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Abstract

The ubiquitous interest in deep latent variable models within the machine learning community
has been fuelled by the development of the variational autoencoder (VAE). VAEs provide a
framework for performing fast, scalable inference in deep latent variable models, facilitating
their deployment on the large, multi-dimensional and richly structured datasets omnipresent
in modern science and engineering. Increasingly large volumes of such data that also exhibit
strong dependencies across space and time are arising from a wealth of domains, including
environmental, social and earth sciences. Crucial to the advancement of these fields are the tools
to effectively model spatio-temporal data. Despite their wide applicability, VAEs are ill-equipped
to model such data. At the crux of this inadequacy is a deficiency in the probabilistic model,
specifically, the assumption that observations are independent and identically distributed.

In contrast to VAEs, Gaussian processes (GPs) are an extremely effective tool for modelling
data that exhibits strong dependencies. Unfortunately, the power of GPs necessitates an often
undermining computational burden - scaling cubically with the number of data points and
observed dimensions. This prohibits their application in the large data regime. Furthermore,
GPs are comparatively inexpressive relative to ‘deep’ machine learning models, such as the
VAE. Whilst the construction of more expressive GPs is possible, this is typically a hand-crafted
process which only adds to the computational complexity, unlike the automatic feature learning
intrinsic to deep models.

This thesis seeks to unify the complementary strengths of VAEs and GPs, forming a novel family
of VAEs for the effective modelling of spatio-temporal datasets. The amalgamation of the two
models is natural; however, it requires careful consideration of approximate inference techniques
to ensure the benefits of each are realised. We establish the theoretical framework for achieving
this, paying particular attention to the preservation of structure in the approximate posterior
and the principled handling of partially observed data. We provide an extension to the sparse
GP literature, developing a scalable technique for the introduction of sparse approximations
into our family of spatio-temporal VAEs. Finally, we demonstrate state-of-the-art performance
relative to existing multi-output GP models and structured VAEs in a variety of experiments
involving spatio-temporal datasets.
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1 | Introduction

Observed data can be consistent with many explanations, the plausibility of which changes as
more data comes to light. Uncertainty in the explanation translates to uncertainty in predictions
about unobserved quantities, including future data or underlying state of the world. Accounting
for this should form the basis of any principled machine learning model. Probabilistic machine
learning addresses the presence of uncertainty at a foundational level. At its core is the
treatment of quantities, including the observed data, as random variables related to each other
through probability distributions. Once a probabilistic model has been constructed - that is,
the joint probability distribution through which the unobserved and observed variables are
related - the basic rules of probability are applied to translate the information gained by the
observed data into probability distributions over the unobserved data. This process is known
as inference, and constitutes the main hurdle of most probabilistic machine learning models.

A hallmark of probabilistic modelling is the use of latent variables: variables that form an
intrinsic part of the probabilistic model, but are never directly observed. More often than not,
latent variables are introduced to represent simple explanations of more complex observations.
Performing inference over latent variables forms the basis of unsupervised learning, a cornerstone
of machine learning. The probability distribution that relates latent variables to the observed
quantities is termed the likelihood. Used together with the prior distribution over latent
variables, the complete probabilistic model is defined. The effectiveness of a latent variable
model is determined by its ability to model the properties of the data necessary for the prediction
task of interest. One approach to this is the development of flexible likelihoods, the impetus for
which is the nature of datasets emerging from the modern world of which many are extremely
large and high dimensional. Flexible likelihoods are a necessity for modelling multi-dimensional
observations, whereas richly structured priors often impose an overwhelming computational
burden for large datasets.

An immediate solution to the design of flexible likelihoods is the use of deep neural networks
(DNNs) to parameterise the likelihood function. Unfortunately, performing inference in the
corresponding deep latent variable models (DLVMs) is intractable. One of the most significant
developments in the field of probabilistic modelling is the variational autoencoder (VAE)
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(Kingma and Welling, 2014). VAEs provide a framework for performing fast and scalable
approximate inference in DLVMs, facilitating their deployment on large, multi-dimensional and
richly structured datasets. Yet, increasingly large volumes of such data that also exhibit strong
spatio-temporal dependencies are arising from a wealth of domains, including environmental,
social and earth sciences (Atluri et al., 2018). Crucial to the advancement of these fields are the
tools to effectively model spatio-temporal data. Despite their wide applicability, standard VAEs
are ineffective in achieving this. At the crux of this inadequacy is a deficiency in the probabilistic
model typically employed, specifically, the assumption that observations are independent from
one another. This removes any capacity to model dependencies between observations, rendering
it unable to explain spatio-temporally distributed data.

An alternative approach to incorporating flexibility into latent variable models is through the
use of nonparametric prior distributions (Ghahramani, 2015). In particular, Gaussian processes
(GPs) are a flexible nonparametric model for describing probability distributions over latent
functions. Properties such as smoothness, stationarity or periodicity across the input domain
are incorporated into the covariance function, making GPs a natural fit to data distributed
across space and time. Inherent to GPs, and more generally Bayesian nonparametric models,
is the ability to provide principled uncertainty estimates and robustness in settings in which
the complexity of data is unknown. Unfortunately, the power of GPs necessitates an often
undermining computational burden, scaling cubically with both the number of data points
and observed dimensions. This prohibits their application in the large data regime. Moreover,
the flexibility of GPs often relies on hand-crafted covariance functions which only adds to the
computational complexity (Duvenaud, 2014). This contrasts with the automatic hierarchical
feature learning intrinsic to deep neural networks, and in turn DLVMs (Bengio et al., 2013;
Hinton, 2007).

In this thesis, we seek to unify the complementary strengths of VAEs and GPs. The amal-
gamation of the two models is natural: we simply place a GP prior over the latent variables
of a DLVM. However, this requires careful consideration of approximate inference to ensure
the benefits of each are realised. We present a theoretical framework for this unification and
demonstrate the effectiveness of the resultant model on a variety of experiments involving
spatio-temporal datasets.

1.1 Thesis Overview

The structure of this thesis is as follows:

Chapter 2 establishes the theoretical backdrop upon which the developments in this thesis
build. Alongside the introduction of VAEs and GPs, we present the use of variational
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inference for approximating inference in latent variable models as well as the recently
developed ideas behind Deep Sets.

Chapter 3 introduces a novel family of spatio-temporal VAEs - the GP-VAE - laying out
the framework through which learning and inference can be performed efficiently using
the theories established in Chapter 2. We pay special consideration to the presence of
partially observed data, providing a general framework for constructing theoretically
principled inference networks capable of handling missing values. We outline the use of
sparse GP approximations in the GP-VAE, marking an important development in the
existing sparse GP literature that extends well beyond their current capability.

Chapter 4 reviews the related literature, providing a unifying connection between our model
and other multi-output GPs. Notably, we demonstrate that the GP-VAE is a special case
of Johnson et al.’s (2016) structured variational autoencoder with a GP prior.

Chapter 5 evaluates the empirical performance of the GP-VAE on a number of experiments
involving spatio-temporal datasets of distinguishable characteristics. We demonstrate
the comparatively superior performance of the GP-VAE relative to other multi-output
GPs, other structured VAEs and the standard VAE. Most importantly, we show that the
sparse GP-VAE scales effectively to large datasets, opening the door to a wealth of future
research.

Chapter 6 provides a summary of the contributions of this thesis and sheds light on what we
believe to be the most promising avenues for future research.





2 | Background Theory

This chapter presents the theoretical underpinnings of the models developed in the remainder
of the thesis. Section 2.1 begins with an introduction of latent variable models, leading into
an outline of variational inference in Section 2.2. Section 2.3 utilises the theory set out in
the preceding two sections, presenting the ideas central to the development of VAEs. Section
2.4 details Gaussian process models, their application to regression problems and the use of
sparse Gaussian processes. Finally, Section 2.5 explores the recently developed ideas behind
constructing permutation invariant set functions, in particular those of Deep Sets.

2.1 Latent Variable Models

A widely used approach to increasing the effectiveness of probabilistic models is to augment
the observed variables with an additional set of latent, or hidden, variables (Jordan, 1998).
Rather than specifying the distribution over the observed variables alone, latent variable models
(LVMs) define a joint distribution over the augmented space:

pθ(y, z) = pθ(y|z)pθ(z), (2.1)

where θ denotes the set of model parameters, pθ(z) the prior distribution and pθ(y|z) the
likelihood of the latent variables1. The distribution over the observed variables is recovered by
integrating out the latent variables:

pθ(y) =
∫
pθ(y|z)pθ(z)dz. (2.2)

1Strictly speaking, there is no philosophical difference between latent variables and model parameters, as
model parameters are also unobserved variables that we wish to infer. In practice, however, latent variables tend
to be local - typically having a set of latent variables associated with each observation, or group of observations.
In contrast, model parameters tend to be global - typically being shared across all observed and unobserved
variables. Furthermore, LVMs rarely perform fully Bayesian inference over the model parameters, which are often
treated as deterministic values to be found through maximum likelihood or maximum a posteriori estimation.
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The principal advantage of LVMs is that, despite pθ(y|z) and pθ(z) often being relatively
simple, the marginal distribution pθ(y) can be extremely complex2. Many of the most popular
probabilistic models - including the family of linear Gaussian models, the Gaussian mixture
model and latent Dirichlet allocation (Blei et al., 2003; Roweis and Ghahramani, 1999) - use
latent variables to model data with greater effect. For settings in which the generative process
of the observed data is known a priori, latent variables offer a route through which this prior
knowledge can be incorporated into the probabilistic model. In the general case, however, it is
common to place vague prior distributions over the latent variables in conjunction with flexible
likelihoods. Doing so aids the discovery of simple, low-dimensional representations of data,
forming the bedrock of unsupervised learning. Indeed, a prominent motivation for LVMs is
their use in dimensionality reduction and unsupervised representation learning, early examples
of which include probabilistic principal component analysis (Tipping and Bishop, 1999) and
the Gaussian process latent variable model (Lawrence, 2004).

The focus of this thesis is on LVMs with a continuous latent variable, zn, associated with
each observation yn. Such models typically assume a directed generative process in which
observations are conditionally independent of each other given their corresponding latent
variables:

z ∼ pθ(z)

y|z ∼
N∏

n=1
pθ(yn|zn).

(2.3)

Imposing conditional independence between observations enables efficient computations in the
model (Bishop, 2006). A frequently used method for introducing flexibility into the likelihood
function is to use deep neural networks (DNNs) to map from the latent variable to parameters
of the likelihood, often chosen to be either a Bernoulli (or categorical) distribution for discrete
observations or a Gaussian distribution for continuous observations. LVMs whose distributions
are parameterised by DNNs are known as deep latent variable models (DLVMs).

2.1.1 Learning and Inference in LVMs

The computations of interest in LVMs are learning the model parameters θ and obtaining the
posterior distribution over latent variables pθ(z|y). Whilst the fully Bayesian approach would
have us specify a prior distribution over θ and compute the posterior distribution p(θ|y), this
is rarely tractable for models of interest3. A more pragmatic approach is to find the model

2It allows us to express an intractable marginal distribution in terms of a tractable joint distribution.
3An alternative option would be to use variational inference to find a joint approximate posterior, qϕ(θ, z). How-

ever, it could be argued that this would waste computational resources on obtaining a reasonable approximation
to p(θ|y) as p(z|y) is of greater inferential interest.
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parameters which maximise the log marginal likelihood:

θ∗ = arg max
θ

log pθ(y). (2.4)

Regrettably, for general LVMs (2.4) has no closed form solution. A widely used alternative is
the expectation maximisation (EM) algorithm (Dempster et al., 1977), which iterates between
an expectation (E) step and a maximisation (M) step:

E step: Compute the posterior probability for current model parameters θτ according
to Bayes’ rule:

pθτ (z|y) = pθτ (y, z)
pθτ (y) .

Set qτ (z) = pθτ (z|y).

M step: Update the model parameters according to

θτ+1 = arg max
θ

Eqτ (z) [log pθ(y, z)] .

Note that the EM algorithm unifies inference and learning: to perform the E step, we require
computation of the posterior pθ(z|y). Yet, for many LVMs of interest - including DLVMs -
computing this posterior distribution is infeasible due to the intractability of the marginal
likelihood, pθ(y). Approximating learning and inference in LVMs constitutes a pillar of modern
developments in probabilistic machine learning. Broadly speaking, approximate inference
frameworks can be divided into two camps: those using Markov chain Monte Carlo (MCMC)
techniques and those using distributional approximations.

Markov Chain Monte Carlo

At the core of MCMC techniques is the Monte Carlo approximation, which approximates
expectations under some distribution p(x) as

Ep(x) [f(x)] =
∫
f(x)p(x)dx ≈ 1

S

S∑
s=1

f(xs) where xs ∼ p(x). (2.5)

The approximation is said to be unbiased if E
[

1
S

∑S
s=1 f(xs)

]
= Ep(x) [f(x)]. (2.5) assumes

the distribution p(x) can be sampled from; yet, for approximating inference, samples must
be drawn from the posterior pθ(z|y) which is known to be intractable. Mathematicians have
devised a plethora of techniques for drawing samples from simpler, tractable distributions,
and then correcting those samples to better approximate expectations over pθ(z|y). MCMC
describes a family of such techniques. MCMC methods construct a Markov chain process whose
stationary distribution is pθ(z|y) (Gelman et al., 2013). Provided enough samples are drawn
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from the Markov chain, they can be used to form unbiased Monte Carlo approximations. Two
of the earliest, yet still most widely used, examples of MCMC techniques are the Metropolis-
Hastings algorithm (Hastings, 1970) and Gibbs sampling (Geman and Geman, 1984). A notable
development is that of Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 1995), which
addressed the ‘random walk behaviour’ observed in other methods and permitted the scalability
of MCMC to extremely complex distributions.

Unfortunately, this is often a laboured process. The time taken for MCMC algorithms to
converge towards the target distribution can be cripplingly slow. Further, for high-dimensional
posterior distributions - which is true for LVMs with local latent variables - the number of
samples required to form an acceptable approximation can be extremely large and the simulation
time required impractical.

Distributional Approximations

Rather than seeking to form Monte Carlo estimates, distributional approximation techniques
construct an approximation to the true posterior, q(z). The approximate posterior is used in
place of pθ(z|y) when computing expectations:

Epθ(z|y) [f(z)] =
∫
pθ(z|y)f(z)dz

≈
∫
q(z)f(z)dz = Eq(z) [f(z)] .

(2.6)

By restricting q(x) to be much simpler than pθ(z|y), computing the approximation becomes
considerably easier. There exist a number of distributional approximate inference techniques,
most notably: the Laplace approximation, popularised by MacKay (1992) for use in Bayesian
neural networks; Minka’s (2001) expectation propagation, which has been applied to a wide
variety of problem domains including Gaussian processes (Bui, 2018; Csató and Opper, 2002;
Kuss and Rasmussen, 2005); Opper’s (1998) assumed density filtering, a precursor to expectation
propagation that has found recent success in Bayesian neural networks (Hernández-Lobato and
Adams, 2015); and variational inference, which we shall review in the following section.

2.2 Variational Inference

The variational methodology is to reformulate quantities of interest in terms of finding a
solution to an optimisation problem (Jordan et al., 1999; Wainwright and Jordan, 2008). The
optimisation problem can then be ‘relaxed’ to retain tractability. Variational inference (VI)
describes the variational approach to approximating probabilistic inference. In particular,
finding the quantity of interest - the true posterior distribution pθ(z|y) - can be reformulated
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as finding the distribution q(z) which minimises some divergence measure D:

q∗(z) = arg min
q(z)

D (q(z) ∥ p(z|y)) . (2.7)

The divergence measure must satisfy D (q(z) ∥ p(z|y)), with equality if and only if q(z) = p(z|y).
The optimisation objective of (2.7) can be relaxed by confining q(z) to lie within a tractable
family of distributions, typically defined as the set of parametric distributions qϕ(z) where ϕ
are the variational parameters. Whilst it is necessary to restrict the family of approximate
distributions to comprise only those that are tractable, the effectiveness of VI hinges on the
family being sufficiently flexible to provide a good approximation to the true posterior. A
common misconception is that by increasing the flexibility of the approximating family, the
approximating distribution is at risk of overfitting. This is incorrect: advancing the optimisation
objective only improves the approximation to the desired answer. The distinction between
variational and model parameters is of great importance as it permits us to add complexity to
the approximate posterior without recasting the modelling assumptions.

There exist a wealth of valid divergence measures, most notably the family of Rényi alpha
divergences (Li and Turner, 2016). Traditional VI uses the exclusive Kullback-Liebler (KL)
divergence (Kullback and Leibler, 1951), defined as

KL (qϕ(z) ∥ pθ(z|y)) =
∫
qϕ(z) log qϕ(z)

pθ(z|y)dz = Eqϕ(z)

[
log qϕ(z)

pθ(z|y)

]
. (2.8)

In general, KL (qϕ(z) ∥ pθ(z|y)) ≠ KL (pθ(z|y) ∥ qϕ(z)) - the latter divergence is known as the
inclusive KL divergence which is used in expectation propagation. Minimising the exclusive
KL divergence favours approximate distributions that are zero in regions where pθ(z|y) is
zero4. If qϕ(z) is unimodal (e.g. Gaussian) this results in ‘mode matching’ or ‘zero forcing’
behaviour, which contrasts ‘mass covering’ behaviour encouraged by the inclusive KL divergence.
These differences are illustrated in Figure 2.1. An important consequence of this is that the
approximate posteriors found using VI tend to underestimate the uncertainty of the true
posterior (Turner and Sahani, 2011).

