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Abstract

One of the major tasks of intelligent human-machine interaction is to empower computers
with the ability of “affective computing" [4] such that it can recognize a user’s emotional sta-
tus and respond to the user in an affective way. This project develops a complete multimodal
emotion recognition system that predicts the speaker’s emotion state based on speech, text,
and video input.

The system consists of two branches. A time synchronous branch where audio, word embed-
dings, and video embeddings are coupled at frame level. And a time asynchronous branch
where sentence embeddings are combined with their context. These two branches are then
fused to make prediction. The system generates state-of-the-art multimodal emotion classi-
fication accuracy on IEMOCAP database. In-depth investigation of properties of different
modalities and their combination is provided.

The emotion recognition problem is then re-examined. IEMOCAP database contains a large
proportion of utterances that human annotators don’t completely agree on their emotion
labels. These utterances are more common in reality but are usually ignored by traditional
emotion classification problems. In that case, it is more reasonable to match the label distribu-
tion of the sentence rather than doing classification. “Soft" labels are then introduced, which
improves label distribution matching by a significantly better KL divergence. Different ways
of modelling the label distribution are discussed which includes the proposal of Dirichlet
prior network.
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Chapter 1

Introduction

Emotions are intrinsically part of human mental activity and play a key role in human deci-
sion handling, interaction and cognitive processes [5]. Recognizing emotion is an essential
step to have complete interaction between human and machine.

Automatic emotion recognition (AER) has attracted attention due to its wide potential appli-
cation in environments where machines need to interact or monitor humans. For instance,
emotional states can be used to monitor and predict the fatigue state of the driver [6] and
intervene or issue an alarm. It can also be used in mental health analysis and health care to
provide prescription and accompany depressed patients [7–9]. In addition, AER is important
in human-machine interfaces such as chat-bots and voice-assistants. Tracking the user’s emo-
tional states can help the agent adapt its response to provide better service. And it can also
be used to evaluate the quality of the service provided by the agent [4]. Other applications
include online gaming, digital advertisement, hate speech detection in social media, affective
learning systems, etc. However, the task of recognizing emotion is challenging because
human emotion is very complex in nature. It lacks clear temporal boundaries. It can be
easily affected by contextual information. And it is extremely personal. Different individuals
express emotion in different ways. New trends in AER research includes transfer learning
from automatic speech recognition (ASR) [10, 11] and speaker recognition [12], multi-task
learning with, for example, gender recognition as an auxiliary task [13], developing new
hierarchical encoder structures [14, 15], and the use of multimodal data.

Humans express emotion by various modalities such as facial expressions, voice characteris-
tics, linguistic content of verbal communications, and body postures. It has been highlighted
that an ideal AER system should be multimodal as this is closer to the human sensory
system [16, 17]. Combining and collating information from multiple modalities to infer the
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perceived emotions is beneficial [18]: different modalities can augment or complement each
other thus giving richer information. For instance, speech waveform provides voice character-
istics such as pitch, text provides linguistic content, and videos provide facial expression such
as smile and frown. These augmented and complementary information can make the system
more robust to sensor noise if some of the modalities are corrupted and ineffectual, which
is especially prevalent in in-the-wild datasets. However, multimodal emotion recognition
comes with its own challenge: which modalities should be combined and how. Currently,
there is still a lack of consensus on the most efficient mechanism for combining (also called
“fusing”) multiple modalities.

Emotions can be assessed either by discrete categorical based annotations (i.e., labels such
as happiness, anger, and sadness) [19–21] or continuous attribute-based annotations (i.e.,
activation, valence and dominance) [22, 23]. The former is more intuitive and is more widely
used in industry while the latter can track subtle changes in emotion and is usually used in
psychological research. As emotional labels are often provided for the whole utterances in
many databases [24], there can be a mismatch between short-term inputs at frame level (i.e.,
the 10 ms acoustic features) and long-term outputs at the utterance level. Common ways to
deal with the mismatch can be classified into: i) sequence-to-sequence method: copying the
label for the utterance into a frame-level label sequence; ii) sequence-to-one method: using
various pooling methods to summarize emotion information in the whole utterance.

Fig. 1.1 Flow chart of the AER system. Input modalities include speech, text and facial
expressions. The system predicts the emotional content of a speaker’s utterance.

In this thesis, a multimodal emotion recognition system across audio, text and video is
developed. As shown in Figure 1.1, the AER system uses multimodal inputs for determining
the emotional content of a speaker’s utterance. Features and embeddings are first extracted
from the raw inputs and then fed into the system. The system uses sequence-to-one method
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and predicts categorical discrete label on each sentence.

1.1 Dataset

This thesis uses Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [25],
one of the biggest multimodal dyadic conversational dataset available in emotion detection. It
consists of approximately 12 hours of audio-visual data, including speech, text transcriptions
and facial recordings. IEMOCAP contains 5 sessions acted by 10 different professional
actors. In each session one male and female actor either performed selected emotional
scripts or improvised hypothetical scenarios. The recorded sessions were then segmented
into utterances manually.

Each utterance was annotated by at least three human annotators for categorical labels
(neutral, happiness, sadness, anger, etc) or for continuous labels (valence, activation, and
dominance). Categorical labels are used in this thesis. An issue with labelling is that there
are 25% utterances that don’t have majority agreed label. In other words, annotators didn’t
agree on the emotion of the utterance. This issue will be discussed in detail in Section 4.1
and in Chapter 5. The system will first be trained using strong emotional utterances for cross
comparison in Chapter 4 and all data will be taken into account in Chapter 5.

.

1.2 Contribution

• A complete multimodal emotion recognition system is developed which generates
state-of-the-art classification results on IEMOCAP database.

• The system used a new model structure which contains a time synchronous branch
that couples multiple modalities at frame level and a time asynchronous branch that
incorporates context information at utterance level. Two branches are fused to predict
the emotion of the speaker.

• The innovative use of BERT in context mode leads to notable increase in classification
accuracy as well as more robustness of the system.
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• In-depth investigation of the contribution of each modality and the correlation among
modalities is provided.

• The innovative use of “soft" labels allows the use of all data (including those don’t
have majority agreed labels) and significantly improves the label distribution matching.

• The interesting characteristics of uncertainty in emotion labels are investigated.

1.3 Thesis outline

The structure of the thesis is as follows:

• Chapter 2 reviews the methods of extracting features and embeddings from raw input
of audio, text, and video modality.

• Chapter 3 reviews the encoder models and pooling methods that model structured data
and combine features from different modalities.

• Chapter 4 presents the emotion classification results of the multimodal emotion recog-
nition system using audio, text, and video inputs. Properties of different modalities
and their combination is investigated.

• Chapter 5 re-examines the emotion recognition problem on IEMOCAP and proposes
new approaches to matching emotion label distributions instead of doing classification.

• Chapter 6 concludes this thesis and discusses the possible future work.



Chapter 2

Feature representations and embeddings

Chapter 2 and Chapter 3 introduce the background about methods of processing raw inputs
and modelling structured data. Given raw inputs such as speech waveform, text and video
recordings, the first step is to transform them into more compact features and embeddings.
These representations will then be treated as input to the AER system and fed into the model.
This chapter discusses the approaches to extract features and generate embeddings for audio,
text, and video modality. Models and approaches that further process and combine these
representations to predict emotion will be discussed in Chapter 3.

2.1 Audio features

The input speech waveform first needs to be transformed into a sequence of parameter vectors.
Audio features used in this project are Mel-Frequency Log Filerbank Energies (MFBs) and
pitch.

Mel-Frequency Cepstral Coefficients (MFCCs) are very popular features in speech signal
processing. However, MFBs have been shown to be better discriminative features than
MFCCs in emotion recognition [25]. This project uses 40-channel log energies extracted
using a 25ms window with a frame shift of 10ms.

Pitch often refers to the perception of fundamental frequency ( f0), the frequency at which
vocal chords vibrate in voiced sounds. Many studies has established a link on prosody at-
tributes that high pitch levels are related to emotions carrying a high level of activity, such as
joy, anxiety, or fear; medium pitch levels account for more neutral attitudes; low pitch levels
are related to sober emotions: sadness, calmness, or security [26]. And it has been suggested
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that acoustic parameters such as pitch plays a crucial role in obtaining better performance in
speech emotion recognition (SER) [12]. In this project, log-pitch with Probability of Voicing
(POV)-weighted mean subtraction over a 1.5s window computed by the Kaldi toolkit [3]
were used.

Besides, there are other popular acoustic feature sets that are widely used in SER such as
GeMAPs [27] which includes 88 parameters such as pitch, jitter, shimmer, formants, MFCC,
plus the statistical functions (mean, variance, min, max, etc.) applied to these Low-level
Descriptors (LLDs) over specified time sliding window. These are not used in this project
because most of them should be able to be extracted from spectrum representations with a
powerful neural network. There is no need to input these explicitly, otherwise it will cause a
large increase in the number of parameters in the input layer. But f0 information is a separate
thing. Filterbank information describes vocal tract shape and vocal spectrum. It doesn’t
include information about excitation. It is difficult to extract pitch from filterbank spectrum.
In order words, filterbank spectrum and pitch are meant to be complementary information.

2.2 Text embeddings

Text embeddings are semantically meaningful distributed representations of text in the form
of numeric vectors. Much progress has been made in learning embeddings of individual
words such as word2vec [28], GloVe [29] and of phrases and sentences such as doc2vec [30].
In the last few years, the new trend in large unsupervised pre-trained context-specific language
models such as ELMo [31], GPT [32], BERT [33] have achieved excellent performance on a
variety of language tasks using generic model architectures. Some of the widely used text
embeddings are listed in Table 2.1. GloVe and BERT are used in this project.

concurrency-based context-specific
word-level word2vec, GloVe ELMo

sentence-level doc2vec GPT, BERT
Table 2.1 Summary of popular text embeddings
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2.2.1 Word embedding: GloVe

GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm
for obtaining vector representations for words trained on aggregated global word-word co-
occurrence statistics from the corpus [29]. GloVe has been widely used in AER tasks [34–36].

In the algorithm, the co-occurrence probability is defined as:

pco (wk | wi) =
C (wi,wk)

C (wi)
(2.1)

where C (wi,wk) counts the co-occurrence between words wi and wk. The key idea of GloVe
is that the word meanings are captured by the ratios of co-occurrence probabilities rather
than the probabilities themselves. The global vector models the relationship between two
words regarding to the third context word as:

F
((

wi −w j
)⊤ w̃k

)
= exp

((
wi −w j

)⊤ w̃k

)
=

exp
(
w⊤

i w̃k
)

exp
(

w⊤
j w̃k

) =
pco (w̃k | wi)

pco
(
w̃k | w j

) (2.2)

The loss function for the GloVe model is designed to preserve the above formula by minimiz-
ing the sum of the squared errors.

