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Abstract

The designing of inclusive and immersive user interfaces for virtual and augmented reality
(VR, AR) systems remains a challenge for the Human-Computer Interaction community.
Design exclusion, coupled with limited research in understanding the usability of VR/AR
systems for individuals of various (dis)abilities, is detrimental to the goal of providing an
enriching and inclusive experience for all users. Furthermore, the designing of optimal 3D
user interfaces (UIs) is prone to noisy behaviour from users and variability between user
preferences, which makes this process non-trivial.

This dissertation provides three central contributions to address this challenge. First,
we systematically investigate the design parameters that dominate user performance and
comfort when interacting with UI layouts using techniques borrowed from design engineering.
Second, we create a novel model-based design toolkit that facilitates the design, creation,
and exploration of inclusively immersive 3D UI layouts. This toolkit can be used to construct
UI layouts that accommodate the unique perceptual, cognitive, and physical capabilities of
the user. We successfully use the design parameter analyses to convert the parameters into
predictive models, which are then used to construct a single objective function to optimise.
Additionally, we apply a user-in-the-loop approach to our toolkit through preference learning
to integrate the designer’s feedback into the optimisation process and suggest alternative
configurations pertaining to user capability at design time. Third, we demonstrate a method
of evaluating the usability of the toolkit by constructing several design tasks and specifying
criteria relating to the Cognitive Dimensions of Notations. The author and another expert
evaluator complete these tasks to evaluate the toolkit and provide qualitative feedback and
potential extensions to the project.

Our UI design toolkit differs from current state-of-the-art techniques for several different
reasons: while previous works have integrated specific types of human performance models
(such as those related to visual aesthetics or physical ergonomics) into toolkits, our toolkit is
the first to combine models related to physical ergonomics, cognition, and visual perception
into a single product. Furthermore, the toolkit utilises both multi-objective optimisation
and preference learning to provide the designer with the ability to directly influence the
optimisation process and steer the direction between exploration and exploitation. It is hoped
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that the identification of critical design parameters and the preliminary framework provided
by the design toolkit can provide a foundation for further work to improve the quality of
immersive experiences delivered to users of various abilities.
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Chapter 1

Introduction

1.1 Motivations and Contributions

The past several decades have welcomed improvements in virtual and augmented reality (VR,
AR) systems, providing users with an immersive and interactive digital experience. While
these systems have been integrated into devices such as mobile devices, projectors, and PCs,
the integration into head-mounted displays (HMDs) has facilitated a wider range in movement
and a more comfortable user experience. These devices can provide a completely immersive
simulated experience as with VR, or a projection of computer-generated objects onto the
real world as with AR. The multiple sensory immersion offered by both devices enables
users to bridge the divide between the physical and virtual worlds and have experiences
much different from reality. For example, the Hololens 2 is an optical see-through HMD
device shown in Figure 1.1 which provides an AR experience by projecting holograms onto
the user’s real world environment. Figure 1.2 (a) displays an image taken with the camera
attached to the Hololens 2 of a sample UI consisting of various widgets and buttons which
the user can physically interact with. The Hololens 2 also utilises spatial mapping, which
provides a detailed representation of real-world surfaces in the environment around the device
as shown in Figure 1.2 (b).

Due to the importance of providing a comfortable and efficient VR/AR experience,
there has been increased focus in the study of physical and visual ergonomics for designing
VR/AR games and applications. For Human-Computer Interaction (HCI) research, there
are two major challenges associated with these systems. First, designers cannot be aware
of the capabilities of every user for the application they are designing. This limitation is
conducive to design exclusion, in which the designer unintentionally excludes certain users
or user groups due to implicit biases or assumptions they form about the user. Design
exclusion, coupled with limited research in understanding the usability of VR/AR systems
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Fig. 1.1 The Hololens 2 optical see-through HMD.

Fig. 1.2 (a) A sample UI designed for the Hololens 2 using Unity, (b) the spatial mapping
feature of the device.

for individuals of various (dis)abilities, is detrimental to the goal of providing an enriching
and inclusive experience for all users.

A second challenge for VR and AR systems is the designing of effective 3D user interface
(UI) layouts. The ‘optimality’ of these layouts is often variable to human perception,
psychology, and preference; an optimal design for one user will usually not be optimal for all
other users. Such noisy behaviour from users and variability between user preferences makes
the process of UI optimisation non-trivial.

To mitigate designer bias and facilitate the design, creation, and exploration of inclusively
immersive user interfaces (UIs), this project aims to create a model-based design toolkit for
building 3D UI layouts which considers the perceptual, cognitive, and physical capabilities
of the user. Because the 3D UIs designed with this toolkit may be used by individuals with
some form of impairment, a central focus of this project will be the identification and analysis
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of controllable and uncontrollable design parameters which dominate user performance and
comfort when interacting with the interface. Specifically, the key objectives are:

1. Systematically investigate the controllable and uncontrollable design parameters that
dominate user performance and comfort when interacting with 3D UI layouts via a
model-based approach.

2. Develop a model-based design tool for constructing 3D UI layouts that can provide
feedback and suggest alternative configurations pertaining to user capability to the
designer at design time.

Our UI design toolkit differs from current state-of-the-art techniques for several reasons.
First, it takes a model-based approach to parameterise the various perceptual, cognitive, and
physical factors which affect user performance and comfort when interacting with 3D UI
layouts. The UI toolkit allows the designer to continuously choose and adjust the weights
of these functions, which are then used in multi-objected weighted optimisation to search
for an optimal UI layout. This first feature enables the incorporation of a variety of human
performance models ranging from physical ergonomics to visual perception, which has not
been yet accomplished by previous UI toolkits in HCI research.

Second, the toolkit leverages a user-in-the-loop approach through preference learning
to integrate the designer’s feedback into the optimisation process. The user-in-the-loop
approach incorporates user participation into the feedback loop, and the coupling between
this approach and preference learning enables a balance between exploration of new designs
while exploiting preferences and previous design knowledge. From this second feature, the
toolkit provides the designer with the ability to directly influence the optimisation process
and steer the direction between exploration and exploitation, which is another novel aspect
of our toolkit.

1.2 Thesis Outline

We structure the remainder of this thesis as follows. In Chapter 2, we provide the necessary
background for the rest of the thesis. We first introduce VR and AR and potential challenges
that arise when designing for these devices. Next, we explore the foundations of ability-based
design and design engineering. Finally, we describe the concepts of Bayesian optimisation,
user-in-the-loop design, and preference learning.

In Chapter 3, we describe our parameter analysis approach to the project. We analyse each
of the design parameters which dominate user performance and comfort when interacting
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with 3D UI layouts on VR/AR devices. For each, we describe how the parameter may be
modelled or further investigated through envelope analysis to simulate the system’s potential
performance under a range of parameter choices.

Next, we describe the method used to design and implement our model-based UI design
toolkit in Chapter 4. Specifically, the conversion of each parameter into a function model and
the formulation of an objective function is explained in this section. Furthermore, we describe
our integration of multi-objective weighted sum optimisation, Bayesian optimisation, and
preference learning into the process of generating an optimal UI layout for AR devices.

In Chapter 5, we provide a discussion of our evaluation goals, method, and criteria used
to verify and validate our UI design toolkit. In the following chapter, we discuss the toolkit’s
design implications, limitations, and potential extensions. Finally, we conclude with closing
remarks and aims for future work.



Chapter 2

Background

2.1 Virtual and Augmented Reality

Improvements in device affordability and quality of VR/AR applications, coupled with
growing interest in VR/AR development has enabled more users to familiarise themselves
with this technology. Despite these advances, the creation of inclusive VR/AR applications
and interfaces remains a challenge. As with many devices such as computers and mobile
phones, these systems are often designed with certain ability assumptions. For example,
consider the process of putting on a VR headset: one may need to insert batteries, plug cords
into a computer, or adjust the straps on the headset. Although the task may seem simple to
some users, others may find it challenging. A study conducted by Mott et. al. [41] in the
form of semi-structured interviews with individuals with limited mobility revealed that the
abilities of many of their participants did not match the assumptions embedded in the current
VR design. The researchers found that many participants struggled with one or multiple of
seven VR accessibility barriers, including manipulating dual motion controllers, putting on
and taking off the VR HMDs, and setting up the VR system. These barriers often deter users
from engaging with such devices and emphasise the need for designing VR/AR systems
which are accessible to all people. For this project, we will focus primarily on AR technology
and the goal of improving the accessibility of these systems for people of all abilities.

2.2 Ability-based Design

A common goal shared by many developers is to create technology accessible to as many
users as possible. Despite ongoing research in accessible computing, many UIs fail to
provide similar experiences for individuals with disabilities and/or centralise on the notion of
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disability, rather than ability. However, the abilities of a user can span across a vast spectrum
and even fluctuate given the circumstance or environment they are in. Furthermore, anyone
may face a reduction in abilities, even those who may not normally be considered disabled.
For example, alcohol impairs the ability to drive and operate equipment, but only during the
period of time in which the individual is in a state of drunkenness. An even simpler scenario
may be when a person holds several books in their arms, temporarily limiting the use of that
arm. Thus, assumptions made about a user’s (dis)abilities may make it more challenging to
design more inclusive applications.

An alternative approach to inclusive design is to refocus on ability-based design [56].
Instead of considering what a person cannot do, ability-based design asks the question, “what
can a person do?" This concept differs from universal design, which aims to develop systems
for general use with a ‘one size fits all’ mentality. Instead, systems developed through
ability-based design may try to adapt and tailor themselves to the needs and preferences
of a specific user or user group. For example, SUPPLE [19] is an ability-based system
which generates different renditions in response to different user usage patterns. The system
automatically constructs UIs using an optimisation process which searches the design space
for an interface which minimises the users’ movement time. The model for movement time
is created by prompting the user to complete a series of clicking, pointing, dragging, and
list selection tasks. Through this approach, SUPPLE generates UIs customised to a users’
abilities which enables more efficient and accessible mouse interactions.

