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Abstract

Multi-output regression problems are a subset of supervised learning problems where we try

to infer multiple scalar outputs from a given input. Usually, the outputs in such problems

exhibit inter-dependencies, so a performant model will take those dependencies into account

during training and inference. Gaussian Process models perform well on single-output

problems, but their extension to multi-output problems comes at the cost of significant

computational expenses and limited expressivity. The Gaussian Process Autoregressive

Regression model allows us to cleanly extend the power of GPs to multi-output problems

through the chaining of Gaussian Processes. The goal of this thesis is to scale the GPAR

model so that it can be applied to large datasets in a reasonable timeframe.
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Chapter 1

Introduction

Multi-output regression problems are a subset of supervised learning problems where we

try to infer multiple scalar outputs from a given input. Usually, the outputs in such

problems exhibit inter-dependencies, so a performant model will take those dependencies

into account during training and inference.

Two examples of multi-output regression problems can be seen in Figure 1.1. The left

figure [Requeima et al., 2018] shows the classic example where we attempt to infer CO2

emissions, temperature, and ice cap levels over time. The problem presented by the right

figure is trying to extrapolate EEG sensorial data for three sensors given the first half of

the readings and the full readings of the other sensors.

A Gaussian Process (GP) is a stochastic process such that any finite subset of the

random variables it models is distributed according to a multivariate Gaussian distribu-

tion. Gaussian Process models are powerful and popular for doing single-output regression

[Williams and Rasmussen, 2006] as they directly capture model uncertainty and allow the

user to input prior knowledge into the model through the selection of kernel functions.

However, naively extending GP models to multi-output regression problems leads to a

blow-up in complexity and limited representation.

Figure 1.1: Examples of multi-output regression problems.
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14 CHAPTER 1. INTRODUCTION

The Gaussian Process Autoregressive Regression (GPAR) model addresses this limita-

tion by chaining GP models in a predetermined order based on conditional probabilities.

Evaluations [Requeima et al., 2018] of GPAR on small datasets show that it can more

accurately capture dependencies between features than usual GPs. However, one of the

limitations of GPAR is that it has O(MN3) 1, which is unreasonably expensive for large

datasets where N can take values in the tens of thousands.

This project will scale GPAR through a modified popular pseudo-point

[Seeger et al., 2003] technique called the Deterministic Training Conditional

(DTC) [Quiñonero-Candela and Rasmussen, 2005], combined with state space

[Sarkka et al., 2013] approximations in order to speed up computation. The state

space approximation is required because our DTC modification leads to the need of doing

a Cholesky decomposition of an N × N matrix, which is a cubic operation. Using state

space methods allow us to get around the need for this decomposition.

1N being the number of observations and M being the number of output dimensions



Chapter 2

Literature review

This chapter begins by providing a brief overview of Gaussian Processes and the Gaussian

Process Autoregressive Regression model. Afterwards, we will study established ways of

scaling usual GP models which we’ll later use for scaling GPAR.

2.1 Gaussian Processes

The Gaussian Process (GP) model attempts to estimate the underlying function of a su-

pervised learning task by assuming Gaussian distribution at each random variable location.

GP models are powerful tools known for their modularity, tractability, and interpretability

[Williams and Rasmussen, 2006]. Gaussian Processes can model nonlinear dependencies

between inputs and outputs by letting the covariance between two points take the form of

nonlinear functions of these points.

2.1.1 The Gaussian Process prior

The Gaussian Process model is the extension of a multivariate Gaussian to infinitely many

variables. Wikipedia defines the Gaussian Process as “a stochastic process, such that every

finite collection of those random variables has a multivariate normal distribution”.

A D-dimensional multi-variate Gaussian distribution is fully specified by a mean vector

µ and a covariance matrix Σ as in Equation 2.1. A Gaussian Process can be thought of as

the extension of the multivariate Gaussian distribution to infinitely long vectors.

N (x;µ,Σ) = (2π)−D/2|Σ|−1/2 exp(−1

2
(x− µ)TΣ−1(x− µ)) (2.1)

The GP is fully defined by a mean function m(x) and a covariance function k(x, x′)

(also known as the kernel). Any finite collection of random variables from a Gaussian

Process form a multivariate Gaussian distribution with a mean and a covariance matrix

15



16 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Functions drawn from two GPs with sinusoidal mean function and squared

exponential and, respectively, Matern-3/2 kernels. The squared exponential covariance

function leads to infinitely differentiable sample functions, whereas its Matern-3/2 outputs

once differentiable covariance functions. Therefore, we expect smoother function in the

left figure, which is what we observe.

obtained by evaluating the mean and covariance functions at the specific points. This

is only possible if the kernel is a positive definite function, such that it outputs positive

definite matrices when evaluated.

The reason why we can work with GPs without having to store infinite information is

thanks to the marginalization property. This property is given for multivariate Gaussian

distributions in Equation 2.2, but it extends cleanly to Gaussian Processes; i.e in the case

of GPs, one could think of y as an infinitely long vector and the marginalization property

still holds. This is an amazing property of Gaussians that allows us to ignore the random

variables in which we are not interested. Therefore, we can work with the finite set of

random variables which interest us whilst still having an underlying model defined on an

infinite domain.

p(x,y) = N
(

x,y;

[
a

b

]
,

[
A B

BT C

])
→ p(x) = N (x; a,A) (2.2)

Figure 2.1 shows sample functions drawn from two GPs with similar sinusoidal mean but

different covariance matrices. These kind of plots are useful for getting an understanding

of how the covariance function impacts the shape of the output. To generate a sample

function, we first evaluate the GP mean and kernel functions at 1000 regularly spaced

points x and retrieve the multi-dimensional Gaussian distribution from which we generate

samples.
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2.1.2 Posterior Gaussian Process

In the previous section, we discussed the Gaussian Process prior and showed some example

functions generated from it. Now we’ll go into how a Gaussian Process can be updated

to take into account observations. This will be called a posterior Gaussian Process. The

posterior GP is another GP with mean and kernel functions obtained from linear combi-

nations between the prior mean and kernel functions and the mean vector and covariance

matrix of the multi-dimensional Gaussian distribution obtained by evaluating the prior GP

at the observation points. This implies that:

• In particular, a posterior GP is still a Gaussian Process, so it does have the same

properties as a prior GP.

• A posterior GP can be thought of as an updated/new prior in light of observed data.

This means that GP models fit in the Bayesian inference framework in that it can

be trained “online” as we receive more data.

Expanding on Equation 2.2, the marginalization property also allows us to get an

analytic solution for the conditional probability as in Equation 2.3. Again, we only care

about the random variables at the inference locations and the observed locations, the other

random variables being marginalised out.

p(x,y) = N
(

x,y;

[
a

b

]
,

[
A B

BT C

])
→ p(x|y) = N (x; a + BC−1(y − b),A−BC−1BT )

(2.3)

Equation 2.3 also describes how to naively perform inference in a Gaussian Process.

Given observations y, we perform inference at the points x by performing linear combi-

nations on the parameters of the multi-dimensional Gaussian distributions retrieved by

evaluating the GP at x and y. This is another example of where the marginalisation

property saves us from having to work with infinitely many random variables.

The bottleneck with the previously described approach is that it requires inverting the

matrix C, which is a N ×N matrix, where N is the number of observations. This means

that computing the posterior is a O(N3) operation, thus leading to infeasible runtimes

when the number of observations exceeds a certain (low) threshold. We will discuss more

about improving the complexity when we discuss pseudo-point approximations and the

Deterministic Training Conditional in Section 2.3.

