as treatment or intervention,

the setting is naturally similar to the Neyman–Rubin causal model [24], described as follow.

Assume for a patient r, and a treatment o, y1, y2, ..., yk , being entries of y, are all potential

outcomes. For each patient, we only observe one of the potential outcomes, denoted as

y f ∈ {yi }k
i=1. In other words, for each patient, only certain entry of y is observed. Different

from typical Neyman–Rubin causal model where treatments are binary, which means

o ∈ {0,1}, we consider o as a high-dimensional and not necessarily one-hot vector (in other

words, do ≥ 2).

For dataset, we consider an observational dataset D = {{r(n),o(n), y (n)
f }}N

n=1, consisting

of N independent recipient-donor pairs with their corresponding observed transplanta-

tion outcomes y (n)
f .

There are two important assumptions we made, which are essential assumptions that

most of previous works [2, 26, 33] make.

Assumption 1: Overlap. For any recipients r and any donor o, the probability of assigning
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r to o is non-zero.

∀r ∈R,∀o ∈O ,0 <P(o|r) < 1

With this assumption, it is reasonable to estimate all counterfactuals for any patients.

Assumption 2: Unconfoundedness. Given recipient r, potential outcomes y and donor

assignments o are conditionally independent.

y ⊥ o | r

With these assumptions, the goal is to find a mapping from the recipient space R to the

counterfactual space Y using the observational dataset D. In other words, we wish to

have a estimation model learning a function f : R → Y . Under this setting, we desire

to be able to estimate all outcomes f(r), given any recipient r ∈ R. The objective to be

maximized is the likelihood of potential outcomes given recipients and donor features.

Denoting vector of all other potential outcomes except y f as ycf, the likelihood can be

decomposed as:

P(y|r,o) =P(y f |r,o)P(ycf|r,o) (3.1)

We show how to optimize these two components in following sections.



Self-Clustering Counterfactual Network

(SCCN)

We desire to train a model to predict all possible outcomes of a recipient receiving all types

of organs. To achieve this, we propose Self-Clustering Counterfatual Network (SCCN). We

cluster donors into different types, and counterfactuals are estimated regarding all types

of donors. Both the clustering model and the counterfactual model are trained jointly so

that the clustering is problem specific.

Fig. 4.1 The architecture of a multi-branched neural network for estimating counterfac-
tuals. NN stands for neural network. t is a soft clustering of the type of donor o. Φ is
representation of recipient r. y is a vector of all possible outcomes of r receiving organs
from donors. y ′ is the observed factual. Ly is a factual loss. Lr is a loss regularizing
representation of r. Lcl s is the loss of cluster.
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(a) original
(b) with latent vari-
able t

Fig. 4.2 Causal graph of the problem setting.

Similar to typical counterfactual estimation methods [2, 26, 36], where counterfactuals are

estimated using multi-task models, we use a deep multi-branched neural network. The

network is estimating the function f(Φ(r)) = y. Each branch of the network performs as

solving one task: estimating one of the counterfactuals. Each branch aims to estimate the

function f j (Φ(r)) = y j . Formally,

f(Φ(r)) = y = { f j (Φ(r)) = y j }k
j=1

The number of branches matches the number of clusters, which is a hyperparameter that

can be set manually.

There are mainly two differences between our setting and typical counterfactual estima-

tion setting: (a) our treatments are not binary; (b) our observed treatments are not hard

assignments, but soft assignments produced by our clustering model. Because treatments

in our setting are considered high-dimensional, many existing methods developed on

binary treatment cases are not applicable. Other methods developed on high-dimensional

one-hot treatment cases cannot be applied directly either, since treatments in our case

are not necessarily one-hot. However, by clustering donors into different types, methods

work for high-dimensional one-hot treatment cases could be applicable. Assume there is

a latent variable t, representing the type of a donor. We can marginalize out t to compute
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the likelihood of factual outcomes. Mathematically,

P(y f |r,o) =
∫
P(y f , t |r,o)d t (4.1)

=
∫
P(y f |r, t )P(t |o)d t (4.2)

in whichP(t |o) is estimated by the clustering model using soft clustering t, and parameters

are eliminated because of conditional independence. The likelihood of observing factual

data P(y f |r,o) is one of the sub-components of the objective that we want to maximize, as

shown in Equation (3.1).

4.1 Clustering

The clustering model clusters donors into different types. Since there is no class label,

only unsupervised clustering architectures are applicable. There are many unsupervised

clustering architectures, such as K-means [15], Expectation Maximization (EM) [6], Deep

Embedded Clustering (DEC) [31], etc. In this work, we adapt DEC architecture as the

clustering method.

DEC involves training an Autoencoder at first to learn a representation of donors. Accord-

ing to Xie et al. [31], the encoder part of the Autoencoder is then used to learn a clustering

using the following loss function:

ti j =
(1+||di −µ j ||2)−

1
2∑

j (1+||di −µ j ||2)−
1
2

pi j =
t 2

i j∑
i ti j∑

j
t 2

i j∑
i ti j

Lcl s =
∑

i

∑
j

pi j log
pi j

ti j

di is the learned representation of donor o(i ), which is produced by the encoder. µ j is a

clustering center, which is randomly initialized. ti j represent the probability of donor o(i )

belongs to cluster j . µ j -s and weights of the encoder are the parameters that need to be

optimized during training. p j i -s are the target distribution. According to the original pa-

per, the choice of pi j has the following properties: (1) strengthen predictions (i.e., improve

cluster purity), (2) put more emphasis on data points assigned with high confidence, and
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(3) normalize loss contribution of each centroid to prevent large clusters from distorting

the hidden feature space.