2.2.1 The Evidence Lower Bound

KL (qϕ(z) ∥ pθ(z|y)) requires computation of pθ(z|y), the very distribution we are seeking to
approximate. Thus, direct minimisation of the KL divergence is infeasible. Fortunately, it is
possible to derive an equivalent and tractable surrogate objective known as the variational

4In fact, KL (qϕ(z) ∥ pθ(z|y)) = ∞ if ∃z (qϕ(z) > 0 ∧ pθ(z|y) = 0).
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Fig. 2.1 A cartoon illustration of the approximate posteriors which minimise the exclusive
KL divergence (left) and inclusive KL divergence (right).

free-energy, FVFE:

KL (qϕ(z) ∥ pθ(z|y)) = Eqϕ(z)

[
log qϕ(z)

pθ(z|y)

]
= Eqϕ(z)

[
log qϕ(z)

pθ(y, z)

]
︸ ︷︷ ︸

FVFE

+Eqϕ(z) [log p(y)]

= FVFE + log pθ(y).

(2.9)

Since the log marginal likelihood is constant with respect to ϕ, the variational objective is
equivalent to minimising FVFE:

ϕ∗ = arg min
ϕ

FVFE

= arg min
ϕ

Eqϕ(z)

[
log qϕ(z)

pθ(y, z)

] (2.10)

It is more common to refer to the negative of the variational free energy, known as the variational
lower bound or evidence lower bound (ELBO):

LELBO := −FVFE = Eqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
, (2.11)

which bounds the log marginal likelihood5 below by an amount equal to KL (qϕ(z) ∥ pθ(z|y)):

LELBO = log pθ(y)−KL (qϕ(z) ∥ pθ(z|y)) . (2.12)
5Also known as the evidence.
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The tightness of the bound improves as qϕ(z) more closely approximates pθ(z|y). Importantly,
VI can be interpreted as jointly approximating the two objects of primary interest in probabilistic
machine learning: the log marginal likelihood, LELBO ≈ pθ(y), and the posterior, qϕ(z) ≈
pθ(z|y). Due to the relationship between the ELBO and log marginal likelihood, the ELBO
can be jointly optimised with respect to both the model and variational parameters6. Crucially,
VI unifies the task of approximating learning and inference into a single optimisation objective:

θ∗, ϕ∗ = arg max
θ,ϕ

LELBO. (2.13)

This duality makes VI a particularly attractive framework for machine learning practitioners.

2.2.2 Monte Carlo Variational Inference

The optimisation objective of (2.13) has no closed form solution in general. Furthermore, for
many models of interest the ELBO cannot be evaluated analytically7. An approach that is
widely adopted in practice is Monte Carlo VI (MC-VI), or equivalently black box VI (Ranganath
et al., 2014), which considers a Monte Carlo approximation to the ELBO:

LELBO = Eqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
≈ 1
S

S∑
s=1

log p(zs|y)− log qϕ(zs) + log pθ1(zs) (2.14)

where zs ∼ qϕ(z). Although evaluating the ELBO provides a useful basis for determining the fit
of the model to the data, we are much more interested in the gradients of LELBO necessary for
gradient based optimisation. We resort to the use of stochastic gradient ascent, which follows
the path of ‘noisy’ Monte Carlo approximations to the gradient.

2.2.3 Stochastic Optimisation of the Variational Objective

A Monte Carlo estimate of the gradient with respect to θ can be obtained by taking the
derivative of (2.14). However, naïvely taking the derivatives of (2.14) with respect to ϕ neglects
the dependency of the sampling procedure on the variational parameters. This is because the
derivative operator cannot merely be moved inside the expectation:

∇ϕEqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
̸= Eqϕ(z)

[
∇ϕ log pθ(y, z)

qϕ(z)

]
. (2.15)

In this section, we discuss two methods for accounting for this dependency.
6A word of caution: it is possible that the ELBO is not uniformly tight, and its maximum is biased away

from the maximum of the log marginal likelihood (Turner and Sahani, 2011).
7In DLVMs, as is often the case, this is due to the presence of non-linearities in the likelihood: evaluating

Eqϕ(z) [log pθ2 (y|z)] requires the propagation of qϕ(z) through these non-linearities which, for even simple qϕ(z),
is analytically intractable.
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Score Function Estimator

The first method relies on the so called log-derivative trick, which uses the identity

∇p(x) = p(x)∇ log p(x). (2.16)

Application of the log-derivative trick to the ELBO proceeds as follows:

∇ϕEqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
= ∇ϕ

∫
qϕ(z) log pθ(y, z)

qϕ(z) dz

=
∫
∇ϕ

(
qϕ(z) log pθ(y, z)

qϕ(z)

)
dz

=
∫
qϕ(z)∇ϕ (log qϕ(z)) log pθ(y, z)

qϕ(z) dz +
∫
qϕ(z)∇ϕ

(
log pθ(y, z)

qϕ(z)

)
dz

= Eqϕ(z)

[
log pθ(y, z)

qϕ(z) ∇ϕ log qϕ(z)
]
− Eqϕ(z) [∇ϕ log qϕ(z)]︸ ︷︷ ︸

=0

= Eqϕ(z)

[
log pθ(y, z)

qϕ(z) ∇ϕ log qϕ(z)
]
,

(2.17)
where we have used Leibniz’s rule for differentiation under the integral sign8 and the fact that∫

qϕ(z)∇ϕ log qϕ(z)dz =
∫
qϕ(z)
qϕ(z)∇ϕqϕ(z)dz = ∇ϕ

∫
qϕ(z)dz︸ ︷︷ ︸

1

= 0. (2.18)

With the derivative operator now inside the expectation, an unbiased Monte Carlo estimate
can be constructed. We shall refer to the resulting estimator as the score function estimator,
also known as REINFORCE9 (Sutton et al., 2000):

∇ϕLELBO ≈
1
S

S∑
s=1

log pθ(y, zs)
qϕ(zs) ∇ϕ log qϕ(zs) (2.19)

where zs ∼ qϕ(z). In practice, without the implementation of variance reduction techniques10,
the variance of the score function estimator is large. This cripples its effectiveness in optimising
the variational objective (Mohamed et al., 2019; Paisley et al., 2012; Ranganath et al., 2014).

8Specifically, lima→−∞,b→∞
∂

∂x

∫ b

a
f(x, z)dz = lima→−∞,b→∞

∫ b

a
∂

∂x
f(x, z)dz.

9The term ‘score function’ refers to the derivative of a log probability density with respect to its parameters.
The name ‘REINFORCE’ refers to the weighting of point estimates of the gradient, ∇ϕ log qϕ(zs), by the quantity
log pθ(y,zs)

qϕ(zs) . The weighting is very positive when pθ(y, z) ≫ qϕ(z) - we would like qϕ(z) to increase here - and
very negative when qϕ(z) ≫ pθ(y, z) - we would like qϕ(z) to decrease here.

10Such as control variables and Rao-Blackwellisation. See Li (2017) for an excellent review.
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Path Derivative Estimator

An alternative estimator can be constructed using a change of variables. Provided the random
variable x ∼ p(x) can be expressed as a differentiable transformation of another random variable
ϵ ∼ p(ϵ),

x = g(ϵ), (2.20)

then expectations under p(x) can be rewritten as equivalent expectations under p(ϵ):

Ep(x) [f(x)] = Ep(ϵ) [f(g(ϵ))] . (2.21)

This technique is referred to as the law of unconscious statisticians (LOTUS) (Grimmett
et al., 2020), or reparameterisation trick (Kingma and Welling, 2014). Equipped with the
reparameterisation trick, the ELBO can be reformulated as

Eqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
= Ep(ϵ)

[
log pθ(y, g(ϵ, ϕ))

qϕ(g(ϵ, ϕ))

]
. (2.22)

Since p(ϵ) has no dependence on ϕ, the derivative operator can be taken inside the expectation
where the chain rule is applied:

∇ϕEqϕ(z)

[
log pθ(y, z)

qϕ(z)

]
= Ep(ϵ)

[
∇ϕ log pθ(y, g(ϵ, ϕ))

qϕ(g(ϵ, ϕ))

]

= Ep(ϵ)

[
∇ϕ log pθ(y, z)

qϕ(z)

]
+ Ep(ϵ)

[
∇z log pθ(y, z)

qϕ(z) ∇ϕg(ϵ, ϕ)
]

= −Ep(ϵ) [∇ϕ log qϕ(z)]︸ ︷︷ ︸
=0

+Ep(ϵ)

[
∇z log pθ(y, z)

qϕ(z) ∇ϕg(ϵ, ϕ)
]

= Ep(ϵ)

[
∇z log pθ(y, z)

qϕ(z) ∇ϕg(ϵ, ϕ)
]
. (2.23)

The quantity
∇z log pθ(y, z)

qϕ(z) ∇ϕg(ϵ, ϕ) (2.24)

is known as the path derivative - it accounts for the dependence on ϕ through the deterministic
transformation g(ϵ, ϕ). The path derivative estimator is given by

∇ϕLVI ≈
1
S

S∑
s=1
∇zs log pθ(y, zs)

qϕ(zs) ∇ϕg(ϵs, ϕ). (2.25)

where ϵs ∼ p(ϵ) and zs = g(ϵs, ϕ). Whereas the score function estimator only uses the scalar
values of pθ(y, z), the path derivative estimator uses its gradient. This renders the path
derivative estimator inapt in settings where computation of the gradient is intractable. For
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DLVMs, however, the gradient can often be computed with relative ease owing to the efficiency
of the backpropagation algorithm (Kelley, 1960). Further, the path derivative estimator has
been shown empirically to exhibit much lower variance than the score function estimator
(Kucukelbir et al., 2017; Mohamed et al., 2019).

2.3 Variational Autoencoders

A popular choice for the approximate distribution in VI are those that are fully factorised
across latent variables, with each factor having its own set of local variational parameters ϕi:

qϕ(z) =
∏

i

qϕi
(zi). (2.26)

This is commonly referred to as the mean-field approximation, whose use in VI is widespread (Blei
et al., 2003). The use of fully factorised approximate posteriors is motivated by their efficiency
and flexibility. Yet, they are incapable of modelling posterior dependencies between latent
variables and risk severely underestimating the posterior uncertainty, especially when applied
to time-series (MacKay, 2003; Turner and Sahani, 2011). The severity of these limitations are
application specific, so should always be taken into account by machine learning practitioners.

Although mean-field VI has found success in many domains, its application to LVMs with local
latent variables is ill-suited as the form of the approximate posterior requires the introduction of
a set of variational parameters for each observation. This leads to two major ramifications: first,
the number of variational parameters grows linearly with the number of data points which swiftly
makes maximising the variational objective computationally prohibitive; second, whenever new
observations are made, the corresponding variational parameters must be re-optimised. Thus,
inference cannot be performed over test data without additional training.

2.3.1 Amortised Inference

In their seminal work, Kingma and Welling (2014) develop the variational autoencoder (VAE),
a family of models that partners DLVMs with efficient inference. The core insight in the
development of the VAE was the use of a DNN - known as the inference network - to map from
observations to local parameters of the approximate posterior distribution, with the weights and
biases of the inference network becoming the new variational parameters. For fully factorised
Gaussian approximate posteriors, this gives rise to

qϕ(z) =
N∏

n=1
N
(
zn; µϕ(yn),diag σϕ(yn)

)
(
µϕ(yn), log σϕ(yn)

)
= gϕ(yn)

(2.27)
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where gϕ(·) represents the inference network. A popular interpretation of VAEs is as probabilistic
equivalents of autoencoder models. In turn, the DNN that parameterises the likelihood is often
referred to as the decoder and the inference network the encoder.

The technique of sharing variational parameters across data points is known as amortised
inference (Gershman and Goodman, 2014; Kingma and Welling, 2014; Rezende et al., 2014),
the advantages of which are twofold:

1. The number of variational parameters remains fixed with respect to the size of the dataset.
This implies fewer variational parameters for large datasets, improving the computational
efficiency and relaxing the memory requirements.

2. The inference network learns to map from observations to local parameters of the ap-
proximate distribution. Thus, the VAE can perform inference on unseen data without
the need to make any refinements to the variational parameters. Furthermore, test time
inference comes at the small cost of a single pass through the inference network.

Of course, these benefits do not come without cost. Rather than freely optimising each parameter
of the approximate posterior, they are now tied together through the inference network. The
optimal amortised approximate posterior, qϕ∗

AM
(z), is strictly worse than the optimal mean-field

approximate posterior, qϕ∗
MF

(z), in the sense that

KL
(
qϕ∗

AM
(z) ∥ pθ(z|y)

)
> KL

(
qϕ∗

MF
(z) ∥ pθ(z|y)

)
. (2.28)

The difference is known as the amortisation gap (Cremer et al., 2018). By increasing the
flexibility of the inference network, the amortisation gap can be made arbitrarily small.

The probabilistic DLVMs specified by VAEs routinely use a standard normal prior over latent
variables, such that the probabilistic model becomes

z ∼
N∏

n=1
N (zn; 0, I)

y|z ∼
N∏

n=1
pθ(yn|zn).

(2.29)

The use of a standard normal prior offers a number of benefits, the principal one being that
both the joint distribution pθ(y, z) and approximate posterior qϕ(z) become fully factorised
across observations. A corollary of this is that the ELBO and its gradients decompose into a
sum over individual data points, lending itself to efficient optimisation using mini-batches of
data. Notwithstanding the computational benefits, its use completely removes any dependencies
between observations - doing so is only valid when the iid assumption holds.
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2.4 Gaussian Processes

Gaussian processes (GPs) are a family of models that describe a probability distribution
over a function. The class of distributions described are such that any finite number of
function evaluations are jointly Gaussian distributed (Rasmussen and Williams, 2005). A GP
is fully specified by its mean function mθ(x) = E [f(x)] and covariance function, or kernel,
kθ(x,x′) = Cov [f(x), f(x′)]:

f ∼ GP
(
mθ(x), kθ(x,x′)

)
, (2.30)

where x and x′ specify the locations at which the function f is evaluated and θ denotes the set
of model hyper-parameters. Using a zero mean function11, the joint distribution over a finite
collection of function values f = (f(x1), f(x2), . . . , f(xN )) is given by

p(f) = N (f ; 0, kθ (X,X)) , (2.31)

where [kθ (X,X)]ij = kθ(xi,xj). X = (x1,x2, . . . ,xN )T is known as the design matrix. The
distinction between model parameters and hyper-parameters is subtle, but nonetheless important.
Given the parameters of a model, future predictions are independent of the observed data
D. The same does not hold for model hyper-parameters. GPs themselves do not have any
model parameters - they belong to the family of Bayesian nonparametric models. Rather
than conditioning on the observed data through a set of parameters, GPs condition on the
observed data directly. Nonparametric models offer significant advantages over their parametric
counterparts, most notably in their ability to infer the appropriate degree of model complexity
from the observed data (Ghahramani, 2013). However, as we shall see, this flexibility often
comes at the cost of a burdening computational complexity.

The covariance function lies at the crux of GP modelling. It captures the underlying properties
of the function f such as smoothness, amplitude and periodicity. Two of the most widely used
covariance functions are the squared exponential (SE) kernel,

kSE(x, x′) = σ2 exp
(
−(x− x′)2

2l2

)
(2.32)

whose hyper-parameters are the lengthscale l and the output variance σ2, and the periodic
kernel,

kPer(x, x′) = σ2 exp
(
−2 sin2(π|x− x′|/p)

l2

)
(2.33)

11Only rarely is this a significant limitation since it does not restrict the posterior mean function to be zero
also.
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whose hyper-parameters are the period p, the lengthscale l and the output variance σ2 (MacKay,
1998). Figure 2.2 illustrates functions drawn at random from GPs defined using each covariance
function.

Fig. 2.2 A visualisation of functions drawn from GPs with a SE covariance function (top)
and periodic covariance function (bottom). The shades of red correspond to deciles of the
posterior predictive distribution at each input location. Coloured lines show samples from the
GP. The black crosses show the data being conditioned on.

2.4.1 Gaussian Process Regression

Consider the standard regression task, in which we wish to model a dataset D consisting of N
input and corresponding scalar output pairs, D = {(xn, yn)}Nn=1. It is typical to assume the
observations y are generated from some latent function f(x) corrupted by additive Gaussian
noise:

y = f(x) + σnϵ, (2.34)

where ϵ ∼ N (ϵ; 0, 1) and σ2
n is the noise variance. Placing a GP prior on the latent function

gives rise to the probabilistic model

f ∼ GP
(
0, kθ1(x,x′)

)
y|f ∼

N∏
n=1
N
(
yn; f(xn), σ2

n

)
,

(2.35)
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where θ = {θ1, σ
2
n}. Unlike the standard normal prior regularly employed by VAEs, a GP prior

explicitly models the dependence between the latent function values corresponding to each
observation.

Bayesian inference is primarily concerned with obtaining a posterior distribution over the latent
function conditioned on the observations. The posterior distribution is also a Gaussian process:

f |y ∼ GP
(
m̂(x), k̂(x,x′)

)
(2.36)

with posterior mean and covariance functions given by

m̂(x) = kθ1(x,X)K−1
yyy

k̂(x,x′) = kθ1(x,x′)− kθ1(x,X)K−1
yykθ1(X,x′)

(2.37)

where Kyy = kθ1 (X,X) + σ2
nI is the prior covariance of the observations.