In order to make VR/AR systems more accessible to users with varying degrees of
perceptual, cognitive, and physical capabilities, we must understand the factors which
affect user comfort and performance when interacting with these systems. There have been
many studies involving human participants with various mobility impairments using VR/AR
systems. Mott et. al. [41] conducted a semi-structured interview study with participants with
mobility limitations affecting head, arms, hands, and/or legs. The participants were asked
questions regarding prior experiences with VR systems to better understand the challenges
they might encounter, and although not all participants expressed the same concerns, their
concerns reflected the need to consider the abilities of users with limited mobility in the
design process for VR applications.

Interviews and questionnaires are common methodologies for determining such parame-
ters within the HCI research community. Specifically, semi-structured quantitative studies
are often employed in the understanding of user needs and behaviours when using interactive
technologies. Blandford [5] address the principles for designing, conducting, and reporting
on such qualitative studies for the purpose of understanding current needs and practices and
evaluating the effects of new technologies in practice. We see these principles reflected in
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many fields across HCI; for example, Dias et. al. [13] interviews patients with Parkinson’s
Disease (PD), physicians, and software/game developers to identify the most significant
game-design factors in designing assistive HCI serious games for PD patients.

Although controlled user studies are useful for the evaluation stage, it is often infeasible
for designers to effectively explore a large parameter space with individuals representing all
forms of capabilities. Furthermore, user experiences and behaviour may be inconsistent and
vary over time. Another possibility is to generate realistic data from proxy-users (users who
can impersonate other users or mimic their abilities). However, the user experience for those
with some form of impairment may not be accurately reflected by using proxy-users. Thus,
alternative methods to controlled user studies may be necessary in cases involving larger
parameter spaces.

2.3 Design Engineering

Given the difficulty in extracting data in-situ from actual users or generating realistic data
from proxy users, we instead integrate techniques adapted from design engineering, a
methodology used in engineering to design products and systems which is often useful for
systems which are complex and costly to validate. Having identified a function model, it is
possible to parameterise this model. Specifically, we conduct parameter analysis to identify
and analyse the controllable and uncontrollable parameters which dominate user performance
and comfort when interacting with UIs. While both forms of parameters govern function
execution, uncontrollable parameters cannot be directly influenced and set by the designer
as with controllable parameters. Investigation of these parameters enables simulation of a
system’s potential performance through investigation of a range of parameter choices in a
process known as envelope analysis. Kristensson et. al. [29] conducts envelope analysis
and studies theoretical performance envelopes of a context-aware sentence retrieval system.
By extracting parameters from the functional description of the system and simulating its
potential performance, they are able to identify potential keystroke savings as a function of
the parameters of the subsystems, revealing additional insight in designing for augmentative
and alternative communication technologies.

After parameterisation of a model, designers often aim to find the most optimal settings
of their controllable parameters to maximise efficiency in terms of their design objectives.
However, layout optimisation is a complex task, especially when the task encompasses both
usability as well as aesthetic qualities. Recent research has employed a model-based UI
optimisation approach to optimise UIs and improve designs towards specific objectives.
Unlike heuristic methods, this approach uses design knowledge in the form of user simula-
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tions, models, and/or heuristics as an objective function to model how users interact with
and perceive such layouts. Todi et. al. [52] adapts this method to develop Sketchplore,
an interactive layout sketching tool with a real-time layout optimiser to generate usable
and aesthetic layouts for designers. Their design tool uses predictive models to address the
aesthetic and sensorimotor performance measures of generated layouts, such as visual clutter
and search, grid quality, colour harmony, and target acquisition, to define a multi-objective
function. Multi-threaded optimisation is then used to explore and exploit the design space.

2.4 Bayesian Optimisation

While multi-objective optimisation techniques such as that used in Sketchplore enables the
tool to find the most optimal setting of various parameters, designers may not want to be
limited to a single optimal design. Instead, it may be more useful to explore multiple optimal
options across the parameter space. Bayesian optimisation is a machine learning technique
which is well suited for this purpose. Specifically, this technique enables exploration of
cost functions which are expensive or difficult to evaluate; thus, it is useful in supporting UI
design, since this process usually involves multiple objectives which would be optimised
by user evaluation. Detailed formulation of the basic principles of Bayesian optimisation is
given by Snoek et. al. [46]. This technique has been commonly employed in HCI research;
for example, Brochu et. al. [6] integrates Bayesian optimisation to generate various virtual
smoke animations, which are then displayed in a preference gallery. Furthermore, Dudley et.
al. [14] leverages a combination of Bayesian optimisation and crowdsourcing to refine design
parameters for a range of UI designs. Shahriari et. al. [45] provides several other practical
applications of this technique such as A/B testing, robots and reinforcement learning, natural
language processing, and so forth.

In Bayesian optimisation, we are interested in attaining the minimum of an unknown
function f (x), known as the objective function. This function is commonly modelled as a
Gaussian Process (GP), which describes a distribution over functions with f (x) in terms of
its mean function m(x) and covariance function k(x,x′) [43]:

m(x) : E[ f (x)] (2.1)

k(x,x′) : E[ f (x)−m(x))( f (x′)−m(x′))] (2.2)
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We may write the Gaussian Process as:

f (x)∼ GP
(
m(x),k

(
x,x′

))
(2.3)

We assume that function f (x) is drawn from a GP prior; the mean function m(x) and
covariance function k(x,x′) are essentially the function equivalents of the mean and variance
of a random variable (in this case, the function f (x)). k(x,x′) may also be referred to
as the kernel, which specifies the covariance function of the GP. The kernel consists of
hyperparameters, which are optimised during the process of fitting observation data to the
GP. The observation data, in the case of UI optimisation, represent observations of user
performance when interacting with the UI. There are various kernels to choose from, each
with different properties to reflect different assumptions about the underlying data.

After fitting the GP to the observation data, the next step in Bayesian optimisation is to
use the GP to probabilistically determine the next point to evaluate. This step involves an
acquisition function, which reflects the desirability or goodness of evaluating the function at
a certain point. Some examples of acquisition functions include probability of improvement,
expected improvement, upper confidence bounds, Thompson sampling, and combinations of
the previous methods. The determination of the next point to sample influences the balance
between exploration and exploitation. While it may be desirable to explore regions in which
we have limited information, especially in early stages of optimisation, it is often beneficial
to utilise information learned during the process once more points have been observed.
Furthermore, it is also useful to exploit regions in which we are more knowledgeable about;
however, this may come at the expense of missing regions which may yield better outcomes.
Thus, the balance between exploration and exploitation is often difficult to perfect.

2.5 User-in-the-Loop Design

From a Bayesian optimisation framework, we may consider the UI optimisation process as
a balance of exploration of new designs while exploiting preferences and previous design
knowledge. The key challenge with designing an optimal UI is that the ‘optimality’ of such
designs are variable to human perception, psychology, and preference. Such noisy behaviour
from users and variability between user preferences makes this process non-trivial. Even
after obtaining an optimal solution through Bayesian optimisation, it cannot be guaranteed
that the solution will be the design that is desired for all users in all scenarios. Fortunately,
the integration of user feedback into the optimisation process can help facilitate this balance
of exploration and exploitation: this process is known as user-in-the-loop design.
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The amount of user involvement is an important consideration which may affect the gener-
ation of an optimal solution. For example, allowing users to operate with complete autonomy
may be detrimental in certain cases, especially when they have mistrust in the application
or conceal their actions [16]. Furthermore, possessing more control may stimulate more
anxiety or discomfort for some users, as expressed by van der Heijden [55]. Furthermore,
the timing of user input requests should also be considered in the user-in-the-loop process.
Losing et. al. [31] employs this process in the labelling of obstacles encountered by a robot,
but describes the challenges associated with the timing of captured training instances. A
robot drives randomly and encounters various objects, and the user interacts in real-time with
the robot by labelling approached objects with an iPad. Because the user may choose which
objects to label and incrementally incorporate into the model, there is potential of violating
independent and identically distributed (i.i.d.) assumptions in the model.

With careful consideration of the extent and timing of user feedback in the feedback loop,
user-in-the-loop approaches possess potential for developing applications and systems which
enhance user capabilities. This process has been previously integrated in HCI applications; for
example, AppGrouper [7] incorporates human input in a knowledge-graph-based clustering
process to allow domain experts to steer the clustering process in early, mid, and late stages.
In evaluation, the quality of clustering results were shown to improve when enabling users to
directly edit clusters in comparison to generating clusters by algorithm only.

2.6 Preference Learning

One potential method of integrating designer feedback into the optimisation process is through
a method known as preference learning, which utilises the preferences of the designer in
the process of generating an optimal solution. Specifically, we take a probabilistic kernel
approach to preference learning based on Gaussian processes, as proposed by Chu and
Ghahramani [9] in 2006. The overall goal is to learn the underlying ordering over pairwise
preferences between instances (the training data). We may consider a set of n distinct
instances xi ∈ Rd denoted as X = {xi : i = 1, ...,n}, and a set of m observed pairwise
preference relations on the instances, denoted as:

D = {vk ≻ uk : k = 1, . . . ,m} (2.4)

where vk ∈X ,uk ∈X , and vk ≻ uk means the instance vk is preferred to uk. In the application
of preference learning to UI design, vk and uk represent two UI designs with different
arrangements of widgets.
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The central idea is to assume that there is an unobservable latent function value f (xi)

associated with each training sample xi and that the function values f (xi) preserve the
preference relations observed in the dataset. These latent function values are assumed to be a
realisation of random variables in a zero-mean Gaussian process.