The structure of the DEC model allows us to efficiently train the clusters and the counter-

factual model jointly using error backpropagation. Clustering methods, such as K-means

and EM, are hard to be trained jointly with our counterfactual neural network. Some

other widely used unsupervised clustering methods using self-organizing map [13] involve

competition learning, so that it is also challenging to apply those methods in this case.

4.2 Optimization

In this subsection, we describe the loss functions we use to optimize each part of SCCN.

The empirical loss function of the counterfactual model consists of a factual loss, a repre-

sentation loss, and the clustering loss described in the previous section.

The factual loss aims to maximize the likelihood of observing factual outcomes. In this

work, the square error function is used as the factual loss function. This is, in fact, assum-

ing Gaussian prior, since minimizing square is equivalent to maximizing likelihood with

Gaussian prior [7]. As shown in Equation (4.1) & (4.2), since we use soft assignment of

clustering, the estimated factual outcome is an expectation of all estimated counterfactu-

als ŷ over treatment clustering distribution t. Formally,

Ly (ŷ,t, y f ) = (ŷ · t− y f )2

The factual loss only optimizes one sub-component in Equation (3.1). The other compo-

nent, representing the likelihood of counterfactual outcomes, also has to be optimized.

Because counterfactual outcomes are never observed, it is impossible to compute coun-

terfactual loss directly. Instead, distributional distance is minimized. As shown in works

of Johansson et al. [12] and Shalit et al. [26], a linear combination of factual loss and dis-

tributional distance is an over bound of counterfactual loss. Therefore, a representation

loss is used to regularize representations learned and also reduce selection bias. Similar

to previous works [12, 26], we minimize distance among distributions of representations

of recipients assigned different types of donors. However, since we have more than two

types of donors, there are more than two distributions. Hence, traditional distance mea-

surements (such as IPM, KL) are not applicable. To achieve optimizing representation

network, we make two assumptions:
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1. distributions of representations are Gaussian distributions;

2. distributions of representations have diagonal covariance matrices.

With these two assumptions, balancing distributions of representations is the same as

regularizing means and variances of these distributions. Naively, this is minimizing the

"variance" of all distributions, which means minimize the variance of means of distribu-

tions and variance of variances of representation distributions.

Lr (Φ) =∑
c j

(Meanr∈c j [Φ(r)]−Meanr∈D[Φ(r)])2 + (Varr∈c j [Φ(r)]−Varr∈D[Φ(r)])2

Besides, the distance between donors is often proportional to donors’ similarity. Donors

close to each other are more likely to be of the same type. Therefore, we also include the

clustering loss described in the previous section in our objective function, to encourage

donors that are close to each other to be clustered into the same type.

The empirical loss function of the counterfactual model L = 1
N

∑
i Ly +αLr +βLcl s , in

which Ly is a factual loss, Lr is a representation loss, Lcl s is the clustering loss, and α and

β are hyperparameters balancing losses of different parts of the model.



Experiments

In this part, we describe experiments conducted to evaluate our proposed models. Models

are trained 100 times with different initializations, and datasets are randomly shuffled

every time for cross-validation. The performance of each model is evaluated using the

average performance of the top 50 trails out of 100 trails. For all experiments, datasets are

divided 80%/10%/10% into training/validation/test sets.

5.1 Datasets

Due to the nature of the problem, it is difficult to comprehensively evaluate the perfor-

mances of models using only real-world data. Since we never observe all counterfactuals

in the real world, there is no ground truth target to evaluate estimated counterfactuals.

Previous works [16, 26, 33] use both semi-synthetic datasets and randomized controlled

trials (RCT) datasets. We use several synthetic and semi-synthetic datasets to evaluate our

proposed counterfactual models from various aspects. We also use a real-world dataset to

test the performance of the model under real circumstances.

GMixTiny: This dataset is a synthetic dataset generated using a Gaussian mixture model.

The dataset contains 10000 pairs of recipients feature vectors and donor feature vectors.

Recipient features are generated from a 128-dimensional Gaussian distribution with a

randomly selected centre and random diagonal covariance matrix. Donor features are

generated from a Gaussian mixture model consists of 3 64-dimensional Gaussian distribu-

tions. All Gaussian distributions have the same weights but different means and variances.

All means and variances are randomly selected. As the number of Gaussian mixture com-

ponents suggests, there are three types of donors, so a 3-dimensional target counterfactual

vector is attached to each recipient-donor pair. All counterfactual vectors are generated

from a Gaussian distribution with the fixed mean and fixed diagonal covariance matrix.
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Formally,

r ∼N (mr ,vr );mr ,vr ∈R128

o ∼ 1

3
N (mo1,vo1)+ 1

3
N (mo2,vo2)+ 1

3
N (mo3,vo3);

mo1,mo2,mo2,mv1,mv2,mv3 ∈R64

y ∼N (

 100

500

2000

 ,

10 0 0

0 10 0

0 0 10

)

The dataset is used to evaluate counterfactual models under an ideal situation. The choice

of parameters of the counterfactual Gaussian distribution makes it easy to distinguish the

outcomes of different donor classes. Recipients and donors are paired randomly, which

means the dataset can be used as a dataset collected using RCT, and the dataset does not

suffer from selection bias.