An example of how conditioning impacts the GP can be seen in Figure 2.2. We plot

function drawn from the same GPs as in Figure 2.1, but we condition them on two observa-

tions. We can see how the functions get clamped around the observation points, and then

exhibit more variance the further we get away from them. This simulates the expected
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Figure 2.2: Functions drawn from two posterior GPs with sinusoidal mean function and

squared exponential and, respectively, Matern-3/2 kernels. We condition each GPs on the

two blue observations. The observed points are the same in both cases.

behaviour, we have more information about an inference location the closer it is to an

observation. We also notice that the kernel of the posterior process retains the properties

of the prior’s kernel; the functions sampled from the GP with a squared exponential kernel

are smoother than the ones sampled from its counterpart.

2.1.3 Covariance functions

The covariance function is the most important element to consider when creating a Gaus-

sian Process. As we previously explored, the kernel directly impacts the shape of the

functions sampled from the GP. There are multiple classes of covariance functions; so far

we’ve used the squared exponential (Equation 2.4) and Matern-3/2 (Equation 2.5) covari-

ance functions for generating the previous figures. There isn’t a one size fits all covariance

function, an experienced engineer will change the prior covariance function based on the

data they’re modelling.

k(x, x′) = σ2exp

(
−(x− x′)2

2l2

)
+ σ2

noiseδxx′ (2.4)

k(x, x′) = σ2

(
1 +

√
3|x− x′|
l

)
exp

(
−
√

3|x− x′|
l

)
(2.5)

These covariance functions introduce hyperparameters that require tuning. The specific

hyperparameters introduced can change for different classes of kernels, but they usually

include the characteristic lengthscale l and the magnitude scale parameter σ2. Informally,

the lengthscale specifies the distance from which two points will be uncorrelated, and the

magnitude scale parameter controls the overall variance of the process. The optimization of



2.1. GAUSSIAN PROCESSES 19

Figure 2.3: GP predictions when using different lengthscales. Credit for graphic goes to

Carl Rasmussen.

these parameters is usually accomplished through Maximum Marginal Likelihood Estima-

tion since we can analytically compute the marginal likelihood of a set of hyperparameters

given the observations because we work with Gaussian distributions.

We should also note that we use the term “marginal likelihood” since we only care

about the likelihood at the locations (random variables) of interest; i.e. the probability

of the observed random variables given the hyperparameters. Marginal likelihood gets its

name from the process of marginalising out the latent function values. In the literature,

people prefer the term “marginal likelihood”, so we’ll stick to using this term.

An example of how hyperparameters can affect the GP can be seen in Figure 2.3, where

we study how the value of the lengthscale l can affect predictions. Large lengthscales mean

that observations have a “larger reach”. However, this might lead to underfitting. In

contrast, short lengthscales can lead to overfitting since we only look at a limited horizon.

It is known that Maximum Likelihood Estimation is prone to overfitting. However,

Maximum Marginal Likelihood Estimation (as in our case) circumvents MLE’s predispo-

sition to overfitting since we are marginalising out the latent function values, thus doing

Bayesian inference over these function values; for every set of hyperparameters we consider

every function value. This leads to to a kind of constrained optimization since we are

optimizing a small number of hyperparameters given a much larger set of observations.

One can draw the parallel between this and Bayesian Occam’s razor which says that a

more complex model can accommodate more data, but complex models are automatically

penalised through Bayesian inference, thus automatically keeping the balance.

Some other useful covariance functions would include the periodic covari-
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ance functions [MacKay, 1998], neural-network covariance functions [Lee et al., 2017,

Matthews et al., 2018, Wilson et al., 2016, Calandra et al., 2016], and composite versions

of covariance functions [Duvenaud et al., 2013].

2.2 Gaussian Process Autoregressive Regression

Gaussian processes offer a powerful approach for tackling single-output regres-

sion problems case since they offer modularity, tractability, and interpretability

[Williams and Rasmussen, 2006] coupled with a probabilistic approach to regression. How-

ever, they fall short when doing multi-output regression since they produce models that

are computationally demanding and are limited in capturing output inter-dependencies;

they can only capture linear relationships between outputs. During this section, we’ll look

at the Gaussian Process Autoregressive Regression (GPAR) model [Requeima et al., 2018]

and how it can address this issue.

2.2.1 The GPAR model

The main problem behind extending GPs to multi-output regression is that it fails

to capture the complex inter-dependencies between the outputs. There are multiple

ways to capture these correlations if they are linear and fixed across the input space

[Nguyen et al., 2014, Dai et al., 2017]. However, they fail when the dependencies between

the outputs are non-linear, which is a big downside since non-linear interdependency cap-

ture is one of the strengths of GPs.

The idea behind the GPAR model is to use the product rule to decompose the joint

output distribution into a set of conditionals, each of which is modelled by a standard GP.

If, like in [Requeima et al., 2018], we consider modelling M outputs p(y1:M(x)) =

(y1(x), . . . yM(x)), then applying the product rule yields Equation 2.6. This states that

y1(x) is first generated from x according to an unknown function f1; that y2(x) is gener-

ated from x and y1 according to an unknown function f2; et cetera.

p(y1:M(x)) = p(y1(x))︸ ︷︷ ︸
f1

p(y2(x)|y1(x))︸ ︷︷ ︸
f2

. . . p(yM(x)|y1:M−1)︸ ︷︷ ︸
fM

(2.6)

GPAR uses Gaussian processes to model these unknown functions fi. Although this

leads to individual conditionals from Equation 2.6 being Gaussian, the overall joint dis-

tribution is non-Gaussian and usually intractable. However, we can sequentially generate

samples from the conditionals in order to generate joint samples.

Learning is accomplished by sequentially conditioning the GPs on the previous outputs

(and x) in the pre-specified order. More formally, let y
(n)
m = ym(x(n)) denote the n’th
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Figure 2.4: GPAR vs independent GPs on the EEG dataset. GPAR manages to accuratelly

extrapolate the last 100 readings, whereas independent GPs are unable to model them.

observation for output m ([Requeima et al., 2018]). Then, if we assume that all outputs

are observed at each input, we find that the posterior GPAR cleanly decomposes into a

product of posterior GPs as in Equation 2.7. This means that the posterior of fm can be

computed by conditioning upon the observations for output m at the locations generated

by grouping the previous outputs and the input x. The evidence also decomposes in a

similar manner, thus allowing us to sequentially optimize the kernel hyperparameters.

p(f1:M)|(y(n)
1:M , x

(n))Nn=1) =
M∏
m=1

p(fm|(y(n)
m )Nn=1, (y

(n)
1:m−1, x

(n))Nn=1) (2.7)

2.2.2 Example

An example of how GPAR performs when compared to independent GPs can be seen in

Figure 2.4. The EEG dataset1 consists of 256 measurements from 7 electrodes placed

1The EEG data set can be downloaded at https:// archive.ics.uci.edu/ml/datasets/eeg+database.
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on the patient’s scalp. Our task is to predicts the last 100 measurements for three of

these electrodes given the first 156 samples and full samples for the reading of the other

electrodes. We can see that whereas GPs fail to capture any meaningful information,

GPAR can predict with low variance the voltage for the unseen electrodes.

2.2.3 Limitations

A limitation arising from the GPAR model is that one needs to decide upon an ordering

of the outputs. Fortunately, most datasets have a natural conditional ordering of the

outputs [Requeima et al., 2018]. Alternatively, if no natural ordering can be found, one

can greedily optimize the ordering by looking at the evidence. Therefore, we can greedily

choose y1, then y2, and so on. Taking this approach leads to analysing M(M+1)/2 possible

configurations instead of the brute force approach of M ! configurations. We won’t delve

deeper into order choice for the purposes of this thesis.

Another limitation arising from the GPAR model is that noise gets propagated through

the outputs; from the earlier dimensions to the later dimensions. This is a limitation

when the noise is simply aleatoric uncertainty. However, noise propagation can also be a

benefit in the case where the outputs have correlated noise, and thus noise might be an

important signal. In any case, noise propagation can be mitigated by using a denoising

input transformation for the kernels as in [Requeima et al., 2018]. Denoising the inputs

involves using the posterior predictive mean for intermediate outputs before they are fed

as inputs into the next covariance function.