If the properties of the latent function are known a priori, the covariance function and its
hyper-parameters can be chosen accordingly to reflect this information. In most settings,
however, we are more interested in inferring the properties of the latent function from the
observed data. The hyper-parameters that best explain the observed data are those that
maximise the log marginal likelihood:

θ∗ = arg max
θ

log pθ(y)

= arg max
θ

−1
2yT K−1

yyy− 1
2 log |Kyy| −

N

2 log 2π. (2.38)

The objective above describes a trade-off between fitting the data (−1
2yT K−1

yyy) and penalising
model complexity (−1

2 log |Kyy|), a heuristic known as Occam’s razor (MacKay, 1992; Rasmussen
and Ghahramani, 2001). Thus, hyper-parameter tuning using the log marginal likelihood is
automatically robust to overfitting. This contrasts with parameter tuning through maximisation
of the log-likelihood, which does not take into account the generalisability of the parameters12.
For GPs, the maximum log marginal likelihood forms a reasonable approximation to the model
evidence

p(y) =
∫
pθ(y)p(θ)dθ ≈ pθ∗(y), (2.39)

12Recall from Section 2.1 that the parameters of LVMs are also found through maximisation of the log marginal
likelihood. Whilst this seems like a contradiction, there is a distinction between the marginal likelihood used in
LVMs and that used in GPs. For LVMs, the marginal likelihood refers to integrating out the latent variables
from the joint distribution, not the model parameters. For GPs, the marginal likelihood refers to integrating out
the model parameters, which has already been achieved as GPs are nonparametric. Thus, learning of model
parameters in LVMs through maximisation of the log marginal likelihood does not guard against overfitting,
whereas learning of model hyper-parameters in GPs does.
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which can in turn be used to perform principled Bayesian model comparison (Rasmussen and
Williams, 2005). This is known as the type-II maximum likelihood approximation, valid only
when pθ(y) is sharply peaked and p(θ) is flat (MacKay, 1992).

2.4.2 Sparse Gaussian Processes

Evaluating the mean and covariance function of the posterior GP in (2.37) and computing the
log marginal likelihood in (2.38) is dominated by the O

(
N3) cost associated with inverting

Kyy. For large datasets, this renders exact inference in GPs impracticable. Most research
efforts into GPs have been concerned with reducing this computational complexity, and many
excellent sparse approximations have been developed. In general, these approximations can
be interpreted as performing approximate inference13 using M < N ‘inducing points’ u at
‘inducing locations’ Z.

One of the pioneering developments in sparse GPs was the use of VI, discussed in detail in
Section 2.2. First introduced by Titsias (2009), the approach has been widely adopted as
the go-to method for performing approximate inference in GPs. Following Matthews et al.
(2016), we introduce a posterior over the latent function f that explicitly parameterises the
approximate distribution over inducing points u:

q(f) = p(f\u|u)q(u) (2.40)

where
q(u) = N (u; m,S) . (2.41)

The approximate posterior uses the GP prior p(f\u|u) in place of the exact posterior p(f\u|u,y)
and the variational distribution q(u) in place of the posterior p(u|y). In effect, the latent
variables f\u are affected by the data only through u. The variational parameters consist of
the inducing locations Z, mean m and covariance S. Since these variational parameters are
shared across the entire latent function, this framework can be interpreted as an alternative
form of amortised inference to that used in VAEs.

Whereas Section 2.2 discussed the minimisation of the KL divergence between two distributions
over finite dimensional vectors, here we are interested in minimising the KL divergence between
two distributions over infinite dimensional functions. Fortunately, as demonstrated by Matthews

13Using the framework of power expectation propagation, Bui (2018) unified two seemingly disparate sparse
GP methods under the single hood of approximate inference.
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et al. (2016), the formalism is near identical. The ELBO is given by

LELBO = Eq(f)

[
log

p(y|f)�����p(f\u|u)p(u)

�����p(f\u|u)q(u)

]
= Eq(f ,u)

[
log p(y|f)p(u)

q(u)

]

=
N∑

n=1
Eq(f(xn)) [log p(yn|f(xn))]−KL (q(u) ∥ p(u)) .

(2.42)
Whilst an analytical solution to the maximisation of (2.42) can be found with respect to m
and S, the uncollapsed bound lends itself to stochastic optimisation using MC-VI (Hensman
et al., 2013). The inducing points can be marginalised out of (2.40) to obtain the approximate
posterior GP

f ∼ GP
(
mq(x), kq(x,x′)

)
(2.43)

with mean and covariance function given by

mq(x) = kθ1(x,Z)kθ1(Z,Z)−1m (2.44)

kq(x,x′) = kθ1(x,x′)− kθ1(x,Z)kθ1(Z,Z)−1 (kθ1(Z,Z)− S) kθ1(Z,Z)−1kθ1(Z,x′). (2.45)

Crucially, computation of mq(x) and kq(x,x′) sidesteps the cost associated with inverting Kyy,
reducing the computational complexity to O

(
NM2). Note that the form of the likelihood

p(yn|f(xn)) is unspecified. Indeed, the VFE approach to sparse GPs has been extended beyond
Gaussian likelihoods to non-linear models (Hensman et al., 2015; Sheth et al., 2015).

2.5 Deep Sets

Recently, the use of machine learning models that operate on sets has garnered a great deal of
attention from the research community. Most existing models place strong assumptions on the
structure of the data, usually in the form of a fixed dimensional vector. Sets are comparatively
much less structured than fixed dimensional vectors. A defining property is permutation
invariance - that is, the order of objects in a set has no meaning. Further, sets are free to vary
in size. The output of any valid machine learning model operating on sets must be invariant to
permutations in the order of a potentially arbitrary number of objects in the set.

Formally, a function f is permutation invariant if

f(x1, x2, . . . , xM ) = f(xπ(1), xπ(2), . . . , xπ(M)) (2.46)

for all permutations π. A pivotal innovation in the development of permutation invariant set
functions is Deep Sets (Zaheer et al., 2017). Remarkably, Zaheer et al. demonstrate that any
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valid permutation invariant set function takes the form

f (X) = ρ

(∑
x∈X

h(x)
)
, (2.47)

also known as the sum decomposition. X = {x1, x2, . . . , xM} represents the set of objects
xm ∈ X, and h : X→ Z and ρ : Z → R are universal function approximations. The well known
universal approximation theorems establish that DNNs satisfy this condition14, motivating
their use in Deep Sets (Cybenko, 1989; Hornik et al., 1989). Caveats regarding the form of the
latent space, Z, depend on the domain of objects in the set, X. Notably, Zaheer et al. show
that for the uncountable universe X = [0, 1] and fixed set size M , Deep Sets using Z = RM+1

can represent any function. Wagstaff et al. (2019) extend the result, proving the case when the
set size can vary for |X| ≤M .

Deep Sets provide a recipe for constructing permutation invariant set functions, which has
important repercussions throughout the field of machine learning. Indeed, the ideas embodied
by Deep Sets have been independently developed in a wide variety of contexts, including
conditional neural processes (Garnelo et al., 2018), the neural statistician (Edwards and Storkey,
2016) and point cloud modelling (Qi et al., 2017). Within the framework of VI, a motivating
application of Deep Sets is to construct approximate posteriors that are invariant to the order
in which observations are made. This reflects the permutation invariance of the true posterior,
and is particularly attractive in settings in which data is continuously being streamed.

14GPs with specific kernels also satisfy this condition (Micchelli et al., 2006).





3 | A Family of Spatio-Temporal
Variational Autoencoders

In the previous chapter we discussed the development of GPs and VAEs - two distinct classes
of probabilistic models suited to datasets of contrasting characteristics. On the one hand, the
effectiveness of VAEs in learning low-dimensional latent representations has facilitated the
deployment of DLVMs on large, richly structured high-dimensional datasets. Despite this,
VAEs are not directly applicable to datasets which exhibit strong correlations such as those
observed over space and time. At the core of this inadequacy is the iid assumption of the
generative process. On the other hand, GPs are a natural choice for modelling data that
exhibits strong correlations. However, the extension of GPs to large, high-dimensional datasets
is not immediate. In their exact form, multi-output GPs scale cubically with both the number
of data points and the number of dimensions (Álvarez et al., 2012), confining their application
to small, low-dimensional datasets.

Spatio-temporal datasets arise naturally from a wealth of domains including environmental,
social and earth sciences. They are characterised by the presence of strong dependencies
across space and time, often taking the form of multi-dimensional observations. Given the
complementary strengths of VAEs and GPs, it is instinctive to wish to combine them to model
such datasets. In this chapter, we introduce a new family of models that we dub the GP-VAE.
Sections 3.1 and 3.2 describe the probabilistic model and establish a principled framework
for performing approximate inference. Section 3.3 builds upon this framework, presenting a
general template for handling partially observed data and extending the capability of GP-VAEs
accordingly. Finally, in Section 3.4 we present a novel amalgamation of sparse GPs and VAEs,
developing the sparse GP-VAE which offers substantial computational advantages over the
regular GP-VAE and existing sparse GP models.
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3.1 The GP-VAE

3.1.1 The Probabilistic Model

Consider the multi-output regression task in which we wish to model a dataset consisting of N
D-dimensional input and corresponding P -dimensional output pairs, D = {(xn,yn}Nn=1. Let
y = (y1,y2, . . . ,yN ) denote the concatenation of outputs and X = (x1,x2, . . . ,xN )T the design
matrix. We model each observation as being generated from a diagonal Gaussian distribution
parameterised by passing some latent variable fn ∈ RK through a decoder DNN. The elements
of fn correspond to the evaluation of a K-dimensional latent function f = (f1, f2, . . . , fK) at
input xn. Placing an independent GP prior on each latent function dimension gives rise to the
complete probabilistic model:

f ∼
K∏

k=1
GP

(
0, kθ1,k

(
x,x′))︸ ︷︷ ︸

pθ1 (fk)

y|f ∼
N∏

n=1
N
(
yn; µθ2(fn),diag σ2

θ2(fn)
)

︸ ︷︷ ︸
pθ2 (yn|fn)

.

(3.1)

where fn = f(xn). θ1 = {θ1,k}Kk=1 denotes the set of GP hyper-parameters and θ2 the parameters
of the decoder. In a slight departure from fully rigorous terminology, we shall refer to the
set θ = {θ1, θ2} as the model parameters of the GP-VAE. Note that the dependence of the
GP prior pθ1(fk) and likelihood pθ2(yn|fn) on the inputs has been suppressed for notational
convenience. In contrast to the DLVMs employed by vanilla VAEs, the probabilistic model
described in (3.1) explicitly models dependencies between latent variables through the GP prior.
The motive of the latent structure is twofold: not only are we concerned with discovering a
simpler representation of the observed data, but we also wish to discover the dependencies
between these representations that explain the dependencies between observations.

3.1.2 The Structured Approximate Posterior

An implication of the non-linear likelihood is that the posterior distribution over the latent
function f , given the observed dataset D, is generally intractable. Rigidly following the standard
VAE framework laid out by Kingma and Welling (2014) would see us approximate the true
posterior over the N latent function evaluations f = (f1, f2, . . . , fN ) with a fully factorised
Gaussian parameterised by an inference network

q(f) =
N∏

n=1
N
(
fn; µϕ(yn),diag σ2

ϕ(yn)
)
. (3.2)
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The variational parameters ϕ denote the weights and biases of the inference network. However,
such an approximate distribution fails to account for the dependence between observations due
to the GP prior. Further, it does not specify the approximate posterior over the latent function
at inputs not included in D. The role of the GP prior in the probabilistic model, and thus
the true posterior, is indispensable - any approximate posterior that fails to account for its
presence is ill-suited.

Analogous to its presence in the true posterior, we can choose to explicitly incorporate the GP
prior using the structured approximate posterior over the entire latent function:

q(f) = pθ1(f\f |f) 1
Zq(θ, ϕ)pθ1(f)lϕ(f |y) =

K∏
k=1

pθ1(fk\fk
|fk)

q(fk)︷ ︸︸ ︷
1

Zqk(θ, ϕ)pθ1(fk)lϕ(fk|y)︸ ︷︷ ︸
q(fk)

(3.3)

where lϕ(fk|y) is a fully-factorised Gaussian distribution parameterised by an inference network:

lϕ(fk|y) = N
(
fk; µϕ,k,Σϕ,k

)
=

N∏
n=1
N
(
fnk;µϕ,k(yn), σ2

ϕ,k(yn)
)

︸ ︷︷ ︸
lϕ(fnk|yn)

. (3.4)

Since everything is Gaussian, q(f) defines a product of independent approximate GP posteriors
over each latent function dimension fk. The normalisation constants Zqk(θ, ϕ) ensure that
q(fk), the approximate posterior distribution over the N evaluations of the kth latent dimension
fk = (f1k, f2k, . . . , fNk), integrates to one:

Zqk(θ, ϕ) =
∫
pθ1(fk)

N∏
n=1

lϕ(fnk|yn)dfk. (3.5)

The explicit inclusion of the GP prior ‘diffuses’ the distribution parameterised by the inference
network across the entire latent function in a manner that is consistent with the probabilistic
model1. Indeed, the form of the structured approximate posterior is identical to that of the
true posterior

posterior = prior× likelihood
normalisation constant ⇐⇒ q(f) = pθ1(f)lϕ(f |y)

Zq
. (3.6)

Observe that q(f) is equal to the true posterior in a ‘pseudo probabilistic model’ with pseudo
likelihoods lϕ(fn|yn) =

∏K
k=1 lϕ(fnk|yn). Thus, we see that the quality of the approximate

posterior distribution improves when each pseudo likelihood closely approximates the true
1Moreover, structured variational approximations tend to provide more reasonable uncertainty estimates than

mean-field approximations. However, the model parameters found using a structured approximation can be more
severely biased away from the true optimum (Turner and Sahani, 2011).
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likelihood, pθ2(yn|fn). By restricting lϕ(fn|yn) to preserve conjugacy with the GP prior, a
tractable approximation to the true posterior is recovered. This bears resemblance to expectation
propagation, a relationship that we discuss in detail in Chapter 4. In accordance with this
pseudo model interpretation, lϕ(fn|yn) shall be referred to as the approximate likelihood.

The mean and covariance functions of the approximate GP over the kth latent dimension are
trivial to compute using the mathematical convenience of Gaussian distributions, and are given
by:

m̂k (x) = kfkfk
(Kfkfk

+ Σϕ,k)−1 µϕ,k

k̂k

(
x,x′) = kfkf ′

k
− kfkfk

(Kfkfk
+ Σϕ,k)−1 kfkfk

.
(3.7)

We have adopted the shorthand notation kfkf ′
k

= kθ1,k
(x,x′) and Kfkfk

= kθ1,k
(X,X). See

Appendix A.1 for a complete derivation. In contrast to the fully-factorised approximate
posterior in (3.2), the mean and covariance functions can be evaluated at any input location
to obtain an approximation to the posterior predictive distribution over the corresponding
observation. Further, the posterior predictive distribution accounts for the dependencies between
the unknown and observed variables due to the probabilistic model.

We refer to the combination of the aforementioned probabilistic model and structured approxi-
mate posterior as the GP-VAE.

3.1.3 The Posterior Predictive Distribution

Given the model pθ(f,y), the posterior predictive distribution over observation y∗ is given by

pθ(y∗|y) =
∫
pθ(y∗|f∗)p(f∗|y)df∗. (3.8)

This can be approximated as

pθ(y∗|y) ≈
∫
pθ(y∗|f∗)q(f∗)df∗

= Eq(f∗) [pθ(y∗|f∗)]
(3.9)

where we have used the approximate posterior q(f∗) in place of the true posterior p(f∗|y).
Unfortunately, the integral in (3.9) is intractable. Instead, we can approximate the approximate
posterior predictive distribution as a mixture of Gaussians:

pθ(y∗|y) ≈ 1
S

S∑
s=1
N
(
y∗; µθ2(f s

∗),diag σ2
θ2(f s

∗)
)

︸ ︷︷ ︸
pθ(y∗|fs

∗)

(3.10)

where f s
∗ ∼ q(f∗).
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3.2 Monte Carlo Variational Inference

Learning and inference in the GP-VAE are concerned with determining the model parameters θ
and variational parameters ϕ, respectively. We have seen how these objectives can be attained
simultaneously by maximising the variational lower bound, or ELBO. Following Chapter 2, the
ELBO for the structured approximate posterior is given by

LELBO = Eq(f)

[
log pθ(y, f)

q(f)

]
= Eq(f)

log �����pθ1(f\f |f)���pθ1(f)pθ2(y|f)

�����pθ1(f\f |f) 1
Zq(θ,ϕ)���pθ1(f) lϕ(f |y)


= Eq(f)

[
log pθ2(y|f)

lϕ(f |y)

]
+ logZq(θ, ϕ). (3.11)

The cancellation of the GP prior ensures that the ELBO can be evaluated by sampling the
infinite-dimensional approximate posterior at the finite number of locations included in the
observed data. The first term in (3.11) also appears in the ELBO for the standard VAE;
however, the final term differs due to the presence of the GP prior.

Neither the ELBO or its gradients are analytically tractable. In this section, we derive the
estimators necessary for performing MC-VI.