The method of capturing the designer’s preference is summarised as follows:

1. Query the designer with a paired comparison between two UI designs and record the
choice.

2. Update the Gaussian process model with the choice made by the designer.

3. Optimise a utility function which seeks a balance between exploration and exploitation
of the latent function.

Through this process, we may capture preference relations in a Bayesian framework,
allowing for global optimisation of the latent function values f (xi) describing each preference
relation xi.





Chapter 3

Parameter Analysis

This portion of the project identifies the relevant controllable and uncontrollable parameters
which dominate user performance and comfort when interacting with 3D user interfaces.
Due to the difficulty in extracting data in-situ from actual users or generating realistic
data from proxy users, we take a model-based approach. This approach involves two
steps: (1) identification and examination of pertinent models of human performance, and
(2) determination of the optimal settings of controllable parameters using these models.
A model-based approach offers potential for cost and time-effective evaluation of user
performance without the need for intrusive measures. This approach has been used previously
in UI development; for example, SPRWeb [18] is a tool that recolours websites to preserve
subjective responses and improves colour differentiability to enable users with colour vision
deficiency (CVD) to have similar online experiences as non-CVD users. Flatla et. al.
[18] use models of subjective responses from external studies and develop a constraint
optimisation technique which seeks to minimise a cost function computed by a weighted
sum of four individual costs: perceptual naturalness, perceptual differentiability, subjective-
response naturalness, and subjective-response differentiability. Their evaluation demonstrated
that SPRWeb outperformed the state-of-the-art Kuhn recolourer in choosing replacement
colours for recolouring websites. Sketchplorer [52] is another example of a model-based
approach; the sketching tool uses a real-time layout optimiser which uses predictive models
of sensorimotor performance and perception to steer the designer toward more usable and
aesthetic layout designs.

In the following subsections, we will identify and describe relevant uncontrollable and
controllable parameters which affect user performance and comfort when interacting with
UIs designed for AR systems. After identification of optimal parameter settings, we will
integrate these settings into our UI design toolkit and enable the toolkit to generate the most
optimal UI given specifications set by the designer.
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3.1 Uncontrollable Parameters

We first identify and describe relevant parameters which cannot be directly set by the
designer, also known as uncontrollable parameters. These parameters are relevant in the UI
optimisation process and can be used to construct and mitigate the occurrence of a potential
“worst case" scenario. We adapt quantitative models of these uncontrollable parameters from
various studies to analyse the effect of each parameter on user performance and comfort
when interacting with UIs designed for AR systems.

3.1.1 Physical Ergonomics

User comfort and ergonomics is an important consideration for HCI for the purpose of
improving the user experience when interacting with VR/AR systems. Despite ongoing
research, there are still challenges with evaluating VR/AR ergonomics; current methods
often involve interviews and/or questionnaires such as those used by Mott et. al. [41] to
evaluate the accessibility of VR systems for persons of limited mobility. In most scenarios,
designers will not be able to obtain feedback, if any, from enough individuals to adequately
represent all potential target users. Thus, researchers have attempted to find methods of
quantitatively modelling and predicting user ergonomics. In the following subsections,
we describe three methods of quantitatively analysing physical ergonomics: consumed
endurance, biomechanical simulation, and Rapid Upper Limb Assessment (RULA).

Consumed Endurance

VR/AR devices commonly use arm and hand gestures to enable communication between
the user and system. However, prolonged use of the arms and upper body for mid-air
gestures often leads to upper arm fatigue, a phenomenon commonly known as the ‘gorilla-
arm effect’. Hincapié-Ramos et. al. [25] develops a metric to quantify the severity of this
effect, Consumed Endurance (CE), which is derived from the biomechanical structure of
the upper arm. Although multiple body parts are involved in such mid-air arm interactions,
Hincapié-Ramos et. al. focus on the shoulder joint since it largely dominates the forces
required for moving the arm. Therefore, this perspective of CE considers endurance of the
shoulder in terms of torque as a ratio to the interaction time and uses shoulder torque as an
index for muscle strain. To further simplify CE computations, we assume that all arm poses
are static, since the shoulder must match the gravity torque when the arm is static and the
arm’s torque and angular acceleration are equal to zero.
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Biomechanical Simulation

The prediction of posture, location, direction, degree, and other factors of human movement
often involves intrusive and/or tedious procedures. Fortunately, biomechanical simulation
has offered a means of capturing this information and enables cost-efficient estimation
of physical ergonomics. It has potential for indicating user fatigue and ergonomics in a
non-intrusive manner, which is useful for HCI applications and VR/AR technology. The
collection of optical motion tracking data for biomechanical simulation usually involves a
mapping of physical to virtual markers, scaling of the musculoskeletal model, adjustment
of markers through inverse kinematics, and estimation of the muscle activations [3]. We
adopt the method implemented by Belo et. al. [15] in the estimation of muscle activations
from biomechanical simulations. This method uses simulations from OpenSim 4.1 [12], an
open-source tool for biomechanical modelling and simulation, as well as the upper extremity
model created by Saul et. al. [44]. Belo et. al. [15] analyse each arm pose over time and
then save the timeframe which minimises the reserve actuation for each pose, which yields
an activation value for each muscle and reserve actuator in the model. These values are then
combined into a single cost function to describe the cost of each arm pose in terms of muscle
activation.

Rapid Upper Limb Assessment

Rapid Upper Limb Assessment (RULA) is a heuristic survey method developed by McAtam-
ney et. al. [38] to provide a quick assessment of the postures of the neck, trunk, and upper
limbs, along with muscle function and external loads experienced by the body. To allow for
easy identification of posture ranges, the range of movement for each body part is divided
into sections, which are then numbered; low posture scores reflect postures with minimal
risk factors, while higher scores represent more extreme postures and an increased presence
of risk factors. We use scores from the study for the upper arm, lower arm, and wrist, which
are based on the joint angles of the upper and lower arms.

3.1.2 Cognitive Load

A key feature of AR devices is the ability to project computer-generated visuals onto the
users’ real environment. Because the user is still situated in their current environment, there is
more consideration of the contextual details associated with this environment in comparison
to a fully immersive experience offered by VR technology. The users’ context may include
environmental conditions (e.g. indoors vs outdoors), task, and cognitive load. For example,
experimenting in a laboratory with equipment and other researchers would demand a higher
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cognitive load than sitting alone in an office. In the first environment, the user may desire an
interface with fewer visual details in comparison to the second.

Cognitive Load Theory [50], which involves estimation of the users’ workload, is an
important aspect of HCI and the development of interactive systems. Generally, designers
would want to limit distractions and overloading users with information. However, it is often
difficult for designers to be aware of the cognitive abilities of each user and furthermore de-
velop interfaces which can adapt to changing cognitive levels. Current research has explored
various methods of inferring the users’ cognitive load in relation to HCI applications: these
methods generally fall into one of three predominant categories, the first of which involve
subjective measures such as the NASA TLX [22], a commonly-used questionnaire which
assesses subjective mental workload on a multi-dimensional rating scale. These subjective
measures may be time-consuming and tedious however, and users may forget various details
of the tasks they are questioned about. The second category for measuring cognitive load
includes physiological measures such as heart rate variability, electromyography, and skin
conductance. However, a key challenge with such measures is that they are invasive and rely
on physical contact with the user. The final category, eye tracking, offers the best potential
for non-invasive estimation of cognitive load. Gaze tracking and pupil dilation have been
previously researched and suggested to be related to the mental difficulty of tasks. This idea
is often traced back to the study by Hess and Polt [24] demonstrating correlation between
pupil size and mental activity in the form of simple multiplication problems. Lindlbauer
et. al. [30] adopts this method of computing the frequency of changes in pupil diameter to
estimate the cognitive load of the user when interacting with a UI generated with an HTC
Vive Pro VR headset. This estimation of cognitive load is used to optimise the UI in terms
of the amount of information provided (the level of detail, or LOD). While improvements
in accuracy and lowered costs of eye trackers have increased their popularity, eye tracking
methods may still suffer from practical limitations and errors caused by ambient light [4] and
off-axis distortion [36].

3.2 Controllable Parameters

We now identify and describe relevant parameters which can be directly set by the designer,
also known as controllable parameters. These parameters enable optimisation towards design
objectives, or specifically, the construction of a UI layout which is adapted to the physical,
perceptual, and cognitive abilities of the user.
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3.2.1 Target Acquisition

The modelling of human movement is a major component of predicting human-computer
interaction and ergonomics. Fitts’ Law, which enables predictive modelling of human
movement, is arguably the most commonly used human performance model in HCI. In his
1954 paper, Paul Morris Fitts [17] proposed a metric to quantify the difficulty of a target
selection task. The metric was based on information theory, in which the difficulty of a task
can be measured using the information metric bits, and that in carrying out a movement task
information is transmitted through a human channel [32]. The measure of Fitts’ index of
difficulty (ID), in bits, is:

ID = log2(
2A
W

) (3.1)

where the distance to the centre of the target (A) is analogous to a signal and the tolerance or
width of the target (W ) is like noise. The time to move to (MT ) and select (e.g. hit, click, or
press) a target of width W at amplitude A is:

MT = a+b× ID (3.2)

where a and b are constants which are determined empirically. Numerous other variants of
the original Fitts’ formulation have emerged based on his extensions, including the Shannon’s
formulation introduced by Scott MacKenzie in 1992 [32]:

MT = a+b× log2(
A
W

+1) (3.3)

The adding of 1 instead of multiplying with 2 in the Shannon’s formulation was introduced to
guarantee positive values for the ID, as written in MacKenzie’s published theory [33]. This
formula has become popular in HCI and is often the variant of Fitts’ Law used in research.

