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Abstract

Despite the unquestionable success of deep learning models in solving various machine
learning problems, they are generally limited to achieving acceptable performance only on
highly structured data, such as images or natural language data. One key limitation is that
most of these models either cannot handle non-uniformly sampled data or work poorly on
it. However, in some areas, like environmental and medical research, the modelled data
typically does not reside on a grid, nor is it uniformly sampled. This problem has attracted
a lot of attention from the machine learning community lately, and several of successful
approaches have been proposed. However, coming from different machine learning domains,
such as unsupervised generative modelling and few-shot learning, these approaches lack
unified perspective. This perspective is desirable as it could provide a rigorous description of
the emerging field of off-the-grid time series modelling.

This work develops a unifying framework for models capable of handling irregularly-spaced
time series data. In this work, we consider various models proposed within both unsupervised
learning and meta-learning paradigms. Within these paradigms, we are concerned with a
wide range of models, from entirely non-amortised to fully amortised ones. We come up
with a series of schematics that place this considerable variability of models from disjoint
machine learning domains into a common context. These schematics could be beneficial
in comprehending the general approaches to data modelling as well as in choosing the
appropriate model for a particular task setting. Our qualitative and quantitative evaluation of
several models from the proposed framework provides further observational insights as to
which model should be used in which setting.

Finally, within the proposed unifying framework, we naturally encountered novel models
operating within the meta-learning framework. These models ideally fit in the considered
schematics and could be applied to various few-shot learning tasks involving time-series
data.
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Chapter 1

Introduction

With recent advances in Machine Learning (ML) a lot of extremely important tasks in dif-
ferent fields, including computer vision, speech recognition, and reinforcement learning,
were solved with a sufficiently good quality. Such a breakthrough became possible due to
the advances and hardware as well as novel ML methods, scalable to complex and high
dimensional data. Deep learning has played a paramount role in these recent advances. In par-
ticular, the introduction of Convolutional Neural Networks (CNNs) for images and Recurrent
Neural Networks (RNNs) for sequential data not only made it possible to obtain excellent
performance on various ML tasks, but also revolutionized the way research community
approached those tasks.

However, despite the unquestionable success of neural models in solving various ML
problems, they are generally limited to achieving excellent performance only on highly
structured data, such as images or natural language data. One key limitation is that most
of these models either cannot handle non-uniformly sampled data or work poorly on it.
Nonetheless, in some areas, like environmental or medical research, the modeled data
typically does not reside on a grid, nor is it uniformly sampled. In practice data of this
type is usually modeled with a standard RNN with the difference between each successive
time-point appended as a feature. But this approach still shows unsatisfactory performance
and more specifically tailored solutions are desirable.

Recently, there has been a surge of interest in solving the considered task, and a lot of
different approaches from several ML domains have been proposed. For instance, Neural
ODEs [9] leverage a connection between residual networks and ordinary differential equations
to handle data in continuous domains [69]. Conversely, convolutional conditional neural
processes [28] provide a convolutional form for set-structured data, relaxing the requirement
for data to be uniformly sampled. The two methods approach the problem from independent
perspectives and in some ways mirror the use of RNNs vs CNNs for sequences.



2 Introduction

Coming from different ML domains, the existing models lack of unifying perspective that
could be used to compare and contrast models in this field. Towards this end, in this thesis
we are mainly concerned with the development of a unifying framework, which provides
a rigorous text book understanding of the field as well as explicitly explains main research
approaches and directions used to solve this task.

1.1 Thesis Contributions

The main contributions of this work are as follows:

1. A thorough review of existing machine learning methods for modelling irregularly-
sampled data in chapter 3. We have discussed key approaches within unsupervised and
meta-learning paradigms, which are suitable for handling non-uniformly sampled data.

2. A unifying design model space that organizes conceptually different approaches and
places them into the common context. We organize the model space by devising a set
of schematics, which outline the most important modelling dimensions. The discussion
of the model design space is provided in chapter 4.

3. An introduction of novel models encountered within the proposed design model
space. The proposed models, discussed in detail in chapter 4, operate within the meta-
learning framework and could be applied to various few-shot learning tasks involving
time-series data.

4. An evaluation of several models from the introduced modelling space. The exper-
iments were held on both real-world and synthetically generated data. The evaluation
of the models is followed by a discussion of the results in chapter 6, where we outline
future research directions that can leverage the results of this work.



Chapter 2

Background

In this chapter, we introduce and discuss key ideas and fundamental models which this thesis
draws upon in later chapters. In section 2.1, we elaborate on Neural Ordinary Differential
Equations (Neural ODEs) [9] and their connection to residual networks. With a continuously-
defined hidden function, the Neural ODE model is suitable for handling irregularly-sampled
data. For this reason, the model is widely used as an important component in recent methods
discussed in later chapters of this work [9, 38, 69].

Other fundamental concepts actively used in this work are Latent Variable Models
(LVMs) and Variational Inference (VI) framework, which is commonly used to train LVMs.
In particular, several recent approaches [9, 22, 69] that are of utmost importance to our
discussion use VI framework for model fitting. For this reason, the discussion of Neural
ODEs [9] is followed by the review of latent variable models and variational inference in
section 2.2.

2.1 Neural Ordinary Differential Equations

One of the most prominent approaches to modelling continuous time series data is the Neural
ODE model [9]. Neural ODE has continuously-defined dynamics, which makes this model
particularly appealing for the task of modelling off-the-grid data. Since several successful
neural models [35, 69] are built upon the Neural ODE [9] framework, Neural ODEs [9]
constitutes one of the key ideas this thesis draws upon. For this reason, a detailed description
of Neural ODEs [9] is provided in this section.
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Residual Networks and Model Definition

A lot of successful neural network architectures, including RNNs, residual networks [31] and
normalizing flows [65], have a similar general structure. These models build their capacity
not by learning a complex function f that is applied only once, but by composing a sequence
of transformations to a hidden state. At each discrete time step the hidden state is transformed
as follows:

ht+1 = ht + f (ht ,θt) (2.1)

where t ∈ {0, . . . ,T} and f is some learned function of the current hidden state and parameters
θt . If we define θ = [θ1, . . . ,θT ]

T to be a vector comprising all trainable parameters, the
hidden transformation can be rewritten as:

ht+1−ht = f (ht , t,θ) (2.2)

Equation 2.2 is a difference equation with ∆t = 1. If we now increase the number of sequential
transformations and decrease the time step size from 1 to some ∆t < 1, we will obtain the
following equation:

ht+∆t−ht = ∆t f (ht , t,θ) (2.3)

where t ∈ {0,∆t, . . . ,T}. It can be noticed that Equation 2.3 can be viewed as a step of the
forward Euler method for the ordinary differential equation (ODE) obtained by taking the
limit ∆t→ 0:

dh(t)
dt

= f (h(t), t,θ) (2.4)

where t is continuous and t ∈ [0,T ].
Hence, if we are given initial hidden state value h(0), the output layer h(T ) can be defined

as a solution to the ODE initial value problem at time T . The computation of the h(T ) can
then be executed using a black-box ODE numerical solver. So, this black-box ODE solver is
essentially a map from initial hidden state value ht0 to hidden state h(t1) at some time t1:

h(t1) = ODESolve( fθ ,h(t0), t0, t1) (2.5)

Equation 2.5 defines the Neural ODE model [9].

Model Training and Adjoint method

Since we are interested in learning parameters θ , we need to be able to perform backprop-
agation through the ODE solver. One way to do this is to directly backpropagate through
the operations of the ODE solver. However, if we use this method, we would have to store
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all the intermediate hidden states in memory. Hence, direct backpropagation results in high
memory cost of O(T H), where H is the memory footprint of the vector field and T is the
time horizon.

Another way to compute gradients with respect to parameters θ and intermediate hidden
states h(t) is using the adjoint sensitivity method [61]. This method treats ODE solver as a
black box and calculates gradients by solving another ODE backwards in time. In contrast to
direct backpropagation, adjoint method does not require all intermediate hidden states to be
stored in memory. It also can be applied to any ODE solver. As a result, this method reduces
memory costs from O(T H) to O(H). Moreover, the adjoint method [61] provides an explicit
control over numerical error.

We now discuss the adjoint method [61] in detail. Assume we are given initial state h(t0)
and internal parameters θ . The output of the Neural ODE [9] model is defined as

h(t1) = ODESolve( fθ ,h(t0), t0, t1) (2.6)

Then we are given a scalar-valued loss function L that is evaluated on h(t1). To optimize
L , we need to calculate the derivatives of L with respect to parameters dL

dθ
as well as to

intermediate hidden states dL
dh(t) . In the adjoint sensitivity method [61], dL

dh(t) is referred to
as the adjoint a(t). The adjoint a(t) determines how the gradient of the loss depends on the
hidden state h(t) at each t. It can be shown that the adjoint a(t) is a solution to the following
initial value problem:

da(t)
dt

=−a(t)T ∂

∂h(t)
f (h(t), t,θ) (2.7)

a(t1) =
dL

dh(t1)
(2.8)

Hence, we can compute dL
dh(t0)

by using black box ODE solver again. This time the ODE

solver will be run backwards in time since dL
dh(t1)

is easy to compute. However, it can be seen
that for solving the auxiliary ODE (Equation 2.7) we need to know the value of h(t) along its
entire trajectory. To solve this issue, h(t) is also recomputed backwards starting from its final
value h(t1).

Given the adjoint a(t), we can find the derivative with respect to parameters θ as:

dL

dθ
=−

∫ t0

t1
a(t)T ∂ f (h(t), t,θ)

∂θ
dt (2.9)
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Let’s define b(t)= dL
dθ(t) =−

∫ t
t1 a(t)T ∂ f (h(t),t,θ)

∂θ
dt. From this definition, b(t1)= 0 and b(t0)=

dL
dθ(t0)

= dL
dθ

. Then b(t) can be seen as a solution to another backward ODE defined as follows:

db(t)
dt

=−a(t)T ∂

∂θ
f (h(t), t,θ) (2.10)

b(t1) = 0 (2.11)

A detailed derivation of Equations 2.7 and 2.9 is provided in Appendix B of [9].
All in all, in order to find all necessary derivatives, dL

dh(t0)
and dL

dθ
, we need to solve the

augmented adjoint backward ODE:

d
dt

z(t)
a(t)
b(t)

=

 f (h(t), t,θ)

−a(t)T ∂ f (h(t),t,θ)
∂h(t)

−a(t)T ∂ f (h(t),t,θ)
∂θ

 (2.12)

In this work, a PyTorch [60] implementation from github.com/rtqichen/torchdiffeq was
used in all our experiments involving Neural ODEs [9].

2.2 Latent Variable Models and Variational Inference

LVMs are a powerful concept in probabilistic modelling. They provide a way to explain
complex relations between observed variables by some simple correspondences between
observed and latent variables. Suppose we have a set of manifest variables X = (x1, . . . ,xn)

that can be observed and a set of latent variables Z = (z1, . . . ,zm). In general, LVMs consider
that the latent variables can explain dependencies between the manifest variables, i.e. given
latent variables, manifest ones are assumed to be conditionally independent:

p(x1, . . . ,xn,z1, . . . ,zm) = p(z1, . . . ,zm)
n

∏
i=1

p(xi|z1, . . . ,zm) (2.13)

In particular, in this work we are mainly concerned with a specific type of LVMs, where
latent variable z drives the generation process of the observed data x. The directed acyclic
graph (DAG) for the considered process is given in Figure 2.2:
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z

x

N

Fig. 2.1 DAG for the considered LVM. Observed variables are shaded in gray.

This model can be formulated as follows:

z∼ pθ∗(z) (2.14)

x∼ pθ∗(x|z) (2.15)

where pθ∗(z), pθ∗(x|z) are some valid distributions and θ ∗ are parameters of these distribu-
tions. Usually the dimensionality of z is chosen to be substantially smaller than that of the
observed variable x, such that z incorporates significant high level information about x.

In practice we are only given the observed data {xi}N
i=1. Using this data, we want to

infer the parameters of the model θ (it can be either a point estimate or parameters of the
distribution over θ ) as well as find the posterior distribution p(z|x).

The exact inference in this model is only possible in a very limited number of simple
cases, e.g. Gaussian mixture or hidden Markov models. If the posterior is tractable, the
Expectation-Maximization (EM) algorithm [16] is usually applied. However, if p∗

θ
(x|z)

is parameterized with a more complex non-linear model, EM algorithm cannot be used
and more powerful methods for approximate inference are required. VI framework [36],
discussed below, is one of the most commonly used approaches for approximate inference.

2.2.1 Variational inference

VI [36] is a framework used to perform an approximate inference in models where the
posterior distribution is intractable. The core idea behind variational inference is to introduce
some tractable family of distributions over the latent variables q(z) and then to find q∗(z)
within this family, such that q∗(z) is as close as possible to the true posterior distribution [5].
The proximity of two distributions is measured using Kullback–Leibler (KL) divergence.
VI is a particularly appealing approach, as it solves the inference problem by solving the
optimization one. This allows VI framework to be easily scaled to larger datasets and
models [5].

Within the VI framework, we introduce a family Q of distributions over latent variables.
Our aim is to find q∗(z) ∈Q, such that q∗(z) is the closest distribution to the true posterior.
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Hence, inference now consists of solving the following optimization problem

q∗(z) = argmax
q∈Q

KL(q(z)||p(z|x)) (2.16)

However, KL(q(z)||p(z|x)) cannot be directly computed since it involves computation of the
logarithm of the evidence log p(x), which is intractable:

KL(q(z)||p(z|x)) = Eq(z)[logq(z)]−Eq(z)[log pθ (z,x)]+ log p(x) (2.17)

Equation 2.17 expands the KL divergence and shows where computation of log p(x) is
involved. However, since log p(x) does not depend on q(z), instead of directly optimizing
the KL(q(z)||p(z|x)) we can optimize the following alternative objective:

ELBO(q) = Eq(z)[log pθ (z,x)]−Eq(z)[logq(z)] (2.18)

The alternative objective from Equation 2.18 is called Evidence Lower BOund (ELBO).
The maximization of ELBO with respect to q is identical to minimization of KL(q(z)||p(z|x)).

ELBO can be rewritten as follows:

ELBO(q) = Eq(z)[log pθ (x|z)]−KL[q(z)||p(z)] (2.19)

Equation 2.19 provides intuition about which variational distributions the evidence lower
bound favours. The first term in Equation 2.19 is the expected log-likelihood of the observed
data. It indicates how well the data is explained by q(z). The second term is the negative
KL-divergence between prior and variational distributions. It forces variational distribution
to be close to prior.