2.3 Deterministic training conditional

As previously mentioned, Gaussian processes don’t scale well to large datasets due to

the cubic complexity. During this section, we’ll look into how GPs can be scaled by us-

ing pseudo-point approximation techniques, namely the Deterministic training conditional

(DTC) [Quiñonero-Candela and Rasmussen, 2005].

The main idea behind pseudo-point approximation techniques is to introduce a new set

of inducing variables u which will act as latent function values, thus “accumulating” the

training information and pass it on to the training process. If we use M pseudo-points,

where M <<< N , then DTC reduces the GP complexity from O(N3) to O(M2N +M3).

The deterministic training conditional is a poor approximation to Titsias’s Variational Free

Energy (VFE) method [Titsias, 2009] since it is prone to overfitting and under-estimating

posterior uncertainties when provided with too few pseudo-points. However, DTC has been

chosen for scaling GPAR because VFE also includes a trace term trace (Cff −CfuC
−1
uuCuf )

which is more challenging to scale than DTC, thus leading to quadratic complexity in N.
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DTC is used to approximate models of the form as in Equation 2.8. The assumption is

that we generate the function from a Gaussian Process with zero-mean, and then we add

i.i.d. noise. We use zero mean processes since it slightly simplifies the mathematics; the

mean can be added without significant changes.

f ∼ GP(0,K(v, v′))

ε ∼ GP(0, σ2δ(v − v′))
y(v) = f(v) + ε(v)

(2.8)

2.3.1 Notation

We wish to scale a Gaussian Process f using DTC.

Let X be the input domain, e.g. RD. From this domain, we draw the locations of the

observations v ∈ XN , and their associated values y ∈ RN . We also draw the locations

of the pseudo-points z ∈ RM . One could think of these pseudo-points as regularly spaced

points in the input domain. Their location can also be trained to improve the performance

of the model, but we won’t delve into these details for the purposes of this thesis.

Let u ∼ N (0,Cuu) be the multi-variate Gaussian distribution obtained by evaluating

the GP f at locations z. These are called the pseudo-points. Similarly, let f ∼ N (0,Cff )

be the multi-variate Gaussian obtained by evaluating the GP at locations v. We call Cuu

and Cff the covariance matrices and they are obtained as in Equation 2.9.

[Cff ]i,j = K(vi,vj)

[Cuu]i,j = K(zi, zj)

[Cfu]i,j = K(vi, zj)

Cuf = Cuf
T

(2.9)

Finally, let Σ ∈ RN×N be the covariance matrix of the noise process. This is typically

a scaled identity matrix.

2.3.2 Log Marginal Likelihood approximation

The log marginal likelihood of our dataset is logN (y|Cff + Σ). This has O(N3) com-

putational cost when computed directly since it requires the inversion of the covariance

matrix Cff . By using M pseudo-points, we can drop this complexity to O(NM2). The

new approximated log marginal likelihood is thus logN (y|0,CfuCuu
−1Cuf + Σ). The ap-

proximated covariance matrix is similar to the covariance matrix retrieved after applying

the Nystrom approximation to Gaussian Processes [Williams and Seeger, 2001].
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The new marginal likelihood can be rewritten as in Equation 2.10 using the matrix

inversions and the determinant lemmas. If inverting Σ can be done in linear time in the

number of observations N (e.g. if Σ is diagonal, which it usually is), then the complexity

of computing the log marginal likelihood is O(NM2)

logN (y|0,CfuC−1
uuCuf + Σ) =

= −1

2

[
N log 2π + log det(CfuC−1

uuCuf + Σ) + yT (CfuC−1
uuCuf + Σ)−1y

]
= −1

2
[N log 2π + log det(CufΣ

−1Cfu + Cuu)− log det Cuu + log det Σ+

+ yTΣ−1y − yTΣ−1Cfu

(
CufΣ

−1Cfu + Cuu

)−1
CufΣ

−1]

(2.10)

The log marginal likelihood is used for optimizing the hyperparameters of the GP.

Given enough pseudo-points (e.g. z = v), the DTC approximation is almost perfect and it

will lead to identical optimised hyperparameters.

2.3.3 Inference

For doing inference we approximate the posterior process with another GP whose mean

and kernel are computed using the pseudo-points as in Equation 2.11. Here, [K(x, z)]i =

K(x, zi) and [mu]i = mean(zi). The newly introduced parameters m̂u and Λ̂u are the

mean and the precision matrix of the approximate posterior process for the pseudo-points

GP, i.e. for a process q(u) ≈ p(u|y).

m̂(x) = m(x) +K(x, z)C−1
uu(m̂u −mu)

K̂(x, x′) = K(x, x′)−K(x, z)C−1
uuK(z, x′) +K(x, z)C−1

uuΛ̂−1
u CuuK(z, x′)

(2.11)

By parametrising over ε = U−T (u −mu) instead of simply u, we can obtain a form

for the mean and kernel which involve fewer operations and are thus less computationally

demanding. This new diagonalised version is described in Equation 2.12, where U is the

upper-triangular Cholesky factorisation of the matrix Cuu.

m̂(x) = m(x) +K(x, z)U−1m̂ε

K̂(x, x′) = K(x, x′)−K(x, z)U−1U−TK(z, x′) +K(x, z)U−1Λ̂−1
ε U−TK(z, x′)

(2.12)

2.3.4 Optimizing the posterior process

When using pseudo-point approximation techniques we have to find good locations for the

pseudo-inputs z, and to find the optimal values for m̂ε and Λ̂ε once z is fixed. Whereas the
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former is intractable and typically addressed with iterative algorithms, the latter challenge

is tractable as shown in [Matthews et al., 2016].

Let V be the upper-triangular the upper-triangular Cholesky factorisation of the noise

matrix Σ. The matrix V is diagonal if Σ is diagonal. Furthermore, let Bεf = U−TCufV
−1.

The approximate posterior process q(u) is defined by the mean and kernel as in Equation

2.13. By plugging in these values into Equation 2.12, we obtain the mean and kernel of

the approximate posterior process at points f .

Λ̂ε = BεfBfε + I

m̂ε = Λ̂−1
ε BεfV

−T (y −mf )
(2.13)

2.4 Relation between GP and linear SDEs / Linear-

Gaussian SSMs

All the previous complexities of DTC were derived for a diagonal noise matrix Σ. How-

ever, we might also be interested in applying DTC to a GP which does not have a di-

agonal noise matrix, thus leading to a cubic complexity again for the naive approach.

However, we can accelerate this computation through the use of Linear Gaussian State

Space models (LGSSMs). During this section, we’ll explore how a Gaussian Process acting

on time series (temporal GP) can be mapped to an LGSSM and how this allows us to

compute the log marginal likelihood and how to accelerate the bottleneck computations

[Eubank and Wang, 2002].

2.4.1 State space models

In general, a state space model is used to describe a system for which we can attribute

a latent variable called state xt to each observation yt at time t such that the Markov

property from Equation 2.14 is respected. The Markov property refers to the model’s

memorylessness; the previous state xt−1 contains all the required information to compute

the distribution of xt, and the current state xt contains all the required information to

compute the observation yt. The initial state is sampled from the prior x0 ∼ p(x0).

p(xt|[xi]i=t−1
i=0 , [yi]

i=t−1
i=0 ) = p(xt|xt−1)

p(yt|[xi]i=ti=0, [yi]
i=t−1
i=0 ) = p(yt|xt)

(2.14)

The most common type of state space models is the Hidden Markov Model (HMM)

shown in Figure 2.5. Here, the transition and output probabilities are governed by under-

lying transition and output matrices which are learned from the data.
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Figure 2.5: Basic structure of a Hidden Markov Model from [Bulla, 2006]

However, state space models are not limited to just the discrete case. We wish

to define models which can be used to represent one-dimensional Gaussian Processes.

