
MPhil in Machine Learning and Machine Intelligence
Cambridge University Department of Engineering

Continuity of autoencoders, unsupervised anomaly
detection and Deep Atlases

Dissertation submitted by

Charles A. Arnal
Homerton College

August 2021

Under the supervision of Mihaela van der Schaar and Fergus Imrie

2

Many thanks to Mihaela van der Schaar, Fergus Imrie, James Jordon
and Changhee Lee for their guidance, and to Vincent Divol for helpful
discussions.

3

4

Declaration

I, Charles Arnal of Homerton College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are
my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable
purpose.
I further declare the software that was used for this thesis: all computing experiments
were carried out in Python. I relied on standard libraries such as Numpy, as well as two
specialized libraries: Tensorflow and Scikit-learn. All plots were made using either the
Matplotlib library or MATLAB. None of the above software was modified and no other
third-party software was used.

Word count: 14’876

Charles Arnal
August 2021

5

6

Continuity of autoencoders, unsupervised anomaly
detection and Deep Atlases

Abstract

Dimensionality reduction techniques aim to encode data in a compact way, usually by
embedding it in a lower dimensional space, while preserving crucial information. They
are often applied to the data as a pre-processing step for some downstream task. While
there are many such methods, those based on the use of neural networks organised as
autoencoders have enjoyed great success and popularity in recent years.

Among many other applications, the idea arose to use autoencoders to perform un-
supervised anomaly detection, the task of distinguishing anomalies from normal points
in entirely unlabelled data sets, by using the difference between the original data point
and its reconstruction by the autoencoder as a measure of anomaly. This method is very
dependent on the quality of the reconstruction of normal data points and relies on several
key assumptions regarding the nature of anomalies.

In this thesis, we examine those assumptions, as well as certain limitations of classical
autoencoders. In particular, we show that the fact that the mappings that autoencoders
learn are usually continuous makes them unable to accurately encode certain data sets
(specifically those related to closed manifolds), which in turn impacts in certain situa-
tions their usefulness for unsupervised anomaly detection and dimensionality reduction in
general.

Hoping to solve some of those problems, we also propose a piecewise continuous autoen-
coder, named Deep Atlas, designed to avoid the shortcomings of classical autoencoders.
We test it thoroughly, and analyze its strengths and limitations.

7

8

Contents

Introduction 11

I 13

1 Dimensionality reduction 15
1.1 Definition, motivation and existing techniques 15

2 Limitations of continuous dimensionality reduction algorithms 19
2.1 Theoretical aspects . 19
2.2 Experimental illustration . 22

II 27

3 Unsupervised anomaly detection 29
3.1 Definition and motivation . 29
3.2 Unsupervised anomaly detection and autoencoders 30

4 Anomalies and structure 33
4.1 Introduction . 33
4.2 What is an anomaly? . 33

4.2.1 Menagerie of examples . 35
4.3 How do we identify anomalies? . 40

III 43

5 Deep Atlas 45
5.1 A geometric intuition . 45
5.2 The main algorithm . 46
5.3 Training . 47

5.3.1 Losses . 48

9

10 CONTENTS

5.3.2 Chart splitting algorithm . 51
5.4 On the minimal number of charts required 53

6 Comparison to other algorithms 55
6.1 Autoencoders . 55
6.2 Mixture of experts . 55
6.3 Other piecewise continuous manifold learning techniques 57

7 Experiments 59
7.1 Introduction . 59
7.2 Illustration of the main mechanisms . 60
7.3 Hyperparameter testing . 64
7.4 Classification . 70
7.5 Unsupervised anomaly detection . 70
7.6 Discussion . 71

Conclusion 73

Bibliography 75

A Additional details on the experimental protocols 81
A.1 Datasets . 81

A.1.1 Torus union sphere . 81
A.1.2 2-dimensional sphere . 83
A.1.3 Swiss roll . 83
A.1.4 40-dimensional sphere . 83

A.2 Model configuration and training . 83
A.2.1 Torus union sphere . 84
A.2.2 Swiss roll . 84
A.2.3 40-dimensional sphere . 84
A.2.4 MNIST . 84

Introduction
Reducing the dimensionality of data in a way that preserves crucial information can be
of great help, either to make visualisation easier, or as a first step towards some other
task, such as regression, classification or anomaly detection (see [Engel et al., 2012] for a
general survey), as high-dimensional data present unique challenges to most algorithms
(see [Johnstone and Titterington, 2009]).