In comparison with word2vec which is based on local concurrency of a context window,
GloVe takes the global context into account. They are both learned based on word concur-
rency but not sequential context. ELMo is context-specific which uses a language model
based on a bi-directional LSTM to bring semantic information to the word vector.

2.2.2 Sentence embedding: BERT

BERT, short for Bidirectional Encoder Representations from Transformers, is a popular
technique for pre-training contextualized universal sentence embeddings based on trans-
former model [37]. As shown in Figure 2.1, transformers use stacked self-attention and
point-wise, fully-connected (FC) layers for both the encoder and decoder. Each layer has
two sub-layers: a multi-head self-attention mechanism followed by a simple, position-wise
fully-connected feed-forward network. Residual connections are implemented around each
of the two sub-layers, followed by layer normalization.
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Fig. 2.1 Transformer model architecture. (Image source: [37])
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Compared to GPT, the largest difference and improvement of BERT is to make training
bi-directional. By obtaining both previous and subsequent context, it enables bi-directional
prediction and sentence-level understanding. Being bi-directional means BERT can no longer
be trained using basic language modelling task, namely predicting the next token given
context, because the output is able to see the whole sentence. Instead, BERT is trained with
two other tasks: Mask Language Model (MLM) which is similar to a cloze deletion test
that predicts the missing word given the context and Next Sentence Prediction (NSP) for
understanding the relationships between sentences and telling whether one sentence is the
following sentence from the other.

2.3 Video embeddings

Based on the approaches of temporal emotion cues modelling in video, there are three main
categories of facial emotion recognition methods [38]:

• Low level spatial-temporal feature based methods: treating video data as 3-d pixel
volumes and applying image feature descriptors along all spatial and temporal dimen-
sions [39–41].

• Image set based methods: treating video as a set of images and viewing video frames
as representations of the same object captured under different conditions (pose, illumi-
nation, etc) [42–44] .

• Sequence model based methods: applying sequence models such as Recurrent Neural
Networks (RNNs) to capture the temporal cues among video frames.

The latter two methods are more robust to the temporal variations of facial emotion expres-
sion [42, 45].

Recently image feature extraction is typically implemented with transfer learning meth-
ods [38, 46–50]. A Convolutional Neural Network (CNN) is trained with an external large
dataset, e.g., FER2013 [51]. The output of the last CNN layer are used as feature vectors
for the input image. After that, conventional classification techniques, e.g., Support Vector
Machine (SVM) and FC layer with softmax activation function are applied to these features
to recognize facial expressions.
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Video in IEMOCAP is semi-front and half-length, as illustrated in Figure 2.2. Video signal
processing can then be divided into two parts: i) detecting faces in the raw video; ii) extracting
embeddings from faces. In this project, the first step is done by the Multi-task Cascaded
Convolutional Networks (MTCNN) [52]. The second step is done by VGG-19 network [53]
finetuned on FER2013.

Fig. 2.2 Screenshot of the semi-front half-length video clip of IEMOCAP

2.3.1 Face detection: MTCNN

MTCNN [52] is a popular face detection technique that has achieved state-of-the-art results
on a range of benchmark datasets. It is capable of also recognizing other facial features such
as eyes and mouth, called landmark detection. The deep cascaded multi-task framework uses
different features of “sub-models” to each boost their correlating strengths. The network
consist of three stages: the input image is first re-scaled to a range of different sizes, then
the first shallow CNN (Proposal Network) proposes candidate facial regions, the second
more complex CNN (Refine Network) filters the bounding boxes to reject a large number of
non-faces windows, and the third more powerful CNN (Output Network) refines the result
and output facial landmarks positions.

In addition to deep learning methods, traditional feature-based face detection algorithms are
also fast and effective such as Viola-Jones object-detection algorithm [54] which uses Haar
basis feature filters and the AdaBoost algorithm.
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2.3.2 Face models

Although most studies use the FER2013 emotion corpus for finetuning, the choice of pre-
trained face models is quite flexible. Such models include the VGG-Face model [49, 50]
pre-trained for face recognition using the large VGG face dataset [55] and AlexNet Deep
CNN model [38] pre-trained on ImageNet [56], an object centric dataset that includes the
category person. This thesis uses VGG-19, a CNN trained on the ImageNet. VGG-19 consists
of 25 layers (16 convolution layers, 3 fully connected, 5 maxpool layers and 1 softmax layer).
It improves over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and
second convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after
another. Within a given receptive field, multiple stacked smaller kernels are better than one
larger kernel because multiple non-linear layers increases the depth of the network which
enables it to learn more complex features at a lower cost.





Chapter 3

Encoder models and pooling methods

Chapter 2 has described methods to process and extract information from the raw input of
the various modalities such as speech waveform, text, and video. This chapter reviews the
models and methods that process these sequence of parameter vectors and make prediction
on the emotional content of the input utterance.

As discussed in Chapter 1, inputs have been represented as sequence of feature vectors but
emotional labels are provided for the whole utterances in many databases including IEMO-
CAP. There can be a mismatch between short-term inputs at the frame level and long-term
outputs at the utterance level. Common sequence-to-sequence method includes assigning
the overall emotional label to each frame within the utterance, and training the system in a
frame-wise manner [57] or excluding those emotionally irrelevant frames in an utterance and
aligning the overall emotional label to each emotionally relevant one [58].

This project uses sequence-to-one methods. Typical sequence-to-one methods involve using
a sequence model to encode context information from the feature sequence and using various
pooling methods to summarize emotion information for the whole utterance.

Commonly used sequence models include RNN [59], Long Short Term Memory (LSTM) [60],
bidirectional-LSTM (bi-LSTM) [61], Gated Recurrent Unit (GRU) [62], CNN, Time Delay
Neural Network (TDNN) [63], etc. Tripathi et al. [34] used an LSTM to process text, Yoon
et al. [36] used a bi-LSTM to process both text and audio in their 2018 work and GRU in
their 2019 work [35]. CNNs have been widely used to process text [64–66].

Commonly used pooling methods include final pooling where only the final hidden represen-
tation at the last frame of an utterance is used as the representation of the whole sequence
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and the system makes a decision at the end of each utterance [19, 20, 67], mean pooling
where the average of hidden representations of all inner frames of an utterance are used as
the representation [19–21], and weighted pooling which computes a weighted sum as the
representation, where the weights are normally determined based on an additional attention
mechanism [20, 21, 68].

In this project, the structure used for speaker diarisation [1] has been adopted and adapted:
using a TDNN model with residue connection (ResNet-TDNN) as the encoder and multi-head
self-attention (MHA) for pooling.

3.1 Encoder: ResNet-TDNN

One effective architecture in modelling long range temporal dependencies is the Time Delay
Neural Network, originally proposed in [63] and often used in its sub-sampled form [69] to
reduce computation during training.

Fig. 3.1 Illustration of TDNN structure used in the project
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A TDNN consists of identical fully-connected layers repeated at different time steps. When
processing a wider temporal context, instead of learning the entire temporal context by the
initial layer (which standard feed-forward deep neural networks do), each layer in a TDNN
operates at a different temporal resolution and the higher layers in turn have the ability
to learn wider temporal relationships. The basic TDNN structure used in the project is
illustrated in Figure 3.1.

Kreyssig et al. [70] proposed a method of deepening the kernel used in the TDNN temporal
convolutions by introducing residue connection to speed up training. Deeper networks
generally improve the performance of neural network architectures but they are usually
harder and slower to train and might raise issue such as gradient vanishing. The problem of
training very deep networks has been alleviated with the introduction of the residual network
(ResNet) [71]. Residual connections add the outputs from previous layers to the outputs of
stacked layers, described by Equation 3.1 where x and F(x,θ) are the input and the output of
the block of layers that is to be “skipped”.

y = F(x,θ)+ x (3.1)

This direct connection reduces the effective minimum depth of networks in terms of layers
and results in the ability to train much deeper networks. Figure 3.2 shows the comparson of
standard kernel and ResNet kernel.

Fig. 3.2 Comparison of standard kernel and ResNet kernel. Lighter block are FC layers
with ReLU activation function. The darker block denotes an FC layer with linear activation
function.

3.2 Pooling: Multi-head self-attention

The structured self-attention mechanism, introduced in [72] to replace the max pooling or
the averaging step, can be viewed as dynamic linear combination of input vectors with the
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combination weights provided by an annotation matrix A, which is computed from the inputs
themselves. The annotation matrix can be calculated using Equation 3.2

A = softmax(tanh(HW1)W2) (3.2)

where H = [h(1) . . .h(T )]T is the T × n input matrix corresponding to T input vectors of
dimension n and A(T ×h) is the h-head annotation matrix. A is generated by passing the
input matrix through two FC layers with weight matrices W1 and W2 respectively. Each
column of the annotation matrix is an annotation vector which gives a set of scaling factors
that weight the importance of each input. Softmax is performed column-wise to ensure each
annotation vector sums to one. The outputs E(h×n) is achieved by applying A to the inputs:

E = [e1, . . . ,eh] = AT H = SelfAtten(h(1) . . .h(T )) (3.3)

The multi-head self-attention structure is illustrated in Figure 3.3.

Fig. 3.3 Illustration of a three-head self-attentive layer

When a multi-head self-attentive layer is used (i.e. h > 1), to encourage different heads to
extract dissimilar information, a penalty term in Equation 3.4 is added to the cross-entropy
loss function during training.

P = µ
∥∥AT A− I

∥∥2
F (3.4)

where I is the identity matrix, || · || denotes the Frobenius norm, µ is the penalty coefficient.
This penalty term was originally designed for sentence embeddings to focus on as few words
as possible while encouraging different annotation vectors to be estimated. Sun et al. [1]
modified the penalty term by replacing I with a diagonal matrix Λ:
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P = µ
∥∥AT A−Λ

∥∥2
F (3.5)

The diagonal values λi = Λii control the smoothness of the annotation vectors. By varying
the value of λ between 1/h and 1, the annotation vectors can not only focus on a few key
input vectors but also reflect the general trends of importance.

Different from final pooling and mean pooling, attention computation requires a fixed matrix
dimension, which means that the attention computation needs to be performed on a fixed
window length. This would lead to a window-level decision. There are two simple ways to
combine window-level decisions to obtain predictions for the whole sentence: i) majority vot-
ing: picking the most probable class over each window and taking the dominant class among
all windows; ii) averaging: averaging the probabilities of each class over all windows and
taking the overall most probable one. Both two methods are investigated in the experiments.