GMixOverlap: Similar to GMixTiny, this data set is a synthetic dataset generated using a

Gaussian mixture model. The differences between this dataset and GMixTiny are: (i) donor

feature vectors are generated from a Gaussian mixture model with five components with

different weights; (ii) some entries of counterfactual vectors are sampled from identical

Gaussian distributions.

r ∼N (mr ,vr );mr ,vr ∈R128

o ∼
5∑

i=1
wi N (moi ,voi );moi ,mvi ∈R64

y ∼N (



100

1000

100

1000

100

 ,



10 0 0 0 0

0 100 0 0 0

0 0 10 0 0

0 0 0 100 0

0 0 0 0 10

)

The dataset is used to evaluate the performance of the clustering model trained jointly

with the counterfactual model. As shown, although there are five classes of donors, some

of them overlap and can be merged into the same class. There are only two distinct donor

classes out of 5 classes. Weights of Gaussian mixture components are balanced regarding

the two "hidden" classes. As the result described below, jointly trained clustering models

have the ability to merge similar donor classes.
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Fig. 5.1 Distributions of recipient populations for each type of donor in the GMixBiased
dataset. For each type of donor, the corresponding distribution of the recipient population
is different, which means the dataset is biased.

GMixBiased: Different from the above datasets, this dataset is a synthetic dataset with

biases. This dataset is used to evaluate model performance when data is biased. The

dataset is generated using a Gaussian mixture model. Donor features are generated from

a Gaussian mixture model with three components of different means and covariance

matrices. To incorporate biases, recipient features are generated from a Gaussian mixture

model with two components. It means there are two types of recipients, and donors are

not randomly paired to recipients. For different types of recipients, the probabilities of

pairing each type of donor to the recipients are different. In this way, distributions of

recipient populations for each type of donor are inequivalent, so the dataset is biased.

Paired Liver Transplant Standard Dataset (PLTSD): This is a real-world dataset, in which

pairs of recipients and donors are extracted from the Liver Transplant Standard Dataset.

The dataset contains 4460 recipient-donor pairs. Recipients are described by 55-dimensional

feature vectors, and donor feature vectors have a dimensionality of 28. Because this is a

real-world dataset, and full counterfactual vectors are never observed in the real world, the

dataset contains only factual outcomes. Thus, the evaluation metrics are different from

those of other fully observed datasets, described in later sections. Besides, the dataset is

biased because of ethical and other issues. For instance, about 98% of donors are paired

with recipients having the same blood type, which means transplantation outcomes of

recipient-donor pairs with different blood types are rarely observed in the dataset.

Fully-Observed Paired Liver Transplant Standard Dataset (FPLTSD): This is a semi-synthetic

dataset generated based on PLTSD. One limitation of PLTSD is that only factual outcome

is observed, but entire vectors of counterfactuals are not observed in PLTSD. Because

of the limitation, it is impossible to apply many evaluation metrics to evaluate models
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Blood Type O A B AB
O 0.9863 0.0026 0.0106 0.0005
A 0.0010 0.9752 0 0.0238
B 0 0 0.9933 0.0067

AB 0 0.0138 0 0.9862

Table 5.1 Ratios of pairings of recipients and donors with different blood types in the
PLTSD dataset. Rows are for fixed donor blood types, and columns are for fixed recipient
blood types. As shown, about 98% of donors are paired with recipients having the same
blood type, which means the dataset is biased.

trained on PLTSD. To overcome the disadvantage, we create this semi-synthetic dataset, in

which recipients’ and donors’ features are identical to PLTSD, but potential outcomes are

generated. In order to generate potential outcomes, the dimensionality of counterfactual

vectors has to be set. We assume there are three types of donors, which means the dimen-

sionality of counterfactual vectors is set to be 3. We also assume that there are two types

of donors. Recipients and donors are then clustered using the Expectation-Maximization

algorithm. For each combination of recipient type and donor type, the mean and variance

of the potential outcome are estimated using observed data in PLTSD. For each recipient,

the counterfactual vector is then generated from a Gaussian distribution with correspond-

ing estimated means and variances. In this way, the expected potential outcome for each

combination of recipient type and donor type is kept invariant to observed data in PLTSD.

5.2 Evaluation Metrics

To evaluate model performance, we use three precision metrics: precision in estimation

of expected factual outcomes (PEEF), precision in estimation of deterministic factual out-

comes (PEDF), and weighted precision in estimation of counterfactual outcomes (WPEC).

As mentioned, because of soft clustering, clustering output t is a probability distribu-

tion of donor o belonging to each donor type. The estimated factual outcome is the

expectation of all counterfactual outcomes over donor type clustering distribution. Math-

ematically, ŷ f = ŷ · t. Therefore, PEEF is used to evaluate the precision of estimated factual

outcomes.

ϵPEEF = 1

N

N∑
n=1

(ŷ(n) · t(n) − y (n)
f )2
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Different from case to case, deterministic clustering may be preferred. In these cases, the

estimated factual outcome is considered as the corresponding entry of the estimated coun-

terfactual vector with the highest clustering probability, which means ŷ f = ŷ[argmaxi t[i ]],

where the operator [] is the indexing operator. Therefore, evaluating the precision of

estimated deterministic factual outcome is necessary. We use PEDF as a precision mea-

surement of estimated deterministic factual outcome.

ϵPEDF = 1

N

N∑
n=1

(ŷ(n)[argmax
i

t(n)[i ]]− y (n)
f )2

Besides, we use weighted square Euclidean distance between estimated counterfactual

vectors and ground truth counterfactual vectors to evaluate the precision of the entire

estimated counterfactual outcome vectors. Since the jointly trained clustering model

can merge similar donor types, the counterfactual model is expected to have reduced

precision in estimating counterfactuals of eliminated donor types. It is unreasonable to

include estimated outcomes of eliminated donor types into the evaluation. Therefore,

distance measurements of estimation and ground truth are weighted by the proportion of

donor types.

ϵW PEC = 1

N

N∑
n=1

w · (ŷ(n) −y(n))2

w = {wm}M
m=1

wm = 1

N

N∑
n=1

Im(argmax
i

t(n)[i ])

in which M is the number of clusters, which is a hyperparameter set manually, and I is the

indicator function. One problem of ϵW PEC is that because of the unsupervised clusters,

cluster labels of the learned clusters do not necessarily match donor type labels in datasets.