While many techniques exist, a relatively recent trend (see
[Hinton and Salakhutdinov, 2006]) is to use deep neural networks organized as au-
toencoders to perform dimensionality reduction (though the idea dates from the 90s,
see [Kramer, 1991]). An autoencoder is a system composed of two neural networks, an
encoder and a decoder. The encoder maps data to a lower-dimensional state, while the
decoder aims to reconstruct the initial input from the encoding.

Autoencoders benefit from the flexibility and power of deep neural networks, and can
often be trained conjointly with another algorithm tasked with some downstream task to
learn a compact representation that preserves the information relevant for said task. They
have enjoyed great success in a variety of contexts (image classification [Geng et al., 2015],
self-supervised learning on tabular data [Yoon et al., 2020], etc.).

One particular field of application of autoencoders is Unsupervised Anomaly Detec-
tion (UAD), which is the task of separating anomalies from normal points in an entirely
unlabelled data set (see [Goldstein and Uchida, 2016] for a survey). Depending on the
circumstances, anomalies can represent illnesses, computer intrusions, financial frauds,
manufacturing flaws, etc. Unsupervised approaches are made necessary in many contexts
in which obtaining large amounts of labelled data proves impractical, either due to costs
or to intrinsic difficulty, while unlabelled data abound.

A variety of UAD techniques based on autoencoders recently emerged (see
[Chalapathy and Chawla, 2019] for a survey). The core idea of most of these is to train an
autoencoder on the unlabelled data set, then to use some function of the reconstruction
error as a measure of anomality. The intuition is that as the normal points are more nu-
merous in the data set and less noisy than the anomalies, the autoencoder should be much
better at reconstructing them after training. The method is consequently very dependant
on the quality of the encoding and the reconstruction of the normal points. Though a par-
tially faulty encoding can be sufficient for other tasks (when classifying images, a blurry
and partially distorted picture of a dog can often still be correctly distinguished from that

11

12 INTRODUCTION

of a cat), even small imprecisions can be perceived as anomalies.
While autoencoders and UAD are well-studied subjects on their own, the combination

of the two is a new and promising development which combines the potentials of deep
learning and unsupervised learning. We feel that though clever algorithms have already
been developed (such as in [Yoon et al., 2021]), there is a lack of theoretical reflection
regarding the underlying premises. The family of autoencoder-based UAD algorithms
summarily described above relies in particular on two implicit assumptions:
The first, which also applies to general dimensionality reduction, is that autoencoders are
a flexible encoding system that is a priori suitable to any kind of data. The second is
that measuring how well a given dimensionality reduction algorithm (which need not be
an autoencoder) trained on the data set reconstructs a data point yields a good measure
of anomality.

In this thesis, we question both these assumptions. In the first part, we define dimen-
sionality reduction and briefly review the existing methods in Chapter 1, with a particular
focus on manifold learning methods and autoencoders. In Chapter 2, we give a theoreti-
cal exposition of some of the limitations of classical autoencoders: we prove that learning
continuous functions, which might a priori seem like a desirable quality, keeps them from
learning accurate encodings of certain types of data - specifically data that lie on a close
manifold. We also illustrate our claims with a few qualitative experiments. As far as we
know, only the authors of [Batson et al., 2021] have made a similar observation, with a
much less detailed analysis.

In the second part of the thesis, we define in Chapter 3 the task of unsupervised
anomaly detection and give some relevant background, particularly on autoencoder-based
methods. We also discuss the consequences for these methods of the limitations exposed
in the preceding chapter. In Chapter 4, we reflect more generally on the assumptions
regarding the nature of anomalies that underlie most UAD methods. Again, the angle of
analysis adopted seems to have been previously mostly unexplored.