3.3 Fusion

Fusion is a key research topic in multimodal studies, which integrates information extracted
from different unimodal data into one compact multimodal representation. Fusion methods
can be divided based on the stage that it appears in the procedure, e.g., early fusion (also
“feature-level” fusion) and late fusion (also “decision-level” fusion). Early fusion combines
the input modalities into a single feature vector on which a prediction is made (usually this
happens before the neural network). In late fusion methods, each of the input modalities is
used to make an individual prediction, which are then combined for the final classification
(usually this happens after the neural network). This distinction has gradually become blurred
with the development of deep neural networks. Features and embeddings can be extracted
using deep neural networks and it is hard to determine whether fusion happens before the
network or after. Besides, early and late fusion can suppress either intra- or inter-modality
interactions. Therefore, recent studies focus on the intermediate methods that allows fusion
to happen at multiple layers of a deep model [73].

Commonly used fusion methods can be classified into simple operation-based, attention-
based, and bilinear-pooling-based methods. Simple operation-based methods includes con-
catenation and weighted sum with scalar weights. Concatenation can be applied to either
low-level input features or high-level features extracted by pre-trained models [74]. Weighted
sum fusion with scalar weights can be achieved by a FC layer with dimension control being
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implemented at the same time. An attention mechanism as described in Section 3.2 can
also be used for fusion. The basic attention mechanism can be extended to use a more
complex structure such as co-attention mechanism [75] and dual attention network [76].
Bilinear pooling is another method often used to combine vectors into a joint representation
by computing their outer product [77]. Compared to concatenation and attention, bilinear
pooling allows a multiplicative interaction between all elements in both vectors. The bilinear
representation is often linearly transformed into an output vector using a two-dimensional
weight matrix. As multiplication leads to high dimensionality, bilinear pooling often requires
decomposing the weight tensor so that the associated model can be trained properly and
efficiently. For instance, Multimodal Low-rank Bilinear pooling (MLB) enforces a low rank
to the weight tensor [78].

Concatenation, weighted sum using FC layer and MLB are all investigated in this thesis.

3.4 Classification: Angular softmax

Classification can use traditional machine learning techniques such as Support Vector Ma-
chine (SVM) [64] and a FC layer with a softmax activation function. Instead of using the
standard softmax function, angular softmax (A-softmax) [79] is used as activation function
of the classification FC layer in this project. A-softmax was originally proposed to address
the deep face recognition problem with an open-set protocol, where ideal face features are
expected to have smaller maximal intra-class distance than minimal inter-class distance under
a suitably chosen metric space. It has also been shown to improve the generalisation ability
to unseen data which is useful in small datasets.

The posterior probability obtained by standard softmax loss can be described by Equation 3.6:

pi =
eW T

yi
xi+byi

∑ j eW T
j xi+b j

(3.6)

where xi, Wj, Wyi are the i-th training sample, the j-th and yi-th column of fully connected
layer W respectively. The standard softmax loss can be written as the negative log likelihood
of the posterior probability, as shown in Equation 3.7.

Li =− log

(
eW T

yi
xi+byi

∑ j eW T
j xi+b j

)
(3.7)
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W T
yi

xi + byi can be re-written as
∥∥Wyi

∥∥∥xi∥cos(θyi,i)+ byi where θ j,i(0 ≤ θ j,i ≤ π) is the
angle between vector Wj and xi. Equation 3.7 can then be re-written as:

Li =− log

(
e∥Wyi∥∥xi∥cos(θyi,i)+byi

∑ j e∥W j∥∥xi∥cos(θ j,i)+b j

)
(3.8)

Normalizing
∥∥Wj

∥∥ in each iteration and zeroing the biases, the posterior probability becomes
p j = ∥xi∥cos

(
θ j,i
)
. Note that all p j share the same xi, the final result only depends on the

angles θ j,i. The modified softmax function is given by Equation 3.9.

Li =− log

(
e∥xi∥cos(θyi,i)

∑ j e∥xi∥cos(θ j,i)

)
(3.9)

The idea of angular margin is to make the decision more stringent. Taking binary classification
as example, the modified softmax loss requires cos(θ1) > cos(θ2) to correctly classify x.
A-softmax instead requires cos(mθ1)> cos(θ2) (m > 1) which requires θ +1 < θ2

m in order
to correctly classify x. This is more difficult than original θ1 < θ2 and would thus leads to
more separable classes. Below is the equation of angular softmax loss:

Lang =
1
N ∑

i
− log

(
e∥xi∥cos(mθyi,i)

e∥xi∥cos(mθyi,i) +∑ j ̸=yi e∥xi∥cos(θ j,i)

)
(3.10)

where θ j,i has to be in the range of [0, π

m ], and the size of angular margin can be quantitatively
adjusted by the parameter m.

Figure 3.4 compares among softmax loss, modified softmax loss and A-softmax loss.
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Fig. 3.4 Comparison among softmax loss, modified softmax loss and A-Softmax loss. it
can be seen that A-Softmax loss can further increase the angular margin of learned features.
(Image source: [79])



Chapter 4

Multimodal Emotion Recognition System

In this chapter, a complete multimodal emotion recognition system is developed across audio,
text, and video modalities. Section 4.1 and 4.2 provide details about the dataset used and the
experiment setting. Section 4.3 examines basic model configurations and the combination of
different audio features. Text and videos are then added to the system in Section 4.4 and 4.5
respectively. Section 4.6 investigates the contribution of different modalities and discusses
the use of ASR transcriptions and long-term audio features. Section 4.7 summarizes the
chapter and cross compares the system performance with the literature.

4.1 Dataset

This thesis uses IEMOCAP database [25]. In total, the corpus contains 10039 utterances
with an average duration of 4.5 s. The average number of words per utterance was 11.4.
Categorical labels were used in this thesis, which contains 10 categories (neutral, happiness,
sadness, anger, surprise, fear, disgust, frustration, excited, other).

Most of the related publications on IEMOCAP only used part of the dataset. Only utterances
satisfying the following two conditions were considered: i) majority of the three annotators
agreed on one emotion label; ii) this label belongs to the following categories: angry, happy,
excited, sad, and neutral. “happy” and “excited” were combined as “happy” to balance the
number of samples in each emotion class. The task thus became a four-way classification
problem. To keep consistent and cross compare with the related work, this setting is used
in this Chapter. The label statistics are listed in Table 4.1 and the emotion distribution is
shown in Figure 4.1. Chapter 5 will discuss approaches to deal with utterances that have
been discarded in this setting, namely utterances that don’t have majority labels and don’t
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belong to these four target classes.

happy angry sad neutral total
1636 1103 1084 1708 5531

Table 4.1 Statistics of four emotion categories used in this chapter. Only utterances with
ground truth label belonging to these four categories are used in this chapter.

Fig. 4.1 Statistics of four emotion categories used in this chapter.

4.2 Experiment setup

Related work usually used leave-one-session-out 5-fold cross validation (5-cv) or speaker-
independent 10-fold cross validation (10-cv). However, cross validation can be time-
consuming. In order to save time, systems are trained on Session 1-4 and tested on Session
5 unless otherwise stated. 10% of training data is randomly chosen for validation. Key
conclusions will be verified by 5-fold cross validation and 10-fold cross validation results
will be provided for the final system for cross comparison. The number of utterances in each
fold of 5-cv and 10-cv are shown in Table 4.2 and Table 4.3, respectively.

Test session Ses1 Ses2 Ses3 Ses4 Ses5
Training 4002 4058 3942 4050 3861

Validation 444 450 438 450 429
Testing 1085 1023 1151 1031 1241

Table 4.2 Number of utterances in training, validation and testing set of each fold in 5-cv.
“Ses1" denotes Session 1, etc.
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Test speaker id 1F 1M 2F 2M 3F 3M 4F 4M 5F 5M
Training 4503 4477 4545 4491 4509 4412 4503 4526 4447 4032

Validation 500 497 505 498 500 490 500 502 494 488
Testing 528 557 481 542 522 629 528 503 590 651

Table 4.3 Number of utterances in training, validation and testing set of each fold in 10-cv.
“1F" denotes the female speaker in Session 1. “1M" denotes the male speaker in Session 1,
etc.

Since the test sets are slightly imbalanced between emotion categories, as shown in Fig-
ure 4.1, both the weighted accuracy (WA) and unweighted accuracy (UA) are reported. WA
corresponds to the overall accuracy on test examples which equals the correctly detected
samples divided by the total number of samples. UA corresponds to average recall over the
different emotion categories.

4.3 AER using audio modality

4.3.1 Model structure and basic configuration

The model structure used is shown in Table 4.4. Specifically, the encoder consists of four
512-dimensional ResNet-TDNN layers, followed by a projection layer which reduces the
outputs’ dimension to 128-d before feeding into the self-attentive layer. All layers use
ReLU as activation function except the last FC layer which uses A-softmax for classification.
Models were implemented using an extended version of HTK Toolkit [2]. During training,
the newbob learning rate scheduler with an initial learning rate of 5×10−5 was used, and
batch size was set to 200.

Layer No. Layer Type Context width Dimension
1-4 ResTDNN [2,+2] 512
5-8 ResTDNN {-1,+2} 512
9-12 ResTDNN {-3,+3} 512

13-16 ResTDNN {-7,+2} 512
17 FC {0} 128
18 5-head self-atten [-50,+49] 128*5
19 FC {0} 128
20 FC {0} 4

Table 4.4 Model structure of the audio-based AER system.
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The basic configuration of the system such as the number of self-attention heads, the window
length and window shift of the attention layer were selected by the following experiments.
40-d MFB features were computed using HTK and used as input with dialogue-level variance
normalization and utterance-level mean normalization.

The number of heads was selected from the experiments shown in Table 4.5. Single head
self-attention can be viewed as mean pooling with dynamic weights. Increasing the number
of heads enables the attention to capture different characteristics. In the five-head system,
by setting the diagonal value of the modified penalty term in Equation 3.5, two heads are
responsible for capturing long-term characteristics over the whole window and the other three
capture key frames. The utterance-level results can be obtained by combining window-level
decisions using majority voting or by averaging. As shown in Table 4.5, averaging gives
slightly better results and was used in later experiments.

# head voting WA voting UA avg WA avg UA
1 56.97 58.80 57.21 59.08
3 58.18 60.04 58.18 60.09
5 58.90 61.47 59.39 62.15

Table 4.5 Basic configuration test of the number of heads of attentive layer. 40-d MFB
features used as input. Tested on Session 5. Results in percent. Bold: highest value in each
column.