In other words, donor type 1 in the dataset may be mapped to cluster 3 in learned clusters,

which means columns of estimated potential outcome vectors may have to be shuffled to

match ground truth vectors. Since cluster labels are randomly assigned, there is no fixed

rule of how columns of counterfactual vectors should be shuffled. Therefore, we compute

ϵW PEC of all possible shuffled counterfactual vectors and ground truth vectors, and the

best ϵW PEC is taken.

In addition to the precision metrics described above, we also evaluate model performance

from another aspect: accuracy of the type of donors with the highest potential outcome.
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Since the type of donors with the highest potential outcome is an essential factor in

determining allocation policy, the accuracy of the predicted highest potential outcome

donor type is a vital measurement of model performance. The accuracy is evaluated as:

AoDT = 1

N

N∑
i=1

Iargmaxa y(i )[a](argmax
b

ŷ(i )[b])

Same as ϵW PEC , since there is no class label when training clusters, cluster labels of the

learned clusters do not necessarily match donor type labels in datasets. Therefore, AoDT

is computed for all possible shuffled ŷ, and the best AoDT is taken.

5.3 Baseline Models and Hyperparameter Setting

We use baseline models sharing the same fundamental structure of our proposed model,

where there is a clustering component to classify donors as well as a counterfactual

estimation component. To our knowledge, there is no existing architecture that has

equivalent problem formulation as ours. Therefore, combinations of classic clustering

and estimation architectures are used as baseline models. Typically, K-Means and EM

clusters are used as the clustering component of the baseline models. Baseline clusters are

pre-trained and fixed. The clusters are independent of the counterfactual estimation task,

and they are not updated while training the counterfactual estimation component. As for

the counterfactual estimation component, linear regression models and multi-branched

neural nets (similar to our proposed counterfactual model) are used as baselines. We also

use stand-alone DEC clusters plus branched neural nets as a benchmark, in comparison

to SCCN with jointly trained DEC clusters.

The number of clusters (donor types) is one of the most critical hyperparameters. For

synthetic datasets, the number of clusters is set to be the number of Gaussian mixture

components used to generate donor features, since the number of Gaussian mixture

components naturally represents the number of donor types under consideration. For

dataset PLTSD, the number of clusters is manually set to be 5. A sufficiently large number

of clusters does not have a significant impact on our proposed model because the model

has the ability to merge clusters.
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Fig. 5.2 The network structure of a multi-branched neural network used to estimate
counterfactuals. In this sample figure, the number of branches of the network is 3, which
is consistent with the number of clusters.
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(a) (b)

Fig. 5.3 Evolutions of validation loss of SCCN and baseline models as the training epoch is
increasing.

5.4 Experiment Results

5.4.1 Experiment 1: Performance on Data with Simple Structure

In the first experiment, we use the GMixTiny dataset to demonstrate how our proposed

counterfactual model performs under the ideal situation. We use 8000 recipient-donor

pairs for training, 1000 pairs for validation, and 1000 pairs for testing. The training-

validation-testing process is repeated 100 times with different random initialization. Aver-

age precisions of the top 50 trials are taken to reduce the effects of local optimal.

In Figure 5.3 we show evolution of model losses as training epoch is increasing. The

figure demonstrates that SCCN and models with deep neural net counterfactual estima-

tors require much less training iterations to converge. As shown in figure (a), after 30

epochs, models with linear counterfactual estimators are far from convergence, while

other models approached convergence very quickly. After 100 epochs, baseline models

with linear counterfactual estimators approaches convergence. Based on this observation,

performances of linear counterfactual estimator models are evaluated after training 100

epochs, and other models are evaluated after training 30 epochs.

For each model, we use two precision metrics to evaluate their performance. Results are

reported in Table 5.2. For baseline models with K-Means clusters, although K-Means as-

signs hard clustering to each input unit, the assignments are translated to one-hot vectors,

so that the formula of computing ϵPEEF is consistent. As a result, SCCN outperforms all

baseline models on the GMixTiny dataset, in terms of both factual outcome precision and

counterfactual vector precision. The precision of factual outcomes improved about 32%
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Model ϵPEEF ϵW PEC Avg. Var. of counterfactuals

K-Means/Linear 8.9075 14.4785 414.53
EM/Linear 8.8190 13.5865 411.09
K-Means/Multi-Branched NN 5.7627 14.5612 347.22
EM/Multi-Branched NN 6.2182 14.4179 219.89
DEC/Multi-Branched NN 6.8472 14.6970 190.86
SCCN 5.3838 12.5031 83.50

Table 5.2 Precisions and average variance of estimated counterfactual vectors of baseline
models and SCCN evaluated on the GMixTiny dataset. The average precision of the top
50 trails out of 100 trails is taken. The variances of estimated counterfactual vectors are
averaged over the top 10 trails out of 20 trails.

from the best benchmark model, and the precision of potential outcomes improved for

about 66%.

We also evaluated the average variance of estimated counterfactual vectors on the same

dataset. In the GMixTiny dataset, there is only one type of recipients. Ground truth

counterfactual vectors are generated from a Gaussian distribution with a fixed centre and

variances of 100 for each dimension. A good estimation model should have estimated

counterfactual vectors with variances matched the variances of the Gaussian distribution

from where the data is generated. Variance is computed for each column of estimated

counterfactual vectors (each type of donor), and the average is taken for variances of all

columns. Variances reported in Table 5.3 are averages of top 10 trails out of 20 trails. As

a result, SCCN achieves the lowest average variance of 83.50, which significantly outper-

forms other benchmarks. The results suggest that SCCN actually understands and learns

the structure of the dataset.