In the final part, we describe in Chapter 5 a new type of piecewise continuous autoen-
coder inspired by a mathematical intuition from differential geometry, which we nicknamed
Deep Atlas. We designed it to overcome some of the shortcomings of classical autoencoders
detailed in earlier chapters. We compare Deep Atlas to related algorithms in Chapter 6,
and we test it with many different hyperparameter configurations in Chapter 7. We also
apply it to classification and UAD tasks in comparison to simple autoencoders.

We observe that while Deep Atlas is proficient at faithfully encoding and reconstruct-
ing data from simple closed manifolds (where it significantly outperforms classical autoen-
coders), it enjoys much more limited success with more complex data sets - we analyse
why, and discuss possible improvements.

We finally summarize our findings and suggest further avenues of research in the Con-
clusion. All of our code is available on: https://github.com/CharlesArnal/Deep_Atlas

https://github.com/CharlesArnal/Deep_Atlas

Part I

13

Chapter 1

Dimensionality reduction

We briefly define dimensionality reduction and mention some current techniques.

1.1 Definition, motivation and existing techniques

We call dimensionality reduction algorithm any method that aims to reduce the dimen-
sionality of data while preserving as much information as possible. It is often crucial to
reduce the dimensionality of data, either to better visualize it in two or three dimensions,
or to prepare it for some downstream task, such as classification, clustering or anomaly
detection (see [Engel et al., 2012] or [Sorzano et al., 2014] for surveys). Many methods
used for such tasks are poorly suited to high and very high-dimensional data, for a variety
of reasons (see [Johnstone and Titterington, 2009] or [Steinbach et al., 2003]): they might
struggle when the number of samples is relatively small compared to the dimension (risk of
overfitting), their computational cost might scale poorly with the dimension of the input
(as is the case for Support Vector Machines, see [Bishop, 2006]), distance-based methods
face counter-intuitive phenomena1, etc.

Dimensionality reduction techniques can be applied independently from any down-
stream task, in which case the aim is to get a more compact representation of the data
that preserves as much information as possible, though one cannot hope for a universally
good representation: as an example, a dataset might have very little variance along one of
the dimensions of the input space, yet that dimension might have the most predictive power
with regard to some dependent variable that we would like to predict. Most dimensional-
ity reduction methods, such as Principal Component Analysis (PCA, see [Jolliffe, 2002]),
would flatten the data along that dimension, hence losing crucial information. Some tech-
niques can also be applied in conjunction with a downstream task to insure that the

1As an illustration, it is easy to see that the mass of a normal multivariate distribution in dimension n
is concentrated (when n is large enough) close to a sphere of radius proportional to

?
n. This means that

two such distributions whose means are far apart can nonetheless have common regions of high probability
density.

15

16 CHAPTER 1.

preserved information is that which is needed for said task (e.g., training an autoencoder
with a weighted sum of a reconstruction loss and the loss of the downstream task).

Some methods, such as PCA or Autoencoders (see [Kramer, 1991] and below),
learn a mapping from the input space to a lower-dimensional encoding space us-
ing the training data, which can then be applied to embed new data points. Oth-
ers do not, such as Locally Linear Embeddings (LLE, see [Roweis and Saul, 2000]),
Multidimensional Scaling (MDS, see [Kruskal, 1964]) and its refinement Isomap (see
[Tenenbaum et al., 2000]), or t-distributed Stochastic Neighbor Embedding (t-SNE, see
[van der Maaten and Hinton, 2008]): out-of-sample points cannot be encoded. See Table
1.1 for a partial list of dimensionality reduction algorithms, with a short description of
their core idea and whether they learn mappings.

Many of these methods can be described as manifold learning techniques, i.e. that
they work on the assumption that the data has a particular structure - more specifically,
that it lives (up to some noise) on some low-dimensional manifold in the high-dimensional
feature space (see Section 2.1 for more on manifolds, and [Melas-Kyriazi, 2020] for a general
reference on the theory of manifold learning). Though the line between manifold learning
and non-manifold learning dimensionality reduction algorithms is not set in stone (as most
methods can be applied to any dataset), manifold learning methods often explicitly aim
to make use of some local structure of the data and can thus be expected to perform
better when the mass of the underlying distribution is indeed concentrated on a manifold
of sorts. This is for examples the case for Principal Manifold (as the name suggests, see
[Gorban et al., 2008]), or Isomap, where the local structure of the manifold is meant to be
captured through the neighborhood graph.