As discussed in Section 3.2, the attention mechanism requires a fixed window length. Another
key configuration that affects system performance is the context of the attention layer, namely
the window length and window shift, illustrated in Figure 4.2.

Fig. 4.2 Illustration of window shift and window length. Blue rectangle denotes the fixed-
length window.

Five-head attention with different window lengths and window shift were tested. Results
are shown in Table 4.6. The unit of window length is frame. “50*2” denotes a window of
context [-50,+49]. Frame shift of audio features is 10ms, which means that a window length
of 50*2 corresponds to a 1s window. As the average length of utterance in IEMOCAP is
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4.5s, using window length of 300*2 would cover most of the sentences. Short sentences were
padded by repeating the edge frame.

Row num. L ∆L avg WA avg UA
1 25*2 10 59.95 61.96
2 50*2 50 58.34 59.74
3 50*2 10 59.39 62.15
4 50*2 1 60.52 62.00
5 100*2 100 56.73 58.30
6 100*2 50 57.61 59.17
7 100*2 10 58.34 60.27
8 100*2 1 57.94 56.92
9 200*2 100 54.88 54.56

10 200*2 50 55.92 56.72
11 300*2 100 52.38 53.28

Table 4.6 Basic configuration test of window length and window shift. “50*2” denotes a
window with context of [-50,+49]. 40-d MFB features used as input. Tested on Session 5.
Results in percent. Bold: highest value in each column.

Comparing Row num.2,6,10 (Figure 4.3b) and Row num.5,9,11 (Figure 4.3c), with fixed
window shift, although a longer window covers more frames at once, it doesn’t yield better
performance. Comparing Row num.1,3,7 (Figure 4.3a), with fixed window shift of 10, a
window size of 25*2 and 50*2 give close results. Comparing Row num.2-4 (Figure 4.3d)
and Row num.9-10 (Figure 4.3f), with a fixed window size, smaller window shift gives better
results but is meanwhile more expensive to train. Comparing Row num.5-8 (Figure 4.3e),
when window shift decreases from 10 to 1, there’s no performance gain but it takes a longer
time to train. Trading-off between system performance and training time, a window size of
50*2 and a window shift of 10 will be used in later experiments.

4.3.2 Combination of different audio features

POV-weighted pitch and first differentials were appended to the 40-d MFB. The 5-fold cross
validation results of the system using different input audio features are shown in Table 4.7.
Comparing rows 2 and 3, pitch information is useful. It improves the results by ~0.75%
by only adding one more dimension. Although it can be argued that dynamic features
can be redundant if they are combined with a linear layer in a subsequent neural network,
appending the first differentials still improves the results by ~2.2%. The standard deviation
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Fig. 4.3 Basic configuration test of window length and window shift.
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also decreases when deltas are appended.

Feature dim avg WA avg UA
MFB 40 57.20±1.84 58.78±3.21

MFB+pitch 41 57.91±2.17 59.59±3.40
MFB+pitch+∆ 82 60.64±1.96 61.32±2.26

Table 4.7 Average and standard deviation of 5-fold cross validation results on audio-based
AER system using different combination of audio features as input. Results in percent.

In later experiments, unless otherwise stated, audio feature refers to the 82-d MFB+pitch+∆.
As the input has a context width of [-2,+2], the total input dimension is 82∗5 = 410.

4.4 AER using audio and text modalities

The released reference transcripts of the IEMOCAP dataset are used for the text modality
in this section, as most related work with IEMOCAP did. The use of Automatic Speech
Recognition (ASR) in obtaining transcription will be discussed in Section 4.6.2.

4.4.1 Word-level text information

GloVe vectors pre-trained on Twitter were used in this section. The Twitter database contains
2B tweets, 27B tokens, and a 1.2M vocabulary. GloVe vectors are available with dimensions
of 25, 50, and 100. GloVe vectors were attached to audio features at the frame level to form a
low-level concatenation fusion. As one word lasts for several frames, the same GloVe vector
would be repeated for several frames. The input audio features have a context range from -2
to +2. Since the neighbouring frames are very likely to be the same, GloVe is only attached
to the central frame, as illustrated in Figure 4.4. Although there’s still temporal redundancy
for the central GloVe embedding, word duration can also be cue for emotional content.

GloVe vectors of different dimensions were attached to audio features. The results are shown
in Table 4.8. Although Tripathi et al. [34], Yoon et al. [35, 36] used 300-d GloVe in their
experiments, Table 4.8 shows that 50-d GloVe performs best in this framework.
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Fig. 4.4 Concatenation of audio features (blue) and GloVe vectors (orange). Input audio
feature has a context of [-2, +2] and GloVe was attached only to the central frame.

GloVe dim avg WA avg UA
25 66.08 66.57
50 67.2 68.11

100 66.96 67.58
Table 4.8 Attaching GloVe of different dimensions to audio features. Tested on Session 5.
Results in percent. Bold: highest value in each column.

With 50-d GloVe appended, the dimension of input features becomes 410+50 = 460. 5-cv
results using audio features, 50-d GloVe embeddings and their combination are shown in
Table 4.9. Using GloVe alone gives slightly higher accuracy than audio alone but larger
range across cv folds at the same time. Introducing GloVe to the audio features increases
the results by ~5%. The standard deviation among five folds also decreases when these two
features were combined, which indicates that the system becomes more robust to variation
across datasets.

Feature avg WA avg UA
Audio 60.64±1.96 61.32±2.26
GloVe 61.27±3.73 62.67±3.55

Audio+GloVe 65.53±1.83 66.43±1.33
Table 4.9 Average and standard deviation of 5-fold cross validation results on AER system
using audio features, 50-d GloVe embeddings and their combination. Reference transcripts
used for the text modality. Results in percent.
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4.4.2 Sentence-level text information and the time asynchronous branch

Previously, word-level GloVe embeddings are synchronized with audio features at the frame
level. In order to incorporate BERT which is a sentence-level embedding, an additional
branch was added to the system, termed the “time asynchronous” branch.

Fig. 4.5 Illustration of the modified system structure that contains a time synchronous branch
and a time asynchronous branch.

The modified system structure is illustrated in Figure 4.5. Computation of the BERT embed-
ding was implemented using PyTorch “transformers" library1. Again, reference transcripts
were used as input. A 768-d BERT embedding of each sentence was extracted using “Bert-
Model” with pretrained “bert-base-uncased” weights which behaves as an encoder. The 768-d
BERT embedding first passes through an FC layer for dimension reduction (64-d) and then
concatenates with the output of the multi-head self-attentive layer of the time synchronous
branch (Layer 18 in Table 4.4) and together passes through an FC layer for fusion (Layer 19
in Table 4.4) before sending to classification.

Results are shown in Table 4.10. Comparing the 3rd and the 4th rows, BERT is more
powerful than GloVe when added to the Audio-based system. Comparing the 4th and 5th
rows, GloVe and BERT are complementary. Although BERT is powerful, adding Glove
still improves the results, which indicates that GloVe can provide complementary information.

One of the main contributions of this thesis is the use of context BERT, namely the BERT
embedding of previous and subsequent sentences. The model structure using context BERT

1https://pypi.org/project/transformers/
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Feature avg WA avg UA
Audio 64.06 64.24

Audio+GloVe 67.20 68.11
Audio+BERT 69.46 69.32

Audio+GloVe+BERT 70.83 71.61
Table 4.10 Incorporating the BERT embedding to the system. Tested on Session 5. Reference
transcripts used for text modality. Results in percent.

in the time asynchronous branch is shown in Figure 4.6. The dimension of each BERT
embedding was reduced to 64-d by the FC layer, whose weights and biases were shared
among all context BERT embeddings. Another five-head self-attentive layer was introduced
to combine context BERT. In this case, as inputs are sentences, the unmodified penalty
(Equation 3.4) was used, which reflects the extent to which sentences in the context affects
the current emotion.

Fig. 4.6 Illustration of the model structure using context BERT in time asynchronous branch.

IEMOCAP is a dyadic database. The context can be chosen to either only include context of
the current speaker or include context of both speakers in dialogue turn. Table 4.11 shows the
results of using audio features, Glove, and BERT with different context range. Comparing
Row num.1-5 in Table 4.11, increasing context width leads to increase in classification
accuracies while Row num.4 and 5 give comparable results. Comparing Row num.3,6 and
4,7, with the same context width, including both speakers in context performs better. It can
be argued that emotion is a long-term attribute that may last for several sentences. The use
of context sentences of the current speaker helps capture this. And in dialogues, context
information from the other speaker can carry reaction information, which can also be useful
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to infer the current speaker’s emotion. What the other speaker says may affect the listener’s
emotion to a considerable extent and can trigger a change in the listener’s emotion. The last
two rows consider only previous sentences (in online learning manner). Comparing Row
num.2 and Row num.8, using the same number of context utterances, the following sentence
is more informative than that before the previous sentence. Comparing Row num.3,8 and
Row num.4,9 shows the effectiveness of using subsequent sentences. And the use of both
previous and following context is consistent with the bi-directional characteristic of BERT.
Context of [-3,+3] was selected for later experiments. The detailed structure of the time
asynchronous branch is shown in Figure 4.7.

Row num. context # of speaker avg WA avg UA
1 [0] two 70.83 71.61
2 [-1,+1] two 77.60 77.90
3 [-2,+2] two 77.76 79.20
4 [-3,+3] two 81.22 81.60
5 [-4,+4] two 80.66 81.87
6 [-2,+2] one 75.02 76.71
7 [-3,+3] one 80.66 80.99
8 [-2,0] two 74.94 75.74
9 [-3,0] two 78.81 78.38

Table 4.11 Comparison of BERT with different context range. Audio features and Glove
embedding used as inputs to the time synchronous branch. Number of speaker equals “one"
means that only sentences of the current speaker were included in context. “Two" means that
context of both speakers were included. Tested on Session 5. Reference transcripts used for
the text modality. Results in percent. Bold: highest value in each column.

Table 4.12 shows the 5-fold cross validation results using single BERT (“BERT0"), context
BERT (“BERT7"), and context BERT with audio features and GloVe embeddings as inputs.
It can be seen that context BERT is much more powerful than single BERT. Comparing
“BERT0" and “BERT7", context BERT has much higher average accuracy as well as lower
standard deviation. Comparing with system using Audio+GloVe (last row in Table 4.9),
introducing context BERT improves the result by ~10%. In the following content, unless
otherwise stated, “BERT" refers to context BERT (“BERT7").