It can be shown that ELBO is a lower bound for log p(x). Equation 2.17 implies the
following:

log p(x) = ELBO(q)+KL(q(z)||p(z|x)) (2.20)

Since KL-divergence is always non-negative, then:

log p(x)≥ ELBO(q) (2.21)

There is a clear trade-off in the choice of variational family Q. On the one hand, the more
complex the chosen variational family is, the more difficult is the optimization of ELBO will
be. On the other hand, the more flexible the chosen variational family is, the better variational
approximation can be found.
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Traditional VI approaches, such as mean-field approximation [82] and variational EM
algorithm [24], suffer from certain drawbacks that restrict their scalability and flexibility.
First, in these approaches separate variational parameters are introduced for each data point.
This means that for each new data point, inference of the variational parameters must be
performed, which may be computationally demanding for large datasets. Moreover, the
number of parameters that needs to be stored grows linearly with the number of data points.
Second, traditional VI methods usually imply that expectations in ELBO (Equation 2.19) are
tractable, thus imposing a restriction on the complexity of variational family.

Fortunately, recent advances in VI framework, including black-box [63] and amortized
variational inference [43, 66], found a way to overcome those issues and to scale VI to
significantly larger datasets.

Stochastic Variational Inference

Let’s assume that variational family Q is chosen to be parametric and q(z;φ) is parameter-
ized by variational parameters φ . Given observed dataset {xi}n

i=1 the main goal is to find
variational parameters for each data point {φi}n

i=1 and generative model parameters θ that
maximize ELBO objective for the whole dataset:

ELBO({xi}n
i=1,{φi}n

i=1,θ) =
n

∑
i=1

ELBO(xi,φi,θ) (2.22)

In traditional VI approaches, which use coordinate ascent inference, at step t the global
parameters θ are updated using the gradient of ELBO({xi}n

i=1,{φi}n
i=1,θ):

∇θ ELBO({xi}n
i=1,{φ t

i }n
i=1,θ

t−1) =
n

∑
i=1

∇θ ELBO(xi,φ
t
i ,θ

t−1), (2.23)

where {φ t
i }n

i=1 are current estimates of variational parameters when θ = θ t−1. Equation 2.23
implies that with each update of θ we have to recalculate the variational parameters for each
data point xi. Undoubtedly, this makes traditional VI methods hard to scale to large datasets.
Moreover, in large data regime we expect that even a subset of the data can be informative
about the global parameters θ .

This scalability issue may be solved by using stochastic optimization [67]. Stochastic
optimization is performed by using noisy unbiased estimates of the gradient instead of the
full gradient. Under some mild conditions on the step-size schedule, stochastic optimization
algorithms provably converge to an optimum of the objective [67]. Stochastic optimization is
particularly appealing in the case of VI since ELBO objective is essentially a sum of many
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terms that can be independently evaluated. In this setting, we can cheaply compute noisy
gradients of ELBO by subsampling only a few of these terms:

∇θ ELBO({xi}n
i=1,{φ t

i }n
i=1,θ

t−1)≈ n∇θ ELBO(xi,φ
t
i ,θ

t−1), i∼U {1, . . . ,n} (2.24)

where U {1, . . . ,n} stands for discrete uniform distribution over set {1, . . . ,n}.
The other issue in traditional VI methods is that they impose a restrictions on the

complexity of generative model as well as variational family, as they consider expectations
in ELBO (Equation 2.19) to be tractable. Moreover, the gradient of ELBO w.r.t. the global
parameters θ cannot be calculated as well, since it also requires taking expectations over the
variational distribution q(zi;φi):

∇θ ELBO(xi,φi,θ) = Eq(zi;φi)[∇θ log pθ (xi|zi)] (2.25)

Although the Equation 2.25 is intractable in general, it can be approximated using
Monte-Carlo sampling:

∇θ ELBO(xi,φi,θ)≈
1
L

L

∑
l=1

∇θ log pθ (xi|zl
i), where zl

i ∼ q(zi;φi) (2.26)

As a result, we obtain a scalable way of learning the global parameters θ in generative
models with a complex non-linear structure:

∇θ ELBO({xi}n
i=1,{φi}n

i=1,θ)≈
n
L

L

∑
l=1

∇θ log pθ (xi|zl
i),

where zl
i ∼ q(zi;φi), i∼U {1, . . . ,n}

(2.27)

However, the derivative of ELBO objective w.r.t φi cannot be evaluated in the same
manner via Monte-Carlo estimate, as in Equation 2.26. This is due to the fact that the
distribution q(zi;φi), over which the expectation is taken, depends on the parameters φi.

Let’s assume that KL-divergence in ELBO can be computed and differentiated in closed
form. If KL-divergence cannot be evaluated in the closed form, we could apply the same
logic as for ∇φiEq(zi;φi)[log pθ (xi|zi)] to approximate it.
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Now we need to approximate ∇φiEq(zi;φi)[log pθ (xi|zi)]:

∇φiEq(zi;φi)[log pθ (xi|zi)] =
∫
Z

∇φiq(zi;φi) log pθ (xi|zi)dzi =

=
∫
Z

q(zi;φi)∇φi[logq(zi;φi)] log pθ (xi|zi)dzi =

= Eq(zi;φi)[∇φi[logq(zi;φi)] log pθ (xi|zi)]≈

≈ 1
L

L

∑
l=1

∇φi[logq(zl
i;φi)] log pθ (xi|zl

i), where zl
i ∼ q(zi;φi)

(2.28)

However, this gradient estimator exhibits extremely high variance [58] and could not
be used in practice because the procedure does not converge. Hence, either some variance
reduction schemes [57], or a more robust gradient estimator is needed.

the Reparameterization Trick

Kingma and Welling [43], Rezende et al. [66] proposed a more practical estimator of the
derivative of ELBO w.r.t. the variational parameters. If z is a continuous random variable, it is
then often possible to express the random variable z̃∼ q(z;φ) as a deterministic differentiable
function z̃ = g(ε,φ) of an auxiliary noise variable ε:

z̃ = g(ε,φ),where ε ∼ p(ε) (2.29)

Using Equation 2.29 and the change-of-variables rule, we can obtain a better estimator
for ∇φiEq(zi;φi)[log pθ (xi|zi)]:

∇φiEq(zi;φi)[log pθ (xi|zi)] = ∇φi

∫
Z

q(zi;φi) logθ (xi|zi)dzi =

= ∇φi

∫
E

p(ε) logθ (xi|g(ε,φi))dε = Eε [∇φi logθ p(xi|g(ε,φi))]≈

≈ 1
L

L

∑
l=1

∇φi logθ p(xi|g(ε l,φi)), where ε
l ∼ p(ε)

(2.30)

As a result, we can formulate an optimization algorithm performing Stochastic Variational
Inference (SVI) . The algorithm is similar to the black-box VI [63], but uses reparameteriza-
tion trick to obtain estimates of ELBO derivatives.
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Algorithm 1: Stochastic Variational Inference
Input :Data points {xi}n

i=1

Randomly initialize variational parameters {φi}n
i=1.

repeat
Draw i∼U {1, . . . ,n}
φ 0

i = φi

for k = 1, . . . ,K do
φ k

i = φ
k−1
i +α∇̂φiELBO(xi,φ

k−1
i ,θ) ; // (Equation 2.30)

φi = φ K
i

Update θ based on the ∇̂θ ELBO({xi}n
i=1,{φi}n

i=1,θ) ; // (Equation 2.27)

until convergence;

SVI (Algorithm 1) optimizes directly for per-sample variational parameters. This may as
well hamper the scalability of VI since the algorithm may require running iterative inference
for a large number of steps. What is more, the number of variational parameters needed to be
stored grows linearly with the number of data points. This issue can be overcome by using
inference networks to approximate qφ (z|x), as discussed below.

Inference Networks and Stochastic Backpropagation

A solution to the above problem is to utilize an inference network as the approximation for
qφ (z|x). Models that incorporate inference network are commonly referred to as amortized
models.

In this setting, a powerful parametric model is chosen to be an inference network and
the model is then trained to map data points x to the variational parameters of the posterior
distribution over z. In case of amortized models, φ is of fixed dimension and shared across
all data points {xi}n

i=1, so that memory consumption is constant w.r.t. n. Moreover, new data
points can be now easily incorporated to the system, in contrast to SVI (Algorithm 1), where
additional optimization is required.

Another appealing quality of amortized models is the ability to perform joint training of
the model parameters θ and variational parameters φ .

The model is trained using Stochastic Gradient Variational Bayes (SGVB) estimator [43],
which is essentially a Monte-Carlo estimator of ELBO:

L̃SGV B(θ ,φ ,xi) =
1
L

L

∑
l=1

logθ (xi,zl
i)− logqφ (zl

i|xi),

where zl
i = g(ε l,xi,φ),ε

l ∼ p(ε)

(2.31)
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The employment of the reparametrization trick in Equation 2.31 allows to directly back-
propagate through stochastic component and update variational parameters φ jointly with
θ .

The SGVB estimator can be naturally extended to work with minibatches:

L̃ m
SGV B(θ ,φ ,xxx

m) =
n
m

m

∑
i=1

L̃SGV B(θ ,φ ,xi), (2.32)

where xxxm is a randomly drawn sample of m datapoints from the full dataset {xi}n
i=1.

The estimator 2.32 can be efficiently maximized using stochastic optimization methods,
such as Adam [42] or Adagrad [18], yielding the Auto-Encoding Variational Bayes (AEVB)
algorithm, also known as stochastic backpropagation [66]. The AEVB algorithm is detailed
in Algorithm 2.

Algorithm 2: Minibatch version of the AEVB algorithm.
Input :Data points {xi}n

i=1

Initialize parameters θ ,φ .
repeat

Sample minibatch of m datapoints xxxmmm

Sample ε l ∼ p(ε) for l = 1, . . . ,L
g← ∇φ ,θL̃ m

SGV B(θ ,φ ,xxx
m,{ε l}L

l=1)

Update parameters θ ,φ using gradients g
until convergence;
Output :(θ ,φ)

2.2.2 Variational Autoencoder

One of the most well-known instances of the family of Deep Latent Variable Models (DLVMs)
is the Variational Autoencoder (VAE) model. VAE makes the assumption that observed data
generation process is driven by a set of latent variables {zi}n

i=1.
VAE follows the VI framework and leverages stochastic backpropagation for efficient

approximate inference. The training procedure of the model is performed via the AEVB
algorithm, detailed in Algorithm 2.

The VAE framework parameterizes qφ (z|x) and pθ (x|z) with neural networks. In practise,
the variational posterior takes the form of a diagonal Gaussian:

qφ (z|x) = N (z; µφ (x),σ2
φ (x)), (2.33)
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where µφ (x),σ2
φ
(x) are neural networks that map observed data x to the variational param-

eters of z. For Normal distribution, the reparametrization trick can be applied since it is
straightforward to show that for z sampled as:

z = gφ (ε,x) = µφ (x)+σφ (x)⊙ ε, with ε ∼N (ε;000, III) (2.34)

holds that z∼N (z; µφ (x),σ2
φ
(x)).

The Generative distribution pθ (x|z) can be any valid distribution over x. Commonly, it is
chosen to be Normal distribution for continuous data and Bernoulli one for binary data. The
prior p(z) is chosen to be a unit variance isotropic Gaussian p(z) = N (z;000, III).

It can be noticed that the architecture of VAE is very similar to deterministic autoen-
coders [81]. Moreover, akin to autoencoders, the latent space Z is usually chosen to be of
substantially lower dimension than X . The main difference between VAEs and standard
autoencoders is that autoencoder provide a point estimate for z, whereas VAE forces the
approximate posterior not to collapse to point estimate via KL-term in ELBO objective.

VAEs employ a very efficient and straightforward sampling strategy:

z∼N (z;000, III)

x∼ pθ (x|z)
(2.35)

In many recent works [43, 66] it was empirically shown that latent space serves as a
low-dimensional manifold that incorporates important patterns in the data.

Generative capabilities of VAEs as well as structure of the latent space are illustrated in
Figure 2.2.

To sum up, this chapter is divided into the discussion of two ML concepts that are
extremely useful in understanding of several recently proposed approaches to modelling
off-the-grid data. The first concept is Neural ODEs [9], which is used by several models from
the design model space introduced in chapter 4. Among those models are ODE-RNN [69]
and Latent ODE [9]. These models rest on Neural ODE [9] to model continuously-defined
evolution of hidden function. Both models are described in detail in chapter 3. The second
part of the current chapter is devoted to the review of LVMs and VI framework. This part
was necessary for further investigation of LVMs developed for time-series modelling, such
as Latent ODE [9] and Neural Processes (NPs) [22]. These approaches are also investigated
in the next chapters of this work.
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Fig. 2.2 (a) Samples from a trained VAE model. (b) Visualization of the latent manifold of
the 2-dimensional VAE. Linearly spaced coordinates of the 2d unit hypercube were passed
through the inverse cumulative distribution function of the standard normal distribution to
produce values of the latent variables z. Each of these values was then decoded using pθ (x|z).
For both illustrations, we used our implementation of a VAE trained on MNIST with a
2-dimensional latent space.





Chapter 3

Related Work

In the previous chapter, we reviewed general ML concepts, namely Neural ODEs [9] and
VI [36] framework. They serve as a foundation for many recent neural approaches to model
off-the-grid data. In the present chapter, we discuss these approaches in more detail since
they comprise a part of the design model space for irregularly-sampled data that we introduce
in this work.

On a global scale recently proposed methods can be divided into two massive groups.
In the first group, approaches adhere to unsupervised learning paradigm, where the core
goal is to fit the true data distribution. These approaches in the context of time-series
data are discussed in section 3.1. The second group comprises models that follow meta-
learning framework. According to this framework, each time-series is considered to be a
separate dataset and the main aim is to train a model that can generalize well across different
datasets. The models belonging to the second group are investigated in section 3.2. Finally,
in section 3.3, we discuss autoregressive models that can be attributed to both unsupervised
and meta-learning paradigms.

3.1 Unsupervised Learning Paradigm

In this section, we describe the unsupervised learning paradigm in the context of modelling
irregularly-sampled time series data. We also describe several recent neural models that
employ unsupervised training and are suitable for modelling off-the-grid data [9, 69].