All the methods mentioned above have limitations: for example, PCA is quite crude and
misses any non-linear information (though kernel PCA does not), MDS relies on Euclidean
distances instead of taking into account the intrinsic geometry of the data, Isomap does
take the structure into account, but is very sensitive to hyperparameter selection and
lacks robustness (the “short-circuit" problem, see [Balasubramanian and Schwartz, 2002]),
which is also true of LLE (as they both rely on a k-nearest neighbours subroutine), etc.
Additionally, all methods that do not learn a mapping cannot be cross-validated, as there is
no mapping to be applied to the cross-validation set2, which complicates hyperparameters
selection and performance evaluation.

2Unless the algorithm was trained on the union of the training set and the validation set, which goes
against the very principle of cross-validation.

1.1. DEFINITION, MOTIVATION AND EXISTING TECHNIQUES 17

A few dimensionality reduction algorithms

Name Reference Core idea
Learns a
mapping

PCA [Jolliffe, 2002]
Project the data onto the axes of
greatest variance.

Kernel PCA [Schölkopf et al., 1998]
Apply PCA to non-linear fea-
tures of the data using a kernel
trick

Autoencoder [Kramer, 1991]
Train a neural network to encode
the data in low-dimension, then
reconstruct it

LLE [Roweis and Saul, 2000]
Find an embedding that aims to
preserve local linear relations be-
tween points

7

MDS [Kruskal, 1964]
Find an embedding that aims
to preserve (renormalized) Eu-
clidean distances between points

7

Isomap [Tenenbaum et al., 2000]

Find an embedding that aims
to preserve (renormalized) dis-
tances between points computed
using a neighborhood graph

7

t-SNE
[van der Maaten and
Hinton, 2008]

Find an embedding that aims to
preserve a function of the Eu-
clidean distances between points
using a probabilistic framework

7

Principal
Manifold

[Gorban et al., 2008]
Approximate the data set with
a parameterized manifold and
project the data points onto it

„

Figure 1.1 – A few dimensionality reduction algorithms, with either the original reference
or a more accessible and up-to-date one. We also briefly summarize their core idea, and
indicate whether they learn a mapping that can be used to encode out-of-sample points
(the „ symbol indicates that learning a mapping can be more or less practical depending
on the exact implementation of Principal Manifold).

In this thesis, we are particularly interested in autoencoders, a relatively old idea
(see [Kramer, 1991]) that has gained a lot of traction in the last ten years due to the
popularization of deep learning (see [Hinton and Salakhutdinov, 2006]; note also that they
are not even mentioned in this survey [Sorzano et al., 2014] on dimensionality reduction
dating from 2014). Fundamentally, an autoencoder is composed of two neural networks,
an encoder and a decoder. The encoder maps high-dimensional data to a low-dimensional
encoding (or latent representation), which the decoder uses to reconstruct as faithfully as
possible the initial input, which forces the autoencoder to preserve crucial information in
the encoding. There exist many refinements of this basic idea (probabilistic approaches,

18 CHAPTER 1.

regularization mechanisms, etc. - see [Bank et al., 2020] for a survey).
Autoencoders combine many qualities (they learn a mapping, can be trained conjointly

with a downstream task, etc.) and are usually perceived as a flexible, all-purpose di-
mensionality reduction technique, well-suited to most data and tasks, including manifold
learning (see e.g. [Vincent et al., 2008]). In what follows, we question that assumption and
analyze a limitation of autoencoders, which is in fact shared by most dimensionality reduc-
tion techniques that learn a mapping: the fact that this mapping is usually continuous.
We explore the consequences of it in Chapter 2.