In terms of user interface design, Fitts’ Law has often been employed to describe the time
taken to click or interact with a widget using a mouse cursor or other device. Although it has
been commonly applied to 1D and 2D tasks, the necessity for a 3D performance metric has
facilitated recent extensions to 3D applications. However, the extension to 3D space intro-
duces many complications, the first of which may be attributed to impaired depth perception.
In VR/AR systems, the estimation of distances between the user and virtual targets usually
differs from that of the user and physical target, which may cause them to overestimate their
depth perception. Secondly, there are translational and rotational complexities for modelling
target acquisition for 3D targets, since these targets can be arranged and manipulated across
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three axes as opposed to one or two [10]. Finally, interactions with targets in 3D UIs include
more than clicking; users may point, grab, or even gaze at targets to form an interaction.

3.2.2 Colour Harmony

The use of colour in UIs spans across many purposes, some of which include to draw attention
to certain elements, label or group items, or visualise similarity or differences between
elements. This topic has also been explored in HCI with regards to human ability; for
example, Chroma [51] is a wearable AR system based on Google Glass which automatically
adapts the scene based on the type of colour blindness and allows users to see a filtered image
of the current scene in real-time.

Colour also has the ability to impact human perception, and certain colours may invoke
moods and feelings from the viewer. From an HCI perspective, the colouration of a UI layout
may impact the degree to which a user finds the layout aesthetically pleasing or displeasing.
When the placement of two or more colours generates a pleasant response, the colours are
said to be in harmony. The exact definition of colour harmony is not clearly delineated,
however. For centuries, artists have studied the balance and positioning of colours which
evokes a sense of harmony. These methods have often lacked robust scientific methodology
and have been subject to the discretion of the artist, thus creating many different definitions
of the concept of colour harmony.

The introduction of quantitative representations of colour in the 20th century has helped
shape the modern concept of colour harmony. In 1931, the CIE 1931 RGB colour space and
CIE 1931 XYZ colour space were created by the International Commission on Illumination
to become the first quantitative method of colour specification. However, the CIE colour
spaces were still limited by the fact that distances in CIE space do not correspond equally to
perceptual steps in colour. In 1943, Moon and Spencer [39] created a metric colourspace
through mathematical transformation of the CIE space, leading to the development of a
scientific theory of colour harmony. They later introduced a geometric formulation of
classical colour harmony based on the principle that any arrangement of colours that can
be sensed as an orderly combination will be pleasing. The general method followed was
to reduce the problem to one of geometry in ω-space, or specifically, a colour space in
which curves of constant hue appear as straight lines and the curves of constant chroma are
uniformly spaced circles. In ω-space, various types of harmony correspond to geometric
figures in space such as straight lines, triangles, and circles [40].

The definition of colour harmony was further augmented by Itten [27], who introduced
a new colour wheel with emphasis on hue in 1960. This hue wheel of twelve colours was
based on Itten’s colour harmony theory, which defined complementary pairs as harmonious
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for all three-colour combinations whose colours form equilateral or isosceles triangles and
all four-colour combinations forming squares or rectangles [27]. Based on these harmony
schemes, Matsuda [37] introduced a set of 80 colour schemes in 1995 by combining several
types of hue and tone distributions, to which our notion of colour harmony is based. These
colour schemes have been integrated into various harmonic templates as described by Cohen-
Or et. al. [11]. Each of these harmonic templates specify a range of colours within ‘wedges’
defined on an HSV colour wheel as shown in Figure 3.1. These colours may consist of shades
of the same colour, or shades which are complementary to one another.

Fig. 3.1 Harmonic templates on the HSV hue wheel as given by Cohen-Or [11]. Colours
which fall in the grey areas are considered to be harmonic.

3.2.3 Text Legibility

UIs designed for AR technology will usually consist of some form of textual content.
Although the ability to overlay this virtual content onto real objects in the environment is
a hallmark of AR, it may also induce challenges with the placement and design of text for
these systems. For instance, text legibility may be an issue due to the interaction between
the content and the texture in the background. The switching of the users’ focus between
the real environment and overlaid virtual data is known as competitive see-through [1] and
is correlated to the users’ comfort and usability of the application. Limited text legibility
can spoil the AR experience and its effectiveness in conveying content for the user; thus,
methods of designing and placing virtual text content have been widely studied in the HCI
field. For example, Manghisi et. al. [34] outlines three distinct strategies for improving text
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legibility for AR systems: 1) adjust the text placement, 2) adjust the text appearance, and 3)
place a panel behind the text.

We base our strategy for improving the text legibility of UIs created with our toolkit on the
idea that highly colourful and/or noisy regions in the users’ environment should be avoided
when placing UI components in a layout. Thus, we incorporate concepts taken from the
work of Dudley et. al. [14], which investigates this idea in the development of contextually-
adaptive text content for AR. Dudley et. al. [14] utilises crowdsourcing to capture user
preference data with regards to placement and colouration of text panels in maximising text
legibility. The label placement locations collected from the users are then scored based on
texture colouration under the hypothesis that a highly colourful background region will be
avoided when placing the label. Dudley et. al. [14] adopts a simple colourfulness metric M
introduced by Hasler and Suesstrunk [23], as well as an edgeness metric F is computed to
quantify the degree of texturing or ‘busyness’ of an image [49]. For our toolkit, we consider
both M and F of regions in the users’ environment to determine the best placement of content
in the UI.



Chapter 4

UI Toolkit Design

We design our UI design toolkit for the Hololens 2, an optical see-through HMD device
shown in Figure 1.1. The Hololens 2 provides an AR experience by projecting holograms
onto the user’s real world environment. We define the interaction space of this AR system as
a 3D Cartesian grid consisting of positions a human can reach and manipulate objects with a
fixed torso position, analogous to the method used by Belo et. al. [15]. The interaction space
is discretised into elements called voxels. The voxel dimensions are initialised with a default
side length of 10cm, but can be adjusted to change the granularity of the interaction space
representation. These voxels are used to determine the optimal placement of UI elements in
terms of physical ergonomics, text legibility, and colour harmony, as described in the next
subsections.

To simplify real-time computations and reduce overhead, the UI toolkit operates under
three assumptions: (1) the only interaction the user makes with the UI are pressing widgets
with their finger (a touch press), (2) the users’ environment is static, and (3) the user is in a
static position. We discuss the implications of these assumptions in detail in Section 6.2.

Repositories for the original software written for this project are provided in Appendix C.

4.1 Predictive Models

Using our analyses of the effects of each controllable and uncontrollable parameters on
human performance, we may convert each parameter into a predictive model. We describe
the methods used to quantify the cost of such effects in the subsections below.
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4.1.1 Physical Ergonomics

We adopt methods used by Tolani et. al. [53] to simplify the inverse kinematics procedure for
a seven degree of freedom model of the human arm. The human arm is a complex mechanical
structure which is difficult to model accurately. However, the arm can be modelled as a
two-segment chain, in which the forearm and wrist constitute a single segment. Considering
the scenario in which the wrist (the end-effector) and shoulder positions are fixed, the elbow
is free to swivel about an axis from the wrist to the shoulder. As the swivel angle φ varies,
the elbow traces the arc of a circle which lies on a plane whose normal is parallel to the
wrist-to-shoulder axis. Although this limits the number of possible arm poses available,
it simplifies the complexity of inverse kinematic computations required to compute the
ergonomic cost of each arm position. The elbow position can therefore be parameterised as a
function of φ about the û axis as:

e = r[cos(φ)û+ sin(φ)v̂]+ c (4.1)

where r is the radius and c the centre of the circle traced by the swivelling elbow joint, and û
and v̂ are two unit vectors which form a local coordinate system for the plane containing the
circle. After computation of the arm poses, we heuristically determine the ergonomic cost of
regions in 3D space in terms of consumed endurance (CE), muscle reserve, and RULA using
methods used by Belo et. al. [15]. For physical ergonomic cost calculations, we use data
collected with the U.S. Army Anthropometric Survey (ANSUR) from 1987-1988 as used by
Belo et. al [15]. While this method is efficient for real-time computations, fixing the wrist
and shoulder positions reduces the number of reachable positions in the interaction space and
produces motions where only six of the seven joint variables change between successive time
steps [53]. Regardless, these changes are not noticeable in most cases for this application.

To simplify CE calculations for our UI toolkit, we use arm data for the 50th percentile
male and compute CE for solely static poses. using methods described in [25]. The centre
of mass (CoM) of a two segment body is located along the vector linking the CoMs of
each segment, at a distance from the first segment’s CoM equal to the ratio between the
segment’s mass and the combined masses of both segments [25]. Due to the fact that the
hand coordinate is locked (always at zero degrees), the CoM of the elbow-hand vector will
thus always be 17.25cm from the elbow for the 50th percentile male. Figure 4.1 displays the
arm segments involved in computing its CoM, and Figure 4.2 shows the forces aggregated at
the CoM.
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Fig. 4.1 Arm segments involved in calculating its CoM [25].

Fig. 4.2 (a) Primary forces acting on the upper arm, and (b) forces aggregated at the CoM
[25].

The formula for the CoM of the forearm + hand combination can be written as:

D = B+
WrHamass

EbWrmass +WrHamass

−→
BC (4.2)

and the CoM of the upper arm + (forearm + hand) combination as:

CoM = A+
EbWrmass +WrHamass

Armmass

−→
AD (4.3)

where Eb is the elbow location, Wr is the wrist location, and Ha is the hand location as shown
in Figure 4.1, and Wrmass is the wrist mass, Hamass is the hand mass, and Armmass is the arm
mass as shown in Figure 4.2. Using the arm mass of the 50th percentile male m, we then
determine the force acting at the CoM as follows:

−−−→
f orcemotion,t =

−−−−−−−−→
accelerationt ∗m (4.4)
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Therefore, the total torque of the system can be expressed as:

∑ T⃗t = r⃗×−−−→
f orcemotion,t (4.5)

We derive the actual torque exerted by the shoulder muscles at time t:∥∥∥T⃗shoulder,t

∥∥∥=
∥∥∥⃗r×−−−→

f orcemotion,t − (⃗r×mg⃗+ Itα⃗t)
∥∥∥ (4.6)

By representing the arm as a two segment body composed of upper arm, forearm, and
hand, we may use the mathematical formulations of endurance provided above to study and
guide the design of mid-air interactions. However, a more detailed analysis of CE modelling
should include an extension of the model to capture other arm-segments, as well as usage of
individual body metrics such as length and mass [25].