As BERT is a sentence-level embedding, if only the time asynchronous branch is considered,
it makes a sentence-level decision, which is equivalent to a window containing one frame.
Voting and averaging then have the same result.
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Fig. 4.7 Detailed structure of time asynchronous branch with context of [-3,+3]. “+" denotes
concatenation operation. The dimension of each 768-d BERT embedding is reduced to 64-d
by the FC layer. Weights and biases are shared among the seven 64-d FC layers. Context
BERTs are then combined using the five-head self-attentive layer.

Feature avg WA avg UA
BERT0 58.53±4.41 59.20±5.57
BERT7 71.22±3.16 71.88±2.62

Audio+GloVe+BERT7 75.53±3.79 76.65±3.67
Table 4.12 Average and standard deviation of 5-fold cross validation results using single
BERT (“BERT0"), context BERT (“BERT7"), and context BERT combined with audio
features and GloVe embeddings. Reference transcripts used for the text modality. Results in
percent.
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4.4.3 Bilinear fusion

The previous experiments used an FC layer to fuse the time synchronous branch and the time
asynchronous branch. This section examines the effect of bilinear pooling.

As shown in Table 4.13, surprisingly, although bilinear pooling has been shown to be more
powerful in many cases, FC works much better in this framework. One possible reason is that
bilinear pooling expects two systems to have close performance, in other words, to be more
balanced. As shown in Table 4.14, time asynchronous branch performs much better than
time synchronous branch (mainly due to the context information). In this situation, bilinear
pooling is not effective while FC fusion increases the performance by a marked margin. FC
fusion will continue to be used in later experiments.

Fusion avg WA avg UA
FC 81.22 81.60

Bilinear 70.91 74.91
Table 4.13 Comparison of two fusion methods: FC layer and bilinear pooling. Tested on
Session 5. Audio features, GloVe embeddings, and context BERT used for the system.
Reference transcripts used for the text modality. Results in percent. Results in the 2nd row is
the same as Row num.4 in Table 4.11.

Branch avg WA avg UA
Time-sync 67.20 68.11
Time-async 74.21 73.31

Table 4.14 Results of time synchronous branch alone and time asynchronous branch alone.
Tested on Session 5. Reference transcripts used for the text modality. Audio features and
GloVe embeddings used for the time synchronous branch. Context BERT used for the time
asynchronous branch.

4.5 AER using audio, text, and video modalities

This section aims to add the video modality to the system. 160*160 face images were
extracted by MTCNN2 from each video frame and then resized into 48*48 to match the
input size of the VGG-19 model finetuned on FER20133. The pretrained VGG-19 behaves

2The implementation of MTCNN used an open source PyTorch library: https://pypi.org/project/facenet-
pytorch/

3https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
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as an encoder. 512-d embedding for faces in each video frame can then be obtained from the
outputs of the last layer before the final classification layer. Before feeding the embedding to
the current AER system, the dimension of face embeddings are reduced to 32-d through an
FC layer.

As video has frame shift of 33.37ms while audio features has frame shift of 10ms, the
system structure needs to be modified before incorporating the video modality. One way to
align video and audio is to up-sample video by repeating each frame by three or four times
(Figure 4.8a). But this would lead to temporal redundancy as human can not detect such rapid
changes. The other way is to down-sample audio features (Figure 4.8b). Instead of directly
increasing frame shift of audio from 10ms to 33.37ms, which also requires to increase frame
length and might lose some short-term information. The down-sample process was divided
into two steps: i) increasing audio frame shift to 11.12 ms (= 33.37/3); ii) in each attention
window, selecting every three frame (termed skip3) to recover (11.12 ∗ 3 = 33.37). The
window length was increased from 50*2 to 150*2 to keep the number of frames per window
the same. Although the video features are repeated three times and attached to each audio
frame, it would only be used once in each attention window due to the skip3 structure. As the
audio features have a context width of [-2,+2] which still overlaps when skip3 was applied,
overall, we will not lose any audio frames.

(a) Up-sample (b) down-sample

Fig. 4.8 Illustration of two ways to align audio features (blue) and video features. Video
features are coloured yellow, orange, and brown to show the repetition of frames.
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Based on the skip3 idea, two structures have been investigated. The first structure combines
the 32-d video features with audio and GloVe at the input of the ResNet-TDNN encoder
(Figure 4.9a). Just the same way as how GloVe and audio features were combined. The
second structure (Figure 4.9b) directly concatenates the 32-d video feature with the output of
ResNet-TDNN encoder. The context of the encoder output was included to recover some
context audio information lost due to down-sampling. In this case, video features didn’t pass
through the ResNet-TDNN encoder.

(a) Structure-1

(b) Structure-2

Fig. 4.9 Illustration of two skip3 structures. Audio features are shown by blue rectangles and
video features are shown by orange rectangles.

Two structures were tested on Session 5 and the results are shown in Table 4.15. Row num.2-6
compare the effect of adding video to Audio+Text-based system. Row num.7-9 compare
the effect of adding video to Audio-based system. Comparing Row num.2,3,5 and Row
num.7,8, changes in structure due to down-sampling causes performance loss before video
was added to the system. Audio+Text-based system has a smaller loss (~2.2%) compared to
Audio-based system (~6.5%) mainly due to the sentence-level context information provided
by the time asynchronous branch. Context mode provides more information and improves
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the robustness of the system.

As shown in Row num.1, the video modality in IEMOCAP is weak. The low UA of video
alone system was due to the low accuracy in recognizing angry (19.34%) and sad (37.55%).
The literature also shows a low accuracy for IEMOCAP video modality. Tripathi et al. [34]
got 51.11% WA on Session 5. Poria et al. [66] and Majumder et al. [65] got 53.2% WA and
53.3% WA respectively for 10-fold cross validation.

Row num. System. down-samp. avg WA avg UA
1 Video only Yes 53.18 43.61
2 Audio+GloVe+BERT No 81.22 81.60
3 Audio+GloVe+BERT – Struc.1 Yes 79.45 78.96
4 Audio+GloVe+BERT+Video – Struc.1 Yes 79.53 79.03
5 Audio+GloVe+BERT – Struc.2 Yes 75.26 75.00
6 Audio+GloVe+BERT+Video – Struc.2 Yes 75.58 75.92
7 Audio No 64.06 64.24
8 Audio – Struc.1 Yes 57.53 57.75
9 Audio+Video – Struc.1 Yes 57.21 59.35

Table 4.15 Results of two structures when frame shift of the system changed from 10ms to
11.12 ms and video was added. Tested on Session 5. Results in percent.

Fig. 4.10 Trends of WA of Audio+GloVe+BERT-based system and Audio-based system
when the system was down-sampled and video was added. “1" denotes the original system.
“2" denotes the down-sampled system. “3" denotes the down-sampled system with video
being added. The slight improvement resulting from video modality cannot compensate for
the performance loss resulting from down-sampling.

Comparing Row num.3,4, Row num.5,6, and Row num.8,9 of Tabel 4.15, adding video did
improve the result slightly (can also due to noise as the dataset used is rather small). But,
comparing Row num.2,4, Row num.2,6, and Row num.7,9, this slight improvement cannot
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compensate for the performance loss resulting from down-sampling. Taking WA as example
(UA has the same trend), the trend when the original system was down-sampled and video
was added is summarized in Figure 4.10.

The result of incorporating video modality is not satisfactory for the following possible
reasons:

• The classification accuracy of video itself is rather low. Videos in IEMOCAP are
primarily used for evaluation and labelling and are not intended to be used as fea-
tures. As shown in Figure 2.2, it is semi-front half-length image and some expression
information may be lost. IEMOCAP provides motion capture (MoCap) data which
was captured by placing markers on the subject’s face, head, and hand. But only one
speaker in each dialog wore motion capture device, which means that half of the data
is missing.

• Changing system structure to cope with the mismatch in frame rate of audio and video
yields performance loss. Even if video works, the benefits may not be large enough to
compensate for that performance loss result from lower frame rate.

• New modality can be informative but can also be misleading, especially when the
system has already extracted “enough" information from the current modalities. As
shown in Figure 4.10, the higher the accuracy of the system before adding the video
(“2" in the figure), the smaller the improvement brought by the video modality. And, as
will be shown in Section 4.6.1, adding new features does not necessarily yields better
results.

It’s worth mentioning that the video results are data-dependent. The results and conclusions
will be different if other datasets are used. As incorporating video didn’t improve the perfor-
mance, further result for the system will only use audio and text modalities.

4.6 Discussion

4.6.1 Contribution of different features and modalities

Previous experiments focus on adding features and modalities to the system. This section
removes some of the features and examines the contribution of each feature and modality to
the system. Results are shown in Table 4.16.



38 Multimodal Emotion Recognition System

Row num. system Audio GloVe BERT avg WA avg UA
1 Audio only x 60.64 61.32
2 GloVe only x 61.27 62.67
3 BERT only x 71.22 71.88
4 Text only x x 70.40 71.88
5 Audio+GloVe x x 65.53 66.43
6 Audio+BERT x x 74.10 74.89
7 Audio+Text x x x 75.53 76.65

Table 4.16 5-fold cross validation averages on combination of different features and modali-
ties. Results in percent. Reference transcripts used for text modality.

Row num.1-3 of Table 4.16 show the performance using single feature as input. It can be
seen that BERT is much more powerful than the others. Then one may ask: now that context
BERT is so powerful, is GloVe still useful when BERT is introduced? Comparing Row
num.3 and 4, context BERT itself is comparable and even slightly better than combining
context BERT with GloVe. But the AER performance of “Audio+BERT" (Row num.6) is
worse than that of Audio+GloVe+BERT (Row num.7), as summarized in Equation 4.1 (the
comparison in the formula refers to the accuracy). One possible reason is the coupling effect
of GloVe and audio features. GloVe and audio features are fused by concatenation at frame
level which can help the model capture the correlation between two modalities.

BERT ≥ BERT+GloVe

BERT+Audio < BERT+GloVe+Audio
(4.1)

Comparing Audio+GloVe (Row num.5) and Audio+BERT (Row num.6), as GloVe alone
system (Row num.2) gives lower results than BERT only system (Row num.3), Audio+GloVe
also produces lower results than Audio+BERT system, as summarized in Equation 4.2.