In the unsupervised learning paradigm, the core goal is to learn hidden structure from
the unlabelled data as well as detect patterns present in it. Unsupervised learning encom-
passes a huge number of machine learning tasks, including density estimation [26, 43, 74],
clustering [4], feature learning [17, 52] and dimensionality reduction [1].
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Perhaps, a central application of unsupervised learning lies in the domain of density esti-
mation, where the main aim is to find an adequate approximation to the true data distribution.
With recent advances in deep learning, the most successful models in this domain are Deep
Generative Models (DGM), which leverage neural networks to model complex data. In the
field of DGMs, there are several commonly used approaches to data modelling: VAEs [43]
(section 2.2), Generative Adversarial Networks (GANs) [26] and Autoregressive Networks
(ANs) [23] . In this work, we mainly focus on models that explicitly learn data distribution,
namely VAEs and ANs.

3.1.1 Variational Autoencoders: Latent ODE

In this section, we discuss the Latent ODE model proposed in [9]. This model builds upon
the theory of VAEs (section 2.2) and can be used for modelling irregularly-sampled data.

In more detail, Latent ODE assumes that the data generation process is driven by a latent
dynamics that is parameterized by a Neural ODE [9]. As in the case of Neural ODEs [9]
initial latent state zt0 determines the entire trajectory, then, given an initial state zt0 and
observation times t1:N , we can obtain latent states z1:N at each time location t1:N . Formally,
the Latent ODE [9] model can be formulated as follows:

z0 ∼ p(z0) (3.1)

z1:N = ODESolve( fθ ,z0, t0, t1:N) (3.2)

xi ∼ pθ (xi|zi), i = 1, . . . ,N (3.3)

where fθ is a neural network that drives the evolution of latent process, prior p(z0) is taken to
be standard normal distribution and pθ (xi|zi) is a multilayer perceptron (MLP) that models
conditional distribution p(xi|zi).

Since the posterior is intractable, the VI framework is used to train the model. This
requires introduction of the approximate posterior distribution qφ (z0|x1:N , t1:N). Originally,
Latent ODE [9] model parameterized recognition network as a simple RNN. However, the
authors in [69] empirically showed that using ODE-RNN [69] as a recognition network
improves the performance of the Latent ODE [9] model on irregularly-sample time series
data. Hence, qφ (z0|x1:N , t1:N) is defined as:

qφ (z0|x1:N , t1:N) = N (z0; µz0,σ
2
z0
), with (µz0,σ

2
z0
) = hφ (ODE-RNN(x1:N , t1:N , t0)) (3.4)
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where hφ is a neural network that maps the final hidden state of the ODE-RNN [69] into the
variational parameters for z0. To obtain these parameters at time point t0, ODE-RNN [69] is
run backwards from the latest observation time tN to t0.

Similar to standard VAEs, Latent ODE [9] is learnt via stochastic optimization of ELBO,
as described in section 2.2.

3.2 Meta-Learning Paradigm

In this section, we frame the task of interpolation/extrapolation for irregularly-sampled time
series data as a meta-learning task. We also discuss recently proposed neural models that
could be used to handle this task [20–22, 28].

In the meta-learning paradigm [72, 77], we develop a learning algorithm that can gener-
alize and perform well across different tasks (datasets). In contrast to supervised learning,
in meta-learning, each data sample is considered to be a separate dataset D . Hence, a good
meta-learning model should be trained on a set S of learning tasks D ⊆S and optimized
for the best performance on distribution of learning tasks:

θ
∗ = argmax

θ∈Θ

ED∼p(D)[Lθ (D)], (3.5)

where Lθ (D) is a defined objective, which measures the performance of the model with
parameters θ on learning task D .

In case of off-the-grid time series data, each dataset D is assumed to be a separate time
series sample. Each sample is often split into two parts: a context set DC = (tC

1:NC
,xC

1:NC
),

where values at time points tC
1:NC

are observed, and target set DT = (tT
1:NT

,xT
1:NT

), where the
values at time points tC

1:NT
are to be predicted. The goal is then to train a model to better

approximate the conditional distribution p(xT
1:NT
|DC, tT

1:NT
):

θ
∗ = argmax

θ∈Θ

ED∼p(D)[log pθ (xT
1:NT
|DC, tT

1:NT
)] (3.6)

In the next section, we discuss a family of neural models that can be used to efficiently
model conditional distribution p(xT

1:NT
|DC, tT

1:NT
).

3.2.1 Neural Processes Family

The NP family comprises a variety of neural models that can be applied to solve miscel-
laneous meta-learning tasks. A unifying feature of models belonging to the NP family is
the embedding of the context sets DC into some representation space, either vector [21, 22]
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or functional [20, 28] one, through an encoder DC→ E(DC). The obtained representation
then serves as prior knowledge that is used to infer function values xT

1:NT
at target set time

locations tT
1:NT

. The inference itself is performed via a neural decoder ρ that takes the context
set representation E(DC) and a target set time locations tT

1:NT
. In contrast to Gaussian Pro-

cesses (GPs) [64], which scale as O((NT +NC)
3), NP family models have a linear running

time complexity owing to its specification. This ability to generate predictions from new
context sets make on the fly makes NP models particularly appealing to be used for solving
meta-learning tasks.

In the next subsections we describe various instances of the NP family in the context of
modelling off-the-grid time series data.

Conditional Neural Processes

Conditional Neural Processes (CNPs) parametrize conditional stochastic processes given
a latent representation of a context set DC of fixed dimensionality. The representation of a
context set is obtained using a DeepSet function approximator [83]. Employing DeepSets [83]
as an encoder E(DC) in CNP implies the following structure of the encoder:

ri = hθ (tC
i ,x

C
i ), i = 1, . . . ,NC (3.7)

E(DC) = r1⊕ r2⊕ . . .rNC−1⊕ rNC , (3.8)

where hθ is a MLP that maps a pair (ti,xi) to the vector embedding space of fixed dimension-
ality, ⊕ is a commutative operation that takes elements from the embedding space and maps
them into a single element in that space. In our experiments we take r1⊕ r2⊕ . . .rNT−1⊕ rNT

to be the mean operation ∑
NC
i=1 ri
NC

.
Then given the embedding E(DC) of the context set DC, CNPs model the predictive

distribution as:

pθ (xT
1:NT
|tT

1:NT
,DC) =

NT

∏
i

N
(
xT

i ; µ
(
tT
i ,E (DC)

)
,σ2 (tT

i ,E (DC)
))

, (3.9)

where the mean µ(·,E(DC)) and variance σ2(·,E(DC)) are parametrized by a MLP
decoder ρθ = (µ,σ2). The decoder ρθ takes the representation of the context set E(DC) and
the time point tT

i and then predicts the parameters of the distribution over xT
i at time location

tT
i .

The illustration of the CNP model is provided in Figure 3.1:
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Fig. 3.1 Structure of the CNP model.

The model is trained via a standard maximum likelihood learning of the parameters θ :

θ
∗ = argmax

θ∈Θ
∑

D∈S
∑

(t,x)∈DT

log pθ (x|t,E(DC)) (3.10)

As compared to training procedures that use VI and amortization, maximum likelihood
learning makes a model much easier to train. Moreover, since this learning technique mimics
the usage of the system at test time, it leads to a strong performance of the model [27].

Neural Processes

A latent variable extension of Conditional Neural Processes, NPs, was proposed in [22]. The
generative model for a NP is defined as follows:

p(z,x1:N |t1:N) = p(z)
N

∏
i=1

N (xi; µθ (ti,z),σ2
θ (ti,z)), (3.11)

where z is a latent variable with standard normal prior p(z), µθ ,σ
2
θ

are MLPs that model
conditional distribution pθ (x|t,z). The illustration of the specified generative process is given
in Figure 3.2:
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xT

z

tTtCxC

NTNC

Fig. 3.2 Graphical model of NP. Observed variables are shaded in gray. C stands for context
variables, whereas T for target variables. NC and NT indicate the number of variable in
context and target sets respectively.

Since the posterior distribution p(xT
1:NT
|DC, tT

1:NT
) is intractable due to the structure of

the decoder ρθ = (µθ ,σ
2
θ
), amortized VI is used to learn a model. Let q(z|x1:N , t1:N) =

q(z|DC,DT ) be a variational posterior parameterized by a DeepSet [83] (Equations 3.7, 3.8).
Instead of using standard ELBO for log p(x1:N |t1:N), the authors proposed to learn a

model using approximate lower bound for p(xT
1:NT
|tT

1:NT
,DC):

log p(xT
1:NT
|tT

1:NT
,DC)≥ Eq(z|DC,DT

[
NT

∑
i=1

p(xT
i |z, tT

i )+ log
q(z|DC)

q(z|DC,DT )

]
(3.12)

In contrast to CNPs, which are limited to factorized, parametric predictive distributions,
NPs enable to specify more complex predictive distributions by employing latent variables.
However, in general, NPs are harder to train in comparison to deterministic CNPs. Moreover,
NP training utilizes VI and amortization, which are notorious for exhibiting certain flaws [13,
79].

Although NPs and CNPs have many appealing properties, the authors of [39] showed that
NPs tend to underfit the context set DC. In [39], the authors supposed that this underfitting
may be attributed to the mean-aggregation step, since it restricts the ability of the decoder
to differentiate which context points are more relevant for a particular target prediction. To
tackle this problem, the authors of [39] proposed to incorporate attention mechanism [3, 40]
into NP. This allows each input location to choose relevant context points for the prediction.
However, it comes with an increased running time complexity of O(NC(NC +NT )).

Convolutional Conditional Neural Processes

In many domains, including modelling of irregularly-sampled time series, ideal solutions
to prediction problems should be translation equivariant [12, 44]. In more detail, in the
context of time series data, translation equivariance property means that if the data are
translated in time, then the predictions should be translated accordingly. Hence, building
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translation equivariance property into the modelling assumptions may serve as a valuable
inductive bias. Unfortunately, standard NP models do not possess this property by default
and hence must learn it from the training data. Undoubtedly, such a way of incorporating
desired modelling assumptions not only is parameter inefficient but also influences the
generalization capabilities of the model. The authors of [28] address this problem by
introducing Convolutional Conditional Neural Processes (ConvCNPs), a member of NP
family, which accounts for translation equivariance (TE) .

ConvCNP models the predictive distribution over target inputs as:

pθ (xT
1:NT
|tT

1:NT
,DC) =

NT

∏
i=1

N (xT
i ; µθ (tT

i ,DC),σ
2
θ (t

T
i ,DC)), (3.13)

where µθ and σ2
θ

are parameterized by Convolutional Deep Sets (ConvDeepSets) [28]. Since
for a fixed-dimensional vector space the notion of TE is not well-defined, for ConvCNP [28]
the context set DC is embedded into functional space, where TE is well-defined. So, Con-
vDeepSet [28] is defined to be a flexible parameterization for TE functions that map data set
D ⊆S to the space of continuous, bounded functions Cb(T ).

ConvDeepSet [28] can be represented as a composition of two functions. Let Φ(DC)

denote a ConvDeepSet [28]. Then Φ(DC) = ρ(E(DC)), where E(DC) is an encoder that
embeds context set DC into function space and ρ is a decoder that serves as a TE map
between two function spaces. The encoder E(DC) has the following form:

E(DC) =
NC

∑
i=1

φ(xT
i )ψ(·− tT

i ), (3.14)

where ψ is a positive-definite kernel associated with a Reproducing Kernel Hilbert Space
(RKHS) [2]. Following [28], in our experiments, we set ψ to be the exponentiated-quadratic
(EQ) kernel with a learnable length scale parameter. Function φ(xT

i ) = [1,xT
i ]

T , where the
first channel φ1 is referred to as a "density channel". This channel provides model information
about the locations of observed data points.

A decoder is parameterized by a CNN. However, CNNs cannot handle continuous input
and are able to produce only discrete outputs. Hence, we have to discretize the input of the
decoder, apply CNN to it and then convert the obtained output to a continuous function. In a
more detail, we construct a uniform grid tG

1:NG
covering context and target time locations. The

encoder E(DC) is evaluated at the specified time locations tG
1:NG

and then obtained discretized
representation serves as input to the decoder ρ . After that, the output of the decoder is
mapped to a continuous function z(t) using the EQ kernel ψρ . Finally, this latent function
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z(t) is used to obtain parameters of the predictive distribution at each target time location
tT
1:NT

. Figure 3.3 illustrates forward pass of the ConvCNP [28] model:

Fig. 3.3 Forward pass of the ConvCNP model.

The model is learnt via maximum-likelihood training (Equation 3.10) using stochastic
gradient descent methods [6].

Convolutional Neural Processes

Convolutional Neural Process (ConvNP) [20] is an extension of the ConvCNP [28] that al-
lows for modelling dependencies in the predictive distribution. The correspondence between
ConvCNP [28] and ConvNP [20] is similar to the one between NP [22] and CNP [21]. How-
ever, while for NPs latent variable z is a fixed dimensional vector, in case of ConvNPs [20] z
is a latent function. As in the case of ConvCNPs [28], the transition from finite-dimensional
vector space to function space was necessary to incorporate the TE inductive bias into the
model structure.

From the definition of ConvCNP [28] (Equation 3.13) it can be seen that ConvCNP [28]
represents a map from data sets DC ⊆S to the space of Stochastic Processes (SPs) [68],
in particular noise GPs. In more detail, noise GPs are processes with covariance defined as
Cov(t, t ′) = σ2(t)δ (t− t ′), where σ2(t) is some continuous, bounded function, δ (0) = 1 and
δ (τ)= 0 for τ ̸= 0. Such a mapping has two key limitations. Firstly, it is impossible to acquire
coherent function samples from the noise GP process. Secondly, Gaussian distributions have
a limited representation capability and cannot model multi-modal or asymmetric distributions.
To address this issue the authors of [20] proposed to introduce an additional non-linear, TE
map from noise GPs to a more expressive SP family. The composition of ConvCNP [28] and
this additional mapping constitutes the ConvNP [20] model. Specifically, the ConvNP [20]
model has an encoder-decoder architecture, with an encoder E(DC) that maps context set
DC to the space of noise GPs and a decoder D that provides a map between two function
spaces. Encoder E is parameterized by a ConvCNP [28]. All in all, ConvNP [20] is defined
as follows:

ConvNPθ ,φ = Dθ ◦Eφ ,with Eφ = ConvCNPφ (3.15)
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Sampling from ConvNP [20] is performed by firstly sampling a function z∼ ConvCNPφ

and then computing f = Dθ (z). The illustration of the process is provided in Figure 3.4.