5.4.2 Experiment 2: Ability of Merging Clusters

In the second experiment, we demonstrate that SCCN has the ability of merging similar

clusters. Models are evaluated on the GMixOverlap dataset. As described in the previous

section, donor features in the dataset are generated from 5 different Gaussian distribu-

tions, which means there are five generative classes for donors. However, donors from 3

out of 5 classes lead to similar outcomes, and donors from the other two classes lead to

another type of outcome (details described in previous section 6.1.1). Therefore, there

are, in fact, two significant donor classes. In this experiment, we show that SCCN can

merge similar donor types, independent from the hyperparameter setting of the number
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(a) K-Means (b) EM (c) DEC

(d) jointly trained DEC initialized with 5 clusters

(e) K-Means (f) EM (g) DEC

(h) jointly trained DEC initialized with 8 clusters

Fig. 5.4 Results of clustering of K-Means, EM, DEC, and jointly train DEC in SCCN. Since
clustering algorithms do not have class labels, colors are randomly assigned to each cluster,
and the same color in different plots does not represent the same class. Sample points are
mapped to dimension 2 using PCA [23].
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Model 5 clusters ϵPEEF 8 clusters ϵPEEF

K-Means/Linear 9.6768 9.7185
EM/Linear 11.0664 9.7039
K-Means/Multi-Branched NN 8.7396 8.7061
EM/Multi-Branched NN 8.7003 8.7165
DEC/Multi-Branched NN 8.7078 8.6890
SCCN 8.6157 8.6489

Table 5.3 Precisions of baseline models and SCCN evaluated on the GMixOverlap dataset.
The average precision of the top 50 trails out of 100 trails is taken. The number of clusters
is set to be 5 and 8 to evaluate the performance of models under different settings.

of donor types.

Models are trained with the number of clusters set to be 5 and 8. The dimensional-

ity of estimated counterfactual vectors matches the number of clusters, which is varying

in this case. It does not necessarily match the dimensionality of observed ground truth

counterfactual vectors. Hence, it is inappropriate to evaluate the model by ϵW PEC . Models

are evaluated by the precision of estimated factual outcome ϵPEEF .

As shown in Table 5.3, SCCN outperforms all other models, especially on the precision of

estimated factual outcomes. One observation is that EM/Linear has significantly worse

performance when there are 5 clusters. It is believed that the model is often trapped

to local optimal. Besides, as shown in the table, having more clusters does not have a

significant impact on model performance. Different clusters can have similar estimation

functions so that having extra clusters does not significantly affect model performance.

As shown in Figure 5.4, jointly trained DEC clusters in SCCN merges similar clusters.

Extra clusters are often eliminated during training so that the setting of the number of

clusters does not have significant effects on SCCN. With different settings of the number

of initial clusters, the jointly trained clusters tend to approach the same optimal clustering.

Although some times extra clusters are not eliminated completely (in Figure 5.4, when

initialed with 8 clusters, there are 3 clusters left, while the optimal number of clusters is 2),

we can also see the intention of approaching the optimal merging. The ability to merge

similar clusters does not only provide more robustness but also shows more interpretabil-

ity of the data. In the real world, the number of types of donors is latent and unknown.

The ability to merge similar types provides us insight into how many significant donor

types there are, which is beneficial for further studies.
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GMixBiased

Model ϵPEEF ϵPEEF with rep loss

K-Means/Linear 9.6376
EM/Linear 9.4781
K-Means/Multi-Branched NN 8.8587 8.8561
DEC/Multi-Branched NN 8.7489 8.1911
SCCN 8.1349 8.1024

FPLTSD

Model ϵPEEF ϵPEEF with rep loss

K-Means/Linear 14.2852
EM/Linear 14.2537
EM/Multi-Branched NN 13.1531 13.1380
SCCN 13.0868 13.0776

Table 5.4 Factual outcome precisions of SCCN and benchmarks trained on GMixBiased
and FPLTSD datasets with and without representation loss. Since linear estimators do not
have representation learning sub-component, inapplicable entries of the table are left
blank.

5.4.3 Experiment 3: Representation Learning

In this experiment, we demonstrate how representation learning influences our proposed

model. In previous experiments, selection bias is ignored, since datasets used in previous

experiments contains randomly paired recipient-donor pairs, which does not suffer from

selection bias. In this experiment, we evaluate model performance on GMixBiased and

FPLTSD datasets. As described above, GMixBiased is a synthetic dataset incorporated

selection bias, and FPLTSD is a semi-synthetic dataset based on real-world data, which

naturally comes with biases. We first measure the performance of SCCN and benchmark

models based on basic precision metrics ϵPEEF . Results are reported in Table 5.4.

As reported in Table 5.4, SCCN shows better precisions on GMixBiased datasets with

and without representation loss. For our proposed SCCN, the precision of estimated

factual outcome improved a little for about 3% with representation loss. As for the FPLTSD

dataset, since the dataset is based on real-world data, the dataset has a more complex

data structure, so models generally have worse performance than models trained on

GMixBiased. However, it is still observable that SCCN outperforms other benchmark

models.

We also test how representation loss affects representations learned as well as the per-
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(a) α= 0.001 (b) α= 0.01 (c) α= 1 (d) α= 10

Fig. 5.5 Representations learned of SCCN trained on FPLTSD with various weights of
representation loss.