3.2.1 Estimating the ELBO

The intractability of the ELBO arises due to the non-linear likelihood function. In particular,
the quantity Eq(f) [log pθ2(y|f)] amounts to propagating a Gaussian distribution, q(f), through
the non-linear decoder network. A straightforward but nonetheless effective workaround is to
use the Monte Carlo estimate

Eq(f) [log pθ2(y|f)] ≈ 1
S

S∑
s=1

N∑
n=1

log pθ2(yn|f s
n) (3.12)

where f s ∼ q(f). The number of samples, S, can be chosen to achieve an arbitrary degree of
accuracy. Fortunately, the quantity Eq(f) [log lϕ(f |y)] involves only the first and second moments
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of q(f) and so a closed form solution exists:

Eq(f) [log lϕ(f |y)] =
K∑

k=1

N∑
n=1

Eq(fk) [log lϕ(fnk|yn)]

=
K∑

k=1

N∑
n=1

Eq(fk)

[
−(fnk − µϕ,k(yn))2

2σ2
ϕ,k(yn)

− 1
2 log |2πσ2

ϕ,k(yn)|
]

=
K∑

k=1

N∑
n=1
−

[
Σ̂k

]
nn

+ (µ̂k,n − µϕ,k(yn))2

2σ2
ϕ,k(yn)

− 1
2 log |2πσ2

ϕ,k(yn)|

=
K∑

k=1

N∑
n=1

logN
(
µ̂k,n;µϕ,k(yn), σ2

ϕ,k(yn)
)
−

[
Σ̂k

]
nn

2σ2
ϕ,k(yn)

=
K∑

k=1
logN

(
µ̂k; µϕ,k,Σϕ,k

)
−

N∑
n=1

[
Σ̂k

]
nn

2σ2
ϕ,k(yn)

. (3.13)

where µ̂k and Σ̂k are the mean and covariance matrix of q(fk), which can be found by evaluating
the mean and covariance functions given in (3.7) at inputs X. Similarly, a closed form solution
to logZq(θ, ϕ) exists. First, note that each Zqk(θ, ϕ) can be re-written as a convolution between
two Gaussians:

Zq(θ, ϕ) =
K∏

k=1
Zqk(θ, ϕ) =

K∏
k=1

∫
pθ1(fk)lϕ(fk|y)dfk

=
K∏

k=1

∫
N (fk; 0,Kfkfk

)N
(
fk; µϕ,k,Σϕ,k

)
dfk

=
K∏

k=1

∫
N (fk; 0,Kfkfk

)N
(
µϕ,k − fk; 0,Σϕ,k

)
dfk.

(3.14)

The convolution between two Gaussians is also Gaussian, with mean and covariance given by
the summation of the means and covariances of the original Gaussians. Thus, logZq(θ, ϕ) can
be concisely expressed as

logZq(θ, ϕ) =
K∑

k=1
logN

(
µϕ,k; 0,Kfkfk

+ Σϕ,k

)
︸ ︷︷ ︸

log Zqk(θ,ϕ)

. (3.15)

Put together, (3.12), (3.13) and (3.15) provide an unbiased estimate of the ELBO. We refer to
this estimator as the semi-analytic ELBO estimator.

For the sake of computational efficiency, it is important to use Monte Carlo estimators with the
least variance so that we can obtain an accurate approximation with as few samples as possible.
Intuition suggests that this is achieved using analytic solutions where possible; however, Roeder
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et al. (2017) observe that using a Monte Carlo estimate for Eq(f) [lϕ(f |y)] can sometimes achieve
lower variance than using an analytic solution. In particular, when the approximate likelihood
is ‘good’ in the sense that lϕ(f |y) ≈ pθ2(y|f), the stochasticity of the Monte Carlo samples
cancels:

1
S

S∑
s=1

log pθ2(y|f s)
lϕ(f s|y) ≈

1
S

S∑
s=1

log pθ2(y|f s)
pθ2(y|f s)︸ ︷︷ ︸

0

= 0. (3.16)

Although equality is never satisfied using a Gaussian approximation, the resultant estimator
may still exhibit lower variance than the semi-analytic ELBO estimator and is commonly used
in practice. We shall refer to the estimator as the doubly-stochastic ELBO estimator.

3.2.2 Estimating Gradients of the ELBO

Naïvely taking the derivatives of either of the two ELBO estimators neglects not only the
dependence of the sampling procedure on variational parameters ϕ, but also its dependence
on model parameters θ. Incongruous with the standard VAE, this is a direct implication
of including the GP prior in the approximate posterior. Fortunately, we can apply the two
techniques discussed in Chapter 2 to form unbiased Monte Carlo estimates. The first uses the
log-derivative trick, whereas the second employs LOTUS, or reparameterisation trick (Grimmett
et al., 2020; Kingma and Welling, 2014). We refer to these two flavours of estimators as the score
function estimator and the path derivative estimator, respectively. Throughout this section,
the operator ∇(·) shall denote a generalisation of the operators ∇θ and ∇ϕ.

Note that these techniques are only necessary when samples are drawn from the approximate
posterior. The gradients of the analytic solutions for logZq(θ, ϕ) and Eq(f) [lϕ(f |y)] are computed
with ease by automatic differentiation packages bundled into popular frameworks such as
PyTorch (Paszke et al., 2017) and TensorFlow (Abadi et al., 2016), so require no additional
approximations. However, akin to the motivation for the doubly-stochastic ELBO estimator, it
can sometimes be beneficial to introduce approximations if the additional stochasticity cancels.



30 A Family of Spatio-Temporal Variational Autoencoders

Score Function Estimator

The application of the log-derivative trick to ∇(·)Eq(f) [pθ2(y|f)] is straightforward and proceeds
as follows:

∇(·)Eq(f) [pθ2(y|f)] =
N∑

n=1
∇(·)Eq(fn) [pθ2(yn|fn)]

=
N∑

n=1
∇(·)

∫
q(fn) log pθ2(yn|fn)dfn

=
N∑

n=1

∫
∇(·) (q(fn) log pθ2(yn|fn)) dfn

=
N∑

n=1

{∫
q(fn)∇(·) (log q(fn)) log pθ2(yn|fn)dfn

−
∫
q(fn)∇(·) (log pθ2(yn|fn)) dfn

}

=
N∑

n=1

{
Eq(fn)

[
log pθ2(yn|fn)∇(·) log q(fn)

]
+ Eq(fn)

[
∇(·) log pθ2(yn|fn)

]}
.

(3.17)

With the derivative operator now inside the expectation, an unbiased Monte Carlo estimate
can be made. We refer to this estimator used in conjunction with the gradients of the analytic
solutions for logZq(θ, ϕ) and Eq(f) [lϕ(f |y)] as the semi-analytic score function estimator. Note
that expectations are over q(fn), rather than q(f). Sampling fn ∼ q(fn) circumvents the O

(
N3)

computation of the Cholesky decomposition of the K covariance matrices {Σ̂k}Kk=1, requiring
only their diagonal elements instead. Unfortunately, logZq(θ, ϕ) still demands computation of
their inverses.

Alternatively, the log-derivative trick can also be applied to approximate ∇(·)Eq(f) [lϕ(f |y)].
Starting from (3.11), we have:

∇(·)LELBO = ∇(·)Eq(f)

[
log pθ2(y|f)

lϕ(f |y)

]
+∇(·) logZq(θ, ϕ)

= ∇(·)

N∑
n=1

Eq(fn)

[
log pθ2(yn|fn)

lϕ(fn|yn)

]
+∇(·) logZq(θ, ϕ)

=
N∑

n=1

{
Eq(fn)

[
log pθ2(yn|fn)

lϕ(fn|yn) ∇(·) log q(fn)
]

+ Eq(fn)

[
∇(·) log pθ2(yn|fn)

lϕ(fn|yn)

]}
+∇(·) logZq(θ, ϕ). (3.18)

When lϕ(fn|yn) ≈ pθ2(yn|fn), the stochasticity of a Monte Carlo estimate for the first term
in the summation cancels. However, the same is not true for the second term as the gradi-
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ents do not cancel in general. Thus, we can expect a reduction in variance by pulling out
Eq(f)

[
∇(·) log lϕ(f |y)

]
and using the analytic solution:

Eq(f)
[
∇(·) log lϕ(f |y)

]
=

N∑
n=1

K∑
k=1

[
−∇(·) log σϕ,k(yn)

−
([

Σ̂k

]
nn

+ (µ̂k,n − µϕ,k(yn))2
)
∇(·)

(
1

2σ2
ϕ,k(yn)

)

+ 1
2σ2

ϕ,k(yn)
(µ̂k,n − µϕ,k(yn))∇(·)µϕ,k(yn)

]
.

(3.19)

See Appendix A.2 for a complete derivation. Similarly, a Monte Carlo estimate for the derivative
∇(·) logZq(θ, ϕ) is not expected to reduce the variance of the estimator and so analytic solutions
are preferable. Collectively, we refer to this estimator as the doubly-stochastic score function
estimator.

Path Derivative Estimator

LOTUS can be applied using the reparameterisation

fnk = gθ,ϕ(ϵnk) = µ̂k,n +
[
Σ̂k

] 1
2

nn
ϵnk (3.20)

where ϵnk ∼ N (ϵnk; 0, 1). This allows the expected log-likelihood to be re-written as

Eq(f) [log pθ2(y|f)] =
N∑

n=1
Ep(ϵn) [log pθ2(yn|gϕ,θ(ϵn))] (3.21)

where ϵn = (ϵn1, ϵn2, . . . , ϵnk). Since p(ϵn) is independent of θ and ϕ, the derivative operator
can be moved inside the expectation, yielding

∇(·)Eq(f) [log pθ2(y|f)] =
N∑

n=1
Ep(ϵn)

[
∇(·) log pθ2(yn|gϕ,θ(ϵn))

]

=
N∑

n=1

{
Ep(ϵn)

[
∇(·) log pθ2(yn|fn)︸ ︷︷ ︸

score function

]
+ Ep(ϵn)

[
∇fn log pθ2(yn|fn)∇(·)gθ,ϕ(ϵn)︸ ︷︷ ︸

path derivative

]}
.

(3.22)

The expression above is composed of a score function term and a path derivative term, both
of which can be estimated by drawing samples ϵsn ∼ p(ϵn) and applying the transformation
fnk = gθ,ϕ(ϵs

nk). Used in combination with the gradients of the analytic solutions for logZq(θ, ϕ)
and Eq(f) [log lϕ(f |y)], we refer to the estimator as the semi-analytic path derivative estimator.



32 A Family of Spatio-Temporal Variational Autoencoders

As with the log-derivative trick, an alternative estimator is derived by applying LOTUS to
approximate ∇(·)Eq(f) [lϕ(f |y)]. Starting from (3.11), we have

∇(·)LELBO = ∇(·)Eq(f)

[
log pθ2(y|f)

lϕ(f |y)

]
+∇(·) logZq(θ, ϕ)

=
N∑

n=1

{
Ep(ϵn)

[
∇(·) log pθ2(yn|fn)

lϕ(fn|yn)︸ ︷︷ ︸
score function

]
+ Ep(ϵn)

[
∇fn log pθ2(yn|fn)

lϕ(fn|yn) ∇(·)gθ,ϕ(ϵn)︸ ︷︷ ︸
path derivative

]}

+∇(·) logZq(θ, ϕ). (3.23)

Whereas the stochasticity of the path derivative term cancels when the approximate posterior
is close to the true posterior, the stochasticity of the score function term does not. Similar to
the doubly-stochastic score function estimator, we define the doubly-stochastic path derivative
estimator using analytical solutions for Eq(f)

[
∇(·) log lϕ(f |y)

]
and logZq(θ, ϕ).

As discussed in Chapter 2, the path derivative estimator is reported to have significantly lower
variance than the score function estimator when training VAEs, so is preferable (Kingma
and Welling, 2014; Paisley et al., 2012). Choosing between the semi-analytic path derivative
estimator and the doubly-stochastic path derivative estimator is not so obvious. Whilst the
doubly-stochastic path derivative estimator is low-variance when lϕ(f |y) ≈ pθ2(y|f), equality
can never be satisfied using a Gaussian approximation. This ambiguity motivates the empirical
evaluation of the different gradient estimators, which we detail in Chapter 5.

3.2.3 Mini-Batched Stochastic Gradient Ascent

The computational complexity of performing VI in the GP-VAE is dominated by the O
(
KN3)

cost associated with inverting the set of K N ×N matrices, {Kfkfk
+ Σϕ,k}Kk=1. Although this

represents a significant saving relative to the O
(
N3P 3) cost using exact multi-output GPs, it

can quickly become burdensome for even moderately sized datasets. Unfortunately, unlike in
standard VAEs, the presence of the GP prior includes full covariance matrices which do not
permit a decomposition into a sum over individual data points. A pragmatic workaround is to
use a biased estimate of the ELBO using Ñ < N data points:

L̃Ñ
ELBO = N

Ñ

[
Eq(f̃)

[
log pθ2(ỹ|f̃)

lϕ(f̃ |ỹ)

]
+ log Z̃q(θ, ϕ)

]
. (3.24)

ỹ and f̃ denote the mini-batch of Ñ observations and their corresponding latent variables,
respectively. The bias is introduced due to the normalisation constant

log Z̃q(θ, ϕ) =
K∑

k=1
log

∫
pθ1(f̃k)lϕ(f̃k|y)df̃k (3.25)
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which does not satisfy N
Ñ
E
[
log Z̃q(θ, ϕ)

]
= E [logZq(θ, ϕ)]. Nevertheless, the mini-batch

estimator will be a reasonable approximation to the full estimator provided the lengthscale of
the GP prior is not too large2. In each step of the optimisation of the ELBO, the use of the
mini-batch estimator reduces the computational complexity from O

(
KN3) to O

(
KÑ3

)
. For

Ñ ≪ N , this represents a dramatic improvement.

3.3 Partially Observed Data

Partially observed data is a regularly encountered occurrence in spatio-temporal datasets. In
principle, the presence of partially observed data has no effect on the Bayesian paradigm of con-
ditioning the posterior distributions on all that is observed. However, for models using inference
networks, such as VAEs, this necessitates modifications to the existing architecture. Standard
inference networks condition on data through a non-linear transformation of observations to
parameters of an approximate posterior. When only part of the observation is available, it is
not immediately obvious how this mapping should be achieved. In this section, we introduce
and discuss four distinct methods for handling partial observations: zero imputation, PointNet,
IndexNet and FactorNet.

3.3.1 The Partial Observation Framework

Formally, let each partial observation yn contain a set of observed values yo
n and a set of

unobserved values yu
n:

yn = yo
n ∪ yu

n. (3.26)

Let On denote the index set of observed values yo
n. Assuming observed values are conditionally

independent given the latent variables f , the likelihood of the observed data is given by

pθ2(y|f) =
N∏

n=1

∏
p∈On

pθ2(ynp|fn). (3.27)

The structured approximate posterior given in (3.7) must be modified such that the approximate
likelihood is conditioned only on the observed values yo

n:

q(f) = pθ1(f\f |f) 1
Zq(θ, ϕ)pθ1(f)

N∏
n=1

lϕ(fn|yo
n)︸ ︷︷ ︸

q(f)

. (3.28)

To exploit the benefits of amortised inference, lϕ(fn|yo
n) is parameterised by a partial inference

network with parameters ϕ. The partial inference network maps from the partially observed
2In which case the off-diagonal terms in the covariance matrix will be large making the approximation

pθ1 (f) =
∏

pθ1 (f̃) extremely crude.
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values yo
n to the parameters of lϕ(fn|yo

n), which is taken to be Gaussian:

lϕ(fn|yo
n) = N

(
fn; µϕ(yo

n),diag σ2
ϕ(yo

n)
)
. (3.29)

The partial inference network must be flexible enough to handle any possible permutation
of partially observed data. Using the structured approximate posterior given in (3.28), the
modified ELBO for the GP-VAE is given by

Lo
ELBO =

N∑
n=1

Eq(fn)

[ 1
α

log pθ2(yo
n|fn)− log lϕ(fn|yo

n)
]

+ logZq(θ, ϕ). (3.30)

Setting α equal to the proportion of missing data values rescales the partial likelihood to
account for variable rates of missingness. To see this, note that an equivalent expression for
pθ2(yo

n|fn) is
pθ2(yo

n|fn) =
∏

p∈On

pθ2(ynp|fn)×
∏

p′ /∈On

1 (3.31)

i.e. equivalent to the fully observed likelihood with pθ2(ynp′ |fn) = 1, ∀ p′ /∈ On. As the rate of
missingness increases, this biases pθ2(yo

n|fn) towards 1. The scaling factor α acts to counter
this effect.

3.3.2 Partial Inference Network

Arguably the most widely used approach for handling partially observed data in VAEs is to
impute the missing values with zeros. This has shown to be effective in a variety of settings,
including VAE modelling of heterogeneous data (Nazabal et al., 2020) and previous GP-VAE
endeavours (Fortuin et al., 2020). Zero imputation is an attractive choice for practitioners as it
requires no modifications to the standard inference network: we simply replace the observations
yn with zero imputed modified observations ỹn. Furthermore, since the inference network
applies a non-linear transformation to a weighted sum of inputs, the zero imputed data has no
effect on the output of the inference network, and in turn the ELBO and its gradients. A major
shortcoming of zero imputation is that the inference network can no longer distinguish between
a missing value and a true zero. Provided the data is normalised, a true zero corresponds
to the mean value across observations. A value being equal to the mean can often be highly
informative, especially when the observations are multi-modal and the mean value is in a region
of low density.

Instead, we turn towards ideas of Deep Sets (Zaheer et al., 2017), introduced in Chapter 2. Each
partial observation can be reinterpreted as a permutation invariant set by coupling the observed
value with the dimension index. The advantage of this formulation is that sets are permutation
invariant and can vary in size, unlike fixed-dimensional vectors. Thus, an appropriate set
function can handle any possible permutation of partially observed data in a principled manner.
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Following Zaheer et al. (2017), we define a family of permutation invariant partial inference
networks as

gϕ(yo
n) := ρϕ2

 ∑
p∈On

hϕ1(snp)

 (3.32)

where hϕ1 : R → RM and ρϕ2 : RM → R are DNN mappings with parameters ϕ1 and ϕ2,
respectively. snp denotes the couples of observed value ynp and corresponding dimension index
p. In comparison to the zero imputation method, this framework is theoretically appealing as
it makes no assumptions about the values of the missing data - their representations are simply
excluded from the summation.