Fig. 3.4 Sampling from a trained ConvNP [20]. Context set DC serves as input to the encoder
(left figure), which outputs a single sample of z (center figure). Then the decoder takes this
sample and outputs a predictive one (right figure, function coloured in blue). In the right
figure other function samples are shown in gray. The illustration was borrowed from [20].

Since in practice we cannot compute samples from noise GPs, a discrete version of the
model should be used. Similar to ConvCNP [28], the domain of z is discretized on a uniform
grid tG

1:NG
. After discretization latent function sampling boils down to sampling independent

Gaussian random variables. Then the decoder Dθ is implemented as a CNN, which takes
values of z at a uniform grid tG

1:NG
and outputs values of Dθ (z) at the same time locations.

The ConvNP [20] model likelihood is defined as follows:

pθ ,φ (xT
1:NT
|tT

1:NT
,DC) = Ez∼Eφ (DC)

[
NT

∏
i=1

N (xT
i ;Dθ (z),σxT

i
(tT

i ,z))

]
, (3.16)

where σxT
i
(tT

i ,z) is Gaussian observation noise.
Conceptually similar to NPs [22], ConvNPs [20] could be learned with NPs training

objective (Equation 3.12). However, the KL term in the objective introduces some technical
issues when training the ConvNP model [20]. To begin with, KL divergences between
non-discretized SPs cannot be directly computed and should be handled carefully [15, 76].
What is more, for discretized version, KL term will vastly depend on the chosen discretization
and there are no scientific results showing that KL divergence on discretized data converges
to true KL divergence between SPs. To avoid this issues, the authors of [20] proposed to use
Monte-Carlo estimate of log pθ ,φ (xT

1:NT
|tT

1:NT
,DC) and perform maximum-likelihood training

on S . The training objective for each D ⊆S is defined as:

L (θ ,φ ;D) = log

[
1
L

L

∑
l=1

exp

(
NT

∑
i=1

log pθ (xT
i |tT

i ,zl)

)]
,zl ∼ Eφ (DC) (3.17)
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In their experiments, the authors of [20] demonstrate that this learning objective often
performs much better than VI-inspired ones.

3.3 Autoregressive Modelling

Let us assume that we are given a dataset D consisting of evenly sampled, possibly multidi-
mensional, time series xxxp = {xp

i }
Np
i=1, where xp

i ∈ Rd .
By the chain rule of probability, the joint distribution can be factorized over each time

series sample as

p(xxx) = p(x1, . . . ,xN) = p(x1)
N

∏
i=2

p(xi|xi−1, . . . ,x1) = p(x1)
N

∏
i=2

p(xi|xxx<i) (3.18)

where xxx ∈ D and xxx<i = [x1,x2, . . . ,xi−1] denotes a collection of random vectors with
index less than i. Bayesian network illustrating the chain rule factorization is provided in
Figure 3.5.

x1 x2 . . . xN

Fig. 3.5 Bayesian network illustrating the chain rule factorization (Equation 3.18).

Making no conditional independence assumptions, autoregressive models use observa-
tions from all previous time steps to predict the value at the current time step. One way to
introduce such a model could be to specify every conditional p(xi|xxx<i) in a tabular form.
Although such a distribution representation has a general structure and allows to define any
possible distribution over N random vectors, the space complexity for such a representation
has an exponential growth with N.

To mitigate this issue, conditional probabilities p(xi|xxx<i) could be parameterized by
functions containing limited number of parameters. These models are usually referred to
as autoregressive generative models. These models cannot represent all possible predictive
distributions anymore, but with a flexible enough parameterization, they can serve as an
adequate approximation to the true distribution [30, 46, 80].

Perhaps, one of the most widely used generative autoregressive models is RNN [70].
To deal with variable length sequences, RNNs use internal memory state that incorporates
information about all observed data points. This internal memory state is updated each time
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an observation comes: ht = f (xt−1,ht−1;θ). Then given a current memory state ht the RNN
model is trained to predict conditional distribution p(xt |xxx<t)≈ pθ (xt |ht). The illustration of
the process is given in Figure 3.6, where we also show how recurrent layer can be unrolled.

Fig. 3.6 RNN used as a generative model. Given current observation xt RNN updates the
memory state ht and then predicts parameters of conditional distribution p(xt+1|xxx<t). W,V,U
are trainable parameters in the RNN model.

In vanilla RNN models f is usually modelled as a 1-layered MLP:

f (xt−1,ht−1;θ) = φ(W (1)ht−1 +W (2)xt−1 +b), (3.19)

where θ = {W (1),W (2),b} are trainable parameters of the layer, φ(·) is some activation
function, e.g. Rectified Linear Unit (ReLU) , sigmoid or tanh.

However, vanilla RNN cell structure (Equation 3.19) is notoriously known for suffering
from exploding and vanishing gradient problems in case of long sequences [25, 59]. To
alleviate the issue of vanishing gradient, variations of Gated Recurrent Units (GRUs) were
proposed [10, 29, 33]. They circumvent the vanishing gradient problem by introducing gating
mechanisms that guide the information flow through time.

RNN-based autoregressive models are commonly trained by optimizing the maximum
likelihood objective:

θ
∗ = argmax

θ∈Θ

1
|D | ∑

xxx∈D
pθ (xxx) = argmax

θ∈Θ

1
|D | ∑

xxx∈D

|x|

∑
i=1

pθ (xi|xxx<i) (3.20)

Despite being successful in numerous sequential learning tasks [29, 37], standard RNNs
show unsatisfactory performance in modelling irregularly-sampled time-series data. A
common ad-hoc approach to directly apply a standard RNN model to off-the-grid data is
to divide the timeline into bins and then somehow aggregate or impute observations falling
into the same bin. Undoubtedly, such data preprocessing eliminates a lot of information, in
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particular the exact times of events, that can be very useful for data modelling [8, 50]. A
natural way to tackle this problem is to introduce a model with a continuous-time evolution
of the latent space. The first step in this direction was the RNN model, where the dynamics
between observation is modelled as an exponential decay [7, 8, 55, 62]. A generalized
version of such a model called ODE-RNN was proposed in [69]. ODE-RNN models the
evolution of the latent state with a Neural ODE [9]. A detailed description of the ODE-RNN
model is provided in Algorithm 3:

Algorithm 3: ODE-RNN
Input :Data points {xi}N

i=1 and timestamps {ti}N
i=1

Set h0 and t0.
for i← 1 to N do

h′i = ODESolve( fθ ,hi−1, ti−1, ti)
hi = RNNCell(h′i,xi)

µi,σ
2
i = MLP(h′i)

Output :{µi,σ
2
i }N

i=1 – parameters of the predictive distribution p(xi|xxx<i)

Since ODE-RNN model [69] was shown to adequately perform on irregularly-sampled
data, we chose this model for our evaluation. The obtained results are described in chapter 5.

There are a lot of recent follow-up works in autoregressive modelling direction. For
instance, the authors of [14] proposed a continuous-time version of GRU [10], whereas [47]
introduce an autoregressive model that is build upon the Long Short-Term Memory (LSTM)
unit [33]. Another work, similar to ODE-RNN, was introduced in [35]. In this work, the
authors proposed an extension to a Neural ODE [9] to allow for modelling temporal point
process with a piecewise-continuous latent trajectory.

To conclude, in this chapter, we discuss several existing approaches from an immense
model space of models devised for handling off-the-grid data. These approaches were
grouped in terms of the learning paradigm they follow. Latent ODE [9] represents models
following unsupervised learning paradigm, whereas models from NP family constitute a
good example of approaches adhering to meta-learning. In the domain of autoregressive
modelling, which can be attributed to both unsupervised and meta-learning paradigms, the
ODE-RNN [69] model was introduced.

As we can see, for the task of modelling off-the-grid data, there is a massive amount
of works spanning several ML paradigms. On the one hand, it is very appealing to the
practitioner since it opens a vast number of choices that vary in terms of computational
complexity and memory costs. On the other hand, in current literature, approaches to
modelling off-the-grid data are disorganised, so it is hard to deal with this massive amount
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of publications. What is more, a lot of models introduced above have never been compared
to each other, making the choice of the appropriate model even harder. Towards this end,
in the next chapter, we propose a unifying framework, which will highlight the distinctions
of the introduced models and make a choice easier. Finally, in chapter 5, we evaluate the
performance of some of the models.





Chapter 4

Model Design Space: a Common Context
for the Models

Recently, within ML community there has been increased attention to developing novel
methods for modelling time-series data [9, 28, 38, 69]. A lot of considerably successful
models in this area were proposed within different ML domains. However, some of these
models, e.g. Neural ODEs [9], are often misinterpret in the community, which restricts their
applicability in practice. What is more, since methods come from disjoint ML domains, for
a practitioner it can be hard to comprehend the variability of methods that could be used.
For these reasons, a rigorous text book description of this ML area would be instrumental in
solving a lot of practical and theoretical issues.

In this chapter, we suggest a way to arrange a variety of neural models that were specifi-
cally designed to handle non-regularly sampled time series data. We also propose a series
of schematics outlining model design space. These schematics could help identify major
characteristics of each model.

What is more, we introduce and formulate new models, e.g. Neural ODE CNP and
Neural CDE CNP, that were encountered naturally within the proposed schematics, but have
been omitted in the recent literature.

In section 4.1, we propose a global model design space that organizes conceptually
different approaches to modelling irregularly-sampled data. Further sections in the present
chapter are devoted to a more detailed discussion of a particular approach of time series data
modelling. In section 4.2, we specify the model design space for models belonging to Neural
Process family. Finally, in section 4.3, we formulate schematic for non-amortized modelling
approaches.
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4.1 Global Model Space

In recent literature, as outlined in chapter 3, there are several notable tendencies in neural
modelling of irregularly-sampled time-series data. Each of these trends introduces a distinc-
tive approach to data modelling, and the majority of recent works in this direction can be
attributed to one of these approaches. Thus, recognizing the global modelling approach to
which a particular model belongs helps identify limitations as well as inductive biases of the
model considered. To the best of our knowledge, there are five primary research directions to
modelling non-regularly sampled data:

1. Autoregressive Models (section 3.3);

2. VAEs (section 3.1.1);

3. NP Family. Existing models belonging to NP family are described in section 3.2.1,
whereas novel models introduced in this work are outlined in section 4.2;

4. Non-Amortized models: meta-learning models with non-amortized inference. A
detailed description of the models is provided in section 4.3;

5. Semi-amortized models: models that use amortization to get the initial estimate for
instance-specific parameters and then refine this estimate using iterative optimization.

In Figure 4.1, we introduce a schematic that distinguishes global approaches to modelling
irregularly sampled-data as well as puts them into a common context:
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Fig. 4.1 Global design model space outlining principle approaches to modelling off-the-grid
time-series data. X-axis indicates whether a model is amortized. Y -axis stands for the
learning paradigm that determines the way a model is trained.
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The proposed perspective allows the listed research directions to be organized in terms of
1) the choice of the learning paradigm in which a model is fitted, and 2) the level at which
the inference in the model is amortized (from an instance-specific local inference to a global
inference network).

Training Pipeline

Modelling time series data can be formulated in both meta-learning and unsupervised
learning paradigms. In unsupervised learning setting, during training time all data points
within each time series sample are assumed to be observed. Then the main task is to model
the joint density p(xxx|ttt) = p(x1, . . . ,xN |t1, . . . , tN). A number of successful models obeying
unsupervised learning paradigm have been proposed, e.g variational autoencoders [9, 49, 69]
and autoregressive models [14, 35, 69]. On the contrary, training in meta-learning setting
implies that there are two sets of data points, where one of them, context set (xxxC, tttC),
is observed and the other one, target set (xxxT , tttT ), is assumed to be missing. Then the
task is to adequately approximate the conditional predictive distribution: p(xxxT |xxxC, tttT , tttC).
Non-amortized meta-learning models, autoregressive models [14, 35, 69] as well as NP
family [20–22, 28] operate under the meta-learning setting.

Autoregressive models [14, 35, 69] could be attributed to both settings simultaneously.
In general, autoregressive models approximate joint density p(xxx|ttt), which indicates that the
unsupervised learning paradigm is followed. On the other hand, on each time step autore-
gressive models also approximate the conditional distribution p(xt |xxx<t), which resembles
the meta-learning setting with a varying context set.

Model Amortization

Model Amortization refers to the way model inference is performed. Non-amortized models
use instance-specific local inference. To train those models SVI is commonly applied. On
the contrary, in the case of amortized models, instance-specific parameters are predicted
by an inference network (or encoder), which is shared across all dataset. The trade-off
here is clear: SVI could give a good local estimate of instance-specific parameters, but
requires performing optimization for each data point. Conversely, amortized models avoid
per-sample optimization, thus significantly reducing time costs. However, these models
impose a restriction on instance-specific parameters, as the parameters are now represented
by some parametric function of the observed data. The authors of [13] has shown that such
a restriction may be indeed too strict, causing a significant amortization gap for amortized
models (underfitting), especially in the large data regime. To mitigate this issues, recent
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works have introduced semi-amortized inference for meta-learning [71, 78] and unsupervised
learning [32, 41, 45, 54] settings. However, to the best of our knowledge, none of the
semi-amortized inference approaches was evaluated on the interpolation/extrapolation task
for irregularly-sampled time series data.

4.2 Neural Processes Family

In this section, we propose a design model space to organise the variety of models belonging
to the NP family. In this model space, we identify three core dimensions that can be used to
compare and contrast existing modelling approaches. The dimensions are as follows:

1. Type of the decoder used. Convolution-based and Neural ODE [9]-based decoders can
both be used to handle non-uniformly sampled data efficiently. Being conceptually
different, these two models imply quite different inductive biases, computational
requirements and constraints. Therefore, the type of the decoder forms one of the
major discriminating dimensions in the design space;

2. Complexity of the predictive distribution. This dimension incorporates the choice
between deterministic and latent variable models. Deterministic models are limited to
modelling factorized predictive distribution. Consequently, such a model can be used
neither to produce coherent predictive samples nor to model more complicated joint
distributions. Hence, to enable more expressive predictive distributions, latent variable
models could be used. However, the training procedure for latent variable models
could be more demanding in terms of computational resources [20] in comparison
to deterministic counterpart. Moreover, amortized variational inference, that is com-
monly used for training latent variable models [22], suffers from certain drawbacks,
influencing the quality of a final model [13].