These will be called linear time-invariant stochastic differential equation (LTISDE) models

[Solin et al., 2016], and their mapping to a discrete state space model is called a linear

gaussian state space model (LGSSM). We are interested in LGSSMs because there is a

vast literature around them that defines filtering and smoothing operations; operations

which are equivalent to matrix inversion operations we wish to perform in order to scale a

Gaussian Process.

2.4.2 Temporal GPs as Stoachastic Differential Equations

Certain temporal Gaussian Process regression problems can be rewritten in terms of a

solution to an m’th order stochastic differential equation [Øksendal, 2003] as in Equation

2.15. Here, f(t) is the value of our temporal GP at time t; i.e. the state value at time t

for the state space model. The white noise process w(t) is also a Gaussian Process, and

since Gaussianity is preserved under linear operations, the solution trajectory of f(t) will

also be a Gaussian Process.

a0f(t) + a1
df(t)

dt
+ a2

d2f(t)

dt2
+ . . . am

dmf(t)

dtm
= w(t) (2.15)

We can rewrite Equation 2.15 in terms of its companion form [Andrews, 2001] by collect-

ing the derivative terms in one vector-valued function as in Equation 2.16. By rearranging
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and groping the SDE terms such that we use the newly introduced vector-valued function,

we get Equation 2.17 [Solin et al., 2016].

f(t) = (f(t), df(t)/dt, . . . dm−1t/dtm−1) (2.16)

df(t)

dt
=


0 1 . . .
...

. . . . . .

0 1

−a0 −a1 . . . −am−1

 f(t) +


0
...

0

1

w(t) (2.17)

We are only interested in f(t), i.e. the first component of our state f(t). Extracting

this is a linear operation; we define the extraction operator H = (1 0 . . . 0) such that

f(t) = Hf(t).

There are certain classes of covariance functions for our GP of interest such that the

GP can be represented in terms of a dynamical model and a measurement model as in

Equation 2.18. This equates to rewriting the Gaussian Process as an infinite state space

model.

df(t)

dt
= Ff(t) + Lw(t)

yk = Hf(tk) + εk

(2.18)

We have introduced the following terms in Equation 2.18:

• f(t) = (f1(t), f2(t), . . . , fm(t)) is a vector valued function containing the m stochastic

processes.

• w(t) is a multi-dimensional noise process with spectral density matrix Q ∈ Rs×s. A

spectral density matrix represents the covariance of the extra noise injected into the

SDE over a unit time increment.

• F ∈ Rm×m is called the feedback matrix.

• L ∈ Rm×s is called the noise effect matrix.

• The measurements are corrupted by i.i.d. noise εk ∼ N (0, σ2
noise).

• The initial state is sampled from a process with covariance matrix P0.
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2.4.3 From GP to LTISDE

We are interested in obtaining the parameters of the LTISDE, namely F, L, Q, P0, and

H. These “model matrices” are defined for individual covariance function classes. In the

following subsections, we’ll explore how they can be derived for covariance functions in the

exponential, squared exponential and Matern classes.

Exponential

The exponential covariance function is defined as in Equation 2.19

[Williams and Rasmussen, 2006]. The model matrices of the SDE representation of

covariance functions in this class have analytic solutions; F = −1/l, L = 1, Q = 2v2/l,

and H = 1.

K(t, t′) = σ2exp

(
−|t− t

′|
l

)
(2.19)

Matern

The general form of the covariance functions in the Matern class [Matérn, 1960] is given

in Equation 2.20, where σ2 and l are the magnitude and the scale parameters, and the

newly introduced v is the smoothness parameter. Bv(.) is the modified Bessel function of

the second kind. An advantage of the Matern class is that we have control over how many

times a function is differentiable through the value of v. If v > k then the function is k

times differentiable.

K(t, t′) = σ2 21−v

Γ(v)

(√
2v|t− t′|

l

)v

Bv

(√
2v|t− t′|

l

)
(2.20)

By setting different values for v we generate other classes of covariance functions. Usu-

ally, we work with v taking half-integer values; e.g. setting v = 1/2 recovers the exponential

class of functions. Let us focus on v = 3/2 which gives us the Matern-3/2 covariance func-

tion class defined in Equation 2.5. This class has the SDE representation as in Equation

2.21.

F =

[
0 1

− 3
l2
−2
√

3
l

]
L =

[
0

1

]
Q = 4σ2 3

√
3

l3
H =

[
1 0

]
(2.21)

Squared exponential

The squared exponential function is given as in Equation 2.4. The squared exponential

function can be recovered from the Matern class by taking the limit v →∞. This implies
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that the model is infinitely differentiable, thus requiring an infinitely long function-valued

vector f . Therefore, the only way we can recover the model matrices for its LTISDE

representation is through approximation methods such as approximated Taylor expansion

[Hartikainen and Särkkä, 2010].

2.4.4 Converting LTISDE into LGSSM

In order to use state space methods for acceleration [Sarkka et al., 2013] we need to convert

our linear time-invariant stochastic differential equation model (LTISDE) from Equation

2.18 into a Linear Gaussian State Space model (LGSSM) by solving for discrete time

instances corresponding to the input data and prediction points [Solin et al., 2016].

By discretising f such that fk = f(tk) for each input location tk, we can rewrite the

LTISDE as in Equation 2.22, where Ak is the transition matrix between states fk−1 and

fk, and Qk is the covariance matrix of the process generating the noise.

fk = Ak−1fk−1 + qk−1 where qk−1 ∼ N (0,Qk−1)

yk = Hfk + εk where εk ∼ N (0, σ2
noise)

(2.22)

The transition and noise matrices are computed as in Equation 2.23. We define

∆tk = tk+1 − tk and Φ(τ) = exp(Fτ). The integral can be resolved using matrix frac-

tion decomposition [Särkkä et al., 2006].

Ak = Φ(∆tk)

Qk =

∫ ∆tk

0

Φ(∆tk − τ)LQLTΦ(∆tk − τ)Tdτ
(2.23)

2.4.5 Relationship between Kalman filtering and Cholesky fac-

torisations

This whole section discussed the conversion between Temporal GPs and linear Gaussian

state space models (LGSSMs) so that we can perform avoid performing expensive Cholesky

factorisations on the GPs covariance matrix, and instead perform efficient filtering and

smoothing on the LGSSM. This subsection discusses the equivalence between these two

operations.

Let there be a Temporal GP with timeseries input locations [tk]
N
k=1, constant mean

function 0, and covariance matrix Σ. For the purposes of this dissertation, we are interested

in accelerating two types of computation:

• Retrieve the marginal distributions of the outputs at each input location given a com-

plete measurement y. This is accelerated by performing smoothing on the LGSSM.
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• Let L = chol(Σ) be the lower-triangular Cholesky factorisation of the covariance

matrix, and let a be an arbitrary vector. We are interested in accelerating the

computation of L−1a. This is accelerated through applying decorrelation on the

LGSSM.

Smooth

Below we will go through the necessary equations to perform smoothing on the LGSSM

equivalent of a Temporal GP as in [Särkkä, 2013]. The method we apply is Kalman

filtering [Kalman, 1960] followed by the Rauch-Tung-Striebel smoother, fully derived in

[Rauch et al., 1965].

Let the LGSSM be as previously defined in Equation 2.22, fk be the state at time tk,

and Dk = [(ti, yi)]
k
i=1 be the data up to time instance tk. We are interested in computing

the posterior marginals of the states given the whole dataset fk|DN ∼ N (mk|n,Pk|N).