Fig. 5.6 Evolution of precision of estimated factual outcome of SCCN trained on FPLTSD
with increasing weights of representation loss. Each point in the plots is an average
precision of 20 trials.

formance of SCCN. As mentioned in section 4.2, the empirical objective function of our

consideration is a linear combination of factual loss, clustering loss, and representation

loss. The weight of representation loss α controls whether the model would put more

efforts on minimizing representation loss or other losses. In other words, with a large

α, the model would focus more on learning balanced representations rather than mini-

mizing the error of estimated factual outcomes. As shown in Figure 5.5, as the weight of

representation loss increases, SCCN learns more balanced representations.

Results in Table 5.4 suggests that with a well-tuned weight of representation loss, repre-

sentation learning promotes model performance. However, extremely balanced repre-

sentations often lead to worse model performance. Biased observational data is usually

highly informative and predictive since it often incorporates knowledge of human experts.

Minimizing distributional distance results in losing that information. As shown in Figure

5.6, large α results in performance decline.

5.4.4 Experiment 4: Performance on Real-World Data

We evaluate SCCN and baseline models on the real-world dataset PLTSD. The dataset has

a much complex data structure than synthetic datasets used in previous experiments,

and the true number of donor types is latent. In this experiment, we set the number of
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PLTSD

Model ϵPEEF ϵPEDF

K-Means/Linear 14.3448 14.3448
EM/Linear 14.2813 14.2813
K-Means/Multi-Branched NN 13.1038 13.1038
EM/Multi-Branched NN 13.1453 13.1452
SCCN 13.0821 13.1192

Model with rep loss ϵPEEF ϵPEDF

K-Means/Multi-Branched NN 13.0877 13.0877
EM/Multi-Branched NN 13.1407 13.1407
SCCN 12.9938 13.0612

FPLTSD

Model AoDT

K-Means/Linear .6342
EM/Linear .6256
K-Means/Multi-Branched NN .6410
EM/Multi-Branched NN .6562
DEC/Multi-Branched NN .6430
SCCN .6737

Table 5.5 Performance of SCCN and baseline models evaluated on PLTSD. Models with
K-Means clusters have identical ϵPEEF and ϵPEDF , because K-Means produces hard cluster
assignments. Representation loss is inapplicable for Models with linear estimators, and
the corresponding entries are left blank.

clusters to be 5 for all models. Since PLTSD is a real-world dataset, entire ground truth

counterfactual vectors are never observed. It is impossible to evaluate the precision of

estimated counterfactual vectors. Instead, we use ϵPEEF and ϵPEDF to evaluate models’

performance. Besides, unlike our generated synthetic datasets, where recipients and

donors are paired simulating RCT, PLTSD contains biases. Therefore, we train models

with and without representation loss to evaluate the effects of representation learning on

model performance.

As shown in Table 5.5, SCCN outperforms baseline models on the precision of estimation

of expected factual outcomes, especially with representation loss. For SCCN with repre-

sentation loss, ϵPEEF improved about 9% from the best benchmark. SCCN also shows

comparable results on the precision of estimation of deterministic factual outcomes. It is

also observable that training with representation loss enhances model performance when

data suffers from biases. Representation learning improved the performance of SCCN for
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about 8.5%.

Additional to the precision of estimated outcomes, models’ performances are also evalu-

ated by the accuracy of predicting the best donor type (AoDT). Since the PLTSD dataset

does not contain ground truth potential outcome vectors, it is impossible to calculate

AoDT on PLTSD. Instead, we evaluate models on the FPLTSD dataset, in which recipient

and donor features are identical to data in PLTSD, and counterfactual vectors are gener-

ated as described in section 5.1. Models are trained 50 times, and the average AoDT of

the top 20 trails are reported in Table 5.5. As a result, SCCN achieves the highest AoDT of

67.37%, which improved for 2.6% from the best benchmark and improved for 51% from

random guessing.

5.4.5 Experiment 5: Alternate Training

One limitation of SCCN is that SCCN tends to sacrifice clustering certainty to maximize

the precision of estimation of expected factual outcomes. The limitation results in SCCN

having worse performance on the estimation of deterministic factual outcomes (shown

in Table 5.5). Although, in this case, expected factual outcomes are more considered, in

other cases, deterministic factual outcomes could be crucial. To emphasize the precision

of estimation of deterministic factual outcomes, we introduce alternate training, with

which SCCN shows better ϵPEDF .

In the alternate training approach, we train one of the clustering component and counter-

factual estimation component of SCCN, with the other component frozen. Besides, when

training the counterfactual estimator, an entry of the estimated counterfactual vector

corresponding to the assigned donor cluster is taken to compute factual loss, instead of

using the expectation of a counterfactual vector as estimated factual to compute factual

loss. With the edited factual loss, the estimator is encouraged to maximize the precision

of estimation of deterministic factual outcomes, rather than expected factual outcomes.

Formally, the alternate training approach involves the following steps:

1. Use K-Means to fit donor feature vectors as the initialization of clustering targets of

the clustering component.

2. Train a clustering model.

3. Train the counterfactual estimator using the edited factual loss function, while the

clusters are fixed.
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Model ϵPEEF ϵPEDF

SCCN 13.0821 13.1192
SCCN alternate trained 13.1382 13.0708

Table 5.6 Performance of SCCN with and without alternate training evaluated on the
PLTSD dataset.

(a) without alternate training (b) with alternate training

Fig. 5.7 Clusters of SCCN trained with and without alternate training. SCCN is trained on
the GMixOverlap dataset. Colors are randomly assigned to each cluster, and the same
color in different plots does not represent the same class.

4. Take the index of the entry of each estimated counterfactual vector that is the closest

to the ground truth factual outcome as the new clustering target of the clustering

component.

