

Weight Uncertainty in Neural Networks

Tennison Liu, Chelsea Murray, Eli Persky

Introduction

Exact Bayesian inference over a neural network is intractable.

- Inference: use variational approximation to the posterior.
- Prediction: ensemble of networks by repeatedly sampling weights.

Approximate Inference

Bayes-by-Backprop (BBB) [1] objective function:

$$\mathcal{F}(\mathcal{D}, \theta) = \mathrm{KL}\left[q(\mathbf{w}|\theta)||P(\mathbf{w})\right] - \mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right]$$
$$\approx \sum_{i=1}^{n} \log q(\mathbf{w}^{(i)}|\theta) - \log P(\mathbf{w}^{(i)}) - \log P(\mathcal{D}|\mathbf{w}^{(i)})$$

We explore single Gaussian and Mixture of Gaussian priors. Variational posterior $q(\mathbf{w}|\theta)$ is Gaussian, sampled using reparameterisation:

$$\mathbf{w} = \mu + \sigma \circ \epsilon \quad \text{where} \quad \epsilon \sim \mathcal{N}(0, I)$$

Or sample activations b conditioned on inputs a and weights wusing local reparameterisation trick (LR Trick) [2]:

$$\begin{split} b_{m,j} &= \gamma_{m,j} + \sqrt{\delta_{m,j}} \zeta_{m,j} & \text{where } \zeta \sim \mathcal{N}(0,1) \\ \text{with } \gamma_{m,j} &= \sum_{i} a_{m,i} \mu_{i,j}, & \delta_{m,j} = \sum_{i} a_{m,i}^2 \sigma_{i,j}^2 \end{split}$$

Computationally efficient, decreases variance of gradient estimates leading to faster convergence.

Monte Carlo (MC) Dropout [3] Bayesian interpretation of dropout i.e. draw samples at test time by repeatedly masking random weights.

Functional Variational Inference (FVI) [4] optimisation against distributions over functions with a Gaussian Process prior:

$$\begin{split} \mathcal{F}(D,\theta) &= \mathrm{KL}[q(\mathbf{f}|\theta)||P(\mathbf{f})] - \mathbb{E}_{q(\mathbf{f}|\theta)}[\log P(\mathcal{D}|\mathbf{f})] \\ & \text{with } P(\mathbf{f}) \sim \mathcal{GP}(0, K_L + K_{RBF}) \end{split}$$

 $q(\mathbf{f}|\theta)$ NN with Gaussian weights

Removed (%)	0	50	75	95	98	100
# Weights	2.4M	1.2M	600k	120k	48k	0
Error (%)	1.29	1.28	1.33	1.58	1.66	89.71

Table 2. Classification accuracy in BNN after pruning weights with the lowest Signal-to-Noise ratio.

 BNNs achieve superior performance and improved calibration over regularisation methods such as dropout and MC dropout.

• The Bayesian approach provides a **principled method for pruning** the network. Weights with a low Signal-to-Noise ratio in the posterior distribution can be masked out with minimal effect on performance.

Reinforcement Learning

- UCI Mushroom Bandit: agent selects action (eat vs. not eat) with highest reward.
- Using Thompson Sampling, BBB naturally balances exploration vs. exploitation.

Figure 6. Regression with data clusters. FVI handles uncertainty between clusters.

Conclusions

• BNNs match and exceed the **performance** of other methods while providing **sensible uncertainty estimates** and **better calibration**.

• Training a BNN can be viewed as training an infinite **ensemble** on neural networks while only doubling the number of parameters.

LR and FVI provide improvements in certain situations.

References

 Blundell, Charles, et al. "Weight uncertainty in neural network." International Conference on Machine Learning. PMLR, 2015.

 [2] Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." arXiv preprint arXiv:1506.02557 (2015).

[3] Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." *International Conference on Machine Learning*. PMLR, 2016.

[4] Sun, Shengyang, et al. "Functional variational Bayesian neural networks." arXiv preprint arXiv:1903.05779 (2019).