3. Dimension of the embedding space. A key component in the NP family is the embed-
ding of data sets into some representation space. The possible choices for embedding
space span both finite-dimensional vector as well as infinite-dimensional function
spaces. For finite-dimensional embeddings DeepSet function approximation [83] is
used, whereas ConvDeepSet [28] embeds data sets in an infinite-dimensional function
space. Although DeepSet framework provides a more compact data sets representation,
ConvDeepSet allows for modelling TE in the data, which is an important inductive
bias for time series modelling[20, 28].
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A visualization of the defined model space for NP family is shown in Figure 4.2. On
the schematics, each vertex of the cube is attributed to a particular model. The name of the
model associated with a specific vertex is indicated near this vertex.

All models mentioned in Figure 4.2 belong to NP family. Hence, they exhibit a common
general structure and are defined as a composition of an encoder and a decoder. The
encoder outputs some latent representation of a data set, whereas the decoder takes this latent
representation as input and outputs parameters of the predictive distribution. However, the
structure of the encoder and the decoder changes dramatically for NP models with different
specifications.
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Fig. 4.2 Design model space for models from NP family. Each axis states for one of
the dimensions defining the design space. Each vertex of the cube identifies a specific
configuration of the NP model. Near each vertex, the name of the NP model complying with
the specified configurations is provided.

Further, we will formulate and discuss variations of neural processes, which use Neural
ODE model [9] as a decoder. The namings of these models (Neural ODE CNP, Neural ODE
NP, Neural CDE CNP and Neural CDE NP) are given to comply with their convolution-based
counterpart. The specifications of these models could be understood from the design model
space illustrated in Figure 4.2.

We will omit the discussion of existing models (CNP [21], NP [22], ConvCNP [28] and
ConvNP [20]) in this chapter, as it can be found in section 3.2.1.
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Notation

The notation proposed in this section assumes that models are trained on time series data.
Let X = Rout denote the output space. Let (t,x) be an input-output pair, meaning the value
x was observed at time t. Let S be the collection of all time series samples, with DC,DT

a context and target sets respectively. Let DT = (tT
1:NT

,xT
1:NT

),DC = (tC
1:NC

,xC
1:NC

), where NT

and NC are the number of points in target and context sets accordingly. A single task is
denoted as ξ = (DC,DT ).

Neural ODE CNP

Model Formulation. Neural ODE CNP assumes that given context set DC, predictive
distribution over target outputs is conditionally independent and can be modelled as:

p(xT
1:NT
|tT

1:NT
,DC) =

NT

∏
i=1

N (xT
i |µθ (zi),σ

2
θ (zi)), (4.1)

where µθ (·),σ2
θ
(·) are shared, pointwise MLPs that map z at each tT

1:NT
in the target set

to Rout . Similar to CNP [21], latent function z is defined as a composition ρ ◦E, where
E is an encoder that maps DC to embedding space Re and ρ : Re→H is a decoder that
maps representation of DC into an appropriate function space H . In case of Neural ODE
CNP, ρ is parameterized as Neural ODE [9], i.e. z1:NT = ODESolve( fθ ,h0, tT

0 , t
T
1:NT

), where
h0 = ztT

0
is the initial condition of the ODE. Since the solution of an ODE is fully determined

by its initial condition, all information about context set DC should be incorporated into
initial condition vector. Hence, an encoder should provide a value for the initial condition:
h0 = E(DC). All in all, the model can be formulated as:

h0 = E(DC) (4.2)

z1:NT = ODESolve( fθ ,h0, tT
0 , t

T
1:NT

) (4.3)

where fθ is a function that specifies the dynamics of the hidden state, using a neural
network with parameters θ . In our experiments, we set tT

0 to be the time of the earliest
observation in the whole training data.

As for the architecture of the encoder, any appropriate model, such as RNN, ODE-
RNN [69] or DeepSet [83], could be used.
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Training. Training procedure for the Neural ODE CNP model follows standard proto-
col for training CNPs [21], where the negative conditional log-likelihood of target sets is
minimized (Equation 3.10) using stochastic gradient descent methods [6].

Neural ODE NP

Model Formulation. To enable richer joint predictive distributions, a latent variable exten-
sion of Neural ODE CNP could be introduced. We refer to this extension as Neural ODE NP
model. For Neural ODE NP, we assume that the initial condition vector is a global latent
variable with multivariate standard normal prior, rather than a deterministic vector as in
Neural ODE CNP. Graphical models for both Neural ODE CNP and Neural ODE NP are
illustrated in Figure 4.3:

xT tTtCxC

NTNC

(a) Neural ODE CNP

xT

h0

tTtCxC

NTNC

(b) Neural ODE NP

Fig. 4.3 Graphical models for Neural ODE CNP (4.3a) and Neural ODE NP (4.3b). Observed
variables are shaded in gray. C stands for context variables, whereas T for target variables.
NC and NT indicate the number of variable in context and target sets respectively.

The Neural ODE NP model can be formulated as follows:

h0 ∼ p(h0|DC) (4.4)

z1:NT = ODESolve( fθ ,h0, tT
0 , t

T
1:NT

) (4.5)

xT
i ∼N (xT

i |µθ (zi),σ
2
θ (zi)), i = 1, . . . ,NT (4.6)

Since the Neural ODE decoder is non-linear, we will use amortized VI to learn the model.
Let qθ (z|DC,DT ) be a variational posterior of the latent variable z, parameterized by an
encoder. The architecture of the encoder is similar to the one used for the Neural ODE CNP
model. Moreover, as the posterior distribution p(h0|DC) is intractable, following [22], we
will approximate it with the variational posterior qθ (h0|DC) predicted by the encoder.

Training. The model parameters are optimized using the approximate ELBO for
log p(x1:NT |t1:NT ,DC) (Equation 3.12), as proposed in [22].
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Model Similarity. It is also worth noticing that if we consider all data to be observed
(without splitting it into target and context sets), Neural ODE NP model would be converted
to a standard VAE, namely the Latent ODE model [9, 69].

Neural CDE CNP

Neural ODE CNP and Neural ODE NP models embed context dataset DC into a vector
embedding space. Thus, all information about the observed data should be compressed into a
fixed dimensional representation. However, in some cases, especially in a large data regime,
the chosen dimensionality of the embedding space could be insufficient to incorporate all the
information needed for the adequate performance of the model. A simple solution to this
problem would be just to increase the dimension of the embedding space. However, such an
approach may cause some difficulties with stochastic optimization convergence. Moreover, it
comes with computational and memory costs.

Another solution to the problem of underfitting could be to embed observed data into
infinite-dimensional function space, as proposed for ConvCNP [28] and ConvNP [20].
However, the Neural ODE [9] decoder used for the Neural ODE CNP and Neural ODE NP
models is not compatible with function embedding space, since the latent function z produced
be Neural ODE [9] decoder is fully determined by a fixed-dimensional initial state vector
h0 and time t0. This issue can be rectified by the use of the Neural Controlled Differential
Equation (Neural CDE) model proposed in [38]. The model is built upon the definition of
the Controlled Differential Equation (CDE), which is driven by some continuous function of
bounded variation X : [τ,T ]→ Rv:

zt = zτ +
∫ t

τ

f (zs)dX(s), for t ∈ (τ,T ] (4.7)

zτ = γ (4.8)

where the integral is a Riemann–Stieltjes integral, zτ = γ is an initial hidden state vector
at time τ . Function f : Rw→ Rw×v is a continuous function that describes the dynamics
of the hidden state. CDE defined in (4.7 – 4.8) exists and is unique under global Lipschitz
conditions on function f [51].

By introducing parameterization of f as a neural network and taking function X to be the
natural cubic spline [56] with knots at observations’ times the authors of [38] defined the
Neural CDE model. As a result, Neural CDEs [38] allow for adjusting the trajectory based
on local observations and hence could be used in models where encoder embeds data into
function space.
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Model Formulation. Based on the results from [38], we will now formulate the Neural
CDE CNP model. This model has a structure similar to ConvCNP [28], but the parameter-
ization of the decoder is different. Opposed to ConvCNP [28], Neural CDE CNP model
parameterizes decoder with Neural CDE:

zt = zt0 +
∫ t

t0
fθ (zs)dE(Dc)(s) (4.9)

zt0 = γθ (E(Dc)(t0)) (4.10)

where γθ , fθ are neural networks that determine initial hidden state and dynamics of the
latent function z respectively. E(·) is the encoder that maps context set Dc into functional
representation. The encoder in Neural CDE model is taken to be the same as in ConvCNP [28].
A detailed structure of the encoder is specified in section 3.2.1.

Since E(Dc)(·) is differentiable, Equation 4.9 can be rewritten as:

zt = zt0 +
∫ t

t0
fθ (zs)

dE(Dc)

ds
(s)ds = zt0 +

∫ t

t0
gθ ,E(Dc)(zs,s)ds (4.11)

Hence, Neural CDE could be solved using the same techniques that are used for solving
Neural ODEs [9].

The illustration of the Neural CDE CNP forward pass for irregularly-sampled time series
data is provided in Figure 4.4:

Fig. 4.4 Illustration of the Neural CDE CNP forward pass for irregularly-sampled time series.

It worth noticing that if zt0 doesn’t directly depend on t0, but only on E(Dc)(t0), the
Neural CDE CNP model would be TE.

As in all CNPs [21], Neural ODE CNP assumes that given context set DC, predictive
distribution over target outputs is conditionally independent and can be modelled as:

p(xT
1:NT
|tT

1:NT
,DC) =

NT

∏
i=1

N (xT
i |µθ (zi),σ

2
θ (zi)), (4.12)
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where µθ (·),σ2
θ
(·) are shared, pointwise MLPs that map z at each tT

1:NT
in the target set

to Rout .
Training. The model is trained via optimization of a standard maximum-likelihood

objective (Equation 3.10) using stochastic gradient descent methods [6].
Model Similarity. Assume that fθ (zs) =W ∈ Rw×(out+1) is independent of the value of

zs. Then

zt = zt0 +
∫ t

t0
W

dE(Dc)

ds
(s)ds = zt0 +W (E(Dc)(t)−E(Dc)(t0)) (4.13)

If we now assume that γθ (E(Dc)(t0)) =WE(Dc)(t0), then zt =WE(Dc)(t). Hence, under
introduced assumptions Neural CDE CNP model can be viewed as a ConvDeepSet [28]
parameterization with a degenerate decoder. The decoder, in this case, is a one-layered MLP
network, which is a degenerate case of a CNN – a one-layered CNN with kernel size 1. The
discretization points are then assumed to be target time points themselves since there are
no convolutions over time in the decoder and hence the uniform discretization grid is not
required.

Neural CDE NP

A step further could be taken to introduce a counterpart of the ConvNP [20] model that is
built upon Neural CDE CNP. In contrast to Neural CDE CNP model, Neural CDE NP would
allow for dependencies in the predictive distribution. Thus, it could be used in applications
where the generation of coherent samples is required. However, an accurate formulation of
this model requires further investigation and is beyond the scope of this work.

4.3 Non-Amortized Models

In this section, we propose a schematic to organize the design model space for non-amortized
models that can be applied to the task of interpolation/extrapolation of irregularly-sampled
time series data. In this work, by the term non-amortized models we mean models that
employ local instance-specific optimization from a fixed initial parameter value.

In contrast to amortized models, non-amortized ones have instance-specific parameters
that are optimized during training. Such models are commonly learnt using SVI [34, 63],
detailed in Algorithm 1.

On the one hand, this type of inference employs more flexible parameterization in
comparison to amortized one. Hence, it does not suffer from severe underfitting caused by
an amortization gap, as opposed to amortized models [13].
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On the other hand, SVI requires to perform optimization for each data point individually.
Hence, it can be difficult and time-consuming to apply a trained model to new test data sample,
because optimization may take a large number of steps to convergence. Moreover, SVI does
not provide any reasonable strategy to initialize local parameters for a new data point. The
parameters are just randomly initialized. Since the optimized objective is a highly non-convex
function, a bad initialization may lead to convergence to a spurious local minimum. Hence,
the performance of the trained model vastly depends on the initial value of the instance-
specific parameters. This issue may be circumvented by the introduction of MAML [19]-like
training, where instance-specific parameters would have constant initialization which is learnt
during training. The details of the training pipeline are provided further in the present section.

The illustration of the proposed design model space for non-amortized models is given in
Figure 4.5:
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Fig. 4.5 Schematic outlining the design model space for non-amortized models that can be
used for interpolation/extrapolation of irregularly-sampled time series data. X-axis stands for
the type of local instance-specific information. Y -axis indicates whether instance-specific
information is presented as a deterministic variable or a probabilistic one, with some prior
distribution imposed. On each vertical dashed line connecting deterministic and probabilistic
counterparts a suitable model architecture is indicated.

The proposed schematic introduces two dimensions that can be used to compare and con-
trast non-amortized models. The first one determines whether instance-specific parameters in
the model are deterministic or probabilistic. The second one indicates how instance-specific
parameters are represented, e.g. as a vector or as a pseudo-dataset.
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Model Type

This dimension differentiates latent variable and deterministic models. For deterministic mod-
els, instance-specific parameters are assumed to be non-random and are directly optimized
using the maximum-likelihood objective. In contrast, latent variable models consider that
observed data were generated from a set of unobserved latent variables. Since we use neural
networks for data modelling, the posterior distribution over latent variables is intractable and
VI [36] is commonly used to approximate an intractable posterior.

Instance-Specific Information

Based on the model architecture that is used for data modelling, instance-specific parameters
can be represented as various data structures:

1. Vector representation. If data are modelled with a Neural ODE [9], then instance-
specific parameters are either the initial condition vector itself (deterministic) or
parameters of variational distribution over this vector (probabilistic). Such a model is
formulated as follows:

z0 = h0, if deterministic (4.14)

z0 ∼ p(z0), if probabilistic (4.15)

z1:N = ODESolve( fθ ,z0, t0, t1:N) (4.16)

where t1:N = tT
1:NT
∪ tC

1:NC
and N = NT +NC. Since the dynamics of the trained Neural

ODE model [9] is entirely determined by the initial condition vector, we assume that
the necessary information about a data sample is compressed into this vector.