The formulation in (3.32) is identical to the partial VAE framework established in Ma et al.
(2019), who, to the best of our knowledge, are the first to consider the use of permutation
invariant set functions for handling partially observed data. We begin by considering two
specifications of gϕ(yo

n), before considering a closely related partial inference network that
factorises across observations.

PointNet

Inspired by the PointNet approach of Qi et al. (2017) and later developed by Ma et al. (2019)
for use in partial VAEs, the PointNet specification of partial inference network uses the
concatenation of dimension index with the observed value:

snp = (p, ynp) . (3.33)

Because the dimension indices are input into a continuous function, a central feature of the
PointNet is the assumption of smoothness between values of neighbouring dimensions. Although
this is often valid in computer vision tasks, it is ill-suited for tasks in which the indexing of
dimensions is arbitrary. For example, Ma et al. (2019) consider a task in which the observed
values correspond to answers in a questionnaire. Since, in general, questions can be re-ordered
whilst representing the same information, the assumption of smoothness across the answers is
inappropriate.

IndexNet

An alternative approach to the PointNet specification that places no assumptions on the ordering
of observations uses the dimension index to select the encoding function:

hϕ1(snp) = hϕ1,p(ynp). (3.34)

Whereas PointNet treats dimension indices as points in space, this specification retains their role
as indices. Accordingly, we refer to it as the IndexNet specification of partial inference networks.
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Unlike the PointNet specification or zero imputation, not all the variational parameters are
amortised across observation dimensions as well as data points. This generally necessitates the
use of a greater number of variational parameters which reduces the computational efficiency of
the optimisation procedure. For very high-dimensional data the reduction in computational
efficiency may become problematic. Further, if few values are observed for any particular
dimension then ϕ1,p will have little data to be trained on and hϕ1,p may poorly generalise to
unseen data3.

FactorNet

A similar approach to that of IndexNet, first proposed by Vedantam et al. (2017), uses a separate
inference network for each observation dimension. Specifically, we factorise the approximate
likelihood into a product of Gaussians, one for each observed dimension:

lϕ(fn|yo
n) =

∏
p∈On

N
(
fn; µϕp

(ynp),diag σ2
ϕp

(ynp)
)

︸ ︷︷ ︸
lϕp (fn|ynp)

. (3.35)

Each sub-factor lϕp(fn|ynp) is parameterised by an inference network specific to dimension
p with parameters ϕp. Exploiting the properties of exponential distributions, the natural
parameters of the resultant Gaussian lϕ(fn|yo

n) are found by summing together the natural
parameters of each individual Gaussian:

η1,ϕ(yo
n) =

∑
p∈On

η1,ϕp
(ynp) and η2,ϕ(yo

n) =
∑

p∈On

η2,ϕp
(ynp). (3.36)

The transformation from means and variances to natural parameters, and vice-versa, can be
achieved using the identities

η1 = µ

σ2 and η2 = − 1
2σ2 . (3.37)

In keeping with PointNet and IndexNet, we refer to this approach as FactorNet. Observe that
FactorNet is equivalent to IndexNet with ρϕ2 defined by the deterministic transformations
in (3.37). Since IndexNet allows this transformation to be learnt, we can anticipate that it
produces a better partial inference network for the task at hand.

The FactorNet approach has the theoretically appealing property that the variance of the
approximate likelihood, lϕ(fn|yo

n), is guaranteed to decrease as more values are observed. This
guarantee is not shared with any of the other three approaches. Furthermore, similar to
IndexNet, the method makes no assumptions on the dependencies between observed dimensions.
A drawback of FactorNet is that no amortisation takes place across observation dimensions, as

3It is worth emphasising that the choice of inference network has no effect on the true posterior. The quality
of the optimal approximate posterior for the observed data can only increase with inference network capacity.
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each variational parameter belongs to a dimension specific inference network. For relatively high-
dimensional datasets, we can expect the FactorNet approach to be the least computationally
efficient.

3.4 Sparse Approximations

The computational complexity associated with learning in GP-VAEs is O
(
KN3). In Section

3.2.3 we saw that a Monte Carlo estimate of the ELBO could be used to reduce this to O
(
KÑ3

)
.

However, this estimator is biased due to strong correlations between latent variables. Further,
it does not reduce the O

(
KN3) cost of performing inference at test time. Fortunately, there

exists a wealth of established sparse GP frameworks that can be leveraged to overcome these
limitations. Most notably, the VFE approach of Titsias (2009), introduced in Chapter 2, fits
elegantly within the framework of VI already laid out, making it a natural choice for introducing
sparse approximations into the GP-VAE.

3.4.1 Sparse Gaussian Processes

Following Matthews et al. (2016), we explicitly parameterise the approximate distribution over
inducing points u = (u1,u1, . . . ,uK) whilst retaining the GP conditional prior:

q(f) = pθ1(f\u|u)q(u) =
K∏

k=1
pθ1(fk\uk

|uk)q(uk). (3.38)

q(uk) is restricted to be Gaussian with mean mk and covariance Sk, such that each q(fk) is a
GP with mean and covariance function defined by

mqk
(x) = kfkuk

K−1
ukuk

mk

kqk
(x,x′) = kfkf ′

k
− kfkuk

K−1
ukuk

(Kukuk
− Sk) K−1

ukuk
kukfk

.
(3.39)

The variational parameters ϕ = {Zk,mk,Sk}Kk=1 and model parameters θ are found by max-
imising the ELBO, given by

LELBO = Eq(f)

[
log ������

pθ1(f\u|u)pθ1(u)pθ2(y|f)

������
pθ1(f\u|u)q(u)

]
= Eq(f ,u)

[
log pθ1(u)pθ2(y|f)

q(u)

]

=
N∑

n=1
Eq(fn) [log pθ2(yn|fn)]−

K∑
k=1

KL
(
q(uk) ∥ pθ1,k

(uk)
)
. (3.40)

Unlike in linear GP models, maximising (3.40) with respect to the set {mk,Sk}Kk=1 has no
analytical solution due to the intractability of the expected non-linear likelihood. Fortunately,
the uncollapsed bound lends itself to stochastic optimisation as it decomposes to a sum over
individual data points (Hensman et al., 2013).



38 A Family of Spatio-Temporal Variational Autoencoders

This approach reduces the computational complexity associated with learning and inference to
O
(
KNM2), where M , the number of inducing points per latent dimension, can be chosen to

achieve a desired degree of accuracy. For M ≪ N , this represents a significant computational
saving relative to the GP-VAE. Yet, the model ceases to take the form of a VAE as the
approximate posterior is no longer parameterised by an inference network. Indeed, the use of
free form variational parameters reintroduces the limitations of mean-field VI: inference cannot
be performed on previously unseen data without re-optimising the variational lower bound.
Furthermore, in settings in which the size and complexity of the dataset grows sequentially it may
be necessary to increase the expressiveness of the approximate posterior through the inclusion
of additional inducing points. Doing so does not fit within the existing framework without
restarting the optimisation procedure. This can become an insurmountable computational
burden for large datasets.

A natural solution is to reintroduce the inference network, using it to parameterise the approx-
imate distribution q(u). It is not immediately obvious how this can be achieved as there is
no one-to-one correspondence between inducing points and observations. Fortunately, we can
use the ideas introduced in the development of PointNet (Qi et al., 2017) to find a pragmatic
workaround.

3.4.2 Sparse GP-VAEs

Recall the structured approximate posterior used in GP-VAEs, repeated here for convenience:

q(f) = pθ1(f\f |f) 1
Zq(θ, ϕ)pθ1(f)lϕ(f |y).

Sparseness can be introduced into the approximate posterior by replacing the approximate likeli-
hood, lϕ(f |y), with an approximate likelihood over inducing points, lϕ(u|y). The corresponding
approximate posterior takes the form

q(f) = pθ1(f\u|u) 1
Zq(θ, ϕ) pθ1(u)lϕ(u|y)︸ ︷︷ ︸

q(u)

(3.41)

where the approximate likelihood factorises across data points, latent dimensions and inducing
points:

lϕ(u|y) =
N∏

n=1

K∏
k=1

M∏
m=1

lϕ(umk|yn). (3.42)

A distinguishing feature of the approximate likelihood over inducing points, lϕ(umk|yn), is that
it conditions on data at locations different to those of the inducing points. For stationary
kernels, the strength of the dependence exhibited by latent function values is determined
by the difference between the inputs. Since there is a one-to-one correspondence between
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latent function values and observations, this dependency extends to the relationship between
observations and latent function values. Employing the standard inference network, which
conditions solely on the observed value yn, does not take this into account, and is therefore
ill-suited for parameterising lϕ(umk|yn). Rather, the output of the inference network must
depend on the difference between the location of each observation and the location of the
inducing point whose approximate likelihood is being parameterised. In the spirit of machine
learning, this can be achieved by treating the difference between the input locations as inputs
to the inference network and letting the network learn the conditioning that best approximates
the true posterior.

Formally, let zmk denote the location of inducing point umk and xn denote the location of obser-
vation yn. For each observation/inducing point pair (umk,yn), the modified inference network
maps from (zmk−xn,yn) to parameters of an approximate likelihood factor lϕ(umk|yn, zmk,xn):

lϕ(u|y,Z,X) =
N∏

n=1

K∏
k=1

M∏
m=1
N
(
umk;µϕ(zmk − xn,yn), σ2

ϕ(zmk − xn,yn)
)

︸ ︷︷ ︸
lϕ(umk|yn,zmk,xn)

. (3.43)

Note the similarity between this approach and that of PointNet (Qi et al., 2017). Indeed,
its application here is more suitable than its use in handling partially observed data, as the
assumption of continuity in the dependence of the output on zmk − xn is appropriate. For
each inducing point there will be N approximate likelihood factors, one for each observation,
which can be combined into a single approximate likelihood through the addition of natural
parameters. Observing that u replaces the role of f in the structured approximate posterior for
the GP-VAE, the ELBO is simply

LELBO =
N∑

n=1
Eq(fn) [log pθ2(yn|fn)]− Eq(u) [log lϕ(u|y)] + logZq(θ, ϕ) (3.44)

where

Zq(θ, ϕ) =
K∏

k=1

∫
pθ1,k

(uk)lϕ(uk|y)duk. (3.45)

Sampling from q(fn) requires the mean and covariance functions of the approximate GP, given
by

m̂k(x) = kfkuk
(Kukuk

+ Σϕ,k)−1 µϕ,k (3.46)

k̂k(x) = kfkf ′
k
− kfkuk

(Kukuk
+ Σϕ,k)−1 kukfk

(3.47)

where µϕ,k and Σϕ,k denote the mean and diagonal covariance of lϕ(uk|y). We refer to the use
of this approximate posterior as the sparse GP-VAE.
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For the same number of inducing points, the optimal approximate posterior of the sparse
GP-VAE is strictly worse than the optimal free-form sparse approximate posterior. However,
the inference network can be used to condition on previously unobserved data without needing
to learn new variational parameters. Moreover, the inference network can be shared across
datasets of similar characteristics, which can significantly reduce the total number of variational
parameters and thus the computational complexity of the optimisation procedure. A potential
limitation of this approach is that, when a large number of inducing points are used, having
to make forward and backward passes through the inference network NM times can become
costly. This can be circumvented by requiring the approximate distribution for only the T most
correlated4 inducing points to be specified by each observation, requiring a total of NT passes
through the inference network.

It should be emphasised that the sparse GP-VAE places no restrictions on the inducing point
locations - these are also variational parameters of the approximate posterior. The practitioner
is given complete autonomy over the initialisation of locations: in the temporal setting, it is
common to initialise inducing points at fixed intervals throughout the input domain; in the more
general spatio-temporal setting, inducing points are often initialised using random selection, or
k-means clustering, on the input locations included in the observed data.

Not only does the sparse GP-VAE address the issue of performing inference on previously unseen
data, it also addresses the second major shortcoming of existing sparse GP frameworks, namely
that the complexity of the approximate posterior cannot be increased without restarting the
optimisation procedure. For the sparse GP-VAE, inducing points can be added, moved around
or removed as desired without needing to perform any additional training, let alone restart
the optimisation procedure. The inference network places no restrictions on the morphology
of the inducing points; it simply learns to map from observations to approximate likelihoods
that produce good posterior approximations. For example, in settings in which data is being
streamed through time, inducing points can be introduced sequentially to model the regions of
newly observed data without any additional training. We anticipate the implications of the
sparse GP-VAE to be widespread.

4For SE kernels, this is the nearest T inducing points. For periodic kernels, this is the nearest T inducing
points after a sinusoidal transformation.
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In this chapter, we provide an overview of, and make connections to, the existing literature
that shares common themes with the GP-VAE. Section 4.1 begins with a review of existing
approaches to the use of structured latent priors in VAEs, notably demonstrating that the
GP-VAE is a special case of Johnson et al.’s (2016) structured VAE. A comparison between
our approach and previous attempts at integrating GPs into the VAE framework is also made.
Section 4.2 establishes a unifying connection between the probabilistic model employed by the
GP-VAE and other multi-output GPs, including the family of linear multi-output GPs and
deep GPs. Finally, Section 4.3 compares the approximate inference framework employed by the
GP-VAE with expectation propagation.

4.1 Structured Priors in Variational Autoencoders

Structured Variational Autoencoders

Only recently has the use of structured latent variable priors in VAEs been considered. In
their seminal work, Johnson et al. (2016) investigate the combination of probabilistic graphical
models with neural networks to learn structured latent variable representations with flexible
likelihoods. The authors consider the general case of a prior composed of a conjugate pair
of exponential family distributions over global latent variables, θ, and local latent variables
z = {zn}Nn=1:

p(θ) = exp
{
η0

θ
T
tθ(θ)− logZθ(η0

θ)
}

p(z|θ) = exp
{
η0

z(θ)T
tz(z)− logZz(η0

z)
} (4.1)

with a likelihood function p(y|z). The conjugate exponential family latent variable model has
greater flexibility than the standard normal prior, encompassing priors such as linear dynamical
systems (LDS) and Gaussian mixture models (GMM).
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To circumvent the issue of an intractable posterior, Johnson et al. introduce a factorised
approximate posterior, q(θ, z) = q(θ)q(z). The ELBO is given by

LELBO(ηθ, ηz) = Eq(θ)q(z)

[
log p(θ)p(z|θ)p(y|z, θ)

q(θ)q(z)

]
, (4.2)

where ηθ and ηz denote the natural parameters of q(θ) and q(z), respectively. In the general
case of a non-conjugate likelihood, existing frameworks for performing efficient approximate
inference in graphical models1 cannot be used. Instead, Johnson et al. introduce a surrogate
objective L̂

L̂(ηθ, ηz, ϕ) := Eq(θ)q(z)

[
log p(θ)p(z|θ) exp {ψ(z; y, ϕ)}

q(θ)q(z)

]
, ψ(z; y, ϕ) := r(y;ϕ)T tz(z) (4.3)

where r(y;ϕ) denotes the output of the inference network with parameters ϕ. The inference
network maps from the observations to the natural parameters of a ‘pseudo likelihood’ in a
‘pseudo graphical model’. Crucially, unlike the true likelihood, the pseudo likelihood is conjugate
to the latent prior. The previously unusable approximate inference frameworks can now be
applied to efficiently obtain the local optimiser q∗(z) with natural parameters

η∗
z(ηθ, ϕ) := arg max

ηz
L̂. (4.4)

Substituting q∗(z) into the original ELBO defines the structured VAE (SVAE) objective:

LSVAE(ηθ, ϕ) := LELBO(ηθ, η
∗
z(ηθ, ϕ)), (4.5)

which can be optimised with respect to ηθ and ϕ using gradient based methods. This process is
iterated until convergence.

In the case of fixed global latent variables θ, the surrogate objective becomes

L̂ = Eq(z)

[
log pθ1(z) exp {ψ(z; y, ϕ)}

q(z)

]
(4.6)

which is maximised by the local optimiser

q∗(z) = 1
Zq(ϕ, θ)pθ1(z) exp {ψ(z; y, ϕ)} . (4.7)

1Including expectation propagation (Minka, 2001), variational message passing (Winn and Bishop, 2005) and
stochastic VI (Hoffman et al., 2013).
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The corresponding SVAE objective is given by

LSVAE(ϕ, θ) = Eq∗(z;ϕ,θ)

log pθ1(z)pθ2(y|z)
1

Zq(ϕ,θ)pθ1(z) exp {ψ(z; y, ϕ)}

 . (4.8)

This is equivalent to optimising the ELBO using the structured approximate posterior

q(z) = 1
Zq(ϕ, θ)pθ1(z)lϕ(z|y), (4.9)

where lϕ(y|z) = exp {ψ(z; y, ϕ)}. Choosing pθ1(z) to be defined by a GP recovers the GP-VAE.

Structured Inference Networks

Lin et al. (2018) build upon the SVAE, proposing a structured approximate posterior of the
form

q(z) = 1
Zq(ϕ)qϕPGM(z)lϕNN(z|y). (4.10)

The authors refer to the approximate posterior as the structured inference network (SIN).
Rather than using the latent prior pθ1(z), SIN incorporates the model’s latent structure through
qϕPGM(z). The core advantage of SIN is its extension to more complex latent priors containing
non-conjugate factors - qϕPGM(z) can replace them with their nearest conjugate approximations
whilst retaining a similar latent structure.

Whilst the frameworks proposed by Johnson et al. and Lin et al. are more general than ours,
in both cases the authors only consider GMM and LDS latent priors. Priors with stronger
dependencies, such as GPs, are neglected for the sake of computational efficiency.