We start the process from the first state f0 ∼ N (m0|0,P0|0) where m0|0 = 0 and

P0|0 = P0 from the LGSSM definition. The Kalman prediction step from Equation 2.24

is iteratively applied to obtain the marginal for state fk given the outcome of the previous

step. We remind the reader that Qk is the covariance matrix of the noise generating

process.

mk|k−1 = Ak|k−1mk−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1

(2.24)

We further apply the Kalman update step in order to retrieve the state posterior given

the data up to that point. The equations governing this update step are described in

Equation 2.25. We refer to the terms vk and Sk as the innovation mean and covariance

and to Kk as the Kalman gain. σ2
noise is the measurement noise variance and we assume

broadcasting of terms.

vk = yk −Hmk|k−1

Sk = HPk|k−1H
T + σ2

noise

Kk = Pk|k−1HS−1
k

mk|k = mk|k−1 + Kkvk

Pk|k = Pk|k−1 −KkSkK
T
k

(2.25)

Finally, we obtain the smoothing solution by applying a backwards recursion step start-

ing from the last state at time tn. The equations governing the backwards step are described
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in Equation 2.26. Gk is called the smoother gain.

mk+1|k = Akmk|k

Pk+1|k = AkPk|kA
T
k + Qk

Gk = Pk|kA
T
kP−1

k+1|k

mk|N = mk|k + Gk(mk+1|N −mk+1|k)

Pk|N = Pk|k + Gk(Pk+1|N −Pk+1|k)G
T
k

(2.26)

The smoothing operation is also applied at the test locations f(t∗). At these locations,

we assume arbitrary observations and infinite measurement noise, therefore not allowing

our arbitrary observation to impact the outcome. The marginal distribution at the infer-

ence locations is retrieved by applying the measurement matrix H to the smoothed mean

and variance.

Decorrelate

Below we’ll rewrite a part of [Eubank and Wang, 2002] in order to fit our use case and

assumptions. We will skip the derivations since they warrant a longer talk; the reader is

invited to read the paper. We’re interested in computing ε = L−1y. Again, our LGSSM is

governed by the equations in 2.22.

The vector of interest ε can be computed component by component as in Equation

2.27, where vk is the k’th element of vector v. The vector mk|k−1 can be computed as in

Equation 2.24.

εk = yk −Hmk|k−1 (2.27)

We call this method ‘decorrelate’ since multiplying a sample from a multivariate Gaus-

sian distribution by the inverse cholesky decomposition of the covariance matrix retrieves

a vector of i.i.d. samples from a Normal distribution N (0, 1). This is the generalisation of

data standardisation.

2.5 Summary

In summary, we went through a brief overview of Gaussian Process models and their

limitations when applying to multi-output supervised learning problems. In order to ad-

dress this issue, we introduced the Gaussian Process Autoregressive Regression model

[Requeima et al., 2018] that uses chained standard GP models for multi-output problems.

We went through the time complexity of computing a GP posterior and saw that it is cubic

in the number of observations, an impractical complexity if we’d like to work with datasets
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containing tens of thousands of observations (which is a medium-sized dataset). In order

to reduce this time complexity, we introduced pseudo-point approximation techniques in

terms of the Deterministic Training Conditional. This approximation technique allows us

to compute an approximate GP posterior in linear time in the number of observations.

Finally, we introduced state space models and how they can be used to reduce the com-

plexity of inverting a covariance matrix from cubic to linear. We explored ways to convert

from temporal GPs to time-invariant stochastic differential equations and then further to

linear Gaussian state space models. Given a state space model, we explored how we can

efficiently perform filtering and smoothing.



Chapter 3

Methodology

This chapter contains a review of the methods used to implement the algo-

rithm used to scale GPAR. We will combine the Deterministic Training Conditional

[Quiñonero-Candela and Rasmussen, 2005] with the state space acceleration methods

[Solin et al., 2016] in order to scale the Gaussian Process Autoregressive Regression model

[Requeima et al., 2018].

3.1 Starting Point

We use Julia as the implementation language. It was chosen because it is a high-level,

dynamic programming language similar to Python, but it was preferred over Python for

its faster execution speed.

The choice of Julia was also motivated by the existing libraries, namely Stheno 1, dealing

with GP creation and inference, and TemporalGPs2, which deals with mapping Temporal

GPs to LTISDE and LGSSM models and performing filtering and smoothing on them.

3.2 GPAR in terms of DTC

Let us consider the n’th output of a GPAR model from Equation 3.1.

yn(x, t) ∼ GP(0,Kn((x, t), (x′, t′))) (3.1)

Here, t ∈ R is the time, x(t) ∈ Rn−1 are the previous outputs at timesteps t, and

the kernel Kn is defined as in Equation 3.2. The kernel we use is composite; it is the

sum of two distinct kernels Ktn and Kxn that act on the time and the previous outputs

1https://github.com/willtebbutt/Stheno.jl/
2https://github.com/willtebbutt/TemporalGPs.jl

33
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respectively. Finally, σ2δ((x − x′)(t − t′)) is the measurement noise term. We split the

temporal kernel from the kernel acting on previous outputs since we would like to avoid

using DTC to approximate the temporal part of the GP. This is because the use of pseudo-

point approximations on the temporal channel would involve scaling the number of pseudo-

points with the number of units of time. We’d like to avoid this since it tangles the number

of observation with the number of pseudo-points required for a good approximation, thus

leading again to cubic complexity.

Kn((x, t), (x′, t′)) = Kxn(x, x′) +Ktn(t, t′) + σ2δ((x− x′)(t− t′)) (3.2)

By combining Equations 3.1 and 3.2, we can rewrite the GPAR output in terms of a

summation over GPs as in Equation 3.3.

fxn ∼ GP(0,Kxn)

f tn ∼ GP(0,Ktn)

εn ∼ GP(0, σ2δ((x− x′)(t− t′))
yn(x, t) = fxn (x) + f tn(t) + εn(x, t)

(3.3)

As previously mentioned, the Deterministic Training Conditional (DTC)

[Quiñonero-Candela and Rasmussen, 2005] is used to scale GP models of the form

described in Equation 2.8. The GPAR model does not conform to this as it contains the

sum of two GPs. In order to use DTC, we propose rewriting GPAR in terms of DTC as in

Equation 3.4. This means that we treat the temporal part of GPAR as part of the noise

process.

v = (x, t)

f(v) = fxn (x)

ε(v) = f tn(t) + εn(x, t)

(3.4)

Treating the temporal GP as part of the noise process means that the noise process is

now correlated, its covariance matrix no longer being a scaled identity matrix. Therefore,

all the complexities we discussed in Section 2.3 become O(N3) since there is no fast way

to invert Σ. In order to accelerate this computation, we use the state space acceleration

discussed in Section 2.4.
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3.3 Approximating the marginal likelihood using

DTC

We are interested in optimizing our process’s hyperparameters through Maximum Marginal

Likelihood Estimation. Simply plugging our terms in Equation 2.10 leads to cubic com-

plexity, which is intractable. However, we can use state space approximations in order to

avoid performing costly Cholesky decompositions. The first step towards this is rewrit-

ing the marginal likelihood equation such that we can take advantage of the ‘decorrelate’

method. The new form is given in Equation 3.6, where the newly included terms are given

in Equation 3.5. The goal of grouping the terms is to show that we can avoid having to

perform the Cholesky decomposition if we can quickly compute α and B.

L = chol(Σ)

α = L−1y

B = L−1Cfu

(3.5)

logN (y|0,CfuC
−1
uuCuf + Σ

= logN (y|0,Σ)− 1

2

[
log det

(
BTB + Cuu

)
− log det Cuu − αTB

(
BTB + Cuu

)−1
BTα

]
(3.6)

As shown in [Eubank and Wang, 2002] and in Section 2.4.5, we can compute L−1α in

linear time given that Σ is the covariance matrix of a temporal GP. This is the case for us.