Next, we use static optimisation to estimate muscle activations for each voxel pose
following Belo et. al. [15]. Each pose is analysed over time, and the timeframe which
minimises the reserve actuation for each pose is saved. This results in an activation value for
each muscle and reserve actuator in the model. These are combined into a single cost value
by averaging the muscle activations and summing all the reserve actuators. Results which
mostly use muscle forces are prioritised by penalising cases where reserve moments are high.
Hence, we use the maximum reserve value of all voxels, where their reserve value is the
minimum between all of the poses, as the threshold for the maximum acceptable reserve
forces Treserve. Voxels that have reserve values among Treserve receive the worst comfort
rating. This results in the following cost function:

erg cost =
∑

M
n=1 nactivation

M
+

∑
A
n=1 aactivation

Treserve
(4.7)

where M is the number of muscles, A is the number of reserve actuators in the model,
and Treserve is the threshold for the maximum acceptable reserve forces based on net joint
moments.

Finally, we compute a RULA score for each arm pose according to scoring instructions
for the upper arm, lower arm, and wrist [38]. First, the range of movements for the upper
arm are assessed and scored as:

• 1 for 20 degree extension to 20 degrees of flexion
• 2 for extension greater than 20 degrees or 20 to 45 degrees of flexion
• 3 for 45 to 90 degrees of flexion
• 4 for 90 degrees or more of flexion

If the shoulder is elevated, the posture score derived as above is increased by 1. If the upper
arm is abducted, the score is also increased by one. For the lower arm, the scores are:
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• 1 for 60 to 100 degrees of flexion
• 2 for less than 60 or more than 100 degrees of flexion

If the lower arm is working across the midline of the body or out to the side, then the score is
increased by 1. Due to a fixed neutral position, the scores for all voxel poses are incremented
by 1.

As noted by McAtamney et. al [38], RULA is designed to provide a quick assessment of
the loads on the musculoskeletal system of operators due to posture, muscle function and the
forces they exert. Thus, while it may be used as a screening tool for assessing workplace
safety, the metric should be combined with other models for a more robust assessment of
fatigue and potential injury induced on the body.

For the CE, muscle activation, and RULA objective functions, the most ergonomically
cost-efficient location to place a widget in the UI is defined as the voxel location which
minimises the cost of these functions. We note that the use of these parameterised models
reduces the number of poses in interaction space and only considers static poses of the arm.
Nevertheless, this modelling provides a real-time, objective, non-invasive and non-obtrusive
approach to assess the physical ergonomics of 3D UI interactions.

4.1.2 Cognitive Load

Due to the difficulty in quantifying the cognitive load of the user at a given instance, we
enable the designer to manually specify the cognitive level through a slider widget in the
Unity editor. The slider is scaled from 1 to 10, with 1 representing the lowest levels of
cognitive load and 10 the highest levels. We adapt a similar method used by Lindlbauer et.
al. [30] involving varying levels of detail (LOD) of the applications in the UI. In addition
to the LODs, we create three sample ‘virtual’ real environments to replicate three different
cognitive levels. These levels are described as follows:

• Low (1-3): The user is situated in a small office with a desk and seating area. UI
widgets display the maximum level of content and are sized normally.

• Medium (4-6): The user is in a classroom setting with multiple rows of desks and
chairs. Text and/or notifications displayed on UI widgets are truncated, and the size of
the widgets are slightly reduced.

• High (7-10): The user is in a laboratory setting with equipment. UI widgets only
display an icon with no notifications or text, and are downsized to a small cube.
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Figures 4.3, 4.4, and 4.5 display these environments as they appear in Unity. Through this
approach, the UI toolkit enables the designer to specify the level of detail and information
displayed in widgets in context of potential environments the user may be in while interacting
with such UIs.

Fig. 4.3 An office environment for a user with low cognitive load.
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Fig. 4.4 A classroom environment for a user with medium cognitive load.
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Fig. 4.5 A laboratory environment for a user with high cognitive load.
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4.1.3 Target Acquisition

In terms of 3D UI design, we use Fitts’ Law to describe the time taken by a user to touch an
object displayed on the AR device screen. We design a simple Fitts’ Law task using Unity,
in which nine 10cm cubes are arranged in a vertical grid configuration in front of the user.
During each iteration, a cube is chosen at random and coloured red to notify the user to touch
the selected cube. Once the user selects the correct cube, another cube is chosen at random.
The time taken for the user to select the correct cube is recorded for each iteration, as well as
the distance from the centre point of the previous selected cube and the current selected cube.
This was completed for 40 iterations. Figure 4.6 shows three configurations of the 3D Fitts’
Law task in Unity, as well as an image of the hologram projection taken on the Hololens 2.

Fig. 4.6 Vertical grid, horizontal grid, and circular Fitts’ Law task layouts which were
designed using Unity. The bottom-right image displays the layout projected on the Hololens 2.

Using the distance and movement time values, we first compute the ID of each iteration
of the task using Equation 3.1. We then plot ID against mean movement time (MT ) in
accordance to Equation 3.2 to empirically determine the values of a and b. Figure 4.7
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displays a plot of ID vs MT , which yields a linear equation providing values of a = 0.4926
and b = 0.6332. We also conduct similar experiments for different configurations of the
cubes, one in a horizontal grid layout and one in a circular layout as shown in Figure 4.6.
When plotting ID vs MT for all three experiments in Figure 4.8, we observe no significant
difference in values for a and b.

Fig. 4.7 Plot of ID vs MT for the vertical grid orientation 3D Fitts’ Law task. The plot yields
a linear equation of MT = 0.4962ID+0.6332, corresponding to values of a = 0.4926 and
b = 0.6332.

For our UI toolkit, we use values for a and b from the vertical grid layout to compute
a score for the target acquisition objective function for each voxel. We describe A as the
Euclidean distance between the current voxel position and the average centre point of widgets
already positioned in the UI layout. W describes the width of the current widget to be placed
in the UI. Voxel positions which minimise movement time are described to be most optimal
in terms of target acquisition.

It is worth noting that the data used for formulation of a target acquisition objective
function was taken from one user. By definition, Fitts’ Law models the performance of
humans; however, human performance is dependent on human traits and factors such as age,
visual health, previous exposure to certain technologies, cognitive abilities, and so forth [54].
Thus, factors such as tiredness, concentration, and cognitive load may have an effect on user
performance. For simplicity, we limit our target acquisition testing to one user and for one
interaction (touch-press).
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Fig. 4.8 Plots of ID vs MT for the vertical grid, horizontal grid, and circular orientation Fitts’
Law tasks.

4.1.4 Text Legibility

Our toolkit operates under the assumption of a static user environment and thus requires an
initial image of the users’ environment. This initial image is used to compute and compare
the colourfulness and edgeness of regions in the users’ environment, which is also used in
the determination of optimal placement of panels in terms of text legibility.

We adopt the method used by Dudley et. al. [14] in improving text legibility for text
content for AR user interfaces. Using preference data collected through crowdsourcing, the
authors score text label placement locations based on the texture and colouration of images
taken of the users’ background under the hypothesis that a highly colourful background
region will be avoided when placing a label. The colourfulness metric M is based on an
image’s RGB colour space and is computed by first collapsing the colour channels as follows:

rg = R−G (4.8)

yb =
1
2
(R+G)−B (4.9)

where R, G, and B are the red, green, and blue bands of an image. These collapsed channels
are then transformed into a representative mean µrgyb and standard deviation σrgyb:
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µrgyb =
√

µ2
rg +µ2

yb (4.10)

σrgyb =
√

σ2
rg +σ2

yb (4.11)

The mean and standard deviation are finally used to compute M:

M = σrgyb +0.3×µrgyb (4.12)

We also compute the edgeness per unit area F of an image, which quantifies the degree of
texturing or ‘busyness’ of an image (CITE Dudley). The study defines the formula for F as:

F =
{|p|Mag(p)≥ T |}

N
(4.13)

or in other words, a score for a region of N pixels for which the count of the number of
pixels p for which the gradient magnitude Mag(p) exceeds threshold T . Optimisation of the
colourfulness and edgeness objective functions seeks the voxel position which yields the
lowest M and F , respectively.

4.1.5 Colouration and Colour Harmony

When colouring the widgets in UI layouts, we integrate harmonic colour schemes developed
by Matsuda [37] in the form of harmonic templates as described by Cohen-Or et. al. [11].
There are various shapes of harmonic templates, each of which specify a range of colours
within ‘wedges’ defined on an HSV colour wheel as shown in Figure 3.1. These colours may
consist of shades of the same colour, or shades which are complementary to one another. We
choose to use the V-type template, which consists of a sector of 26 percent of an HSV colour
wheel (or 93.6 degrees of a 360 degree wheel).

The UI toolkit first computes an initial colour for a specific widget based on the dominant
colour and lightness of a patch in the initial image of the users’ environment as conducted by
Dudley et. al. [14]. We define a patch as the pixel region of the image corresponding to a
certain voxel after the voxel’s world coordinates have been converted into pixel coordinates.
The dominant colour of a patch in the image cp is extracted by taking the mode of the hue
histogram and the mean of the saturation and value values in HSV space, while the lightness
value of the patch lp is grouped by thresholds on L* based on the CIE 1975 L*a*b* colour
space. For each widget colour group g, we compute the probability of selecting g for the
widget given cp, P(g|cp), as well as the probability of selecting g given lp, P(g|lp). We
also find P(g|palette), the probability of selecting g given the defined colour palette. These
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three probabilities are combined to yield mixture distribution G(g). The colour group gmax

corresponding to the maximum of the mixture distribution G(g) is then chosen. Finally, we
choose the widget colour cw corresponding to gmax in the palette, as well as the text colour
based on the perceived brightness of colour cw.

