Weight Uncertainty in Neural Networks
Tennison Liu, Chelsea Murray, Eli Persky

Introduction

Traditional neural networks use point estimates of the weights while Bayesian Neural Networks (BNNs) use posterior distribution over weights.

- **Poor calibration**
- **No uncertainty estimates**
- **Poor generalisation**

Exact Bayesian inference over a neural network is intractable.

- **Inference:** use variational approximation to the posterior.
- **Prediction:** ensemble of networks by repeatedly sampling weights.

Approximate Inference

Bayes-by-Backprop (BBB) [1] objective function:

$$ F(D, \theta) = \mathbb{KL}[q(\theta)||P(\theta)] - \mathbb{E}_q[\log P(D|\theta)] $$

$$ \approx \sum_{i=1}^{n} \log q(w^{(i)}|\theta) - \log P(w^{(i)}) - \log P(D|w^{(i)}) $$

We explore single Gaussian and Mixture of Gaussians priors.

- Variational posterior q(\theta|\theta) is Gaussian, sampled using reparameterisation:
 $$ w = \mu + \sigma \odot \epsilon \quad \epsilon \sim \mathcal{N}(0, I) $$

 - Or sample activations \(\tilde{z} \) conditioned on inputs \(a \) and weights \(w \) using local reparameterisation trick (LR Trick) [2]:
 $$ b_{m,j} = \gamma_{m,j} + \sqrt{\delta_{m,j}}z_{m,j} \quad \zeta \sim \mathcal{N}(0, 1) $$
 $$ \gamma_{m,j} = \sum_{i} a_{m,i}u_{i,j} \quad \delta_{m,j} = \sum_{i} a_{m,i}^2 \sigma_{i,j}^2 $$

- Computational efficient, decreases variance of gradient estimates leading to faster convergence.

Monte Carlo (MC) Dropout [3] Bayesian interpretation of dropout i.e. draw samples at test time by repeatedly masking random weights.

Functional Variational Inference (FVI) [4] optimisation against distributions over functions with a Gaussian Process Prior:

$$ F(D, \theta) = \mathbb{KL}[q(f)||P(f)] - \mathbb{E}_q[\log P(D|f)] $$

with

- $P(f) \sim \mathcal{GP}(0, K_{L} + K_{raw})$
- $q(f|\theta)$ NN with Gaussian weights.

Classification

<table>
<thead>
<tr>
<th>SGD</th>
<th>MC Dropout</th>
<th>BBB Gaussian</th>
<th>BBB Mixt</th>
<th>LR Trick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error (%)</td>
<td>1.90</td>
<td>1.26</td>
<td>1.58</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Table 1. Results for MNIST classification. Models trained for 300 epochs using 10 samples in training (for BNNs).

Reinforcement Learning

- **UCI Mushroom Bandit**: agent selects action (eat vs. not eat) with highest reward.
- Using Thompson Sampling, BBB naturally balances exploration vs. exploitation.

Regression

- **BBB** provides improved performance over other methods while providing sensible uncertainty estimates and better calibration.
- Training a BNN can be viewed as training an infinite ensemble on neural networks while only doubling the number of parameters.
- LR and FVI provide improvements in certain situations.

References

Figure 1. Histograms of trained weights for SGD, MC Dropout and sampled weights from BBB.

Figure 2. Calibration curves. Bayesian models avoid overconfidence.

Figure 3. Regression on synthetic data. Blue line is the median prediction; blue and orange regions show interquartile range and range.

Figure 4. Cumulative decisions. BBB converges to optimal decisions.

Figure 5. Histograms of trained weights for SGD, MC Dropout and sampled weights from BBB.

Figure 6. Regression with data clusters. FVI handles uncertainty between clusters.