Therefore, we can quickly evaluate Equation 3.6 in the following way:

• Transform the temporal GP f tn into its equivalent LTISDE.

• Transform the LTISDE into an LGSSM by indexing at the training points.

• Compute α and B using accelerated state space techniques.

• Plug α and B into Equation 3.6. All the other computations are at most O(M2N).

Now that we have a way to quickly compute an approximation to the marginal log-

likelihood, we can optimize the kernel hyperparameters by calling the function that com-

putes this approximation in our optimization loop; similar to how we’d call the function

computing the marginal likelihood. Tests have confirmed that in the degenerate case where

the pseudo-points are the same as the inputs, the DTC approximation is perfect and we

retrieve the same optimum hyperparameters.
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3.4 Making predictions using scaled GPAR

Up until now, we learned how to optimize the hyperparameters of GPAR. We will now

explore how to make predictions for new inference points. More formally, let t∗ be the

timesteps at which we wish to infer the values f∗ for the n’th output of the GPAR. We

assume that the previous n−1 outputs are observed at timesteps t∗. This assumption does

not violate generality thanks to the sequential nature of GPAR; even if the other outputs

are not part of the training data, we can infer them during the previous steps.

We are interested in retrieving the posterior distributions for the test data-points f∗
given the observed data y. Through the use of the sum and product rules, we rewrite this

quantity as in Equation 3.7. This reformulation is useful because, together with the equality

from Equation 3.3 means that we can take a divide and conquer approach to estimating

the posterior distribution; we address the temporal part when computing p(f∗|fx∗ ,y) and

the previous outputs part when computing p(fx∗ |y).

p(f∗|y) =

∫
p(f∗|fx∗ ,y)p(fx∗ |y)dfx∗ (3.7)

The first challenge we tackle is the computation of p(fx∗ |y). As one might expect, this

is O(N3) in the naive case. However, we can use pseudo-point approximations in order to

generate samples from this distribution. Let p(fx∗ |y) ≈ q(fx∗ ), where our approximation is

given as in Equation 3.8.

q(fx∗ ) = N
(
f |mf + CfuC

−1
uu (m̂u −mu), Ĉff

)
(3.8)

Similarly to Section 2.3, mu is the mean vector of the approximate pseudo-point pos-

terior distribution q(u) ∼ N (m̂u, Λ̂
−1
u ). The distribution parameters have an analytic

solution, same as in Equation 2.13. Unfortunately, naively going through the computa-

tions from Equation 2.13 leads to cubic complexity, but this can be accelerated in the same

manner as discussed in the previous section; we use LGSSMs to perform the operations of

the form L−1α. Afterwards, we can plug in these parameters and obtain a solution for our

approximate posterior distribution q(fx∗ ), from which we can sample.

We now have a method of generating samples from q(fx∗ ), and we are interested in

computed the rewritten integral from Equation 3.9.

p(f∗|y) =

∫
p(f∗|fx∗ ,y)q(fx∗ )dfx∗ (3.9)

The integral is intractable. However, we can sample from p(f∗|fx∗ ,y) by using ancestral

sampling as follows:

1. Generate a sample fx∗ ∼ q(fx∗ ).
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2. Let y′ = y − fx∗ .

3. Generate samples from the LGSSM representation of the Temporal GP f t∗ with out-

puts y′. The process of generating samples is similar to smoothing algorithm; more

details can be found in [Doucet, 2010]. This will retrieve the temporal prediction f t∗.

4. Now compute the value f∗ = fx∗ + f t∗. This is akin to having sampled from p(f∗|fx∗ ,y).

Finally, we use Monte Carlo approximations to compute the mean and variance of the

distribution as in Equation 3.10.

E[p(f∗|y)] ≈ 1

Z

Z∑
i=1

f∗ where f∗ ∼ p(f∗|fx∗ ,y) and fx∗ ∼ q(fx∗ ) (3.10)

After the Monte Carlo process is finished we get an accurate approximation of the mean

and variance of p(f∗|y), which is what we were interested in.

3.5 Implementation details

There are implementation details which we glossed over in order to avoid encumbering the

previous sections. They are minor changes meant to either speed up the code or improve

the accuracy. We will enumerate them as follows:

• We did not fully write out the derivation of Ĉff in Equation 3.8 because we do not

need to compute it in order to generate samples from q(fx∗ ). Instead, we simply

generate a sample us ∼ q(u) and set mu = us when computing the mean of q(fx∗ ).

This achieves the desired effect since Ĉff is a low-rank matrix, having all eigenvalues

bar one equal to zero.

Ĉff is a low-rank matrix because the second term in Equation 2.12

K(x, z)U−1U−TK(z, x′) is our DTC approximation to Cff . If our approximation

is good, then these two terms cancel out and the covariance matrix is given by Equa-

tion 3.11.

K̂(x, x′) = K(x, z)U−1Λ̂−1
ε U−TK(z, x′) (3.11)

In order to see why the form of the matrix allows us to skip the computation of

Ĉff , we have to look at how one can generate samples from a high-dimensional

Gaussian distribution with covariance matrix Cbig using a low-dimensional Gaussian

distribution with covariance matrix Csmall. Assume that there exists a matrix A such

that ACsmallA
T = Cbig, and let ssmall be a sample from our low-dimensional Gaussian
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distribution. We can generate samples from our high-dimensional distribution by

applying A to our low-dimensional sample as in Equation 3.12.

sbig = Assmall (3.12)

The aforementioned points imply that we can generate samples from q(fx∗ ) by gener-

ating a sample from q(u) and multiplying it by K(x, z)U−1. This avoids the need to

actually compute the covariance matrix of the distribution q(fx∗ ).

• When doing inference for timesteps t∗ we also include the observation data at lo-

cations t, therefore doing inference at timesteps (t∗, t). This change includes the

observed data in our LGSSM in order to allow it to make more accurate predictions

and lower the sample variance.

3.6 Summary

To summarise, we introduced a way of rewriting GPAR so that we can take advantage of

pseudo-point approximations whilst avoiding the need to use pseudo-points for approxi-

mating the temporal channel. This lead to the GPAR models no longer taking the required

form for scaling using DTC. This was addressed by including the temporal process as part

of the noise, thus leading to an uncorrelated noise matrix. All the speed-up DTC approx-

imations provide are based on the noise matrix being easily invertible; for example if it

is a diagonal matrix. Rewriting GPAR means that the noise matrix is no longer a scaled

identity, thus leading to cubic complexity. State space approximations were used in order

to accelerate/avoid these costly computations by mapping the temporal GP to an LGSSM

model and applying filtering and smoothing to the LGSSM model.
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Experimental evaluation

We are interested in evaluating two metrics, the accuracy of the approximations introduced

to scale GPAR and the speed-accuracy tradeoff when using scaling. To that end, we will

perform three types of evaluations:

1. Sanity check evaluation; we compare standard GPAR against the scaled GPAR ver-

sion on two small datasets: a synthetic dataset and the EEG dataset. We set the

pseudo-points to be the same as the inputs so that we expect the same results for both

models. The purpose of this evaluation is to sanity check that our implementation

behaves exactly as standard GPAR when fed enough information.

2. Speed-accuracy tradeoff; we will compare multiple GPAR models using variable num-

bers of pseudo-points against each other and the standard GPAR model. The com-

parison will be performed on small datasets such that the standard model runs in a

reasonable time. All the models will be timed, and we plot the mean squared error

versus the computation time.

3. Extension to large-scale datasets; we evaluate the scaled GPAR version on two large

datasets: an exchange dataset and a temperature dataset. We compare the results

against independent GP outputs through the use of log marginal likelihood and visual

comparisons.