2. Function values at fixed locations. Another possible way to construct a non-amortized
model is to model data using the decoder part of the ConvCNP [28] model. To do this,
we first need to fix discretization times (td

i )
Nd
i=1. Then function values (xi)

Nd
i=1 at the

chosen time locations would serve as instance-specific parameters and hence optimized
separately for each data sample. The formal definition of the model is the following:

x1:Nd ∼ p(x1:Nd), if probabilistic (4.17)

zd
1:Nd

= CNNdecoderθ (x1:Nd) (4.18)

zi =
Nd

∑
j=1

zd
j ψρ(ti− td

j ), i = 1, . . . ,N (4.19)
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where ψρ is the EQ kernel with a learnable length scale parameter ρ .

It is worth mentioning that since this model has a large number of instance-specific
parameters, it would work only in the case of abundant training data.

3. Pseudo-dataset. In this case, we assume that an encoder-decoder architecture, such as
ConvCNP [28] or Neural CDE CNP, serves as a decoder for a non-amortized model.
Then, similar to FITC [75] approach for Gaussian Processes, for each time series
sample we introduce pseudo-dataset (t pseudo

1:Np
,xpseudo

1:Np
) that is optimized along with the

parameters of the decoder. The formulation of the model is the following:

xpseudo
1:Np

∼ p(xpseudo
1:Np

), if probabilistic (4.20)

z1:N = decoderθ (t1:N , t
pseudo
1:Np

,xpseudo
1:Np

) (4.21)

In all non-amortized models introduced above the predictive distribution is assumed to
be modelled as:

p(x1:N |z1:N) =
N

∏
i=1

N (xi|µθ (zi),σ
2
θ (zi)), (4.22)

where µθ (·),σ2
θ
(·) are shared MLPs that map latent function z at some time location t to the

output space Rout .

Model Training

To learn a non-amortized model, a MAML [19]-like training pipeline could be employed.
MAML [19] training aim to learn a model that can be easily adapted to model new samples
within a small number of gradient steps. Global and instance-specific parameters of the
model are explicitly trained to make the model adapt to new sample within several gradient
steps w.r.t. instance-specific parameters. In other words, MAML [19]-like training makes the
model to relatively easy to fine-tune. Moreover, in contrast to traditional SVI approaches,
this training framework proposes a sensible way of initializing local parameters for new data,
i.e. instance-specific parameters have shared constant initialization, which is learnt during
training. The MAML [19]-like training algorithm is described in Algorithm 4.

We will further use notation introduced in Algorithm 4. For deterministic models,
objective function L (λ ,θ ,DC) is assumed to be the log-likelihood of DC, whereas for latent
variable models L (λ ,θ ,DC) is the ELBO objective. From Algorithm 4, we can see that
for training we need to compute total derivative of the final objective function w.r.t. model
parameters θ ,λ0. To compute this total derivative we need to backpropagate through the
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gradient ascent [41, 53]. This backpropagation step can be done efficiently with Hessian-
vector products [48]. Assume that in Algorithm 4 we perform one fine-tuning step (K = 1)
and λ1 = λ0 +α∇λ0L (λ0,θ ,DC). To backpropagate through this, we use the chain rule:

dL (λ1,θ ,DC∪DT )

dλ0
=

dλ1

dλ0

dL

dλ1
=

=
dL (λ1,θ ,DC∪DT )

dλ1
+αHλ0,λ0L (λ0,θ ,DC)

dL (λ1,θ ,DC∪DT )

dλ1

(4.23)

The computation of dL (λK ,θ ,DC∪DT )
dθ

can be done in a similar manner. The computation
of Hessian-vector products (Equation 4.23) can be done via automatic differentiation, which
is supported by standard deep learning libraries.

Algorithm 4: MAML [19] training for non-amortized models
Input :Collection of time series samples (tasks) ξ i = (DC,DT ), where ξ i ∈S

Let λ0 be the initialization of instance-specific parameters.
Let θ indicate global parameters of the model.
Let L be a training objective.
Initialize parameters θ ,λ0.
repeat

Sample task ξ = (DC,DT ) from S

Compute adapted initialization with gradient descent:
for k = 1, . . .K do

λk = λk−1 +α∇λk−1
L (λk−1,θ ,DC)

Update θ based on dL (λK ,θ ,DC∪DT )
dθ

Update λ0 based on dL (λK ,θ ,DC∪DT )
dλ0

until convergence;
Output :(λ0,θ)

For a more flexible initialization of instance-specific parameters, semi-amortized mod-
els [32, 41, 45, 54, 71, 78] could be introduced. Instead of having one shared initialization
value, semi-amortized models use amortization to get the initial estimate of instance-specific
parameters for each sample individually. Then, they refine this estimate using iterative
optimization, similar to Algorithm 4.

To summarise, in the present chapter, we investigate the model design space of neural
approaches for modelling off-the-grid time series data. We propose a series of schematics
as well as outline crucial modelling dimensions that help to organise a huge model space of
existing models [9, 20–22, 28, 35, 38, 69].
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Moreover, we formulate new models that were encountered in the context of the proposed
schematics. The proposed models, together with the existing ones, could be used to model
irregularly-sampled data. For instance, Neural CDE CNP and Neural ODE CNP, introduced
in this work, operate within the meta-learning paradigm and can be efficiently applied to
solve various few-shot learning tasks, including personalized medical data prediction.





Chapter 5

Implementation, Experiments, and
Results

In this chapter, we provide an extensive evaluation of some models from the design model
space introduced in chapter 4. Implementation details are provided separately for each
experiment. All models were implemented in Pytorch [60] and are compatible with GPU
training.

In section 5.1, we compare the performance of three models, namely ConvCNP [28],
ODE-RNN [69] and Neural ODE CNP, on synthetic one-dimensional data. In section
5.2, we investigate the choice of encoder for the Neural ODE CNP model as well as the
amortization gap problem in this model. Finally, in section 5.3, we evaluate ConvCNP [28]
and ODE-RNN [69] on real-world medical data.

5.1 Synthetic 1D Data

In this section we evaluate some of the models from a huge design model space, introduced
in chapter 4. Among all models we chose to evaluate ConvCNP [28], ODE-RNN [69] and
Neural ODE CNP (section 4.2), since they represent different approaches to how the context
set DC is incorporated to obtain final estimates for the target set DT . As mentioned earlier,
ConvCNP [28] and Neural ODE CNP are encoder-decoder models that embed observed data
into functional and vector representations respectively, while ODE-RNN is an autoregressive
model that approximates conditional distribution p(xi|xxx<i, ttt<i).
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5.1.1 Data Generation

In this section, we consider synthetic regression problems. We chose to generate synthetic
data from a GP [64] with different kernels as well as from a non-Gaussian challenging
sawtooth process. The kernels used for data generation from GPs [64] are as follows:

• EQ:

k(x,x′) = e−
1
2

(
x−x′
0.25

)2

(5.1)

• Matern-5
2 :

k(x,x′) = (1−4
√

5d +
5
3

d2)e−
√

5d (5.2)

where d = 4|x− x′|

• Noisy mixture:

k(x,x′) = e−
1
2 (x−x′)2

+ e
1
2

(
x−x′
0.25

)2

+0.001δ (x− x′) (5.3)

• Weakly periodic:

k(x,x′) = e−
1
2 ( f1(x)− f1(x′))2− 1

2 ( f2(x)− f2(x′))2
· e−

1
8 (x−x′)2

(5.4)

where f1(x) = cos(8πx), f2(x) = sin(8πx)

• Ornstein-Uhlenbeck (Gauss-Markov):

k(x,x′) =
b2

0
2a0

e−a0|x−x′| (5.5)

with a0 = 1,b0 = 0.5 in our experiments.

Non-Gaussian random sawtooth samples are generated from the following function:

ysawtooth =
A
2
− A

π

∞

∑
k=1

(−1)k sin(2πk f (t− s))
k

, (5.6)

where we took amplitude A = 1, for each sample frequency f was sampled uniformly in
[3,5], random shift s in [−5,5]. We also truncate the series at an integer K that is uniformly
sampled from [10,20].
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As for data generation, the number of context and target points per time series is uniformly
sampled between 3 and 50 for GPs and between 3 and 100 for the sawtooth process. As
ODE-RNN doesn’t assume splitting data into context and target sets, the number of observed
points per sample is chosen to be comparable with the sum of target and source points, i.e it
is randomly sampled between 6 and 100 for GPs and between 6 and 200 for the sawtooth
one. Moreover, due to the structure of the models, the data generation process is slightly
different for ConvCNP [28] and Neural ODE [9]-based models. In case of ConvCNP [9], the
number of points in the context and target sets is equal for all samples in a training batch.
After randomly choosing the number of points in each set, this number of context and target
points are randomly sampled on the interval [−2,2] from a function sampled from a Gaussian
or sawtooth process. In contrast, for the Neural ODE [9]-based models for each training
batch we firstly uniformly sampled 256 locations from an interval [−2;2]. This locations
constitute a set of points where the function values can be observed. This step is necessary
because of the way Neural ODE [9] operates, i.e. to evaluate a training batch we have to
output the solution of the ODE at the union of all time points in the batch. For this reason, in
order to limit the union size, for each batch we sample 256 possible points location. After
selecting the set of possible locations, for each sample the number of context and target
points is chosen. Then given the number of context and targets points the location for each
point is sampled from the set of possible locations. Finally, we sample a function from a
Gaussian or sawtooth process and get the values of this at the locations of context and target
points.

Finally, in a similar manner, we generate 1000 test tasks on which all models were
evaluated.

5.1.2 Model Architectures and Training Details

In this section, we describe in detail the architectures of models used in this experiment as
well as give some training details, such as the duration of the training, type of optimizer and
learning rates used.

ConvCNP [28]

For all models, we assume that input kernel ψ (section 3.2.1) is an EQ kernel with a
learnable length scale parameter. The same assumption holds for the final output layer
kernel ψρ . The length scales for the EQ kernels ψ,ψρ are initialized to twice the space
between two neighbouring discretization points. For numerical stability, when dividing by
the density channel, we add ε = 10−8. The density of discretization is 64 points per unit.
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The discretization spans an interval from min(t)−1 to max(t)+1, where min(t) stands for
earliest observation time occurring in the union of the context and target sets in the current
batch and max(t) is the latest observation time respectively.

Since the receptive field has a direct influence on the performance of the model, we need
to choose considerably wide CNN filters. However, using full 2D convolutions with wide
filters would require a lot of memory, which is undesirable. To alleviate this issue, in our
experiments we employ depthwise-separable convolutions [11], which help to significantly
reduce the number of parameters in CNN decoder while keeping width of CNN filters fixed.
What is more, the actual size of the receptive field is a product of the spacing between the
discretization points and the width of the CNN filters. This implies that for a fixed receptive
field if we increase the density of discretization, we have to increase the width of CNN filters.
Hence, the usage of depthwise-separable filters also allows to increase discretization density
without reducing receptive field.

We use a 8-layer (excluding an initial and final point-wise linear layers) CNN with 64
channels and depthwise-separable convolutions as a decoder in ConvCNP [28]. The width of
the filters depends on the complexity of the data and is chosen such that the receptive filed
sized are the following:

• EQ: 2;

• Matern-5
2 : 2

• Noisy mixture: 4;

• Weakly periodic: 4;

• Gauss-Markov: 2;

• Sawtooth: 16;

The standard deviation is parameterized in the model by passing the output of the decoder
through a softplus function. We used ReLU non-linearities in all models.

The number of trainable parameters as well as the size of CNN filter in the ConvCNP
model depending on the dataset are given in Table 5.1.
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Dataset Number of trainable parameters CNN filter width

EQ 42948 17
Matern-5

2 42948 17
Noisy mixture 51140 33

Weakly periodic 51140 33
Gauss-Markov 42948 17

Sawtooth 100292 129
Table 5.1 The number of trainable parameters and the size of CNN filters in the ConvCNP [28]
model depending on the 1D dataset.

All models were trained using Adam [42] optimizer with learning rate of 5e-4. We also
used a weight decay of 10−5 applied to all model parameters.

ODE-RNN [69]

In our experiments, we use GRU type of the RNN cell. For all datasets we used a 1-layered
MLP with 100 units to model the dynamics of an ODE. The dimension of the hidden function
was set to 10. We apply tanh non-linearities, as suggested by the authors of [69]. Tanh
non-linearity constraints the output of a neural network and preserves the Lipschitz continuity
for an ODE. If a neural network could output huge values for the ODE gradient, such an
ODE would be hard to solve with numerical methods, as it would require a huge number of
intermediate evaluations to be solved with the required tolerance. We used torchdiffeq [9]
package to model neural ODEs. For solving neural ODE, we used standard first-order Euler
method with a fixed time step ∆t = 0.02.

A two-layered MLP with 100 intermediate units was employed to map hidden vector to
the parameters of the predictive distribution.

Overall, the model has 44352 trainable parameters.
For ODE-RNN [69], we used AdaMax optimizer [42]. We also apply a learning rate

decay of 0.999. The learning rate of 1e-2 was used for weakly periodic and EQ kernels, 1e-3
– for Matern-5

2 and noisy mixture kernels, and 4e-3 – for the sawtooth process.

Neural ODE CNP

In these experiments, for the Neural ODE CNP model the bottleneck dimension was set to
128. The architectures of encoder and decoder used in our experiments are as follows:

Encoder. We employ the ODE-RNN [69] model with GRU cell as an encoder. For the
ODE-RNN encoder we apply a 1-layered MLP with 128 units and tanh non-linearities to
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model the dynamics of an ODE. For solving neural ODEs in the encoder, we use standard
first-order Euler method with a fixed time step ∆t = 0.02. Then we apply a linear layer to
map the output of the encoder to the initial hidden state vector, which serves as input to the
decoder.

Decoder. As already mentioned earlier, the decoder is parameterized by the Neural
ODE [9] model. A one-layered MLP with 128 units and tanh non-linearities serves as the
ODE function. For solving ODE in the decoder we use adaptive fifth-order dopri5 solver
implemented in the torchdiffeq package. We set relative tolerance to 1e-3 and absolute toler-
ance to 1e-4. A map from hidden function value to the parameters of predictive distribution
is parameterized with a simple linear layer.

Overall, the model has 141186 trainable parameters.
For the Neural ODE CNP model, we also used AdaMax optimizer [42]. We employ

a learning rate decay of 0.999. The learning rate of 1e-3 was used for all datasets in this
experiment.

All models in this experiment were trained for 200 epochs using 256 batches of batch
size 16 per epoch.