GloVe < BERT

GloVe+Audio < BERT+Audio
(4.2)

However, comparing GloVe+BERT (Row num.4) and Audio+BERT (Row num.6), although
GloVe alone system (Row num.2) behaves better than audio alone system (Row num.1),
Audio+BERT produces higher accuracies than GloVe+BERT, as summarized in Equation 4.3.
This may due to the fact that audio features provide more complimentary information to
BERT than GloVe vectors do.
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GloVe > Audio

GloVe+BERT < Audio+BERT (4.3)

4.6.2 Transcription generated by ASR

The released transcripts of the IEMOCAP dataset was used for text modality in previous
experiments. In practice, manual transcription of utterances is usually not available. This
section investigates using transcriptions generated by ASR instead of the ground truth tran-
scriptions so that the AER model only requires speech as input. The Google Cloud Speech
API4 was used to retrieve the transcripts. Among 5531 sentences, 9.7% of them can’t be
recognized by the API and the WER reaches 40.8% (with Levenshtein distance of 4.43). This
can be explained by the relatively low quality of speech, the use of far-field microphones
rather than close-talking microphones during recording, and the fact that recognizing emo-
tional speech is indeed a difficult task.

Row num. Feature Text avg WA avg UA
1 BERT0 Ref 59.55 59.52
2 BERT7 Ref 74.21 73.31
3 Audio+BERT7 Ref 78.97 78.73
4 BERT0 ASR 50.60 46.89
5 BERT7 ASR 65.83 67.17
6 Audio+BERT7 ASR 73.65 73.26
7 Audio+BERT7 Mix 64.38 67.48

Table 4.17 Results using text generated by ASR for the text modality. “Ref" denotes reference
transcripts provided in dataset. “Mix" means that the system was trained on reference
transcripts and tested on ASR output. Tested on Session 5. Results in percent.

The experiments were implemented on sentence-level BERT embeddings. Results are shown
in Table 4.17 and Figure 4.11. The use of ASR leads to a decrease of ~10% and ~7% for
single BERT and context BERT, respectively. The decrease is reduced to ~5% when audio
features were included. It’s worth mentioning that despite the ~5% performance drop, the
Audio+BERT7 system in Row 6 is no longer an Audio+Text-based system but an AER
system that only uses audio as input. Comparing Row num.6 and 7 of Table 4.17, the system
trained and tested both on ASR performs better than system trained on reference transcripts

4https://cloud.google.com/speech-to-text/



40 Multimodal Emotion Recognition System

but tested on ASR outputs. One possible reason is that the system captured some error pattern
or that it has learnt to be robust to various type of error. For example, the system might
have learnt not to rely too much on a single modality. As discussed in Chapter 1, one major
advantage of using multimodal data is that different modalities can augment or complement
each other especially when certain modalities are susceptible to noise.

Fig. 4.11 Performance drop caused by using transcription generated by ASR instead of
reference transcripts.

As shown in Figure 4.11, the performance loss due to the use of ASR is smaller when context
information was added. Context can help in two ways: i) it provides more information; ii)
it compensates for the situation that the utterance cannot be recognized by ASR. Splitting
out the unrecognized utterances and testing only on those sentences, the results are shown in
Table 4.18. Unrecognized utterances were treated as empty sentences and had identical BERT
embedding. It can be seen that context mode produces much better results on unrecognized
sentences as expected. UA of BERT0 is exactly equal to random guess of a four classification
problem. WA of BERT0 relies mostly on prior information only. It shows that the lost
information can be partly recovered by the context. Incorporating previous and subsequent
sentences provides more information and makes the system more robust.

Feature avg WA avg UA
BERT0-ASR 40.80 25.00
BERT7-ASR 51.15 47.02

Table 4.18 Results on sentences that cannot be recognized by the ASR API. BERT embed-
dings of the unrecognized utterances are the output of an empty sentence, which are identical.
Tested on Session 5. Results in percent.
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4.6.3 Long-term audio features

Some early research viewed speech emotion recognition as a signal processing or feature
engineering problem [80, 81] and shows that apart from short-term audio features such as
cepstral and log energy that reflect local speech characteristics in a short time window, long
term features such as time envelopes of pitch and energy which reflect voice characteristics
over a whole utterance can help improve the performance of GMM-based SER systems.
Although some of the long-term audio features can be implicitly captured with the help of
neural networks, it is worth experimenting on introducing some explicit long-term audio fea-
tures. In this section, additional log energies extracted using 75ms and 250ms window with a
frame advance of 10ms were added to the system. As the extraction of MFB is based on the
short-time transient hypothesis that the signal is assumed to be unchanged within the window,
using long window would definitely lose some audio information. But in the context of
emotion, it is hard to say whether losing these short-term characteristics is a good thing or not.

Feature avg WA avg UA
MFB25 59.39 62.15
MFB75 58.50 60.75
MFB250 54.31 56.82

Audio+GloVe+BERT 81.22 81.60
Audio+GloVe+BERT+MFB75 81.14 81.34
Audio+Glove+BERT+MFB250 82.19 82.18

Table 4.19 Results on AER system with long-term MFB features being added. MFB25
denotes MFB using 25ms frame length and MFB250 denotes MFB using 250ms frame length.
Both of them are 40-d without pitch appended. Test on Session 5. Results in percent.
Reference transcripts used for the text modality.

Table 4.19 shows the experiment results on long-term MFB. Long-term MFBs were ap-
pended the same way as GloVe, attaching only to the central frame. Although using single
long-term MFB yields decrease in performance (the longer frame length, the lower accuracy),
appending MFB250 to the current system did improve the overall performance.

Feature avg WA avg UA
Audio+GloVe+BERT 75.53±3.79 76.65±3.67

Audio+Glove+BERT+MFB250 76.12±4.12 77.36±3.25
Table 4.20 Average and standard deviation of 5-fold cross validation results on system with
long-term features. Results in percent.
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The results can be noisy as the dataset used in the experiments is rather small. To eliminate
the possibility that the increase is caused by noise, 5-fold cross validation was performed
and results are shown in Table 4.20. Adding long-term features leads to ~0.65% increase.
Appending 250ms MFBs makes the dimension of the input of time synchronous branch
500-d (82×5+50+40).

system Audio GloVe BERT MFB250 avg WA avg UA
BERT only x 71.22 71.88
Text only x x 70.4 71.88

Audio+BERT+MFB250 x x x 74.74 75.60
Audio+Text+MFB250 x x x x 76.12 77.36

Table 4.21 5-fold cross validation averages on coupling effect when long-term features were
added.

As shown in Table 4.21, the coupling equation (Equation 4.1) described in Section 4.6.1 still
stands when long-term feature was introduced.

BERT ≥ BERT+Glove

BERT+Audio < BERT+Glove+Audio

BERT+Audio+MFB250 < BERT+Glove+Audio+MFB250

(4.4)

4.6.4 Dropout regularization

Larger feature sets might require more regularization. Dropout was added to the output
of ResNet layers and self-attentive layers5. Table 4.22 shows the results of system with
different dropout probabilities. It can be seen that introducing dropout is beneficial and
dropout probability of 0.5 gives relatively higher result.

Feature dropout avg WA avg UA
Audio+Glove+BERT+MFB250 / 82.19 82.18
Audio+GloVe+BERT+MFB250 0.2 82.67 82.65
Audio+GloVe+BERT+MFB250 0.5 83.45 82.92

Table 4.22 Results on AER system with different dropout probability. Tested on Session 5.
Results in percent. Bold: highest value in each column.

5Experiments of dropout layers were done with PyTorch in combination with HTK
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To eliminate the possibility that the increase is caused by noise, 5-fold cross validation was
performed and results are shown in Table 4.23. Adding dropout with 0.5 dropout probability
increases the overall performance by ~1%.

Feature dropout avg WA avg UA
Audio+Glove+BERT+MFB250 / 76.12±4.12 77.36±3.25
Audio+GloVe+BERT+MFB250 0.5 77.57±4.15 78.41±3.71

Table 4.23 Average and standard deviation of 5-fold cross validation results on system with
and without dropout. Results in percent.

4.7 Summary

The structure of the final system is shown in Figure 4.12. As adding video didn’t improve the
result, the final system only uses audio and text modalities. The inputs to time synchronous
branch is the 500-d combined feature listed in Table 4.24. The inputs to time asynchronous
branch is the 768-d pretrained BERT sentence embedding with context range of [-3,+3].

Feature dim context
MFB25+pitch+∆ 82 {-2,-1,0,+1,+2}

GloVe 50 {0}
MFB250 40 {0}
Total: 82×5+50+40 = 500

Table 4.24 Inputs to the time synchronous branch.

In addition to the reference transcripts that most related work used for text modality, the
use of transcriptions generated by ASR was also studied. Recognizing emotional speech is
difficult. The ASR transcription which had WER above 40% led to ~10% decrease in results
of single BERT system. This decrease was reduced when context BERT and audio were
included. Reference transcripts will be used for cross comparison to the literature.

To compare to the related work, 10-fold cross validation was performed on the final system.
Results are shown in Table 4.25. Tripathi et al. [34] and Majumder et al. [65] got 71.04% WA
and 76.5% WA on Ses05, respectively. Yoon et al. [35] got 71.8% WA on 5-cv. Poria et al.
[66] got 76.1% WA and Yoon et al. [36] got 76.5% WA and 77.6% UA on 10-cv. The detailed
features used in related work are summarized in Table 4.26. Comparing to the literature, to
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Fig. 4.12 Illustration of the structure of the final system

the best of my knowledge, the final system results are better than previously reported ones.

Test avg WA avg UA
Ses05 83.08 83.22
5-cv 77.57 78.41

10-cv 77.76 78.30
Table 4.25 Emotion classification results using different training and testing setting. “Ses05"
denotes training on Session 1-4 and testing on Session 5. “5-cv" denotes 5-fold leave-one-
session-out cross validation. “10-cv" denotes 10-fold leave-one-speaker-out cross validation.
Averages across folds reported. Results in percent.

Paper Audio Text Visual Test Result
Tripathi et al. [34] MFCC GloVe MoCap Ses05 71.04% WA

Majumder et al. [65] LLD+HSF word2vec video Ses05 76.5% WA
Yoon et al. [35] MFCC GloVe / 5-cv 71.8% UA
Poria et al. [66] ComParE n-gram video 10-cv 76.1% WA
Yoon et al. [36] MFCC GloVe / 10-cv 76.5% WA, 77.6% UA

Table 4.26 Summary of literature with feature used and results.



Chapter 5

Emotion recognition with soft labels

In Chapter 4 and in most of the related work on IEMOCAP, AER system was evaluated by
classification accuracy and only strongly emotional utterances were used. However, there’s
a large proportion of utterances in IEMOCAP that human annotators don’t agree on their
emotion labels. In other words, these utterances cannot be classified into a specific emotion
category. Previous methods developed based on emotion classification are not able to cope
with these utterances. This chapter re-examines the emotion recognition problem. “Soft"
labels are introduced and the system is trained to match the label distribution instead of doing
classification. This approach allows all data to be used and can better reflect the uncertainty
in emotion labels. Based on soft labels, other approaches to model the label distribution
are discussed in Section 5.3 and Dirichlet Prior Network (DPN) is proposed as a candidate.
Experiments in this chapter were implemented in PyTorch in combination with HTK.