Chapter 2

Limitations of continuous
dimensionality reduction algorithms

In this chapter, we give a formal definition of manifolds and show that there is a theoretical
limit on how well all dimensionality reduction techniques that apply continuous mappings
to the data, among which autoencoders, can hope to encode closed manifolds.

2.1 Theoretical aspects

An n-dimensional topological manifold is a topological space that is locally similar to Rn

(see for example [Munkres, 2000] for an introduction to basic topology). More formally:

Definition 2.1.1. A completely separable and Hausdorff1 topological space M is a topo-
logical manifold of dimension n if every point x P M admits an open neighborhood that is
homeomorphic to an open subset of Rn.

Consider a problem in which n-dimensional data comes from a distribution whose
mass is concentrated on a d-dimensional manifold M Ă Rn, with d ăă n. We choose
to focus on those dimensionality reduction techniques that aim to learn from the data a
map f : Rn Ñ Rm, where m ă n, such that the restriction f |M : M Ñ Rm yields a
representation as “faithful" as possible. What is meant by faithfulness depends on the
situation and downstream task, but it usually involves preserving part of the structure of
M : the images of points that are close in M (according to some reasonable distance on
M , which need not coincide with the Euclidean distance on Rn) should also be close in
Rm and vice-versa. In particular, f |M usually needs to be “as injective" as possible.

There is a trade-off between encoding as much information as possible, and obtaining
a compact, low-dimensional representation. Image2 dimension m can be smaller than d,

1Those two conditions are automatically satisfied for any subspace of the finite-dimensional Euclidean
space.

2In the sense of mathematical image, not picture.

19

20 CHAPTER 2.

in which case some information is necessarily lost, or greater, in which case the image
fpMq will generically be a submanifold of measure 0 of Rm. In the case of an unknown
downstream task, the ideal scenario would be for m to be equal to d and for f |M : M Ñ

Rd to be a homeomorphism, i.e. a bijective, bicontinuous application from M to Rd -
such a mapping would capture all, and only, the relevant information. As is discussed
below, we generally cannot hope for such a mapping to exist. Autoencoders also learn a
decoding function g : Rm Ñ Rn, which is meant to be a parametrization of sorts of M ; the
composition g˝f |M : M Ñ Rn is usually constrained to be close to the inclusion iM : M ãÝÑ

Rn for some measure of similitude (such as the average square distance |g˝f |M pxq´iM pxq|2

over all sample points x).

As mentioned in Chapter 1, the encodings f learnt by most manifold learning techniques
(in particular autoencoders) are continuous. While this may seem like a desirable quality,
it also has negative consequences: we claim that under mild hypotheses, it is impossible
to injectively and continuously map the d-dimensional manifold M to Rd, a fact that was
alluded to but neither explained nor proved in [Batson et al., 2021]. This can be easily
visualized in simple cases: it is impossible to embed the circle in the Euclidean line or the
sphere in the Euclidean plane without “flattening" or “folding" them (see Figure 2.1).

It is possible to show that this is a more general phenomenon. Assume first that M
is connected, compact and without boundary. As the n-th homology group of Rn is triv-
ial, the degree of the application induced in homology by f |M : M Ñ Rn is trivial (see
[Hatcher, 2005] for a general introduction to algebraic topology, and [Outerelo and Ruiz, 2009]
for more on the degree of continuous maps in particular).

With most techniques (such as neural networks with usual activation functions), the set
Σ ĂM of points on the neighborhood of which the encoding f is not smooth3 is of measure
0 in M ; consequently, fpMq is also of measure 0. Consider now f |MzΣ : MzΣ Ñ Rn: it
is a smooth application. According to Sard’s theorem (see [Michor et al., 2008, Chapter
1]), the set of singular values of f |MzΣ is of measure 0 in Rn. Hence all points y of fpMq
except a subset of measure 0 admit an open neighborhood U such that f |M is a smooth
local diffeomorphism on f´1pUq. For such a y P fpMq and using the definition of the
degree in terms of local Z2 orientations (as is explained in [Outerelo and Ruiz, 2009]), the
cardinality of the preimage f´1pyq ‰ H must be equal to the degree of f modulo 2, i.e.
0: in other words, y has a non-zero and even number of preimages. This means that
f |M : M Ñ Rn is dramatically non-injective: either fpMq is itself of measure 0 (which
means that f is crushing M into something of a smaller dimension), or most points of
fpMq are such that they have at least two preimages.