5.1.3 Results

We evaluate the models on 1000 test tasks. Table 5.2 reports the log-likelihood means and
standard errors of the models on the task of interpolation. For interpolation task target and
context sets were generated within the interval [−2;2], where training data was observed.
Table 5.3 reports Mean Squared Error (MSE) on the save test data. Tables 5.4 and 5.5
provide results for log-likelihood means and MSE for extrapolation task, where target set
was generated within the interval [2;4]. In this section we test extrapolation capability of the
models only for future prediction since ODE-RNN [69] cannot be used to make predictions
backwards in time.

Dataset ConvCNP [28] ODE-RNN [69] Neural ODE CNP

EQ 1.477±0.021 0.637±0.0242 0.376±0.019
Matern-5

2 0.572±0.018 −0.155±0.018 −0.321±0.019
Noisy Mixture 0.751±0.017 −0.121±0.0168 0.192±0.019

Weakly Periodic −0.515±0.013 −0.956±0.013 −1.205±0.012
Gauss-Markov 0.874±0.012 0.493±0.011 0.644±0.014

Sawtooth 2.339±0.041 2.016±0.014 −0.616±0.024

Table 5.2 Test log-likelihoods for synthetic one-dimensional data on interpolation task.
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Dataset ConvCNP [28] ODE-RNN [69] Neural ODE CNP

EQ 0.119±0.006 0.263±0.009 0.129±0.006
Matern-5

2 0.181±0.007 0.368±0.0105 0.213±0.008
Noisy Mixture 0.177±0.009 0.457±0.0159 0.194±0.010

Weakly Periodic 0.327±0.009 0.580±0.012 0.691±0.013
Gauss-Markov 0.019±0.001 0.038±0.001 0.021±0.001

Sawtooth 0.006±0.0003 0.015±0.0005 0.072±0.001

Table 5.3 Test MSE for synthetic one-dimensional data on interpolation task.

Dataset ConvCNP [28] ODE-RNN [69] Neural ODE CNP

EQ −1.332±0.009 −1.300±0.009 −8.138±0.185
Matern-5

2 −1.389±0.011 −1.376±0.009 −8.322±0.302
Noisy Mixture −1.684±0.013 −1.648±0.0108 −13.141±0.294

Weakly Periodic −1.359±0.009 −1.377±0.009 −1.609±0.018
Gauss-Markov −0.284±0.009 −0.255±0.008 −3.039±0.085

Sawtooth 1.215±0.014 −0.682±0.029 −1.809±0.026

Table 5.4 Test log-likelihood for synthetic one-dimensional data on extrapolation task.

Dataset ConvCNP [28] ODE-RNN [69] Neural ODE CNP

EQ 0.917±0.016 0.905±0.016 0.495±0.371
Matern-5

2 0.977±0.017 0.974±0.017 1.779±0.358
Noisy Mixture 1.787±0.033 1.783±0.033 0.669±0.155

Weakly Periodic 0.918±0.016 0.936±0.018 0.254±0.128
Gauss-Markov 0.109±0.002 0.102±0.002 0.363±0.103

Sawtooth 0.028±0.001 0.076±0.0009 0.142±0.034

Table 5.5 Test MSE for synthetic one-dimensional data on extrapolation task.

The above tables demonstrate that ConvCNP [28] outperforms other methods in most
cases. ODE-RNN [69] shows performance comparable to ConvCNP [28] only on extrapola-
tion tasks for data sampled from GPs. Neural ODE CNP fails catastrophically in terms of
log-likelihood metric, however it outperforms ODE-RNN [69] in terms of MSE on some
interpolation and extrapolation tasks.
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Figures 5.1, 5.2, 5.3 show the interpolation and extrapolation results obtained by the
models trained on data sampled from a GP with a specified kernel. Figure 5.4 illustrates the
performance of the models trained on the sawtooth process data.

From Figures 5.1, 5.2, 5.3, 5.4, it is clear that ConvCNP [28] outperforms other models
and produces much more reasonable estimates for both interpolation and extrapolation tasks.
What is more, for GP [64] data, the predictions of ConvCNP [28] in terms of both mean
and standard deviation lie very close to the ones made by the corresponding GP [64]. GP
predictions correspond the most accurate ones that could be made given a particular context
set.

ODE-RNN [69] shows inferior performance in comparison to ConvCNP [28]. The main
reason for that is that ODE-RNN [69] provides its estimates only based on the part of the
context set. It takes into account only events that happened prior to the time of prediction.
This causes abrupt jumps in the mean after a new data point is observed as well as exaggerated
uncertainty estimates before new observation.

Fig. 5.1 Predictions of ConvCNP [28](top row), ODE-RNN [69] (middle row) and Neural
ODE CNP (bottom row) trained on data sampled from a Gaussian Process with EQ kernel.
The models are evaluated on both interpolation (interval [−2;2], before the red dotted line)
and extrapolation (interval [2;4], after the red dotted line) tasks. Solid blue lines are predictive
posterior means µ , whereas shaded blue area is µ ±2σ . The green solid line is a ground
truth sample from a Gaussian Process. Black and gray lines are GP mean and µ ± 2σ

correspondingly. Context set is marked with red dots.
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(a) Matern- 5
2

(b) Noisy Mixture

Fig. 5.2 Predictions of ConvCNP [28](top row), ODE-RNN [69] (middle row) and Neural
ODE CNP (bottom row) trained on data sampled from a Gaussian Process with Matern−5

2
(5.2a) or noisy mixture (5.2b) kernels. The models are evaluated on both interpolation
(interval [−2;2], before the red dotted line) and extrapolation (interval [2;4], after the red
dotted line) tasks. Solid blue lines are predictive posterior means µ , whereas shaded blue
area is µ±2σ . The green solid line is a ground truth sample from a Gaussian Process. The
black and gray lines are GP mean and µ±2σ correspondingly. Context set is marked with
red dots.
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(a) Weakly Periodic

(b) Gauss-Markov

Fig. 5.3 Predictions of ConvCNP [28](top row), ODE-RNN [69] (middle row) and Neural
ODE CNP (bottom row) trained on data sampled from a Gaussian Process with weakly peri-
odic (5.3a) or Gauss-Markov (5.3b) kernels. The models are evaluated on both interpolation
(interval [−2;2], before the red dotted line) and extrapolation (interval [2;4], after the red
dotted line) tasks. Solid blue lines are predictive posterior means µ , whereas shaded blue
area is µ±2σ . The green solid line is a ground truth sample from a Gaussian Process. The
black and gray lines are GP mean and µ±2σ correspondingly. Context set is marked with
red dots.
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Fig. 5.4 Predictions of ConvCNP [28](top row), ODE-RNN [69] (middle row) and Neural
ODE CNP (bottom row) trained on data sampled from the non-Gaussian sawtooth process.
The models are evaluated on both interpolation (interval [−2;2], before the red dotted line)
and extrapolation (interval [2;4], after the red dotted line) tasks. Solid blue lines are predictive
posterior means µ , whereas shaded blue area is µ ±2σ . The green solid line is a ground
truth sample from the sawtooth process.Context set is marked with red dots.

Although Neural ODE CNP produces better mean estimates in comparison to ODE-
RNN [69], it catastrophically fails to provide reasonable uncertainty bars, particularly for the
extrapolation task. We reckon that this limited expressiveness of the model may be due to the
bottleneck. In this case, the model is not able to accommodate all the required information in
a limited-size vector.

Moreover, the Neural ODE CNP model tends to forget about inputs a long way away
from the initial condition. It can be observed in the above figures, where the predictions at
the initial time points go directly through the points from context set, in contrast to estimates
for the final time points. This issue may be attributed to the use of ODE-RNN [69] as an
encoder since recurrent network are notoriously known for having short-term memory.

In the next section, we investigate the Neural ODE CNP model in more detail, providing
experiments with different architectures of the encoder. We also compare the performance
of Neural ODE CNP with its MLP-based counterpart, namely the CNP [21] model. Finally,
we also show that the chosen bottleneck size is enough to encode more information about
observations, so that mean function goes directly through the points of the context set.
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Therefore, this experiment suggests that the usage of semi-amortized models would be
beneficial in this context, making the amortization gap smaller.

5.2 Neural ODE CNP on Synthetic GP Data

By its construction, Neural ODE CNP model provides a lot of freedom in the choice of
encoder architecture. So, in section 5.2.1 we examine several possible solutions as well as
compare their performance to the standard CNP [21] model, which employs MLP-based
decoder instead of Neural ODE [9]-based one. All models in this section were trained and
evaluated on data sampled from GP [64] with EQ kernel. The data generation procedure is
described in section 5.1.1. In section 5.2.2, we show that representation given by the Neural
ODE CNP can be improved, showing that the chosen bottleneck size is enough to incorporate
the required information about observed data.

5.2.1 Neural ODE CNP: Encoder Architectures

Model Architectures and Training Details

In this section, we describe in detail the architectures of the models that were used in the
following experiments. We inspect the models with bottleneck size of 64,128 and 256. For
some fixed bottleneck size, we compare the following model architectures:

1. CNP-small. This is a standard CNP [21] model. As for the architecture of the model,
we used 3-layered MLPs as encoder and decoder with the number of hidden units in
each layer being equal to the chosen bottleneck size.

2. CNP-large. This model is similar to CNP-small, but has 4-layered MLPs serving as
encoder and decoder.

3. ODE-DS-small attributes to the Neural ODE CNP model with DeepSet [83] encoder.
The output of the DeepSet [83] encoder is used as an initial hidden state for the Neural
ODE [38] decoder. 3-layered MLP is used as an encoder, Neural ODE [9] as a decoder.
A one-layered MLP with the number of units equal to the bottleneck size with tanh
non-linearities is used for the ODE function. A linear layer is used as a mapping from
hidden space to the parameters of predictive distribution.

4. ODE-DS-large. Similar to ODE-DS-small, this model stands for the Neural ODE
CNP model with DeepSet [83] encoder. A 4-layered MLP is used as an encoder. A
neural network with 2 hidden layers serves as the ODE function. The number of units
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in each layer equals to the chosen bottleneck size. The other parameters are the same
as in the ODE-DS-small model.

5. ODE-RNN-small stands for Neural ODE CNP with ODE-RNN [69] encoder and
Neural ODE [9] decoder. Neural ODE [9] decoder has the same architecture as
ODE-DS-small. We also used a 3-layered MLP with tanh non-linearities as the ODE
function. The number of units used is equal to the bottleneck size. As for the ODE-
RNN [69] encoder, for the ODE function we employ the same architecture as is used
for the decoder. Both mappings from the output of the ODE-RNN [69] to initial hidden
state of the decoder as well as from hidden state vector to the parameters of predictive
distribution are parameterized with a single linear layer.

6. ODE-RNN-large employs the same structure and architecture as ODE-RNN-small,
however has more trainable parameters. The ODE function for both encoder and
decoder are chosen to be 4-layered MLPs with tanh non-linearities and the number of
hidden units equal to the bottleneck size.

All in all, for the bottleneck size of 128 the introduced models have the following number
of trainable parameters:

Model Number of trainable parameters

CNP-small 66818
CNP-large 99842

ODE-DS-small 66690
ODE-DS-large 99714

ODE-RNN-small 141186
ODE-RNN-large 178370

Table 5.6 The number of trainable parameters for the CNPs and variations of the Neural ODE
CNP model investigated in our experiments.

In this experiment, all models were trained for 200 epochs using 256 batches of batch
size 16 per epoch. We used Adam [42] optimizer with learning rate of 1e-3 for all models.
We also employ a learning rate decay of 0.999.

Results

We evaluate the models on 1000 interpolation tasks sampled from a GP [64] with EQ kernel.
Table 5.7 reports the log-likelihood means and standard errors of the introduced models with
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bottleneck size of 64,128 or 256. We have not managed to train the ODE-RNN-small and
ODE-RNN-large models with bottleneck size of 256 because of the unstable training caused
by the exorbitant number of trainable parameters in the ODE-RNN [69] encoder. So, these
results are absent in Table 5.7.

Models
Bottleneck size

64 128 256

CNP-small −0.890±0.006 −0.664±0.012 −0.560±0.006
CNP-large −0.760±0.007 −0.551±0.014 −0.350±0.009

ODE-DS-small −0.782±0.02 −0.521±0.014 −0.699±0.011
ODE-DS-large −0.781±0.02 −0.387±0.015 −0.626±0.014

ODE-RNN-small 0.130±0.018 000...333777000±±±000...000111999 –
ODE-RNN-large 0.109±0.02 0.274±0.016 –

Table 5.7 Test log-likelihoods for the considered models with different bottleneck sizes on
interpolation task. Models were trained on data sampled from GP [64] with EQ kernel. We
have not managed to train the ODE-RNN-small and ODE-RNN-large models with bottleneck
size of 256 because of the unstable training caused by the exorbitant number of trainable
parameters in the ODE-RNN [69] encoder. The best result among all models is highlighted
in bold.

From Table 5.7, it can be seen that models with Neural ODE [9] as a decoder outperform
MLP-based one when bottleneck size was equal to 64 and 128. As for bottleneck size of
256, we reckon that the inferior performance of the Neural ODE [9]-based models is caused
by the fact that such models are harder to train than ordinary MLPs and they are subject to
slower convergence.

What is more, the best performance is achieved by the ODE-RNN-small model, showing
that ODE-RNN [69] encoder outperforms DeepSet [83] one. Perhaps, one of the main
reasons for that is that ODE-RNN [69] encoder can learn some non-linear interactions
between observed data points and use this interaction to produce a final embedding vector.
Meanwhile, DeepSet [83] has a specified linear interaction between representations of
observed data points, as encoder firstly processes each observation separately and then takes
the mean over all encoded observations. However, another possible reason for that is that
ODE-RNN [69] simply has more trainable parameters than DeepSet [83].

The illustration of the models’ performance is provided in Figure 5.5.
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Fig. 5.5 Predictions of CNP-small (first row), CNP-large (second row), ODE-DS-small (third
row), ODE-DS-large (forth row), ODE-RNN-small (fifth row), and ODE-RNN-large (last
row). All models were trained on data sampled from the GP [64] with EQ kernel. The models
are evaluated on interpolation task within the interval [−2, ;2]. Solid blue lines are predictive
posterior means µ , whereas shaded blue area is µ ±2σ . The green solid line is a ground
truth sample from a GP [64]. Context set is marked with red dots.
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5.2.2 Initial Hidden State Minimization

Although Neural ODE CNP with ODE-RNN [69] encoder shows the best performance among
all other models (section 5.2.1), it tends to forget about inputs a long way away from the
initial condition. This can be seen in Figure 5.5. This issue can be caused by the amortization
gap and the recurrent structure of ODE-RNN [69] decoder. Another reason for that may be
the fact that the size of the bottleneck is not enough to incorporate the necessary information
about observed data.