5.1 Re-examination of emotion recognition with IEMOCAP

In previous experiments, in order to be consistent with related work, only utterances satisfied
the following two conditions were used: i) the majority of annotators agreed on an emotion
label; ii) this emotion label belongs to the following four categories: angry, happy (merged
with excited), sad, and neutral. This setting leads to nearly half of the data being discarded
and is questionable.

The IEMOCAP database contains 10039 utterances in total. Each utterance was evaluated
by three annotators. Since the annotators were allowed to tag more than one label for each
utterance, some of the utterances may have more than three labels. As shown in Table 5.1,
1186 out of 10039 utterances have more than three labels.
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Total utterances 10039
Total evaluations 30117

Evaluation with more than one label 1272
Utterance with more than three labels 1186
Table 5.1 Multi-label evaluations in IEMOCAP

It is necessary to define the concept of “ground truth" and “majority unique". Table 5.2
lists several typical situation that may happen during labelling. If the utterance has majority
emotion label, in other words, the emotion category with the highest votes was unique and
there’s no tie, then we say this utterance has ground truth or is majority unique. Among the
10039 utterances, 7532 of them are majority unique. The ground truth emotion distribution
of these majority unique utterances is shown in Figure 5.1.

e1 e2 e3 Majority Term
A A A A Majority unique-agree3

have “ground truth"A A B A Majority unique-agree2
A AB C A Majority unique-agree2
A B C / No majority

no “ground truth"
A AB BC AB Majority non-unique

Table 5.2 Typical situations during labelling. “e1” denotes evaluator 1, etc. ‘A’ ‘B’ ‘C’
denotes different emotion categories.

Anger 1103
Fear 40

Frustration 1849
Disgust 2

Happiness 1636
Neutral 1708
Other 3

Sadness 1084
Surprise 107

Total 7532

Fig. 5.1 Statistics of the ground truth emotion of the majority unique utterances. Excited
merged with happy.
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The previous work in Chapter 4 (and in most publications on IEMOCAP) only considers
majority unique utterances belonging to four emotion category (termed “target-4"): happy
(merged with excited), sad, neutral, angry. But ignores the biggest emotion class “frustration"
which accounts for 1/4 of the majority unique data, as shown in Figure 5.1.

Another problem concerns the utterances that don’t have ground truth. Emotion is complex,
subjective, hard to describe, and hard to label. As shown in Figure 5.2, among all 10039 ut-
terances, only 24% of them gets 100% agreement from all three evaluators. Among the 7532
majority unique utterances, 5149 of them (68.4%) only get agreement from two annotators.
Just to clarify, although some utterances may have more than three labels, the denominator in
the chart is still three as one evaluator will not tag two identical labels for one sentence.

Fig. 5.2 Statistics of the number of evaluators that agreed on the emotion label. “3/3" denotes
complete agreement. “2/3" denotes that two out of the three evaluators agreed on the emotion
label. “1/3" denotes that the evaluators didn’t reach agreement.

The utterances that don’t have unique majority, which were totally discarded by the previous
setting, is exactly the most interesting, meaningful, and useful part of the data. In reality, one
cannot expect the user to have strong and unique emotion all the time.

After clarifying the above points, the utterances in IEMOCAP can be divided into different
groups according to their label condition, as shown in Figure 5.3. Total utterances are divided
into two groups: utt_ground_truth and utt_1 based on whether the utterance has unique
majority or not. utt_ground_truth are further divided into utt_3 and utt_2 based on the
number of evaluators agreeing on the majority emotion label. These two groups are further
divided according to whether the majority emotion label belongs to the target-4 emotion
categories and whether it contains any label that doesn’t belong to target-4. The utterances
used in previous setting correspond to utt_3_t4_+ utt_2_t4_, which is majority unique
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utterances with majority label belonging to target-4. And the utterances that at least have one
label belonging to target-4 correspond to Total −utt_3_o_o−utt_2_o_o−utt_1_o.

Fig. 5.3 Summary of utterances in IEMOCAP according to their label setting. Number of
utterances in each data group is shown in the bracket.

Anger 4433
Fear 348

Frustration 7514
Disgust 137

Happiness 7441
Neutral 6406
Other 783

Sadness 3694
Surprise 658

Total 31414

Fig. 5.4 Statistics of all labels. Excited merged with happy.
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Statistics of all labels are shown in Figure 5.4. There is an interesting founding that if we
remove labels that don’t belong to target-4 and only keep utterances that have at least one
label belonging to target-4, as shown in Table 5.3, each utterance lose nearly one label on
average but only 670 (6.7%) utterances have been removed. This indicates that although
frustration is the largest emotion group, it seldom appears alone. In other words, frustration
often appears in combination with other emotions. It can be argued that frustration is a
relatively weak emotion comparing to those strong emotions such as happy and angry. In
order to capture weak emotion and cope with sentences that don’t have ground truth, the
emotion problem task was re-defined.

before after
label 31313 21974
utt 10039 9369

label/utt 3.12 2.34
Table 5.3 Number of label and utterances before and after removing labels that don’t belong
to target-4.

As discussed above, emotion is complex and has a large degree of uncertainty. In this case, it
is more reasonable to match the distribution of emotion labels than doing classification. The
concept of “soft” label is then introduced.

Changes includes: i) changing the problem from a four-way classification to a five-way
classification and using all data. Emotion labels that do not fall into target-4 categories are
all re-labelled as “other"; ii) changing “hard” label into “soft” label. Previously, as only
majority unique utterances were considered, each utterance was tagged with its ground truth
label which is referred to as a “hard” label. If each label is treated as a one-hot vector, this
operation is equivalent to summing over the one-hot vectors produced by three evaluators and
setting the maximum value to one and others to zero, thus producing a new one-hot vector.
In the new situation, instead of only keeping the max, the sum vector is normalized. This
is equivalent to averaging over the one-hot label vectors and the value of each dimension
roughly corresponds to the proportion of that emotion. A three-dimensional example is
shown for explanation purpose in Table 5.4. It can be seen that under “hard” label condition,
the utterance with “2/3” labeller agreement is forced to become a one-hot vector, thus losing
some important information of emotion uncertainty. In order words, utterances with “2/3"
agreement are treated in the same way as utterances with “3/3" agreement under “hard" label
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condition, which is unreasonable.

Five-dimensional soft labels are used in experiments in this chapter and all 10039 utterances
are used to train and test the system.

Input: A A B
Sum: [2,1,0]
Hard: [1,0,0]
Soft: [0.67, 0.33, 0]

Table 5.4 Example of the operation of hard and soft label where A=[1,0,0], B=[0,1,0],
C=[0,0,1].

5.2 Experiments on 5-d soft labels

The 5-d soft label system was trained to learn the label distribution of an utterance by minini-
mizing the Kullback-Leibler (KL) divergence between the target soft label and the prediction.
The KL divergence is a measure of the similarity between two distributions. Smaller KL
divergence indicates more similar distributions and the minimum (zero) is reached when
two contributions are identical. A hard label system was also built for comparison, which
was trained on five-way classification. In this section, systems were trained on Session 1-4
and tested on Session 5. Soft system was trained using all utterances in Session 1-4 (7083
training and 786 validation). As hard label system requires utterance to have ground truth,
it was trained using all majority unique utterances in Session 1-4 (5291 training and 663
validation). Both systems were tested on the whole Session 5. As listed in Table 5.5, Session
5 can be split into three groups according to the degree of emotion uncertainty shown in
Figure 5.3.

Data group Total utt_3 utt_2 utt_1
Number of sentences 2170 479 1171 520

Table 5.5 Number of utterances in different data group of Session 5.

Systems were first evaluated by five-way classification accuracy (Table 5.6) then by KL
divergence (Table 5.7). Classification was only done on majority unique utterances in Session
5 (utt_3+utt_2) while the KL divergence was computed on all utterances in Session 5 and
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was averaged over all windows.

ma jority_unique avg WA avg UA
Hard 83.45 82.92
Soft 74.30 71.28

Table 5.6 Five-way classification results of hard label system and soft label system. Tested
on majority unique utterances in Session 5. Results in percent.

Total KL Divergence Entropy
Hard 0.7695 0.6850
Soft 0.5000 1.0460

Table 5.7 KL divergence and entropy of hard label system and soft label system. Tested on
all utterances in Session 5. Averaged over windows. Natural logarithm base used.

Accuracies are expected to decrease when changing a four-way classification into a five-way
classification. However, comparing the five-way results in the 2nd row of Table 5.6 and the
four-way results in the 2nd row of Table 4.25, the five-classification system even had slightly
better performance. This may due to the increase in the number of training samples used
by five-way classification. As discussed in the previous section, frustration is a relatively
weak emotion. Since related work excluded it in training and testing, one may assume that
frustration is difficult to detect. However, the even better five-classification results indicate
that the system proposed in this thesis is able to classify frustration (although the fifth class
“other" contains frustration and all other emotions that don’t belong to target-4, it is dominated
by frustration as shown in Figure 5.4). This system works well with frustration.

Table 5.6 shows that the system trained using soft labels have lower classification accuracies
than the system trained using hard labels. This is as expected. Training a hard system was
learning a 0/1 distribution. Uncertainty was introduced when training a soft system. The
confidence went down and the system was more prone to classification error. However, as
shown in Table 5.7, the soft system has much lower KL divergence, which indicates that the
soft system can match the target label distribution better.

Session 5 was then split into different data groups as listed in Table 5.5 and the test results of
each group were reported separately, as shown in Table 5.8 – 5.10. As utterances in utt_1
don’t have unique majority, only KL divergence and entropy are reported for that group.
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Trends are summarized in Figure 5.5.

utt_3 KL Divergence Entropy avg WA(%) avg UA(%)
Hard 0.4502 0.6030 87.89 87.93
Soft 0.5640 0.9670 80.17 78.94

Table 5.8 Comparison of hard-label system and soft-label system. Tested on utt_3 utterances
in Session 5.

utt_2 KL Divergence Entropy avg WA(%) avg UA(%)
Hard 0.7122 0.7449 81.64 80.59
Soft 0.4687 1.0489 71.90 67.50

Table 5.9 Comparison of hard-label system and soft-label system. Tested on utt_2 utterances
in Session 5.

utt_1 KL Divergence Entropy
Hard 1.2958 0.6355
Soft 0.5008 1.1359

Table 5.10 Comparison of hard-label system and soft-label system. Tested on utt_1 utterances
in Session 5. Natural logarithm base used.