Gaussian Process Priors

We are not the first to develop inference techniques in VAEs with a GP prior. To the best
of our knowledge, the earliest example is the GP prior VAE (Casale et al., 2018). There are
significant differences between our work and Casale et al.’s, most notably in their use of a
fully-factorised approximate posterior and low-rank approximation of the GP prior. Further,
the authors only consider the case of fully observed data, neglecting to account for the presence
of partial observations. Fortuin et al. (2020) consider a generative model identical to ours;
however, they employ a Gaussian approximate posterior with a tridiagonal precision matrix Λ:

q(z) = N
(
z; m,Λ−1

)
(4.11)

where

Λ := BT B, [B]ij =

bij if j ∈ {i, i+ 1}

0 otherwise
. (4.12)
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Inference is amortised using an inference network, gϕ, that maps from observations y to
the parameters of the approximate posterior, (m,B) = gϕ(y). The convenience of this
parameterisation is that q(z) can be sampled from with linear computational complexity rather
than the cubic computational complexity associated with a full-rank covariance matrix. This
efficiency comes at the sacrifice of versatility and modelling rigour. The parameterisation
is only appropriate for regularly spaced temporal data and neglects rigorous treatment of
long term dependencies. Campbell and Liò (2020) employ an equivalent sparsely structured
variational posterior as Fortuin et al.’s (2020), extending the framework to handle more general
spatio-temporal data. Their method is similarly restricted to regularly spaced spatio-temporal
data. A fundamental difference between our framework and that of Fortuin et al. and Campbell
and Liò is the inclusion of the GP prior in the approximate posterior. Neglecting the prior
neglects the very dependencies that characterise spatio-temporal datasets.

Most similar to ours is the approach of Pearce (2020), which also employs a similarly structured
approximate posterior. However, the author only considers the application to modelling pixel
dynamics. This work is the first to develop the use of partial inference networks and sparse
approximations in the GP-VAE.

4.2 Multi-Output Gaussian Processes

Through consideration of the interchange of input dependencies and likelihood functions, we
can shed light on the relationship between the probabilistic model employed by the GP-VAE
and other multi-output GP models. These relationships are summarised in Figure 4.1.

Linear Multi-Output Gaussian Processes

Replacing the likelihood with a linear likelihood function characterises a family of linear
multi-output GPs, defined by a linear transformation of K independent latent GPs:

f ∼
K∏

k=1
GP

(
0, kθ1,k

(x,x′)
)

y|f ∼
N∏

n=1
N (yn; Wfn,Σ) .

(4.13)

The family includes Teh et al.’s (2005) semiparametric latent factor model (SLFM)2, Byron
et al.’s (2009) GP factor analysis (GP-FA) and Bonilla et al.’s (2008) class of multi-task
GPs. Notably, removing input dependencies by choosing kθ1,k

(x,x′) = δ(x,x′) recovers factor
2The name ‘semiparametric latent factor model’ arises due to the combination of a nonparametric latent prior

(the GP) and parametric likelihood function. Whilst Teh et al. only considered the case of a linear likelihood,
one could view the probabilistic model employed by the GP-VAE as a direct extension to their work in which
the parametric likelihood function is a DNN.
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Linear likelihoodGP likelihood

R
em

ove
input

dependencies

GP-VAE

fk ∼ GP(0, k(x, x′))
yn|f n ∼ N (µ(f n), Σ(f n))

VAE

f n ∼ N (0, I)
yn|f n ∼ N (µ(f n), Σ(f n))

GP-FA

fk ∼ GP(0, k(x, x′))
yn|f n ∼ N (Wf n, Σ)

Factor Analysis

f n ∼ N (0, I)
yn|f n ∼ N (Wf n, Σ)

GP-LVM

f n ∼ N (0, I)
yp|f ∼ GP(0, k(f , f ′))

DGP

fk ∼ GP(0, k(x, x′)
yp|f ∼ GP(0, k(f , f ′))

Fig. 4.1 A unifying perspective on multi-output GPs.

analysis, or equivalently, probabilistic principal component analysis (Tipping and Bishop, 1999)
when Σ = σ2I. Akin to the relationship between factor analysis and linear multi-output GPs,
standard VAEs can be viewed as a special, instantaneous case of GP-VAEs.

Deep Gaussian Processes

Single layered deep GPs (DGPs) (Damianou and Lawrence, 2013) are characterised by the use
of a GP likelihood function3, giving rise to the generative model

f ∼
K∏

k=1
GP

(
0, kθ1,k

(x,x′)
)

y|f ∼
P∏

p=1
GP

(
0, kθ2,p(f(x), f(x′))

) (4.14)

where yn = y(xn). The GP latent variable model (GP-LVM) (Lawrence and Moore, 2007) is
the special, instantaneous case of single layered DGPs. Multi-layered DGPs are recovered using
a hierarchical latent space with conditional GP priors between each layer.

3Adopting the naming convention of Teh et al. (2005), an appropriate name for this general class of models is
‘nonparametric latent factor models’.
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4.3 Expectation Propagation

The GP-VAE employs the structured approximate posterior

q(f) = 1
Zq(θ, ϕ)pθ1(f)

N∏
n=1

lϕ(fn|yn) (4.15)

where the approximate likelihoods lϕ(fn|yn) are parameterised by an inference network. For the
case in which the parameters of lϕ(fn|yn) are freely optimisable, the approximate posterior used
in expectation propagation (EP) is recovered (Minka, 2001). Recently, considerable success
has been found using EP to unify sparse approximation schemes in GP and DGP models (Bui,
2018). EP approximates the GP posterior using the unnormalised structured approximate
posterior

q(f) ∝ pθ(f)
N∏

n=1
lϕn(u). (4.16)

Whilst VI uses gradient based methods to minimise the global exclusive KL divergence
KL (q(f) ∥ pθ(f |y)), EP employs an iterative fixed point procedure that considers the minimi-
sation of the local inclusive KL divergence

ϕn ← arg min
ϕn

KL
(
q\n(f)p(yn|fn) ∥ q\n(f)lϕn(u)

)
(4.17)

where q\n ∝
q(f)

lϕn (u) is the ‘cavity distribution’. The procedure refines each lϕn(u) to approximate
the contribution of each local likelihood pθ2(yn|fn) to the true posterior. The algorithmic
differences between VI and EP have several important consequences:

Approximate posterior: EP minimises the inclusive KL divergence, whereas VI minimises
the exclusive KL divergence. Thus, we can expect the approximate posterior found using
EP to avoid the mode matching behaviour of VI and, in turn, overconfident approximations.
This is not always a positive characteristic: in the case of bi-modal likelihood factors,
minimising the inclusive KL divergence with a uni-modal lϕn(u) will incorrectly assign
high probability to regions of low probability.

Computational efficiency: EP is often considerably slower than VI. This owes to the dif-
ference in optimisation procedures. Specifically, VI can employ the wealth of stochastic
optimisation procedures to significantly improve efficiency. Although stochastic methods
for EP exist (Li et al., 2015; Vehtari et al., 2014), these place stronger restrictions on the
approximate posterior. Furthermore, simultaneously optimising model parameters and
variational parameters does not fit naturally within the EP framework. It is common
practice to tune model parameters after the procedure has converged, requiring it to be
run again.
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Amortisation: EP requires the parameters of the approximate likelihoods to be tuned indi-
vidually. When the approximate likelihoods are parameterised by an inference network,
this is impossible. Thus, EP shares the same limitations as mean-field VI.





5 | Experiments

In this chapter we detail an experimental investigation into the modelling capability of the
GP-VAE. Section 5.1 begins with a discussion of the key implementation details that were
found to improve the efficiency and robustness of the GP-VAE. Section 5.2 evaluates the
relative performance of the ELBO estimators derived in Chapter 3. In Sections 5.3 to 5.5, we
demonstrate the capability of the GP-VAE on a wide range of experiments involving spatio-
temporal datasets with distinguishable characteristics, comparing its performance to other
multi-output GP models and structured VAEs. Finally, Section 5.6 probes the performance of
the GP-VAE and sparse GP-VAE on a large spatio-temporal weather dataset.

The Python implementation of the GP-VAE as well as all the experiments conducted in this
thesis can be found at https://github.com/MattAshman/SpatioTemporalVAE.

5.1 Implementation Details

Whilst the techniques outlined in this section are not strictly necessary, they often help to avoid
numerical instabilities, improve computational efficiency and improve the performance of the
GP-VAE.

5.1.1 Avoiding Numerical Instabilities

A regularly encountered problem when implementing GP based models are numerical instabilities
arising when trying to invert poorly conditioned matrices. In particular, training and testing the
GP-VAE requires sampling each of the K approximate posterior GPs with mean and covariance
functions taking the form

m̂(x) = kff (Kf f + Σϕ)−1 µϕ

k̂(x,x′) = kff ′ − kff (Kf f + Σϕ)−1 kff .
(5.1)

Note that we have dropped the subscript k for notational convenience. (Kf f + Σϕ)−1 may be
extremely poorly conditioned for large N , especially when the variances of the approximate

https://github.com/MattAshman/SpatioTemporalVAE
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posteriors (the elements of Σϕ) are small or the lengthscales of the GP priors are large. The
inversion (Kf f + Σϕ)−1 can be avoided by drawing out the Cholesky factor Σ− 1

2
ϕ :

(Kf f + Σϕ)−1 = Σ− 1
2

ϕ

(
Σ− 1

2
ϕ Kf f Σ− 1

2
ϕ + I

)−1
Σ− 1

2
ϕ . (5.2)

The eigenvalues of Σ− 1
2

ϕ Kf f Σ− 1
2

ϕ +I are bounded below by 1 and above by 1+ N
4 maxij

(
[Kf f ]ij

)
(Rasmussen and Williams, 2005). To improve numerical stability and computational efficiency
further, matrix inversions are performed using the Cholesky decomposition.

We found that the covariance Kf f often became numerically singular for large N . In such cases,
adding a small amount of jitter to the diagonal can restore positive definiteness - we used 10−5

to ensure numerical stability in all our experimentation. Compared to the overall stochasticity
of the Monte Carlo estimators, the effect is negligible.

5.1.2 Avoiding Posterior Collapse

During training, we observed that for some latent dimensions the variance of the approximate
likelihood occasionally grew very large in concurrence with the scale of the GP prior collapsing
to near zero. This removes any dependence on the observed data from these posterior GPs,
constraining the effective approximate posterior to fewer latent dimensions than specified. We
found this to result in a generally poorer fit to the observed data. To understand the origin of
this effect, recall the decomposition of the ELBO

LELBO = Eq(f) [pθ2(y|f)]−KL (q(f) ∥ pθ1(f)) . (5.3)

When the variance of the prior is much smaller than that of the approximate likelihood, the
structured approximate posterior becomes equal to the prior resulting in the KL term of (5.3)
collapsing to zero. Put more succinctly, the approximate posterior gives up on conditioning on
the observed data in favour of remaining close to the prior.

We are not the first to observe this phenomenon, more commonly known as ‘posterior collapse’.
A popular workaround is to warm-up the KL term using the modified ELBO

Lβ
ELBO = Eq(f) [log pθ2(y|f)]− βKL (q(f)) ∥ pθ1(f)) (5.4)

where β is gradually increased from 0 to 1 during training (Bowman et al., 2016; Cremer et al.,
2018; Sønderby et al., 2016). Whilst working from a pragmatic perspective, the approach
requires a seemingly arbitrary modification to the otherwise theoretically principled ELBO. We
found a more effective resolution was to initialise the variance of the approximate likelihoods
and true likelihoods to be very small (10−4), with no change to the ELBO necessary. This
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strongly encourages the model towards conditioning on, and fitting, the observed data, rather
than collapsing to the prior.

5.1.3 Experimental Details

Whilst the theory outlined in Chapters 2 and 3 describes a general decoder parameterising both
the mean and variance of the likelihood, we experienced difficulty training GP-VAEs using a
learnt variance, especially for high-dimensional observations. Thus, for the experiments detailed
in this chapter we use a shared variance across all observations.

We use the Adam optimiser (Kingma and Ba, 2014) with a constant learning rate of 0.001.
Unless stated otherwise, we estimate the gradients of the ELBO using a single sample and the
ELBO itself using 100 samples. For each experiment, we normalise the observations using the
means and standard deviations of the data in the training set.

5.2 Comparing Estimators

In Chapter 3, four methods for estimating the gradients of the ELBO for the GP-VAE were
presented: the semi-analytic score function estimator (SA-SF), the doubly-stochastic score
function estimator (DS-SF), the semi-analytic path derivative estimator (SA-PD) and the
doubly-stochastic path derivative estimator (DS-PD). To compare the effectiveness of each, we
consider the task of modelling a toy dataset composed of samples from four interdependent
functions:

y1(x) = 2 sin(0.2x)− 0.5 cos(x)

y2(x) = 2 cos(0.5x) + 2 sin(0.1x)− 5

y3(x) = −y1(x) + 3y2(x)

y4(x) = 0.5y1(x)− 2y2(x).

In each case, a two-dimensional latent space with SE kernels is used. All lengthscales and
output scales are initialised to 1 and all DNNs are composed of two hidden layers of 20 units
with rectified linear unit (ReLU) activation functions. A dataset of 100 data points is formed
by sampling each of the four functions uniformly in the range x ∈ [−50, 150].

5.2.1 Comparing Gradient Estimators

Figure 5.1 compares the progression of the ELBO for GP-VAEs optimised using each of the four
estimators. After 5000 epochs, the converged ELBO for the DS-PD estimator is -19.17, notably
better than the converged ELBO for the other three estimators, all of which are less than -110.
The rate of convergence of the score function estimators is significantly slower than that of the
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Fig. 5.1 A comparison between the GP-VAE ELBO when trained using each of the four
estimators: semi-analytic score function (SA-SF), doubly-stochastic score function (SF),
semi-analytic path derivative (SA-PD) and doubly-stochastic path derivative (PD).

path derivative estimators, with the two approaches reaching an ELBO of around -800 and -200
after 50 epochs, respectively. Throughout the training regime, the semi-analytic estimators
perform worse than their doubly-stochastic counterparts. As previously discussed in Chapter 3,
this suggests that stochasticity of the Monte Carlo estimates cancels, which in turn, suggests
that the quality of the approximate posterior is good. Whilst the path derivative estimators
perform better than the score function estimators for the majority of training, the DS-SF
estimator converges to a larger ELBO than the SA-PD estimator. However, any conclusions
made from Figure 5.1 should be treated with caution: the effects of random initialisation can be
large, especially when using likelihood functions parameterised by DNNs. Furthermore, because
the dataset being modelled is relatively uncomplicated, the learnt likelihood function is likely
to be simple and thus easily approximated. It may be that for more complex data, the learnt
likelihood is not so easily approximated, in which case, the stochasticity of the doubly-stochastic
estimators would not cancel to the same degree. In practice, we found it beneficial to train
models using both the DS-PD and SA-PD estimators and evaluate the performance of the
model with the highest ELBO.

5.2.2 Comparing ELBO Estimators

Figure 5.2 compares the empirical variance of the semi-analytic ELBO estimator (SA-ELBO)
and doubly-stochastic ELBO (DS-ELBO) estimator using a single sample. Similar to 5.1, we
see that the doubly-stochastic estimator has a stronger empirical performance than its semi-
analytic counterpart, consistent with the claim that the quality of the approximate posterior
is good. Observe that the difference between the variance of the estimators sharply increases
in synchrony with the increase in ELBO shown in Figure 5.1. The increase in ELBO is due
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Fig. 5.2 A comparison between the variance of the semi-analytic ELBO estimator (SA-ELBO)
and doubly-stochastic ELBO estimator (DS-ELBO) for the GP-VAE trained on the toy dataset
using the DS-PD estimator.

to the approximate posterior improving, which results in a reduction in stochasticity of the
doubly-stochastic estimators.

5.3 Electroencephalogram Dataset

The electroencephalogram (EEG) dataset was collected for the purpose of examining genetic
predisposition to alcohol1. The complete dataset consists of 120 recordings for each of the 122
subjects. Each recording contains N = 256 measurements recorded over a duration of 1 second,
with each measurement being composed of voltage readings taken by 64 electrodes positioned
at different locations on a patient’s scalp.

Adopting the experimental procedure laid out by Requeima et al. (2019), we consider the smaller
dataset of a single, partial recording. Specifically, the dataset is formed using measurements
from the seven frontal electrodes FZ and F1-F6 from the first trial on control subject 337.
The task is to predict the final 100 samples for electrodes FZ, F1 and F2 having observed
the first 156 samples as well as all 256 samples for electrodes F3-F6. Following Requeima
et al., we evaluate the model using the standardised mean squared error (SMSE) and negative
log-likelihood (NLL). As the final 100 samples are partially observed, the use of a partial
inference network is required. In Chapter 3 four candidates were discussed: zero imputation
(ZI), PointNet, IndexNet and FactorNet. We evaluate the performance of each.

For all GP-VAE models we use a three-dimensional latent space, each using SE kernels with
lengthscales and scales initialised to 0.1 and 1, respectively. Using fewer latent dimensions
than observation dimensions forces the model to share information across dimensions, which is

1The data can be found at https://archive.ics.uci.edu/ml/datasets/eeg+database.

https://archive.ics.uci.edu/ml/datasets/eeg+database
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needed for data imputation tasks such as this. All DNNs, except for those in PointNet and
IndexNet, use two hidden layers of 20 units with ReLU activation functions. PointNet and
IndexNet employ DNNs with a single hidden layer of 20 units and a 20-dimensional intermediate
representation. All GP-VAE models are trained for 3000 epochs using a batch size of 100.
The procedure is repeated 15 times, and the mean ± standard deviation of the performance
metrics for the 10 iterations with the highest ELBO is reported2. Table 5.1 details the results.
The performance of the GP-VAE models is compared to that of independent GPs (IGP),
the Gaussian process autoregressive regression model (GPAR) (Requeima et al., 2019) and a
GP-VAE using a linear likelihood function and IndexNet (GP-VAE-LL).