5. Go back to step 2.

As a result, alternate training improves SCCN’s precision of estimation of deterministic

factual outcomes, but ϵPEEF decreases as the cost. Besides, we also test how alternate

training effects SCCN’s ability to merge clusters. SCCN is trained on the GMixOverlap

dataset with and without alternate training. Plots of clustering results is shown in Figure

5.7.

With alternate training, extra clusters are not eliminated but expanded to cover the whole

subspace of the group of similar clusters. This is because, in step 3, clusters are fixed, so

some branches of the branched neural network are forced to estimate the ground truth

factual outcome. While without alternate training, these branches may not be updating

significantly because their corresponding clusters may have been merged. Therefore, in

step 4, some clustering targets may be set to be clusters that should have been merged

without alternate training. Thus, clusters are not merged with alternate training.
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5.4.6 Experiment 6: Allocation Policy

In this experiment, we evaluate an allocation policy naturally driven from our proposed

SCCN model. One of the main disadvantages of existing allocation policies is that alloca-

tions usually only depend on predicted transplantation outcomes (factual outcomes) of

certain recipient-donor pairs, ignoring potential outcomes (counterfactual outcomes) of

other possible pairings. Conventional allocation policies, such as First Come First Serve

(FCFS), Utility First, and Benefit First, are all based on estimated factual outcomes only.

As mentioned, in many cases, these allocation policies result in sub-optimal results due to

arriving orders of donors and ignorance of potential outcomes.

We propose an allocation policy naturally driven from outputs of SCCN, called Matching

First allocation policy. In this policy, a newly arrived donor is allocated to the first recipient

in the waiting sequence, for which the donor type with the best counterfactual matches

the type of the arrived donor. If there is no such recipient in the sequence, the arrived

donor is allocated by Benefit First policy. We compare Matching First policy to the three

widely used allocation policies mentioned above as well as the real-world policy, where

human experts determine allocations.

1. Real Policy: a new donor is allocated based on human expert knowledge. This is the

policy by which the real-world dataset PLTSD is collected.

2. FCFS: a new donor is always allocated to the first recipient in the waiting sequence.

3. Utility First: a new donor is allocated to the recipient with the best predicted trans-

plantation outcome (survival time after transplantation).

4. Benefit First: a new donor is allocated to the recipient with the highest benefit,

where the benefit is defined as a positive difference between predicted survival time

after transplantation and survival time if not undergoing transplantation.

5. Matching First: a new donor is allocated to the first recipient in the sequence for

which the corresponding donor type of the best estimated potential outcomes

matches the type of the new donor.

We use real-world dataset PLTSD to evaluate allocation policies. Different from previous

experiments, in this experiment, recipients and donors are treated as sequential data.

All recipients in PLTSD are treated as a sequence of waiting recipients, and donors are

treated as a series of new donors. Recipients and donors are randomly shuffled so that

recipients and donors are not paired as in original PLTSD. A regression neural network is
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Allocation Policy Death Rate Avg. Survival Avg. Benefit

Real Policy 0.2417 2457.78 500.37
FCFS 0.2417 2431.49 460.40
Utility First 0.3045 2255.11 388.71
Benefit First 0.1558 2770.57 633.68
Matching First top 10 0.1582 2755.69 632.28
Matching First top 3 0.1566 2762.69 654.34

Table 5.7 Performance of allocation policies evaluated using simulations run on the PLTSD
dataset. Simulations of Matching First policy are run 30 times, and the top 10 and top 3
trails are reported.

trained to predict the transplantation outcome given a recipient-donor pair. The outputs

of the regression neural net are used as ground truth outcomes during simulations. The

performance of an allocation policy is evaluated by the ratio of death due to condition

deteriorated on the waiting list (before transplantation), the average survival time of all

recipients, and the average benefits of all recipients undergoing transplantation. Good

allocation policies are expected to have a low ratio of death, but high average survival time

as well as high average benefits. Simulation results are shown in Table 5.7.

It is observable that among previously existing policies, Benefit First significantly outper-

forms other policies. Among existing policies, Benefit First policy produced the lowest

ratio of death, the highest average survival time, and the highest average benefits as well.

Our proposed Matching First policy also achieves comparable results. In terms of death

rate and average survival time, the differences between Matching First and Benefit First are

less than 2%. Besides, Matching First improves the average benefits of recipients for 3.3%,

compared to Benefit First policy. Compared with the real policy determined by human

experts, Matching First reduced the death rate for 35.2%, and, on average, Matching First

extends the survival time of recipients for about 12.4%.



Conclusion

In this paper, we proposed a novel method for solving the organ allocation problem for

organ transplantation. Different from many existing works on organ transplantation,

we adapted architectures for ITE estimation problems to investigate the limitations of

existing works due to the ignorance of potential outcomes. Besides, we introduced a novel

counterfactual estimation method to handle non-one-hot high-dimensional treatments.

The proposed SCCN does not require binary or one-hot treatments in distinction from

many previous works on ITE estimation. The model also has the ability to merge similar

treatments, so that the number of treatments does not have to be fixed.

We have shown the proposed SCCN outperforms all benchmark models in various as-

pects, in terms of factual estimation, counterfactual estimation, the accuracy of predicting

the best type of treatments, etc. The ability to merge clusters provides more freedom of

hyperparameter tuning and gives more interpretation of the data. We also introduced a

method of balancing representation learning for multiple (more than two) treatments and

discussed how representation learning influences model performance. As for allocation

policy, the proposed Matching First allocation policy achieved comparable and even

slightly improved results compared to state-of-art policies. Matching First policy also

achieved significant improvement over the real allocation policy used by human experts.



Discussion and Future Works

Our work introduces a novel solution to the problem of organ allocation that adapts ideas

for solving ITE estimation problems. The problem of our consideration is vital in both

machine learning and medical fields. The problem is related to human lives, and we are

investigating a much more challenging problem that differs from traditional supervised or

unsupervised learning problems. In this problem, ground truth outcomes are never fully

observed, and it is challenging to handle high-dimensional treatments.