Fig. 5.5 Comparison of hard-label system and soft-label system in terms of KL divergence
(a) and entropy (b) of three data groups in Session 5.

As shown in Figure 5.5b, the soft system has higher entropy than hard system in all cases
because soft labels have flatter label distribution and larger uncertainty. Despite the larger
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uncertainty, soft labels better reflect the true uncertainty of the emotion of the sentence.
But this uncertainty also leads to less confidence in classification and lower classification
accuracy.

Also due to the larger uncertainty, as shown in Figure 5.5a, the soft system has larger KL
divergence than the hard system on utt_3 utterances which are strongly emotional utterances
that all three evaluators agree on the emotion label. But the soft label system has smaller KL
divergence on utt_2 and significantly smaller KL on utt_1. The hard system nearly can’t
learn the label distribution of utt_1 utterances as it can only be trained on majority unique
data. The soft system improves distribution matching of utt_1 sentences by significantly bet-
ter KL divergence. Note that utt_2 utterances were treated as one-hot vectors in hard systems
but they are actually not. Matching distribution is more reasonable than doing classification
for these data. In sum, for those sentences that human annotators don’t completely agree,
which account for 76% of total data as shown in Figure 5.2, soft labels can better match their
label distribution. This is one of the major benefits of using soft labels.

Besides, as shown in Figure 5.5b, the entropy of soft system increases when fewer evaluators
reach agreement. This is because the label distribution becomes flatter and the uncertainty in
emotion of the utterance increases. If three evaluators all give different labels, these emotions
are equally likely and the entropy is the largest1. Human evaluators are uncertain about the
emotion of the utterance, so does the machine.

Overall, the hard system produces better classification results on strong emotional utterances
while the soft system can cope with all labelling situation and yields smaller KL divergence.
High accuracy and low KL divergence cannot be achieved at the same time. The following
section discusses approaches to better modelling the label distribution and can probably solve
this problem.

5.3 Label distribution modelling approaches

Consider the label of an utterance as a five-dimensional vector, then it can be viewed as a
distribution, specifically, a categorical distribution over five emotions. Each one-hot label
from each annotator can be regarded as a sample drawn from this categorical distribution. As

1In the extreme case, all five emotion categories have the same probability. The maximum entropy value is
then 1.6094. Natural logarithm base is used.
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mentioned before, using hard labels corresponds to a maximization operation. If the distri-
bution has more than one maximal value, the utterance cannot be used and was discarded.
Taking the average then corresponds to implementing Maximum Likelihood Estimate (MLE)
given the observation (label samples). Without a prior, the MLE of a categorical distribution
is equivalent to the relative frequency. Taking average is simple and easy to implement, but
this approach is not flawless. Taking coin toss as an example. Even if three heads have been
observed out of four tosses, it is still very unlikely that the probability of head is 0.75 due
to the prior knowledge that a coin is more likely to be fair. Obtaining soft labels by simply
taking average doesn’t take prior information into account. Therefore, a better way to model
label distribution is to include a prior, in other words, using Bayesian approach.

Maximum A Posteriori (MAP) is a common method of Bayesian learning, which can be seen
as adding a pseudo count. However, MAP corresponds to a global prior. Prior probability
is computed by counting the relative frequency of each emotion in the whole dataset, as in
Figure 5.4. This setting doesn’t apply to the emotion recognition problem here. As mentioned
in Chapter 1, emotion can be easily affected by contextual information and is extremely
personal. Utterances produced by different people under different situation should not carry
the same prior. Instead, a local prior for each sentence is more suitable in this situation.

The set of emotion labels is a categorical distribution. A conjugate prior of a categorical
distribution can be a Dirichlet distribution. The proposal is to train a Dirichlet Prior Net-
work (DPN) [82] which generates local prior for each utterance. A Dirichlet distribution
(Equation 5.1) is parameterized by its concentration parameters α , which are exactly the
pseudo count. However, in this case, instead of having a global pseudo count, DPN generates
a pseudo count for each utterance individually.

Dir(µ | α) =
Γ(α0)

∏
K
c=1 Γ(αc)

K

∏
c=1

µ
αc−1
c , αc > 0,α0 =

K

∑
c=1

αc (5.1)

The process is summarized in Figure 5.6. The DPN generates the concentration parameters
α of the Dirichlet prior distribution. The categorical label distribution µ is a sample drawn
from the Dirichlet distribution parameterized by those concentration parameters. The pre-
dicted emotion class ωc is a sample drawn from that categorical distribution. The posterior
probability over the emotion class can be easily obtained from the concentration parameters:
p(ωc|x∗,D) = αc

α0
.
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Fig. 5.6 Illustration of the DPN process. D is the training set and K is the number of emotion
classes.

Training an AER system with DPN can be easily implemented by replacing the current
training criterion of minimizing KL divergence loss by maximizing the log likelihood of the
prior distribution. Assuming each utterance xi has mi one-hot labels from three evaluators
µ(i1), ...,µ(imi). Given data D = {x(n),µ(n1), ...,µ(nmn)}N

n=1, the optimization target of the
DPN f (x,θ) is to maximize the log likelihood log p(µ|x,θ):

L (θ) =
n

∑
i=1

log p(µ(i)|x(i),θ) (5.2)

=
n

∑
i=1

mi

∑
j=1

logDir(µ(i j)|α(i)) (5.3)

The training process is to obtain θ ∗ = argmaxθ L (θ). The detailed theory and explanation
about DPN can be found in Appendix A.





Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, a complete multimodal emotion recognition system was build to predict the
emotion of a speaker given speech, text and video information. The system achieves state-of-
the-art classification accuracy of 77.76% WA and 78.30% UA. The innovative use of context
BERT and long-term audio features has been shown to be beneficial. Apart from reference
transcripts, transcriptions generated by ASR was also investigated. The high WER shows
that recognizing emotional speech is still a difficult task for ASR and using multimodal
inputs and context information can make the system more robust to various type of error.
The contribution of each modality and the correlation between features such as the coupling
effect and the complimentary effect have been analyzed.

The thesis also re-defined the emotion recognition problem. Given the fact that large pro-
portion of data doesn’t get complete agreement from the annotators, matching the label
distribution is more reasonable than doing classification. This has two main benefits: i) all
data in the database can be used; ii) it better matches the label distribution of the utterance
and can better reflect the uncertainty in emotion labels. The thesis shows that using soft
labels improves distribution matching by a significantly better KL divergence. DPN was
proposed as a candidate to better model label distribution which generates local prior for
each label distribution.
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6.2 Future work

There are several aspects of future work. First, as video data in IEMOCAP dataset doesn’t
work well due to several reasons, other dataset such as CMU-MOSEI Dataset1 could be
used as supplement. It includes more data, more speakers, as well as videos of better quality.
Second, it has been shown that criteria used to define the cross-validation folds has large
effect on results [83]. Currently, the validation set was chosen by random. The results may
be improved by carefully choosing validation set. Third and the most important future work
are the experiments on DPN.

Emotion recognition tasks are challenging as emotion is extremely personal but personal
data is hard to obtain. Researchers are working on balancing the personalization and gen-
eralization of emotion. Some propose to use demographic information of people such as
gender, age, occupation and then use transfer learning or adaptation methods to adapt the
general system trained on large number of speakers to the individual user. DPN can also be a
possible approach to this problem, which can be used to generate prior based on speaker’s
demographic information. Theses are all interesting directions for future research.

1https://github.com/A2Zadeh/CMU-MultimodalSDK
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Appendix A

Dirichlet Prior Network

A Dirichlet distribution (Equation A.1) is a prior distribution over a categorical distribution,
which is parameterized by its concentration parameters α .

Dir(µ | α) =
Γ(α0)

∏
K
c=1 Γ(αc)

K

∏
c=1

µ
αc−1
c , αc > 0,α0 =

K

∑
c=1

αc (A.1)

The objective of the AER system is now to predict the expected categorical distribution over
emotion labels of the utterance under a Dirichlet prior, as described in Equation A.2

p(ωc|x∗,D) =
∫

p(ωc|µ) p(µ|x∗,D)dµ (A.2)

where µ is a categorical distribution which is a vector of probabilities: [µ1, ...,µk]
T = [P(y =

ω1), ...,P(y =ωk)]
T . p(µ|x∗,D) is the distribution over predictive categoricals, a distribution

over distribution. In this case, it is Dirichlet.

p(µ|x∗,D) = Dir(µ | α)

In other words, µ is a sample drawn from the Dirichlet distribution Dir(α). The predicted
class label ωc is a sample drawn from the categorical distribution Cat(µ).

µ ∼ Dir(α)

ωc ∼ µ

A DPN generates the concentration parameters α of the Dirichlet distribution.

α = f (x∗,D) (A.3)
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The process can be summarized in the following graph:

The posterior over class labels are given by the mean of the Dirichlet:

p(ωc|x∗,D) =
∫

p(ωc|µ) p(µ|x∗,D)dµ =
αc

α0
(A.4)

If an exponential output function is used for the DPN: αc = exp(zc), then the expected
posterior probability of a label ωc recovers the standard softmax function:

p(ωc|x∗,D) =
exp(zc)

∑
K
k=1 exp(zk)

(A.5)

Assuming each utterance xi has mi one-hot labels from three evaluators µ(i1), ...,µ(imi). Given
training data D = {x(n),µ(n1), ...,µ(nmn)}N

n=1, the optimization target of the DPN f (x,θ) is
to maximize the log likelihood log p(µ|x,θ):

L (θ) = log p(µ|x,θ) (A.6)

=
n

∑
i=1

log p(µ(i)|x(i),θ) (A.7)

=
n

∑
i=1

log
mi

∏
j=1

p(µ(i j)|x(i),θ) (A.8)

=
n

∑
i=1

mi

∑
j=1

log p(µ(i j)|x(i),θ) (A.9)

=
n

∑
i=1

mi

∑
j=1

logDir(µ(i j)|α(i)) (A.10)

=
n

∑
i=1

mi

∑
j=1

log

[
Γ(α

(i)
0 )

∏
K
c=1 Γ(α

(i)
c )

K

∏
c=1

(µ
(i j)
c )α

(i)
c −1

]
(A.11)

The training target is to obtain θ ∗ = argmaxθ L (θ). In sum, DPN can easily fit into the
current framework by simply changing the output activation function to exponential and the
loss function to log likelihood.
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