Table 5.1 A comparison between multi-output GP models on the EEG data imputation task.

GP-VAE

Metric IGP† GPAR† GP-VAE-LL ZI PointNet IndexNet FactorNet

SMSE 1.75 0.26 0.279 ± 0.017 0.272 ± 0.030 0.602 ± 0.088 0.238 ± 0.019 0.278 ± 0.043
NLL 2.60 1.63 1.898 ± 0.053 2.236 ± 0.367 3.030 ± 1.341 2.012 ± 0.283 2.228 ± 0.210
†Results taken directly from Requeima et al. (2019).

Table 5.1 shows that all multi-output GP methods achieve significantly better predictive perfor-
mance than independent GPs. This demonstrates the importance of modelling dependencies
between voltage readings and not solely temporal dependencies. Amongst multi-output GPs,
the GP-VAE using IndexNet achieves a new state-of-the-art average SMSE of 0.238, marginally
outperforming both the GP-VAE using zero imputation and FactorNet as well as GPAR, which
achieves an average SMSE of 0.26. The average NLLs of the GP-VAEs are noticeably worse
than that of GPAR, for which there are two possible explanations:

1. the GP-VAE overfits to the training data, a consequence of the large number of model
parameters including in the likelihood function and selection of models with the highest
ELBO;

2. the approximate posterior is overconfident, a consequence of employing VI with a Gaussian
approximate distribution.

GPAR has few model parameters and performs exact inference, meaning the posterior un-
certainty estimates are likely to be better than the GP-VAEs. Nonetheless, the relatively
strong performance of the GP-VAE demonstrates its ability to model dependencies between
observations and produce accurate posterior predictions in the presence of partially observed

2We found that the GP-VAE occasionally got stuck in very poor local optima. Since the ELBO is calculated
on the training set alone, the experimental procedure is still valid.
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data. It is illuminating to compare the performance of the GP-VAE using linear likelihood3

to the GP-VAE using a non-linear likelihood. The use of a non-linear likelihood leads to
a substantial improvement in average SMSE, yet a worsening in average NLL. The former
highlights the benefits of using a more flexible likelihood function on even a relatively simple
dataset; however, the latter provides further evidence that the GP-VAE overfits to the training
data.

Amongst the GP-VAE models, the use of PointNet results in the worst average SMSE and
NLL of 0.602 and 2.519, respectively. Figure 5.3 compares the posterior predictive distributions
for two GP-VAE models using IndexNet and PointNet, from which the inferiority when using
PointNet is immediately clear. The GP-VAE using PointNet struggles to reconstruct even the

Fig. 5.3 A comparison between the posterior predictive distributions of two GP-VAE models
using IndexNet (green) and PointNet (orange). The shaded region shows the 95% confidence
interval for the predictive distributions.

observed data, resulting in large uncertainty estimates and poor NLL. The ineffectiveness of
PointNet can be traced back to its assumption of smoothness across neighbouring dimensions.
For the EEG dataset, the ordering of dimensions is not indicative of their position on the scalp,
rendering the assumption invalid and a hindrance to the ability of the variational posterior to

3Although exact inference can be performed using a linear likelihood - see Teh et al. (2005) - the results
reported here are better than those reported by Requeima et al. (2019) using exact inference in the linear model.
This suggests two things: a) Requeima et al. (2019) found a poor local optimum and b) we do not lose much by
performing approximate inference.
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approximate the true posterior. The differences between the use of zero imputation, IndexNet
and FactorNet is marginal. Although zero imputation is arguably less principled than the other
two methods, the results indicate that, for the EEG dataset, the theoretical inadequacies of
zero imputation do not translate to poor empirical performance.

To shed light on the properties of the GP-VAE, we consider repeating the experimental procedure
laid out above with five, seven and nine latent dimensions. Figure 5.4 plots the average ELBO,
SMSE and NLL achieved by GP-VAEs using zero imputation, IndexNet and FactorNet. The
results using PointNet were significantly worse than those shown and so are omitted from
the comparison. Provided the global optimum is found the average ELBO should increase

Fig. 5.4 Plots of the predictive performance of GP-VAE models as the number of latent
dimensions varies. The error bars show the mean ± standard deviation averaged across 10
initialisations.

with number of latent dimensions for all GP-VAEs. Although this occurs when the number of
latent dimensions is increased from three to five, the average ELBO for all GP-VAEs generally
plateaus when the number of latent dimensions reaches five. This suggests that there is little
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to gain from the use of more latent dimensions than observation dimensions. Considering that
the computational complexity of the optimisation process increases linearly with the number of
latent dimensions, using fewer latent dimensions than observed dimensions is advisable.

Whilst the average ELBO for all GP-VAEs remains comparable for all latent dimensions, the
predictive performance for the GP-VAE using FactorNet becomes significantly worse than
that of the GP-VAE using either IndexNet or zero imputation when more than three latent
dimensions are used. Note that by increasing the number of latent dimensions, the GP-VAE
is no longer forced to model dependencies between observed dimensions - the GP-VAE has
the capacity to explain the data based on temporal correlations through the latent GPs alone.
Strong performance on the EEG experiment hinges on the model’s ability to model dependencies
between observations, not temporal correlations. Indeed, a VAE using IndexNet and five latent
dimensions achieves an average SMSE and NLL 0.201 ± 0.018 and 1.682 ± 0.161, yet an average
ELBO of only -700.96 ± 19.92.

The procedure through which the GP-VAEs are trained does not necessitate the model to learn
to reconstruct missing data from different patterns of partially observed data: maximisation of
the ELBO corresponds to reconstructing only the data being conditioned on, not reconstructing
data that is missing. This shortcoming can be addressed through a modification to the training
objective. Specifically, rather than conditioning the approximate likelihood on all the observed
data, yo, we condition the approximate likelihood on a subset of the observed data, ỹo:

q(f) = 1
Zq(θ, ϕ)pθ1(f)lϕ(f |ỹo). (5.5)

The modified ELBO becomes

Lo
ELBO =

N∑
n=1

Eq(fn)

[ 1
α

log pθ1(yo
n|fn)− log lϕ(fn|ỹo)

]
+ logZq(θ, ϕ). (5.6)

Note that likelihood of the observed data, pθ1(yo
n|fn), is retained. The modification encourages

the GP-VAE to maximise the likelihood of data conditioned on partial observations.

We repeat the experimental procedure using the modified ELBO in (5.6) and construct ỹo by
removing a randomly selected 50% of values from yo at each epoch. Figure 5.5 compares the
predictive performance of the GP-VAEs as the number of latent dimensions is increased. As
hypothesised, the use of the modified ELBO significantly improves the predictive performance
of the GP-VAE using FactorNet, achieving an average SMSE of less than 0.3 for all latent
dimensions. Although the average SMSE for IndexNet and zero imputation worsens to around
0.35, the average NLL for all GP-VAE models shows a significant improvement relative to
the use of the original ELBO. The results suggest that the modified ELBO acts to regularise
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Fig. 5.5 The predictive performance of GP-VAE models trained using the modified ELBO in
(5.6) as the number of latent dimensions K varies. The error bars show the mean ± standard
deviation averaged across 10 initialisations.

the GP-VAE, deterring it from overfitting to the training data and, in turn, providing better
predictive uncertainties.

Finally, although SE kernels were used for the latent GPs to permit a fair comparison with the
results of Requeima et al. (2019), we found that by using a composition kernel formed by the
addition of a periodic kernel to the SE kernel, a better fit to the data was obtained. Specifically,
the GP-VAE using IndexNet, a three-dimensional latent space and composition kernels achieved
an average SMSE and NLL of 0.188 ± 0.024 and 1.621 ± 0.102, respectively. The results
represent a significant improvement upon the current state-of-the-art for multi-output GP
models.

5.4 Jura Dataset

The Jura dataset is a geospatial dataset comprised of 359 measurements of the topsoil con-
centrations of several heavy metals - Cadmium, Copper, Lead, Cobalt, Cromium, Nickel and
Zinc - collected from a 14.5km2 region of the Swiss Jura (Goovaerts et al., 1997). Following
the experimental procedure of others (Álvarez and Lawrence, 2011; Goovaerts et al., 1997;
Requeima et al., 2019), a smaller dataset consisting of only three observations at each spatial
location - Cadmium, Nickel and Zinc - is considered. The dataset is further divided into a
training set consisting of Nickel and Zinc measurements for all 359 locations and Cadmium
measurements for just 259 locations. Conditioned on the observed training set, the task is to
predict the Cadmium measurements at the remaining 100 locations.
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We use a two-dimensional latent space for all GP-VAE models with SE kernels with lengthscales
and scales initialised to 1. Similar to the EEG data imputation task, using fewer latent
dimensions than observed dimensions forces the model to share information across dimensions.
Furthermore, this permits a fair comparison with other multi-output GP methods which also
use two latent dimensions with SE kernels. For all DNNs except for those in IndexNet, we use
two hidden layers of 20 units and ReLU activation functions. IndexNet uses DNNs with a single
hidden layer of 20 units and a 20-dimensional intermediate representation. Following Goovaerts
et al. (1997) and Lawrence (2004), the performance of each model is evaluated using the mean
absolute error (MAE) averaged across 10 different initialisations. To account for the presence
of poor local optima, the 10 different initialisations are identified from a body of 15 as those
with the highest training set ELBO. For each initialisation the GP-VAE models are trained
for 3000 epochs using a batch size of 100. We also report the average NLL for the GP-VAE
models to indicate the quality of the posterior predictive distributions. Table 5.2 reports the
performance of the GP-VAE models using zero imputation, IndexNet and FactorNet. Similar
to the EEG dataset, their performance is compared to that of independent GPs, GPAR and
the GP-VAE using IndexNet with linear likelihood (GP-VAE-LL).

Table 5.2 A comparison between multi-output GP models on the Jura data imputation task.

GP-VAE

Metric IGP† GPAR† GP-VAE-LL ZI IndexNet FactorNet

MAE 0.574 0.411 0.487 ± 0.008 0.420 ± 0.008 0.437± 0.020 0.404 ± 0.005
NLL - - 1.179 ± 0.041 1.131 ± 0.090 1.120 ± 0.082 0.999 ± 0.062

†Results taken directly from Requeima et al. (2019).

As observed with the EEG experiment, the results highlight the comparatively poor performance
of independent GPs relative to multi-output GPs, demonstrating the importance of modelling
correlations between metal concentrations. The GP-VAE using FactorNet achieves the best test
set performance across all multi-output GPs. This holds true for models not included in Table
5.2, including Álvarez and Lawrence’s (2011) convolved multi-output GP, Goovaerts et al.’s
(1997) intrinsic coregionalisation model and Wilson et al.’s (2011) GP regression network which
achieve average MAEs of 0.455, 0.461 and 0.453, respectively. The performance of the GP-VAE
using zero imputation is also relatively strong, providing additional evidence that the use of
zero imputation does not negatively impact the empirical performance of the GP-VAE. The
GP-VAE using IndexNet achieves the worst test set performance out of all GP-VAEs with an
average MAE of 0.437. Whilst this is substantially stronger than when using a linear likelihood
function, it contrasts with its state-of-the-art performance on the EEG experiment in which the
use of IndexNet resulted in the best test set performance and the use of FactorNet resulted in
the worst. Such variability is undesirable and exposes a potential shortcoming of the GP-VAE.
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Whilst the use of an inference network is unnecessary for either the EEG or Jura experiment, the
state-of-the-art performance of the GP-VAE relative to other multi-output GPs demonstrates its
ability to learn approximate posteriors of high quality. Nevertheless, it is instructive to consider
what is lost through amortisation. To this end, we repeat the EEG and Jura experiments
for the best performing GP-VAE models with the means and variances of the approximate
likelihood freely optimisable. The model parameters are kept fixed to the optimum found by
the amortised GP-VAE, such that any changes in the ELBO are due to improvements in the
approximate posterior. Tables 5.3a and 5.3b report the results. As alluded to in Chapter 2,

Table 5.3 A comparison between the performance of the amortised GP-VAE and non-
amortised GP-VAE (GP-VAE*).

(a) EEG

Metric GP-VAE GP-VAE*

SMSE 0.238 ± 0.019 0.251 ± 0.025
NLL 2.012 ± 0.283 2.127 ± 0.371

ELBO 393.5 ± 14.3 428.4 ± 11.0

(b) Jura

Metric GP-VAE GP-VAE*

MAE 0.404 ± 0.005 0.412 ± 0.005
NLL 0.999 ± 0.062 1.042 ± 0.060

ELBO -991.9 ± 9.7 -965.8 ± 2.6

the use of amortisation results in a lower ELBO, indicating a worse approximation to the true
posterior. However, this does not translate to poorer performance. For both the EEG and
Jura experiments, the performance of the amortised GP-VAE is noticeably better than without
amortisation. Importantly, the results demonstrate that the use of amortisation is not at the
expense of predictive performance.

In the following experiments, we consider modelling datasets in which the use of existing
multi-output GP models is unsuitable and the use of amortised VI is necessary.

5.5 Bouncing Ball Experiment

First introduced by Johnson et al. (2016) for evaluating the SVAE, and later considered by
Lin et al. (2018) for evaluating the SIN, the bouncing ball experiment considers a sequence of
one-dimensional images representing a ball bouncing under linear dynamics, as illustrated in
Figure 5.6. The dataset consists of 80 12-dimensional image sequences each of length 50, with
the task being to predict the trajectory of the ball given a prefix of a longer sequence. The
image sequences are generated at random by uniformly sampling the starting position of the
ball whilst keeping the bouncing frequency fixed.

To ensure a fair comparison with the SVAE and SIN, we adopt an identical architecture for
the inference network and decoder. In particular, we use DNNs with two hidden layers of 50
units and hyperbolic tangent activation functions. Whilst both Johnson et al. and Lin et al.
use eight-dimensional latent spaces, any image of the bouncing ball can be summarised by a
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single value indicating its position in the one-dimensional image. Thus, we consider modelling
the image sequences using a GP-VAE with a one-dimensional latent space and a periodic GP
kernel to reflect our a priori knowledge of periodic dynamics. Figure 5.6 compares the posterior
latent GP and mean of the posterior predictive distribution with the ground truth for a single
image sequence. Observe that the ground truth is reconstructed with almost exact precision,
owing in equal measure to

1. the ability of the GP prior to model the latent dynamics;

2. the flexibility of the likelihood function to map to the high-dimensional observations.

Fig. 5.6 A comparison between the mean of the GP-VAE’s posterior predictive distribution
(middle) and the ground truth (top) conditioned on noisy observations up to the red line. The
latent approximate GP posterior is also shown (bottom).

Following Lin et al. (2018), we evaluate the τ -steps ahead predictive performance of the GP-VAE
using the mean absolute error, defined as

Ntest∑
n=1

T −τ∑
t=1

1
Ntest(T − τ)d

∥∥∥y∗
n,t+τ − Eq(yn,t+τ |yn,1:t)

[
yn,t+τ

]∥∥∥
1

(5.7)

where Ntest is the number of test image sequences with T time steps and y∗
n,t+τ denotes the

noiseless observation at time step t + τ . We use Ntest = 10 and repeat the experiment 10
times to obtain a mean and standard deviation. Figure 5.7 compares the performance of the
GP-VAE with the SVAE and SIN using LDS priors, alongside the benchmark performance
of the regular LDS. Despite using just a single latent dimension, the GP-VAE significantly
outperforms the other two models. These results demonstrate the GP-VAE’s effectiveness in
modelling high-dimensional data with low-dimensional latent dynamics.

To showcase the versatility of the GP-VAE, we extend the complexity of the original bouncing
ball experiment to consider a sequence of 50-dimensional images representing two bouncing
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Fig. 5.7 A comparison between the τ -steps ahead predictive performance of the GP-VAE,
SVAE, SIN and regular LDS. For the GP-VAE the mean ± standard deviation is shown. The
results for the SVAE, SIN and regular LDS are taken directly from Lin et al. (2018).

balls: one under linear dynamics and the other under gravity. Furthermore, the images are
corrupted by removing 50% of the pixels at random. As before, the dataset consists of 80 noisy
image sequences, each of length 50, with the task being to predict the trajectory of the balls
given a prefix of a longer sequence. We introduce a second latent dimension with a periodic
kernel to model the latent dynamics of the second ball and the use of IndexNet to handle the
partially observed data. To handle the increased number of observation dimensions, the number
of hidden units is increased to 128. Figure 5.8 compares the posterior latent GPs and mean
posterior predictive distribution with the ground truth for a single image sequence. Observe
that the GP-VAE has ‘disentangled’ the dynamics of each bouncing ball, using a single latent
dimension to model each. Similar to the simpler experiment, this enables the GP-VAE to
recover the ground truth with impressive precision.

5.6 Weather Station Data

The Global Historical Climatology Network (GHCN) is a publicly available database consisting
of monthly and daily climate summaries from over 100,000 weather stations situated across
the globe4. Each climate summary comprises measurements of precipitation and temperature,
alongside a multitude of other less frequently reported variables. Weather data such as this
exhibits both complex spatio-temporal correlations as well as dependencies between observed
variables, making it notoriously difficult to model. Furthermore, the dataset is extremely sparse
and irregularly sampled, rendering models that place rigid assumptions on the structure of the
data or pattern of missingness, such as the SVAE/SIN using LDS priors and GPAR, obsolete.

4The data can be found at https://www.ncdc.noaa.gov/ghcn-daily-description.

https://www.ncdc.noaa.gov/ghcn-daily-description
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Fig. 5.8 An illustration of the mean of the GP-VAE’s posterior predictive distribution (middle)
and the ground truth (top) conditioned on noisy observations up to the red line. The latent
approximate GP posterior is also shown.