It also goes beyond the paper. For problems related to human lives, ethics always has

to be taken into consideration. This work is for research purposes, and it can not be

directly put into practice. One reason is that there is still a long way to go until introduced

architectures can reach a practical level. Another more important reason is that there are

many other factors that have to be taken into accounts, such as ethics and fairness, in the

real world. However, this work can be investigated to produce helpful tools for doctors, as

providing helps to human lives is always one of the essential purposes of researches.

Our work provides various inspirations about how to allocate resources, handle non-

one-hot high-dimensional treatments, etc. There are many potentials of our proposed

architecture. Further studies could focus on developing better counterfactual models,

developing better allocation algorithms, or extending model abilities.

For counterfactual estimation:

1. Better representation loss could be investigated for the replacement of the current

loss function. If data is sampled from a Gaussian mixture model, balancing dis-

tributions of samples that belong to different classes is contradicted to the data

structure. Instead of balancing distributions, we can minimize posterior variance

[3], and other architectures [32] are applicable.
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2. The Jointly trained clustering model could be improved. The work of Guo et al. [8] is

applicable. Besides, the clustering model could be improved to eliminate limitations

that the current clustering model has (clusters tend to assign uncertain classes to

minimize factual loss).

3. The architecture of GANITE [33] could also be adapted, rather than using multi-

branched neural networks. Potentially, the counterfactual model could have struc-

ture as shown in Figure 7.1.

Fig. 7.1 GANITE based architecture. A GAN is built to generate a fully observed dataset,
and another GAN is trained on the generated dataset to estimate counterfactuals. zG and
zI are two random variables following a standard normal distribution.

For organ allocation:

1. With our proposed architecture, we could adapt more statistics to obtain a more

comprehensive allocation policy. For instance, since we have estimations of po-

tential outcomes and distributions of donors, for a newly arrived donor, we could

calculate the expected improvement of transplantation outcome as:

E I (o,r) = Eo′[max{outcome(o′,r)−outcome(o,r),0}]

By Monte Carlo approximation [20], we can approximate expected improvement as:

E I (o,r) = 1

N
max

N∑
i=1

{outcome(o′
i ,r)−outcome(o,r),0}
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where o′
i are sampled from the distribution of donors. A high expected improve-

ment suggests that there is a better organ for the recipient with high probability,

which means maybe the organ should not be allocated to the recipient.

2. Many architectures designed for recommendation systems could be applied to the

allocation problem. In recommendation systems, units are recalled and ranked.

The allocation process is similar to the ranking process, where the ranking could

be based on estimated counterfactuals and sequential information. Besides, some

existing ranking algorithms are able to react to online transplantation outcomes.

3. The problem can be solved using sequence to sequence models. Instead of assigning

a recipient to each arrived donor, models could be developed to assign a sequence

of recipients to a sequence of donors. The donor sequence could be given, or a

prediction model could be developed to predict future organ arrivals. For sequence

to sequence model, many existing architectures are applicable, such as recurrent

neural networks (RNN) [25], long short-term memory (LSTM) [10], and attention

networks [29].

From a broader view, the problem we are considering is not only an organ allocation

problem but can also be viewed as a resource allocation problem. Our work can be nat-

urally translated to solve the resource allocation problem in other fields, such as cloud

computing resource allocation and financial resource allocation. Traditional solutions

to resource allocation are mainly dynamic programming and heuristic algorithms. More

recent studies involving machine learning try to estimate the allocation outcome for each

unit [35]. However, similar to organ allocation studies, none of the existing studies have

tried to estimate all potential outcomes for each unit.

Additionally, this work could be extended to work on time-variant cases, where the recipi-

ent and donor features are changing over time. Innovative works [1, 5, 14] on time series

can be applied to extend our proposed model’s ability to work on time series data.
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Appendix I: Pseudo-Code of Matching First

Allocation Policy

Algorithm 1: Pseudo-code of Matching First

Input: list of waiting recipients "R", donor "d", trained counterfactual estimation

model "CF", trained clustering model "CLS", list of estimated survival time of

recipients without transplantation "S", threshold of maximum number of

recipients to search "limit"

idx = 0;

Compute type of the given donor: dType = CLS.predictDonorType(d);

while idx < limit do
r = R[idx];

Estimated best donor type: bestDonorType = CF.predictBestDonorType(r);

if dType == bestDonorType then
Allocate d to r;

return
else

end

idx += 1;
end

Compute benefits of recipients: benefits = CF.predictFactual(R[:limit]) - S[:limit];

Allocate d to the recipient with the highest benefit



Appendix II: Full Structure & Hyperparam-

eter Setting of SCCN

Fig. 9.1 The full structure of SCCN with the initial setting of the number of clusters being 3.
On the right-hand side is the counterfactual estimation component, and on the left-hand
side is the clustering component.
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Hyperparameter Settings of hyperparameters

Layer initialization
random normal initialization
for weights and biases

Optimizer Adam optimizer
Activation function ReLU
Batch size 256
Hidden state dimension of representation network 48/96/10
Hidden state dimension of branched network 48/48/96/1
Hidden state dimension of clustering network 48/48/96/5/#clusters
α, β 0.2, 10

Table 9.1 Other hyperparameter settings of SCCN.



Appendix III: Source Code

See source code at:

https://github.com/CanXu960728/Matching-Networks-for-Organ-Allocation

which includes code, datasets, and detailed descriptions of datasets.

https://github.com/CanXu960728/Matching-Networks-for-Organ-Allocation
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