Using colour cw and the HSV representation of cw (cHSV ), the UI toolkit then chooses a
random start and end angle θstart and θend so that the following conditions are met:

|θstart −θend|= 93.6◦ (4.14)

θstart < cHSV < θend (4.15)

These conditions ensure that cHSV falls within the angles defining the V-type template of
93.6 degrees of the HSV colour wheel. The toolkit generates colours within the range of
these angles to produce a list of harmonious colours to cw.

4.2 Objective Function Formulation

The general, the multi-objective optimisation (MOO) problem is given as follows:

Minimize
x

: F(x) = [F1(x),F2(x), · · · ,Fk(x)]T

subject to : g j(x)≤ 0; j = 1,2, . . . ,m
(4.16)

where k is the number of objective functions and m is the number of inequality constraints,
as explained by Marler et. al. [35]. x ∈ En is a vector of design variables, and F(x) ∈ Ek

is a vector of objective functions Fi(x) : En → E1. The feasible design space is defined
as X =

{
x | g j(x)≤ 0, j = 1,2, . . . ,m

}
, and the feasible criterion space is defined as Z =

{F(x) | x ∈ X}.
The solution for the MOO problem can be unclear since a single point that minimises all

objectives simultaneously usually does not exist. Therefore, the idea of Pareto optimality is
used to describe solutions for such problems. A solution point is deemed Pareto optimal if it
is not possible to move from that point and improve at least one objective function without
worsening any other objective function. Typically, there are infinitely many Pareto optimal
solutions for an MOO problem. Thus, it may be necessary to incorporate user preference
for the objective functions in order to narrow down to a single optimal solution. For our UI
toolkit, we choose to utilise an a priori articulation of preferences in which the user indicates
their preferences prior to the optimisation process and allows the optimisation algorithm to
determine a single solution which reflects these preferences. Specifically, we take a weighted
sum optimisation approach as described by Marler et. al. [35] in which we seek to minimise a
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weighted combination of the outputs of the CE, muscle activation, RULA, target acquisition,
colourfulness, and edgeness models:

U =
k

∑
i=1

wiFi(x) (4.17)

where wi is the scalar weight for each objective function, and Fi(x) is the cost of each
function. Because all of the weights must be positive, minimising the function for U provides
a sufficient condition for Pareto optimality, which means the minimum of this function is
always Pareto optimal [57, 20].

A benefit to this approach is that it transforms the original multi-objective optimisation
problem into a single-objective optimisation problem. Thus, the solution methods for solving
single-objective problems are all valid [35]. However, there are limitations to this approach.
First, the method only works for convex Pareto fronts. Many authors demonstrate the
method’s inability to capture Pareto optimal points that lie on non-convex portions of the
Pareto optimal curve [28][48][47][8] [2][26]. Second, it is usually difficult to generate a set
of points which are uniformly distributed on the Pareto front. While these two limitations are
well-documented, they concern the method’s use for yielding a complete Pareto optimal set
rather than a single solution (a priori articulation of preferences). Studies of the weighted
sum method that focus on a priori articulation of preferences remain limited.

We choose to utilise the weighted sum method due to its simplicity. Our toolkit allows
the designer to specify the weights wi for each model using a slider scaled from 0 to 1. Using
these weights, the UI toolkit then iterates through each voxel in the interaction space to
determine the overall cost U associated with each voxel. The ergonomic costs (for the CE,
muscle reserve, and RULA models) are based on the ergonomics of the arm pose required to
reach a particular voxel. For the colourfulness and edgeness models, the toolkit converts the
voxel position (which are in world coordinates) into pixel coordinates so that it may find the
patch in the 2D environment image corresponding to each voxel. Once U has been computed
for each voxel, the toolkit then chooses the voxel with the lowest U , vmin, and places the
widget in the location of vmin. This process is repeated for each widget in the UI layout until
the layout has been completely optimised.
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4.3 Unity Toolkit

4.3.1 Instructions

Our UI toolkit is implemented in Unity, a cross-platform game engine commonly used
for VR/AR application development. It operates under the assumption of a static user
environment; in other words, the UI is always used in the same environment. The main steps
for using the toolkit are as follows:

1. The designer connects an AR device to take an initial image of the users’ environment
using the webcam attached to the device. This will be the image used to construct the
UI.

2. A script in the UI toolkit will send the image data through a socket connection from
the AR device to the Unity server. This data contains the image bytes and metadata
associated with the image (specifically, the Hololens camera to world matrix and
projection matrix).

3. The image buffer file and metadata files obtained in the previous step are used as input
to the toolkit. The designer will specify certain details of the UI they would like to
design with the toolkit. For instance, they may specify the total number of widgets
and the size and text for each widget. The designer may also use the sliders to tune
the weights for each objective function which will be used in the optimisation process,
and also select whether they would like the widgets to be colour-harmonised and if the
widgets may/may not occlude others.

4. The toolkit then uses multi-objective weighted sum optimisation via a Python script
to generate an optimal UI layout using the constraints specified by the designer. This
design is then returned and shown in Unity. The designer may continue to use the
sliders to adjust the weights of the objective functions, and the UI toolkit will continue
to optimise and change the layout accordingly. Furthermore, the designer may add,
remove, or change widgets. They may also specify a cognitive load to visualise the
layout in different ‘virtual’ real environments and change the LOD of the UI.

4.3.2 Definitions

We define specific terms used in the toolkit as follows:

• Colour Harmony: Range of colours with similar hues on the HSV scale.
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• Colourfulness: Measure based on the amount of colouration in the users’ environment.

• Edgeness: Measure based on the amount of ‘busyness’ in the users’ environment.

• Fitts’ Law: Average movement time to each UI panel as a function of index of
difficulty.

• Consumed Endurance: Severity of upper-arm fatigue from prolonged arm use.

• Muscle Activation: Muscle activation of the upper arms.

• RULA: Amount of ‘risk’ associated with the current arm posture.

• Cognitive Load: Measure of the users’ workload or cognitive usage.

4.3.3 Designer Workflow

We describe our envisioned designer workflow as follows: The designer begins by adjusting
the weights of the objective functions based on the factors which will be most impactful for
the target user group. Once the UI is generated, they may further fine-tune the weights to
continually adjust the UI layout. Once complete, the designer records the optimal locations
and colours of the UI panels as well as the weights used. These can also be used in the
preference learning application to adjust the UI layout based on preference learning.

Figure 4.9 (a) displays the toolkit’s objective function menu with sliders to adjust the
weights of each function. Figure 4.9 (b) shows the toolkit’s constraint menu, which allows
the designer to specify information for each widget in the UI. Figure 4.10 displays a sample
UI generated in Unity as well as the widgets in the UI projected onto the original user
environment image. A gallery of sample user environment images used for this project are
included in Appendix A (and are also provided in the toolkit repository). Additionally, more
UI layouts for different settings of weights are in the Appendix B.

4.4 Preference Learning Toolkit

In addition to the weighted sum multi-objective optimisation utilised by the Unity UI design
toolkit, we also demonstrate usage of preference learning to yield an optimised UI layout. The
preference learning application is a Python script integrated separately from the Unity toolkit,
but still uses the user environment image captured with the Hololens as with the toolkit. We
take a probabilistic kernel approach to preference learning based on Gaussian processes, as
proposed by Chu and Ghahramani [9] in 2006. In this scenario, the pairwise preferences
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Fig. 4.9 (a) The toolkit’s objective function menu, and (b) the constraints menu.

Fig. 4.10 (a) A sample UI layout generated by the toolkit in Unity using the parameters
and constraints picture in Figure 4.9, and (b) the UI layout generated onto the original user
environment image.

between instances are the designer’s preferences between two potential UI layouts. The
method of capturing the designer’s preference is summarised as follows:

1. Query the designer with a paired comparison between two UI designs and record the
choice.

2. Update the Gaussian process model with the choice made by the designer.

3. Optimise a utility function which seeks a balance between exploration and exploitation
of the latent function.
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In our Python script implementation, we define X as training data consisting of numeric
real positive values, and M as an array containing preferences. A preference is an array of
positive integers, where the the left integer is the index of a value in X which is preferred
over another value of X indexed by the right integer. Preference relations are captured in
a Bayesian framework, allowing for global optimisation of the latent function values f (xi)

describing each preference relation xi. We use a Matern kernel with a length scale of 1 and
µ = 2.5 to specify the covariance function of the GP. The parameters for Laplace posterior
approximation are noise = 0.0005, maximum number of iterations of 1000, gradient descent
step size of 0.01, and gradient descent convergence tolerance of 0.0005. The acquisition
function is the Upper Confidence Bound (UCB) function which enables an optimisation
procedure to sample an optimal point based on attributes of the posterior distribution. The
bounds of the optimisation space are set to the interaction space (in world coordinates) of
the Unity toolkit. Figure 4.11 displays three sample iterations of the preference learning
application: in the first iteration, the user chooses the suggested layout over the current layout.
In the next iteration, the suggestion from the previous iteration becomes the preference,
and the algorithm replaces the suggestion with a new layout. The user now chooses the
preference layout over the new suggestion, so the preference layout remains the same in the
third iteration.