5.6.1 Small Japanese Weather Experiment

We construct a subset of the data comprised of 731 daily climate reports from 156 Japanese
weather stations throughout 1980 and 1981. Each report measures the daily precipitation (mm),
maximum, minimum and average temperature (◦C) as well as snow depth (mm), any pattern
of which is potentially missing. The spatial location of each weather station is determined
by its latitude, longitude and elevation above sea level (m). The rates of missingness in the
dataset vary, with 6.3%, 14.0%, 18.9%, 47.3% and 93.2% of values missing for each of the
five weather variables, respectively. The total number of data points present in the dataset
is 156 × 731 = 114036, too many to be modelled by exact GPs. Instead, we group the data
into days of three, with each group containing 156× 3 = 468 data points distributed across 156
spatial locations and three temporal locations. We consider the task of predicting the average
temperature at all stations conditioned on all other observations for that day together with all
observations from the day before and after, as illustrated in Figure 5.9. Each model is trained
on the 122 groups from 1980 and evaluated on the data from both 1980 and 1981. Not only
does this assess the ability of the model to condition on observed data, but also its ability to
generalise inference to unseen data.

Each model is trained using the data from a single group per update for 10 epochs, with the
performance evaluated using the root mean squared error (RMSE) and negative log-likelihood
(NLL) averaged across 10 independent runs with different initialisations. We compare the
performance of the GP-VAE using IndexNet with that of the same model using a linear likelihood
function, the VAE using IndexNet and independent GPs implemented using GPyTorch (Gardner
et al., 2018). A naïve baseline using mean imputation is also provided. The IndexNet DNNs
consist of two hidden layers of 50 units each with ReLU activation functions and a 50-dimensional
intermediate representation. For the GP-VAE and VAE, we use a three-dimensional latent
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Fig. 5.9 An illustration of the small Japanese weather experiment.

space and decoder DNN consisting of two hidden layers of 20 units with ReLU activation
functions. SE kernels are used for the GP-VAE and independent GPs with lengthscales and
output scales initialised to 1. Tables 5.4a and 5.4b report the results and Figure 5.10 illustrates
the mean of the posterior predictive distribution of the GP-VAE.

Table 5.4 The results for the small Japanese weather experiment.

(a) 1980

Metric Baseline IGP VAE GP-VAE-LL GP-VAE

RMSE 9.191 2.179 ± 0.022 1.857 ± 0.081 1.678 ± 0.045 1.536 ± 0.059
NLL - 2.800 ± 0.113 2.096 ± 0.056 2.081 ± 0.076 1.924 ± 0.051

(b) 1981

Metric Baseline IGP VAE GP-VAE-LL GP-VAE

RMSE 9.660 2.118 ± 0.022 1.641 ± 0.112 1.510 ± 0.044 1.502 ± 0.058
NLL - 2.679 ± 0.105 1.979 ± 0.070 1.911 ± 0.043 1.906 ± 0.043

All models significantly outperform the mean imputation baseline, which provides a poor
estimate of the average daily temperature due to large seasonal and regional fluctuations. The
vanilla VAE slightly outperforms independent GPs, suggesting that instantaneous dependencies
between variables are more informative than the spatio-temporal dependencies of individual
variables. The GP-VAE, however, is able to model both, achieving the best average RMSE and
NLL on the 1980 dataset of 1.536 and 1.924, respectively. All models are able to generalise
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Fig. 5.10 A comparison between the ground truth average temperature readings for the 2nd

January 1980 and the GP-VAE predictions. The GP-VAE predicts the average temperature
reading for all weather stations, including those without ground truth values, conditioned on
the measurements of all other weather variables and the measurements on the 1st and 3rd of
January 1980.

inference to the unseen 1981 data, with the GP-VAE also achieving the best average RMSE
and NLL of 1.502 and 1.906, respectively.

5.6.2 Large Japanese Weather Experiment

Rather than grouping the dataset into groups of three days, in this experiment we consider
weekly groups consisting of 7 × 156 = 1092 data points each. Due to the computational
complexity of exact GPs scaling cubically with the number of data points, the cost associated
with learning and inference in this experiment using GP-VAEs is more than eight times that
of the previous experiment. Instead, we turn towards using the sparse GP-VAE framework
laid out in Chapter 3. We consider an alternative setup to the last, in which daily minimum,
maximum and average temperature measurements are removed for all stations on any particular
day with 10% probability. The task is to predict the missing values. Similar to the previous
task, each model is trained on all the data from 1980 using a single group per update for 25
epochs and the performance evaluated on the data from 1980 and 1981 using RMSE and NLL
averaged across 10 runs.

There is no existing framework for performing approximate inference in GP models conditioned
on previously unobserved data, thus we cannot provide any comparison. Instead, we compare
the performance of the sparse GP-VAE with that of the same model using a linear likelihood,
a VAE and regular mean imputation. Both the sparse GP-VAEs and VAE employ IndexNet
to handle partially observed data, with DNNs consisting of two hidden layers of 50 units and
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ReLU activation functions, and a 50-dimensional intermediate representation. The decoder
DNN uses two hidden layers of 20 units. For the sparse GP-VAE, we use a three-dimensional
latent space and SE kernels with lengthscale and output scale initialised to 1. We implement
the sparse GP-VAE using inducing points shared across each dimension and group, initialised
using k-means clustering. The inducing point locations are treated as variational parameters to
be optimised during training. Tables 5.5a and 5.5b report the results using 100 inducing points
and an inference network that parameterises the nearest 20 inducing points.

Table 5.5 The results for the large Japanese weather experiment.

(a) 1980

Metric Baseline VAE SGP-VAE-LL SGP-VAE

RMSE 9.299 4.500 ± 0.260 3.520 ± 0.242 3.259 ± 0.165
NLL - 5.862 ± 1.049 2.980 ± 0.127 2.728 ± 0.087

(b) 1981

Metric Baseline VAE SGP-VAE-LL SGP-VAE

RMSE 9.473 4.500 ± 0.155 3.449 ± 0.143 3.020 ± 0.165
NLL - 5.862 ± 0.954 2.976 ± 0.109 2.613 ± 0.088

The sparse GP-VAE achieves the best average RMSE and NLL on both the 1980 and 1981
datasets, showcasing its ability to effectively condition the parameters of the approximate
likelihood over inducing points on partially observed data. It should be emphasised that
the total number of inducing points used for the entire dataset of 114036 data points is 100.
Had the standard approach of Titsias (2009) been applied using independent sparse GPs,
2 × 52 × 3 × 100 = 31200 inducing points would be required, each with their own set of
variational parameters. In a similar vein to the benefits of amortised VI versus mean-field VI,
the sparse GP-VAE requires far fewer variational parameters than ‘vanilla’ sparse GPs and can
generalise inference to unseen data. This offers substantial advantages when modelling large
datasets such as this. Similar to previous tasks, the use of a linear likelihood function results in
a noticeably worse predictive performance on the two datasets. Its inadequacy is exposed by
the complexity of weather measurements, and the nonlinear dependencies between observations.
Despite this, it still significantly outperforms the vanilla VAE which achieves the worst average
RMSE and NLL of 4.500 and 5.862, respectively.

To shed light on how the number of inducing points, M , and the number of inducing points
the inference network parameterises, T , affects the performance of the sparse GP-VAE, we
repeated the experimental procedure for M = 20, 50 and 100 and evaluated the performance
for T = 2, 5, 10 and 20. Figure 5.11 shows the variation in predictive performance for both
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years. For M = 100, there is a general improvement in performance of the GP-VAE on both

Fig. 5.11 The variation in predictive performance of the sparse GP-VAE on the large Japanese
weather experiment as the number of inducing points, M , and inducing points parameterised
by the inference network, T , vary. The plots show the mean ± standard deviation averaged
across 10 independent initialisations.

datasets as T increases. Conversely, the performance of the GP-VAE with M = 50 worsens
when T is increased from 10 to 20, and the performance of the GP-VAE with M = 20 worsens
when T is increased beyond 5. This seems counter-intuitive - we would expect the accuracy
of the approximate posterior to improve as T increases. Further, the inference network has a
greater number of data points to train on for larger T . A second seemingly counter-intuitive
phenomenon observed in Figure 5.11 is that the predictive performance is better using M = 20
than using either M = 50 or M = 100 when T = 2 is used. Similarly, the GP-VAE using
M = 100 only outperforms that using M = 50 when T = 20.

Note that for a D-dimensional input space, the volume enclosed by the nearest T inducing
points is, on average, proportional to 1

MD . This fact yields an explanation for both phenomena:

1. when the dependency between inputs is small, the approximate posterior does better
assuming it to be 0 than trying to learn it. For small M , the value of T for which learning
the dependency becomes a hindrance is also small. Thus, the predictive performance of
the GP-VAE using M = 20 tails off first, followed by the GP-VAE using M = 50;
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2. for large M and small T , the region of input space affected by each observation is too
small for the approximate posterior to closely approximate the true posterior. Reducing
M increases this volume, resulting in better predictive performance.

Thus, for any number of M inducing points, T must be chosen to strike a balance between
these two opposing effects.



6 | Conclusion

The purpose of this thesis was to advance spatio-temporal dataset modelling through the
establishment of a framework for the amalgamation of Gaussian processes and variational
autoencoders. We defined a probabilistic model capable of explaining complex, multi-dimensional
observations and the dependencies between them. Inference in the model is intractable;
necessitating the use of variational inference. Particular attention was paid to the preservation
of structure in the approximate posterior, ensuring the effectiveness of the model was realised.
A unifying relationship between the developments made in this thesis and the work of others, in
particular the family of multi-output Gaussian processes, was established. Finally, we conducted
a rigorous empirical evaluation of the model on a variety of experiments involving datasets with
differing characteristics.

In carrying out this research, we made a number of important contributions:

GP-VAE: we introduced a novel family of VAEs for modelling spatio-temporal data - the
GP-VAE - characterised by the use of a GP prior over latent space and a structured
approximate posterior. The theoretical framework necessary for performing VI was
underpinned by the development of a number of Monte Carlo estimators, each of which
was empirically evaluated. Crucially, we found that the strongest performing estimators
were those whose performance hinged upon the quality of the approximate posterior,
providing evidence in support of its ability to accurately approximate the true posterior.

Partial inference networks: we extended the suite of existing partial inference networks to
include IndexNet, which was shown to offer distinct advantages, both theoretically and
empirically, over the PointNet approach of Ma et al. (2019) and the product of Gaussians
approach of Vedantam et al. (2017). Used together with the GP-VAE, we demonstrated
state-of-the-art performance relative to other multi-output GPs and structured VAE
models.

Sparse GP-VAE: to address the computational burden associated with inference in exact GPs,
we extended the GP-VAE framework to accommodate sparse approximations. Marking a
deviation from the existing and widely used approach of Titsias (2009), we introduced the
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use of an inference network for parameterising the sparse GP approximation. Akin to the
contributions and benefits of amortised VI relative to mean-field VI, our approach is the
first to enable inference in sparse GPs on previously unobserved data with no additional
training. We demonstrated the efficacy of the approach on a large, extremely sparse
spatio-temporally distributed weather dataset and conducted a thorough investigation
into its performance.

6.1 Future Work

We anticipate that the family of spatio-temporal VAEs developed in this thesis will advance the
deployment of DLVMs on data rich with structure and dependencies. Nonetheless, we firmly
believe that our developments have only scratched the surface of what the GP-VAE can achieve.
We envision several research directions to be particularly promising:

State-space GP models: it is possible to reformulate temporal GPs as state-space models,
which reduces the computational complexity from O

(
N3) to O (N) using Kalman filtering

and smoothing (Hartikainen and Särkkä, 2010). More recently, this has been extended
to the spatio-temporal setting using infinite-dimensional extensions of the filtering and
smoothing algorithms (Solin, 2016). In theory, these ideas could be used to significantly
reduce the computational complexity associated with learning and inference in the GP-
VAE. This will undoubtedly be challenging, not only due to the notorious difficulty of
implementing the state-space equivalent GP: for non-Gaussian likelihoods, such as those
employed in this thesis, the Kalman equations cannot be implemented exactly, demanding
the use of approximate inference. This draws in new challenges which, generally speaking,
diminish the advantages of translating the GP into state-space form (Chang et al., 2020).
Addressing these limitations is necessary before application to the GP-VAE.

Streaming multi-output sparse GPs: in Chapter 3 we discussed the advantages of the
sparse GP-VAE in comparison to existing sparse GP methods. Most notably, there is no
reason why inducing points cannot be added, moved around or removed as desired - the
purpose and structure of the inference network is unaffected. The ability to incrementally
change the complexity of the sparse GP posterior in this manner has been previously
unrealisable, and opens the door to a realm of avenues to explore with the sparse GP-VAE.
One exciting application is to use the sparse GP-VAE to model high-dimensional data
streamed through time. In theory, inducing points can be introduced sequentially to
model the regions of newly observed data without any additional training.

Mixture of latent priors: whilst this thesis concerned itself with the use of GP priors in
DLVMs, there may be settings in which it is advantageous to use a mixture of GP
priors and standard normal priors over the latent dimensions - the purpose of the latent
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dimensions with standard normal priors being to model information specific to each
observation, such as the local geographical features of weather stations. Of course,
this is speculative and somewhat idealistic; preliminary experiments on the Jura and
Japanese weather datasets found no improvements in predictive performance when used.
Whether this result is universal or dataset specific is unknown and demands further
experimentation.





A | Mathematical Derivations

A.1 Posterior Gaussian Process

For the sake of notational convenience, we shall drop the subscript k from this derivation.
Recall the approximate posterior over the latent function values, f :

q(f) = 1
Zq
N (f ; 0,Kf f )︸ ︷︷ ︸

pθ1 (f)

N
(
fk; µϕ,Σϕ

)
︸ ︷︷ ︸

lϕ(f |y)

. (A.1)

q(f) is a Gaussian with mean and covariance given by

µ̂ = Kf f (Kf f + Σϕ)−1 µϕ (A.2)

Σ̂ = Kf f (Kf f + Σϕ)−1 Σϕ =
(
K−1

f f + Σ−1
ϕ

)−1
. (A.3)

The approximate posterior over some latent function value f∗ is obtained by marginalisation of
the joint distribution:

q(f∗) =
∫
pθ1(f∗|f)q(f)df

=
∫
N
(
f∗; kf∗f K−1

f f f , kf∗f∗ − kf∗f K−1
f f kff∗

)
N
(
f ; µ̂, Σ̂

)
df

= N
(
f∗; kf∗f K−1

f f µ̂, kf∗f∗ − kf∗f
(
K−1

f f −K−1
f f Σ̂K−1

f f

)−1
kff∗

)
.

(A.4)

Substituting (A.2) into the expression for the mean above gives rise to the GP mean function:

m̂ (x) = kff (Kf f + Σϕ)−1 µϕ. (A.5)

The covariance function is a little trickier. First, expanding the matrix K−1
f f −K−1

f f Σ̂K−1
f f using

(A.3) gives
K−1

f f −K−1
f f Σ̂K−1

f f = K−1
f f −K−1

f f

(
K−1

f f + Σ−1
ϕ

)−1
K−1

f f . (A.6)
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Now we can apply the matrix inversion lemma to the right hand side of (A.6) to give

K−1
f f −K−1

f f

(
K−1

f f + Σ−1
ϕ

)−1
K−1

f f = (Kf f + Σϕ)−1 . (A.7)

Substituting this into the expression for the covariance gives rise to the GP covariance function:

k̂
(
x,x′) = kff ′ − kff (Kf f + Σϕ)−1 kff . (A.8)

A.2 Expected Gradient of the Approximate Likelihood

The expected gradient of the approximate likelihood, Eq(f)
[
∇(·) log lϕ(f |y)

]
, can be evaluated

analytically as follows. First, we make the expansion

Eq(f)
[
∇(·) log lϕ(f |y)

]
=

N∑
n=1

K∑
k=1

Eq(fnk)
[
∇(·) log lϕ(fnk|yn)

]

=
N∑

n=1

K∑
k=1

Eq(fnk)

[
∇(·)

(
− log σϕ,k(yn)− 1

2σ2
ϕ,k(yn)

(fnk − µϕ,k(yn))2
)]

.

(A.9)
Application of the chain rule gives

Eq(fnk)
[
∇(·) log lϕ(fnk|yn)

]
= −∇(·) log σϕ,k(yn)

− Eq(fnk)
[
(fnk − µϕ,k(yn))2

]
∇(·)

(
1

2σ2
ϕ,k(yn)

)

+ 1
2σ2

ϕ,k(yn)
Eq(fnk) [fnk − µϕ,k(yn)]∇(·)µϕ,k(yn).

(A.10)

We can expand the expectation Eq(fnk)
[
(fnk − µϕ,k(yn))2

]
as

Eq(fnk)
[
(fnk − µϕ,k(yn))2

]
= Eq(fnk)

[
(fnk − µ̂k,n)2

]
+ (µ̂k,n − µϕ,k(yn))2

=
[
Σ̂k

]
nn

+ (µ̂k,n − µϕ,k(yn))2
(A.11)

giving

Eq(fnk)
[
∇(·) log lϕ(fnk|yn)

]
= −∇(·) log σϕ,k(yn)−([

Σ̂k

]
nn

+ (µ̂k,n − µϕ,k(yn))2
)
∇(·)

(
1

2σ2
ϕ,k(yn)

)

+ 1
2σ2

ϕ,k(yn)
(µ̂k,n − µϕ,k(yn))∇(·)µϕ,k(yn).

(A.12)
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