4.1 Sanity check evaluation

During this section, we perform a sanity check on scaled GPAR to ensure that it behaves

the same as standard GPAR in the degenerate case where we use exact pseudo-points; i.e.

v = z. To this extend, we compare the models on two small datasets; a synthetic dataset

and an EEG dataset.
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Figure 4.1: Predictions of three models on a small synthetic dataset. The predictions of the

independent GP model is shown in green, of the standard GPAR model shown in blue, and

of the scaled GPAR model shown in red. The scaled GPAR model’s outputs are identical

to the ones from the unscaled versions, hence the overlap.

4.1.1 Small synthetic dataset

We use the same synthetic dataset as in [Requeima et al., 2018]. The dataset consists of 20

noisy observations taken at regular intervals from the three functions described in Equation

4.1. In order to simulate output inter-dependencies, we set y1 = f1(x) and y2 = f2(x, y1).

f1(x) = −sin(10π(x+ 1))

2x+ 1
− x4

f2(x, y1) = cos(y1)2 + sin(3x)

f3(x, y1, y2) = y2y
2
1 + 3x

(4.1)

The goal of our model is to interpolate between these observations. The results can be

seen in Figure 4.1. The predictions of the independent GP model is shown in green, of the

standard GPAR model shown in blue, and of the scaled GPAR model shown in red. We
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plot the predictions from the GPAR models only for the latter two functions since the first

function represents a single-output problem for which the GPAR structure is identical to

one of an independent GP.

We notice that the independent GPs are not expressive enough to model functions f2

and f3, but GPAR can perfectly recreate them. Furthermore, the scaled GPAR predictions

perfectly overlap the ones from its unscaled counterpart, meaning that it performs as

expected in this case.

4.1.2 EEG dataset

The EEG dataset consists of 256 readings for each of the seven electrodes placed on a

volunteer’s scalp; it is the same experiment as in Figure 2.4. The results from four runs

comparing the scaled version of GPAR with the unscaled version can be seen in Figure

4.2. We show the standard GPAR predictions in blue, and the scaled GPAR predictions

in red. Because of the stochastic nature of GP hyperparameter optimization, we would

expect minor differences. This is why we chose to show multiple plots.

Figure 4.2: Four figures comparing standard GPAR (blue) against scaled GPAR (red) on

the EEG dataset. The ground truth is shown in black. The task is the extrapolation of

three signals for the last 100 points given the values of the first 156 points and the values

of the data from the other sensors. We plot four figures since the results have a high

variance because of the underlying stochastic nature of Gaussian Processes. We see that

both models perform similarly on this task, even outputting the same distributions in the

lower left figure.
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Figure 4.3: Timings and MSE from four models on synthetic dataset. The x axis represents

the number of observed variables for which the algorithm is run. We check the algorithm’s

ability to interpolate, and we also time the process in order to compare the runtimes.

The Euclidian distance between the mean vectors ||fscaled − fstandard||2 is subunitary

in almost all cases. We see that the scaled GPAR predictions and error bars are almost

identical to the ones from the unscaled version, even being identical in the bottom left

figure. Therefore, we can conclude that the scaled GPAR version performs the same as the

unscaled version in the case where we use exact pseudo-points.

4.2 Speed-accuracy tradeoff

During this section, we want to check whether the scaled version of GPAR is faster than

the standard versions as we add more and more observation data. To check this, we use

the small synthetic dataset from Figure 4.1 with two changes:

• We only predict the second function f2 given the fully observed values of x and f1(x).

We compare the results from the GPAR models against the ground truth by using
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the Mean Squared Error.

• In order to achieve coverage over a wider set of possible practical challenges, we

change the number of observed points. We do this by extending the observed range

whilst keeping the distance between observed variables constant.

The results can be seen in Figure 4.3. Each datapoint has been collected by running

the algorithm 10 times and taking the mean. We compare the results from a standard

GPAR model against results from three scaled models that use 20, 50, and respectively

100 pseudo-points. The results show that whereas standard GPAR is faster when dealing

with less than 500 observations, its runtime increases and it quickly overtakes our models.

This is the expected behaviour. Also, GPAR seems to perform worse as we increase the

number of observations.

4.3 Large-scale datasets

During this section, we will evaluate the scaled GPAR version on three large datasets

(around 10, 000 observations) and compare the results against the predictions from inde-

pendent GPs.

Temperature dataset1

This dataset consists of tidal height, wind speed, and air temperature readings taken during

the month of July 2013 by four weather stations in Bramblemet, Cambermet, Chimet, and

Sotonmet, all locations from Southhampton, UK. Our goal is to see whether the scaled

GPAR model can retrieve the missing air temperature data between days 12-16 for the

Cambermet weather station, using all the other features (including features from the other

stations) as input.

The results comparing the predictions from the independent GP model versus the ones

from the scaled GPAR model can be seen in Figure 4.4. As we can see, GPAR manages

to capture the inter-dependencies of the data, whereas the independent GP model fails.

Exchange rate dataset2

The exchange rate dataset consists of the daily exchange rate with respect to the US dollar

for the top ten international currencies and three previous metals in the years 1990 - 2015.

1The data can be downloaded at http://www. bramblemet.co.uk, http://cambermet.co.uk, http://

www.chimet.co.uk, and http://sotonmet.co.uk.
2The exchange rates data set can be downloaded at http://fx.sauder.ubc.ca.
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Figure 4.4: Interpolation of missing data on the air temperature in Cambermet during

the month of July 2013. We compare two models; one using scaled independent temporal

GPs (green), and the scaled GPAR model (blue). The ground truth is displayed in orange.

The challenge is to retrieve the missing data between days 12-16. Whereas the best the

independent GP can do is draw a line between the ends of the missing parts, the GPAR

recognises and models the structure of the data.

Our goal is to predict the exchange rate USD/AUD for the year 2007 using all the other

available data (including other exchange rates for the same year).

We ended up using only five inputs; the year, and four exchange rates for CHF, NZD,

CAD, and JPY. These were chosen thanks to their high correlation with the USD/AUD

exchange rate and thanks to them having little to none missing data. The results can be

seen in Figure 4.5. Again, GPAR manages to capture the underlying function whereas the

independent GP is not expressive enough to capture any meaningful information.
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Figure 4.5: Interpolation of missing data on the USD/AUD exchange rate during the year

2007. We compare two models; one using scaled independent temporal GPs (green), and

the scaled GPAR model (blue). The ground truth is displayed in orange. The challenge is

to retrieve the exchange date for the year 2007, using all the other years and other exchange

rates as input.
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Chapter 5

Conclusions and further work

Gaussian Processes are powerful tools for tackling single-output supervised learning prob-

lems [Williams and Rasmussen, 2006], but they do not transfer their non-linear depen-

dency capture abilities to multi-output problems. The Gaussian Process Autoregressive

Regression (GPAR) model [Requeima et al., 2018] addresses this issue, but its cubic in the

number of observations runtime complexity means that GPAR cannot be applied to large

datasets. A way to scale GPAR has been explored in the original paper; it involves pseudo-

point approximations over GPAR, similar to how one would scale a standard GP. However,

directly applying pseudo-point approximations to GPAR involves also approximating the

time channel through pseudo-points. We wish to avoid approximating the time channel

since its lower lengthscale hyperparameters and its (relatively) unbounded domain leads

to an ever-increasing number of pseudo-points in order to get a good approximation. The

implication of this is that the number of required pseudo-points scale directly with the

number of observations, leading to a cubic complexity (albeit still a lower complexity than

original).

We introduced a new way to scale GPAR, in which we treat the temporal channel as

part of the noise, and then apply DTC. This introduced correlated noise, meaning that

the noise matrix is no longer a scaled identity matrix, and thus inverting it becomes an

operation with cubic complexity. Our goal is to reduce the complexity from cubic, so

requiring to compute a cubic operation is unacceptable. However, we can avoid inverting

the noise matrix by converting the temporal GP into a linear gaussian state space model

on which we perform filtering and smoothing. This allows us to circumvent the costly

inversion operation. Making predictions in this new framework also involves noise matrix

inversions, which can again be accelerated using state space techniques.