Although the UI optimisation process is predominantly completed by the Unity UI toolkit,
the preference learning toolkit serves the purpose of integrating the user-in-the-loop approach
into our project. Figure 4.12 displays the overall UI optimisation process when both toolkits
are combined. The constraints set by the designer (in terms of widget size, number, and type)
are the inputs to the toolkit. These are used in Bayesian optimisation to generate an optimal
UI layout in terms of the CE, muscle activation, RULA, target acquisition, colourfulness, and
edgeness predictive model. Furthermore, the toolkit can utilise preference feedback from the
designer to further refine and optimise the UI.
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Fig. 4.11 Three sample iterations of the preference learning application. The user chooses
one UI layout after being presented with a pairwise comparison between two layouts.
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Fig. 4.12 Diagram of the UI optimisation process used by the UI design toolkit from a
user-in-the-loop framework.



Chapter 5

Evaluation

In HCI, the verification and validation (V&V) process is an important step used to evaluate
both the compliance of a system to specific requirements and its fulfilment of actual needs.
The question of verification asks, “Does my system meet the specified requirements?", while
the question of validation asks “Am I designing the correct product for operational needs?"
The V&V process is often time-consuming and tedious, since it may involve a series of
inspection, demonstration, test, and analysis cycles as well as usability inspections from
real users. The process of evaluation is distinct, but often conflated with the V&V process.
Evaluation is typically used to indicate success based on the ability to answer a research
question, such as “Is method A better than B for some task?" In HCI, evaluation may verify
that the hypotheses leading to a particular design has resulted in predicted beliefs.

5.1 Evaluation Goals and Errors

Before addressing our method of evaluating our UI design toolkit, we describe common
goals for UI toolkit design as described by Olsen Jr. [42]:

1. Reduce development viscosity: The toolkit should reduce the time to create a new
solution. In this case, our toolkit should allow the designer to create an inclusively
immersive UI in a shorter amount of time than without using the toolkit.

2. Least resistance to good solutions: The toolkit should encapsulate and simplify
expertise by utilising various optimisation methods as well as feedback from the
designer.

3. Lower skill barriers: The toolkit should be simple and efficient to use, allowing
designers with various skills and expertise levels to design UIs with ease.
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4. Power in common infrastructure: The UIs designed with our toolkit should provide
users with access to a multitude of abilities and services which would not have been
easily available without using a UI.

5. Enabling scale: The variety and number of UI layouts constructed by our UI toolkit in
a given amount of time should be greater than those available without using the toolkit.

Specific delineation of goals is useful for effective evaluation of systems, but we must
also be aware of potential pitfalls to avoid. We must take careful consideration to avoid the
verification-validation trap, a design process outcome in which a system passes verification
but fails in validation. This is mainly attributed to the fact that the environment is incomplete
when specifying the verification requirements, causing the environment to be inaccurately
represented during the validation phase. To avoid this trap, it is useful to set realistic and
specific verification targets. There are other potential pitfalls which may occur during the
evaluation phase, as described by Olsen Jr. [42] as follows:

1. Usability trap: When testing the usability of an interactive system, researchers may
mistakenly assume that all potential users may “walk up and use" a system. In other
words, they assume that these users all have some basic knowledge on how to use this
system, which would not work for those which require specialised expertise.

2. Standardised task assumption: A task designed for a usability experiment should
have low inherent variability so that there are not a vast number of variables which
may affect how a user approaches a task. For instance, a typing task for a text entry
system would not have much variability in which it is approached. However, asking a
user to sketch or design any UI may be ambiguous and subject to interpretation.

3. Task scale: Researchers often construct their usability tasks so that they may be
completed in a short amount of time. However, more extensive testing would require
significant amounts of time among a wider group of users, incurring a high cost.

Although the aforementioned scenarios are commonly understood to be adverse for
usability testing, they are often challenging to avoid due to time and cost constraints. Never-
theless, understanding the goals and potential pitfalls which may occur during evaluation
is still helpful for more effective system evaluation. We may now evaluate the UI toolkit
through expert evaluation, which is detailed in the next subsection.
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5.2 Expert Evaluation

We conduct expert evaluation, also known as heuristic evaluation, to evaluate the usability of
our UI design toolkit. While typical evaluation methods for systems may involve usability
studies with real users, time constraints and situational limitations imposed by the COVID-19
pandemic have limited our ability to test our toolkit with potential users. Furthermore, it
would be infeasible to conduct remote user studies due to limited access to a Hololens device.
Nevertheless, it is still possible for expert evaluators to approach a system through the users’
perspective by going through the system process based on task scenarios.

5.2.1 Evaluation Goals

The two human experts in our evaluation possess prior experience with 3D UI layout design
and AR technology. The evaluation of 3D UI layout designs is not an exact process, since
these designs are subject to human preference and biases. Thus, to reduce the impact of
subjective impressions, we define a set of criteria with which to evaluate the design toolkit.
These criteria are based on Green’s ‘Cognitive Dimensions of Information Artefacts’ [21],
which serve as an aid in evaluating the usability of information-based artefacts. Information
artefacts are tools used to store, manipulate, and display information such as word-processors,
mobile devices, software environments, and so forth. The Cognitive Dimensions (CD)
framework serves as a discussion tool to attain more simplified evaluations across a variety
of criteria, rather than detailed analyses. We define the relevant CD criteria as follows:

1. Viscosity: Resistance to change; the cost of making small changes. In terms of the UI
toolkit, this considers how sensitive the positioning of the UI components are to the
adjusting of objective function weights.

2. Premature Commitment: The amount to which a designer must make some decisions
(submitting UI layout constraints) prior to when proper information (the layout) is
available.

3. Progressive Evaluation: The work in progress (the layout) can easily be checked
during the designing process.

4. Role-Expressiveness: How well the purpose of each component (the various sliders,
checkboxes, and input fields in the toolkit) can be inferred.

5. Visibility: Ability to view components of the toolkit easily.

6. Error-Proneness: The toolkit invites mistakes.
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In addition to the cognitive definitions defined previously, the following two factors are
also considered during the evaluation process:

1. Sensitivity (sensitivity analysis): The experts determine the sensitivity in depen-
dent variables (the positioning of widgets in the UI layout) when manipulating the
independent variables (the weights of the various objective functions).

2. Validity (model validation): The experts test the ability of the toolkit to create effec-
tive UIs for new user groups or groups with different traits than those tested previously.

5.2.2 Procedure

For the evaluation, we construct four design tasks for each expert evaluator to complete:

1. Design UI layouts for users with limited upper body mobility (e.g. for users who may
be interacting with other items in their physical environment or those with a physical
disability).

2. Design UI layouts for users in a cluttered physical environment (e.g. for users who
are in an environment with many people/objects such as a classroom, library, or
laboratory).

3. Design UI layouts using preferences from the designer.

4. Design UI layouts for an outdoor environment.

After initial training and familiarisation with the toolkit, the evaluators are asked to
construct a design for each task in a time frame of 1.5 hours for all four tasks. At the end of
the task, they assign ratings from a scale of 1-10 (where 1 represents a design which does
not meet the task specifications, and 10 is a design which completely meets specifications)
to their saved designs and also to the other expert’s designs based on how well they believe
the design meets the task’s specifications. Figure 5.1 displays a sample design created by
Evaluator 1 for Task 4 after using the Hololens to take an image outdoors.

Once all the tasks are finished, we ask the designers to evaluate the toolkit as a whole
based on the CD criteria listed previously on a scale of 1-10 for each criteria (where 1 is a
negative evaluation and 10 is a positive evaluation according to the specific criteria). Finally,
we gather further information about the usability and efficiency of the toolkit through a
questionnaire and semi-structured interview.
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Fig. 5.1 A design created for Design Task 4 by Expert Evaluator 1. (a) The UI layout design
in Unity, and (b) the layout generated onto the original user environment image.

5.2.3 Results and Feedback

Self ratings and secondary expert ratings for each UI layout designed during the four tasks
are provided in Table 5.1. Each evaluator also assessed the Unity UI toolkit based on the six
CD criteria. Results are recorded in Table 5.2.

Design Task Self Rating Secondary Expert Rating

Expert Evaluator 1

1 7/10 6/10
2 8/10 8/10
3 7/10 8/10
4 6/10 7/10

Expert Evaluator 2

1 6/10 6/10
2 7/10 7/10
3 7/10 7/10
4 7/10 7/10

Table 5.1 Ratings given by each evaluator and secondary evaluator to each UI layout created
for each design task.

After completion of the design tasks, each evaluator provided comments and feedback
pertaining to the validity, limitations, and potential extensions of the toolkit. Evaluator 1
noted that there was some difficulty in enforcing separation between panels in the layout,
especially when the weights for CE, Fitts’ Law, and muscle activation objective functions
were increased. Furthermore, there should be a tighter integration of components within
the toolkit. Specifically, the integration of the preference learning application and the Unity
UI toolkit would be fundamental in improving the robustness and usability of the toolkit.
Nevertheless, Evaluator 1 mentioned that the toolkit helps to avoid a degree of design fixation
and also visualise potential alternatives that they would otherwise not consider.
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Expert Evaluator 1 Expert Evaluator 2

Viscosity 6/10 6/10
Premature Commitment 5/10 5/10
Progressive Evaluation 6/10 7/10
Role-Expressiveness 7/10 7/10

Visibility 7/10 6/10
Error-Proneness 8/10 7/10

Table 5.2 Unity UI toolkit scores given by each evaluator based on the six relevant Cognitive
Dimensions of Notation criteria.