To validate the latter, in the following experiment we show that the encoding obtained
from the ODE-RNN [69] encoder could be improved and the bottleneck size is enough to
encode more information about observations.

In this experiment, we took a trained model with ODE-RNN [69] encoder and obtain an
initial estimate for the hidden initial state from the encoder. Then using gradient descent, we
optimize the negative log-likelihood of context set w.r.t. bottleneck vector, without optimizing
the weights of the decoder. As a result, we were able to achieve a much better encoding
where predictive mean goes directly through all context points. Optimization results are
provided in Figure 5.6.

Fig. 5.6 Initial hidden state optimization. Solid blue lines are predictive posterior means µ ,
whereas shaded blue area is µ±2σ . The green solid line is a ground truth sample from a
GP [64]. In the first row, the observations are located on the grid with a step of 0.02, whereas
in the second row the context set that is observed is indicated with red dots. Left column
shows results for the inital hidden state predicted by the encoder. Center and right columns
illustrate results after 200 and 1000 optimization steps respectively. In the title of each figure
the negative log-likelihood over target set is provided.
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It is worth mentioning that in the second row in Figure 5.6, where the number of context
points is not that huge, overfitting can be observed and the variance is reduced to almost
zero not only at the locations where data points are observed but also at the locations where
uncertainty should be presented. However, optimization for a limited number of step, e.g.
200, gives a considerable improvement in the performance of the model, justifying the use of
semi-amortized approaches for the problem of irregularly-sampled time series modelling.

5.3 Real Data: PhysioNet

In this section, we investigate the performance of the models on real-world data. The chosen
dataset and its preprocessing is described in section 5.3.1. In section 5.3.2, we discuss
architecture choices and specific training details. Finally, we discuss the obtained results in
section 5.3.3.

5.3.1 Dataset

We evaluated the considered models on the PhysioNet Challenge 2012 [73] dataset. The
dataset consists of 8000 time series, where each sample contains measurements from the first
48 hours of a different patient’s admission to ICU. Measurements were made at irregular
times and at each observation time only some subset of features was observed. There are 37
features that can be observed in this dataset.

We used the version of dataset parsed by Rubanova et.al [69], where the observation
times were rounded to the nearest minute. This reduced the possible time measurements
two-fold. What is more, to make the split between context and target sets valid for all time
series in the dataset, we discard time series samples that contain only one observation. As
a result, we obtained a dataset containing 7990 time series samples. What is more, in our
experiments we modelled only time-varying features, while static ones (Age, Height, Gender,
ICUType and MechVent) were discarded. This results in 32 features that are modelled in our
experiments.

We left 70% of data for training, 10% – for validation and the rest – for test. Each
feature was normalized such that training data lie within the interval [0;1]. Since some
observations at a particular time step are missing, we introduce a binary mask indicating
which features are observed at a particular time step. This binary mask was concatenated
with feature values and then used as input to the models. Hence, in the experiment where
multidimensional data is modelled the dimension of input vector is 64. However, in case of



64 Implementation, Experiments, and Results

modelling one-dimensional data the binary mask is redundant. For this reason, it was not
used in our experiments where we modelled only one chosen data dimension.

For the ConvCNP [28] model, the number of context points for each sample was chosen
randomly betweeb 1 and N− 1, where N is the number of observed points in the current
sample. To form a training batch for ConvCNP [28], the number of points in both context
and target sets should be equal for all data samples. In our experiments, we align the lengths
of the context and target sets by padding each sample with zeroes to the maximal length
within each set.

For the ODE-RNN [69] model, the data is not slit into context and target set. As in the
previous experiment, each sample in the training batch was evaluated at the union of all time
points in the batch.

For test evaluation we generated 2000 tasks with fixed context and target sets. These
tasks were used to evaluate both ConvCNP [28] and ODE-RNN [69] models.

5.3.2 Model Architectures and Training Details

ConvCNP [28]

As in the previous experiment, we assume that kernels ψ,ψρ (section 3.2.1) are EQ kernels
with a learnable length scale parameter. The length scales for the EQ kernels are initialized to
twice the space between two neighbouring discretization points. The density of discretization
is 256 points per unit. The discretization spans an interval from min(t)−0.5 to max(t)+0.5,
where min(t) stands for earliest observation time occurring in the union of the context and
target sets in the current batch and max(t) is the latest observation time respectively.

In the following experiments, we also employ depthwise-separable convolutions [11] in
the ConvCNP [28] decoder. In all models, the kernel size is set to 33. We use an 8-layer
(excluding an initial and final point-wise linear layers) CNN with 64 channels as a decoder
in ConvCNP [28]. We use ReLU non-linearities in all models.

For multidimensional data experiments, we assume that predictive distribution is Gaussian
with diagonal covariance matrix. Hence, in multidimensional and one-dimensional data
experiments, the standard deviation is parameterized in the model by passing the output of
the decoder through a softplus function.

For two-dimensional experiments, we set the predictive distribution to be Gaussian
with full covariance matrix. The covariance matrix is parameterized using the Cholesky
decomposition, where the decoder of ConvCNP [28] outputs vector of three values that
parameterize lower triangular matrix in the Cholesky decomposition.
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In the experiment with multidimensional data, the number of trainable parameters is
chosen to be comparable with ODE-RNN [69] model, which architecture is described in the
next section, and amounts to 60240 parameters.

All models were trained using Adam [42] optimizer with learning rate of 5e-4. We also
used a weight decay of 10−5 applied to all parameters of the models.

ODE-RNN [69]

We use a neural network with 3 hidden layers comprising 50 units each to model the dynamics
of an ODE. The dimension of the hidden function was set to 20. For the ODE-RNN [69]
model, we employ tanh non-linearities. For solving neural ODE, we used standard first-order
Euler method with a fixed time step ∆t = 0.02. A two-layered MLP with 100 intermediate
units was employed to map hidden vector to the parameters of the predictive distribution.
Overall, the model has 61184 trainable parameters.

We use AdaMax optimizer [42] with the learning rate of 1e-3. We also apply a learning
rate decay of 0.999.

All models are trained for 300 epochs with 200 batches of batch size 50, so that approxi-
mately each sample is considered within one epoch.

5.3.3 Results

In this section, we discuss the results of the models’ evaluation of PhysioNet [73] data. We
firstly evaluate models on multidimensional data, comprising all time-varying features present
in the dataset. We show that both models fail to capture and model all dimensions due to the
complexity of the dataset, where most dimensions comprise only a couple of observations
per sample. For this reason, we propose to model only certain significant features, such as
heart rate and blood pressure. What is more, these features were chosen because they have
enough observed data for the model to capture patterns presented in the data. Our results in
modelling one- and two-dimensional data are reported after the discussion of the experiments
on multidimensional data.

Full Dataset

We trained ConvCNP [28] and ODE-RNN [69] using all features of PhysioNet [73] dataset.
Then the model were tested on interpolation task. The results are presented in Table 5.8.
ODE-RNN [69] and ConvCNP [28] models show comparable results on these data. However,
if we visualize the predictions for some features, we can definitely say that the models were
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not able to capture any sensible patterns. The illustration of some dimensions is given in
Figure 5.7.

ODE-RNN [69] ConvCNP [28]

2.128±0.014 2.098±0.019

Table 5.8 Test log-likelihood for PhysioNet [73] experiments on interpolation task.

Fig. 5.7 ConvCNP [28] performance on three different features from PhysioNet [73] data.
Solid green lines are predictive posterior means µ , whereas shaded green area is µ ± 2σ .
Blue dots stand for target set, red ones indicate context set. Blue and red dots with zero value
indicate that the feature value is missing, i.e. there is an observation at a particular time point,
but the visualized feature is not observed.

From Figure 5.7, we can see that there are dimensions in the PhysioNet [73] data, where
the amount of observed data is not sufficient to extract any sensible information to generate
predictions. To this end, we further investigate the performance of ConvCNP [28] on one-
dimensional data from PhysioNet [73]. We chose only several features, which have enough
observations to train the model, and train a separate model for each of the chosen dimensions.
The main results are discussed in the next section.

One- and Two-Dimensional Data

For one-dimensional experiments we choose five dimensions from PhysioNet [73], which
have the biggest average number of observations per sample. What is more, the chosen
dimensions appeared to be crucial for assessing health level. These dimensions are heart rate,
diastolic and systolic arterial blood pressure, urine and body temperature.

We compare ConvCNP [28] performance against the performance of a GP [64] with
Matern-5

2 kernel. The hyperparameters of a GP were optimized either for each individual
time-series (GP-individual) or for the whole dataset (GP-dataset). The results are provided in
Tables 5.9 and 5.10.
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Dataset ConvCNP [28] GP-individual GP-dataset

Heart rate 2.416±0.022 2.106±0.054 2.134±0.038
Diastolic BP 1.575±0.019 0.275±0.169 1.463±0.021
Systolic BP 1.617±0.029 0.401±0.196 1.331±0.048

Urine 2.908±0.105 1.985±0.613 1.666±0.620
Temperature 4.063±0.037 2.753±0.558 2.858±0.333

Table 5.9 Test log-likelihood for one-dimensional PhysioNet [73] experiments on interpola-
tion task. BP stands for blood pressure.

Dataset ConvCNP [28] GP-individual GP-dataset

Heart rate 6.73e-04±2.96e-05 7.55e-04±3.42e-05 7.87e-04±3.57e-05
Diastolic BP 2.61e-03±9.86e-05 2.95e-03±1.19e-04 3.01e-03±9.62e-05
Systolic BP 2.86e-03±2.22e-04 2.96e-03±1.67e-04 3.16e-03±1.68e-04

Urine 1.99e-04±4.82e-05 2.20e-04±5.24e-05 2.01e-04±4.68e-05
Temperature 5.92e-05±1.58e-05 7.22e-05±1.69e-05 6.94e-05±1.67e-05

Table 5.10 Test MSE for one-dimensional PhysioNet [73] experiments on interpolation task.
BP stands for blood pressure.

ConvCNP [28] outperforms GP [64] models in terms of log-likelihood as well as MSE
metric. Moreover, the ConvCNP [28] model employs more efficient test evaluation since it
does not require additional optimization over test data.

In Figure 5.8 we illustrate the performance of ConvCNP [28] and GP [64] models. GP-
individual tends to overfit, especially when the context set is scarce, whereas GP-dataset
tends to underfit on samples with sufficient amount of data in the context set.

Finally, we evaluate ConvCNP [28] model on two-dimensional data. For these two
dimensions we chose diastolic and systolic blood pressure, which obviously should have some
mutual correlation. We modelled predictive distribution as Gaussian with full covariance
matrix. Test log-likelihood and MSE results are presented in Table 5.11.

Log-likelihood MSE

2.846±0.053 3.61e-03±1.49e-04

Table 5.11 Test log-likelihood for PhysioNet [73] two-dimensional experiments on interpola-
tion task for the ConvCNP [28] model.
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Fig. 5.8 The performance of the ConvCNP [28] (left column), GP-individual (center column)
and GP-dataset (right column) models on the chosen dimensions from the Physionet [73]
dataset. Each row illustrates models’ performance on a single dimension. Solid green lines
are predictive posterior means µ , whereas shaded green area is µ±2σ . Blue dots stand for
target set, red ones indicate context set.



Chapter 6

Conclusion

6.1 Discussion

In this thesis, we have proposed an organization of the existing neural models from the
time-series modelling domain. We outlined several critical modelling dimensions that could
be used to compare and contrast the models in this area. What is more, we devise a schematic
that arranges general modelling directions, such as autoregressive modelling and meta-
learning approaches. Further, we also introduce more fine-grained schematics that are helpful
to comprehend the NP and non-amortized model spaces.

Within the proposed framework, we were able to encounter new models, that fit naturally
to the proposed schematics but have not been introduced in the literature. Being from NP
family, Neural ODE CNP and Neural CDE CNP can be applied to solve few-shot learning
tasks within the time series domain, e.g. personalized medical data prediction. We also
define a series of non-amortized models trained in meta-learning fashion, that could also be
used for time-series modelling.

Finally, we conducted a set of experiments that shed light on the comparative performance
of several models, which has been lacked in literature. We show the performance of the
models on synthetic one-dimensional data as well as on real-world medical data. Moreover,
we investigate the Neural ODE CNP model in detail, showing how the choice of an encoder
influences the overall model performance. We also empirically prove the existence of
the amortization gap in case of Neural ODE CNP model, which motivates further use of
semi-amortized models.

Since the growing literature on time-series modelling is disorganized and sometimes
obscurely explained, a unifying framework was required. We believe that this work took
a step forward in this direction and provide a general framework, which structures main
research directions in this area. It could be used to understand better how models relate to



70 Conclusion

each other as well as to choose the appropriate model for a particular task, which is of great
importance to practitioners.

6.2 Future Work

There are a number of future research directions that could complement the present work.

Neural CDE CNP

Since the ConvCNP [28] model in our experimental evaluation has shown the best perfor-
mance among the considered models, it is particularly interesting to compare ConvCNP [28]
model to its Neural-ODE [9]-based counterpart. What is more, the Neural CDE CNP model
was firstly introduced in this thesis, so it needs further investigation, where we could assess
the performance of the model.

Semi-Amortized Models

In the experimental chapter of the present work, we show that amortized models tend to have
amortization gap, influencing the final model performance. Towards this end, it would be
interesting to examine semi-amortized models in terms of suitable architectures and training
pipeline. In recent literature, there has been proposed several training pipelines [32, 41,
45, 54], which vary in terms of a trade-off between computational complexity and model
performance. However, the models were mainly evaluated on image datasets. Thus, it would
be interesting to compare the performance of the training pipelines for models working with
irregularly-spaced time series data.

Real-World Datasets

Although we provide an extensive evaluation of the models on synthetic one-dimensional
data, it is necessary to evaluate the models on several complex real-world datasets from
different area. A lot of patterns present in data may be unique to a particular domain. Hence,
there may be a dependency between the choice of model and the domain and type of data
considered. Moreover, based on our experiments on PhysioNet [73] data, we can see that
models can fail to fit the data due to its complexity. Such experiments would be helpful
in identifying the limits of the existing models and perhaps give some intuition for further
improvement.
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