We compare the time and memory complexities of our model against standard GP and

GPAR models in Table 5.1.

We evaluated the model using three evaluation techniques:
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standard GP unscaled GPAR scaled GPAR

Time complexity O(O3N3) O(ON3) O(OM2N)

Memory complexity O(O2N2) O(ON2) O(OMN)

Table 5.1: Time and memory complexities of three GP model classes, where O is the

number of output dimensions, M is the number of pseudo-points, and N is the number of

observations. We usually have the relation O < M << N . We see that the scaled GPAR

version is the only one linear in the number of observations; both in terms of time and

memory.

1. Sanity check: we evaluated the model in the exact case where the pseudo-points

are the same as the inputs. The goal was to check whether the scaled version of

GPAR performs the same as GPAR in this degenerate case. We evaluated on two

small datasets; a synthetic dataset and the EEG dataset. The results proved that

the GPAR version from this thesis is the same as standard GPAR in the degenerate

case.

2. Speed improvements; we wanted to check the speed improvement of the new model.

To that extent, we evaluated three scaled models with a different number of pseudo-

points against a standard GPAR model. We used a synthetic dataset for which

we could fix the number of observed points. The evaluation proved that the scaled

version is considerably faster than standard GPAR as we add more observation points.

We also noticed a slight improvement in the mean squared error.

3. Large datasets; we compared scaled GPAR against independent GPs on large datasets

(around 10, 000 observations). We used two datasets, one containing air temperature

data from fours weather stations, and one containing the exchange rates for interna-

tional currencies. In both cases, we observed that scaled GPAR manages to capture

the inter-dependencies of the dataset and to give useful predictions. In contrast, the

independent GPs did not perform as well, not managing to capture any meaningful

information.

In conclusion, we implemented a way to scale the Gaussian Process Autoregressive

Regression model, which allows us to use the powerful GP on large-scale datasets. We

evaluated the scaled model and reached the conclusion that it is faster than GPAR and

performs better than an independent GP, and it also is the same as standard GPAR in the

case where we use exact pseudo-points. Further work which could be done on this project

includes:

• Optimizing the pseudo-point locations z. At the moment we just use regularly spaced

locations, but the exact locations can also be trained in a greedy fashion.
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• Using FITC as out pseudo-point approximation algorithm instead of DTC.

• Adding the ability to use other temporal kernels such as squared exponential.

• Expand the model to handle non-Gaussian likelihood functions by introducing ap-

proximations to thee likelihood.

• Improve modularity by allowing posterior GPs to be used as prior GPs.
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Bruinsma

Proposal body.

Multi-output regression problems are a subset of supervised learning problems where we

try to infer multiple scalar outputs from a given input. Usually, the outputs in such

problems exhibit inter-dependencies, so a performant model will take those dependencies

into account during training and inference.

Gaussian Process models are useful when doing regression as they directly capture

model uncertainty and allow the user to input prior knowledge into the model through

the selection of kernel functions. However, naively extending GP models to multi-output

regression problems leads to a blow-up in complexity and limited representation.



56 APPENDIX A. PROJECT PROPOSAL

A clean, practical way to extend GP models to multi-output problems is through the use

of Gaussian Process Autoregressive Regression (GPAR) models [Requeima et al., 2018].

They work by using the product rule to decompose the joint distribution over the outputs

into a set of conditionals which we model by standard GPs as in Equation A.1. The

unknown functions f1:M are what we model using Gaussian Processes.

p(y1:M(x)) = p(y1(x))︸ ︷︷ ︸
f1

∗ p(y2(x)|y1(x))︸ ︷︷ ︸
f2

. . . p(yM(x)|y1:M−1)︸ ︷︷ ︸
fM

(A.1)

GPAR achieved state-of-the-art performance so far, but up until now only exact infer-

ence was used, so all the tasks have been small-scale. The aim of this project is to extend

GPAR to larger models using approximate inference through methods such as pseudo-

points[Seeger et al., 2003] and state-space[Sarkka et al., 2013] approximations.

Deterministic Training Conditiona (DTC)

DTC can be thought of as a poor approximation to the variational free energy method

of Titsias [Titsias, 2009]. We don’t use the VFE because the trace term seems to be a

bottleneck and leads to quadratic complexity in the number of data points when combined

with the state-space approximation.

DTC is used to approximate models of the form

f ∼ GP(0,K(v, v′))

ε ∼ GP(0, σ2δ(v − v′))
y(v) = f(v) + ε(v)

(A.2)

We turn GPAR into a model similar to the ones suitable for DTC by decoupling the

GP kernels for previous inputs from the ones for time, and then treat the time GPs as

noise.

State-space approximation

GPs for time-series can be represented as Linear Gaussian State Space models which allow

for O(N) computation of log marginal likelihoods. We will use state-space approximations

in combination with DTC.

Measurements and success criteria

We will measure the success of the project by running tests on various multi-outputs real-

life datasets and comparing the log marginal likelihood against other multi-output models.
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The project will be a success if GPAR is successfully scaled to long multi-output time-series

problems through the aforementioned methods.

Workplan

The work plan consists of 4 stages as follows:

1. Literature review: getting familiar with the existing literature is the starting point.

This part should be mostly done by the end of April

2. Implementation: we will implement three models as follows:

(a) Implementation of exact GPAR inference.

(b) Implementation of a vanilla pseudo-point approximation technique. This will

most likely be based on the variational free energy technique [Titsias, 2009].

The code is fairly similar to DTC and this approach should prove to be more

efficient than DTC.

(c) Implementation of pseudo-point approximation using DTC and combining it

with state-space approximations.

The implementation part should be finished by the start of July.

3. Evaluation involves benchmarking the three models using log marginal likelihood,

held-out log-likelihood, and Root mean squared error on the held-out data. All of

these metrics will be considered when judging the speed-accuracy tradeoff of the

models.

The evaluation part will be intertwined with the implementation part when possible,

and thus should not take more than three weeks. The aim is to finish the evaluation

by mid-late July.

4. Writing: assuming everything goes to plan, a full month will be dedicated to this

part. Some part of the writing will also be done during the literature review stage.

Resource declaration

I will use my personal computer for development, training, evaluation, and write-up. In

the case that this proves insufficient, I will switch to using MLMI GPUs or some form of

cloud computing (AWS or Google Cloud).



58 APPENDIX A. PROJECT PROPOSAL



Bibliography

[Andrews, 2001] Andrews, A. P. (2001). Kalman Filtering: Theory and Practice Using

MATLAB. Wiley.

[Bulla, 2006] Bulla, J. (2006). Application of hidden markov models and hidden semi-

markov models to financial time series. University Library of Munich, Germany, MPRA

Paper.

[Calandra et al., 2016] Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P.

(2016). Manifold gaussian processes for regression. In 2016 International Joint Confer-

ence on Neural Networks (IJCNN), pages 3338–3345. IEEE.

[Dai et al., 2017] Dai, Z., Alvarez, M., and Lawrence, N. (2017). Efficient modeling of

latent information in supervised learning using gaussian processes. In Advances in Neural

Information Processing Systems, pages 5131–5139.

[Doucet, 2010] Doucet, A. (2010). A note on efficient conditional simulation of gaussian

distributions. Departments of Computer Science and Statistics, University of British

Columbia, 4.

[Duvenaud et al., 2013] Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin,

G. (2013). Structure discovery in nonparametric regression through compositional kernel

search. In International Conference on Machine Learning, pages 1166–1174.

[Eubank and Wang, 2002] Eubank, R. and Wang, S. (2002). The equivalence between the

cholesky decomposition and the kalman filter. The American Statistician, 56(1):39–43.
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