Evaluator 2 also agreed with the comment that the separation between the preference
learning application and Unity UI toolkit was a limiting factor for the overall design toolkit.
Ideally, the toolkit would display a gallery of layout suggestions (as shown in the preference
learning application) within Unity to allow the designer to explore other potential options.
Evaluator 2 also mentioned several other ideas for improvement. For instance, displaying the
previous UI layout designed in the Unity UI toolkit, along with the current layout, would
be useful for comparing the two layouts. Furthermore, a “go back" or “undo" button could
allow the designer to revert back to the previous design generated if they were unsatisfied
with the current design. The evaluator also mentioned several benefits: first, the ability
to visualise their design in different ‘virtual’ real environments was helpful in simulating
potential contexts in which their UI layout may be used. In addition, recording the optimised
panel location outputs and function weights from the toolkit enables easy replication of
previously created layouts.

Although we were unable to extend our evaluation to more expert evaluators and/or
potential users, both expert evaluators were able to inspect the compliance of the toolkit to
specific requirements (by rating the toolkit based on CD criteria) and its fulfilment of actual
needs (by rating UI layout designs created to meet specific design tasks). This evaluation
method, while simpler in nature, has demonstrated the ability to complete an efficient V&V
and evaluation of a system in a shorter period of time.
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Discussion

6.1 Design Implications

This project has shown four main implications: first, it is possible to identify and analyse
parameters affecting human performance and comfort when interacting with 3D UIs through
parameter analysis. The factor which affect the user experience in VR and AR interaction are
not only limited to physical ergonomics, but also extend to visual ergonomics and cognitive
capabilities. Furthermore, such factors are dynamic and subject to change; for example, a
user’s cognitive load may vary depending on the task at hand or the environment they are in.
By conducting envelope analyses of these parameters, we have seen that it is possible to find
the best settings for optimisation towards the designer’s objectives.

Second, this project has demonstrated that it is possible to convert these parameters
into quantitative objective functions and also transform multiple objective functions into a
single objective function via a weighted sum optimisation process. Furthermore, we have
demonstrated that it is possible to utilise a model-based approach from design engineering to
validate systems which are complex and costly in the absence of data from actual or proxy
users.

Third, we have shown the ability to use preference learning to integrate the users’ feedback
into UI optimisation in a process known as the user-in-the-loop approach. Due to noisy
behaviour from users and variability between user preferences in terms of human perception,
psychology, and preference, the UI optimisation process is non-trivial. Nevertheless, we have
seen that capturing the users’ preferences through a Bayesian framework enables optimisation
of a utility function which seeks a balance between exploration and exploitation of the latent
function.

Finally, the project has demonstrated that expert evaluation is a method which can be
used to qualitatively evaluate a system prototype. By creating and conducting several design
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tasks and outlining specific criteria pertaining to the cognitive dimensions of notation, we
have gained a better understanding of the usability, benefits, and limitations of our UI design
toolkit.

6.2 Limitations

During the construction and evaluation of the UI design toolkit, we have noted a few
limitations of the toolkit. These limitations are predominantly due to the inability to evaluate
the toolkit with a greater number of designers, which is necessary for a robust evaluation
process. Due to time constraints and limitations imposed by the COVID-19 pandemic, it
was not possible to evaluate the UI toolkit with a greater number of users. Other potential
methods may be in the form of crowdsourcing or conducting user surveys; however, both
methods would require a significant amount of time to be taken for recruiting potential users
and creating the survey or design tasks. However, it would be difficult to recruit users due to
limited access to a Hololens device. Furthermore, these methods may require compensation
in terms of the difficulty and/or time consumption of the tasks. Ideally, we would recruit
several designers to complete a few design tasks, which may involve designing UIs using the
UI design toolkit for specific applications or target users. The toolkit would then be evaluated
based on effectiveness of the designers to achieve these tasks, as well as their own opinions
of the usability and efficiency of the toolkit.

Another limitation is the simplicity of the toolkit. This UI toolkit is used to create menu-
type UIs which would allow the user to select an application to launch. However, it would be
useful for the designer to design different forms of UIs. For instance, an informational GUI
display may show websites or instructional content which could be used in an educational
setting. Additionally, a notification GUI could show alerts or messages when the user is
preoccupied with other tasks.

Furthermore, our UI toolkit operates under several assumptions. First, it assumes that
the only interaction type between the user and the UI widgets is a touch-press. Realistically,
UIs designed for VR and AR devices allow for a variety of interactions such as dragging
and pointing. However, enabling multiple interactions would require more extensive target
acquisition tasks to obtain parameter values for these interactions.

Additionally, the toolkit assumes that the users’ body is static. In order to run in real-
time, the calculations for CE, muscle activation, and RULA only consider static arm poses.
However, this simplification in inverse kinematic calculations limits the number of possible
poses represented by the model. Additionally, ignoring motion would not be realistic for UI
applications which require more user interaction and movements of the arms and upper body.



6.3 Future Work 49

This trade-off was made due to the consideration that existing models that analyse movement
and fatigue would be difficult to incorporate, especially for real-time computations.

A final limitation is the separation of the Unity UI toolkit and the preference learning
toolkit, as mentioned by both expert evaluators. It would be more beneficial if the preference
learning application of the project were in the form of a preference gallery displaying various
potential UI layouts within Unity. This would allow the designer to better visualise many
potential UI layouts in the context of the ‘virtual’ real environments.

6.3 Future Work

There are many potential extensions to this project given more time and resources. The
integration of the preference learning toolkit into Unity would be a significant improvement,
since this would allow for a smoother user experience for the designer. Furthermore, we
would like for the designer to be able to construct a wider variety of UI types, such as a
menu, notification, or informational UI. Another extension may be to create canonical user
profiles with different attributes which would impact how the UI will render. For example,
one potential profile may be a mechanic in-training who is using a UI to instruct him or her
on how to fix a certain part of a vehicle. Another may be an individual with cerebral palsy
with limited movement and/or coordination using a UI to learn in a classroom environment.

We may also make improvements to our current objective functions or integrate other
models to our UI toolkit. For instance, improvements to inverse kinematic computations
made in the physical ergonomics models could yield higher accuracy and also allow for
more arm poses. Belo et. al. [15] suggests extending the kinematic chain to consider the
wrist angle and using a spiral point algorithm at each voxel to compute the possible wrist
positions. Other models could be integrated as well to consider other human traits such as
colour blindness or visual impairments.

Another improvement would be the creation of adaptable UI layouts which allow for
dynamic user environments. For example, the user may move to another location or be in a
setting where objects and/or other people in their environment are moving. Utilisation of
real-time visual and spatial information from the users’ environment from the AR device
could allow the layouts to continually adjust to changes in scenery, objects, or locations.

A final extension to this project would be conducting more extensive validation. It
would be beneficial to allow other designers to test and evaluate the toolkit, and also rate its
efficiency in the form of interviews or surveys.





Chapter 7

Conclusion

This project has successfully met its two objectives. First, we have explored various control-
lable and uncontrollable parameters which dominate user performance and comfort when
interacting with VR and AR user interfaces. This was conducted via a model-based approach,
in which design knowledge in the form of user simulations, models, and/or heuristics are
used to model how users interact and perceive UI layouts. We have shown that physical
ergonomic models (CE, muscle activation, and RULA), perceptual models (colour harmony
and text legibility), and cognitive models (cognitive load) affect the users’ experience. From
the completion of this first object, we have demonstrated the use of a model-based approach
in constructing a cost function which may be optimised via Bayesian optimisation and
preference learning.

Second, we have designed and implemented a UI design toolkit for constructing 3D
UI layouts which can suggest alternative configurations pertaining to user capability to the
designer at design time. The construction of a model-based UI design toolkit has revealed
potential in integrating techniques adapted from design engineering, especially for systems
which are complex and costly to validate. By allowing the designer to adjust the objective
function weights in multi-objective weighted optimisation, the designer can continuously
adjust the optimised UI layout in terms of the controllable parameters explored previously.
Furthermore, the integration of Bayesian optimisation and preference learning enables the
designer to visualise multiple variations of their UI designs from the perspective of the user
in ‘virtual’ real environments.

The combination of parameter analysis and the construction of the UI design toolkit has
aided in understanding how to improve the accessibility of VR and AR systems for users
with varying degrees of perceptual, cognitive, and physical capabilities. Rather than taking a
universal design approach, which aims to develop systems for general use with a ‘one size
fits all’ mentality, we have developed our toolkit through ability-based design [56]. Our
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project has demonstrated that utilising an ability-based design perspective is beneficial for
focusing on ability throughout the design process and can create systems which leverage the
full range of human potential. In the future, we aim to refine our current function models
to enable more accurate and efficient creation of UIs, as well as explore and integrate other
models to adapt to other user capabilities.
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Appendix A

Gallery of Sample Environment Images

The following images in Figures A.1 and A.2 were taken with the Hololens 2 and used as the
input environment images when generating optimal UI layouts. All of the following images
are included in the Unity Toolkit repository.

Fig. A.1 Sample user environment images taken in various outdoor locations.
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Fig. A.2 Sample user environment images taken in various indoor locations.



Appendix B

Gallery of Sample UI Layouts

The following UI layouts were generated with the provided objective function weights and
constraints. ‘Enable occlusion’ is set to false and ‘Enable colour harmonisation’ is set to
true for all layouts. If a weight is not listed, then it is set to 0. The left image displays
the optimised UI layout in Unity, and the right image displays the layout on the reference
environment image used.
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Fig. B.1 Sample UI layouts generated from various environment images for the set of weights
listed.
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Fig. B.2 Sample UI layouts generated from various environment images for the set of weights
listed.
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Fig. B.3 Sample UI layouts generated from various environment images for the set of weights
listed.



Appendix C

Source Code

• Source code for the Unity UI Toolkit is available at: https://github.com/jwlee97/
UnityUIToolkit

• Source code for the Preference Learning application is available at: https://github.com/
jwlee97/PreferenceLearningApplication

https://github.com/jwlee97/UnityUIToolkit
https://github.com/jwlee97/UnityUIToolkit
https://github.com/jwlee97/PreferenceLearningApplication
https://github.com/jwlee97/PreferenceLearningApplication
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