If M is not compact or has boundaries, things are not so clear-cut: for example, a
two dimensional closed ball (i.e. a disk) can be embedded in the Euclidean plane, but a

3One can also replace f by an arbitrary close smooth function f̃ :M Ñ Rn for the rest of the discussion,
as smooth functions from M to Rn are dense in the space of continuous functions from M to Rn.

2.1. THEORETICAL ASPECTS 21

Figure 2.1 – It is impossible to continuously embed a circle into R - the mapping will
necessarily be non-injective.

torus from which an open ball has been removed cannot. The only theoretical guarantee
in general is that one can always embed a d-dimensional manifold in Rm for m ě 2d, as
stated by the strong Whitney embedding Theorem (see [Michor et al., 2008]). This bound
is essentially sharp4.

In real life applications, the data rarely live on a true topological manifold, though it
can for example be the case for data from physics (as in [Batson et al., 2021]) or computer
vision (as in [Lee et al., 2004]); it is more common to see “manifold-like" sets, similar to
manifolds in some regards but less regular (due to noise, self-intersections, discontinuities,
etc.). It would in fact be an interesting research question to first somewhat formalize this
notion of “manifold-like", then to try to measure how “manifold-like" typical data is in
various fields of application. Nonetheless, the discussion above suggests that one should
not expect to always be able to embed the data into a space corresponding to its true
dimensionality, or even of a slightly higher dimension. In the case of an autoencoder,
similar arguments can be made regarding the decoding function g to show that it can
generally not be onto M without being non-injective.

In practice, this problem can be partially overcome by existing methods: M can for
example be embedded in a space of dimension m ě 2d, though it has the disadvantage of
making the encoding less compact, and most of the points in the encoding space do not
correspond to points of M . One could also hope to obtain “almost everywhere injective"
embeddings. Take the example of the sphere: it cannot be embedded in R2, but the
sphere from which one of the pole has been removed can, as it is homeomorphic to a disk5.

4In the sense that for any k P N, there exists a manifold M of dimension d “ 2k (the real projective
space) that cannot be embedded in R2d´1. When d is not a power of 2, slightly better bounds can be
found.

5Hence why the documentation of the scikit-learn library [Pedregosa et al., 2011] demonstrates its man-

22 CHAPTER 2.

Similarly, for any d-dimensional manifold M , there are subsets of M of arbitrarily small
measure such that their complement in M can be embedded in Rd; an autoencoder should
be able to learn such an embedding, that would be faithful on most ofM except for a small
subset (which it would typically map to wildly nonsensical values). It is however unclear
how one should train the autoencoder to do so.

Note that for simplicity, we have focused on purely topological questions; equally im-
portant are more subtle problems related to metrics, as we would usually like some notions
of distance between points to be approximately preserved by the encoding.

2.2 Experimental illustration

In this section, we run a few qualitative experiments and give illustrations of the phenomena
described in Section 2.1. We consider a dataset of points densely covering the surface of a
2-dimensional sphere, without any noise added, and apply various dimensionality reduction
techniques to it. More quantitative and systematic experiments are described in Chapter
7.

In Figure 2.2, we show an encoding obtained using Isomap (the scikit-learn imple-
mentation, see [Pedregosa et al., 2011]), one of the dimensionality reduction techniques
mentioned in Chapter 1 which aims to preserve distances (as computed using a neighbor-
hood graph) between points. At the top, the original data points as well as their encodings
in the plane are represented together. The encodings are colored, and the original data
points are given the same color as their encodings, so as to make the mapping visually
apparent. We see that Isomap flattens the sphere into a disk (along a vertical plane of
symmetry of the sphere), then embeds it very regularly into the plane. As a result, almost
all encoded points have two preimages, one in each of two halves of the sphere. This is
illustrated at the bottom of the figure, where the points of those two halves are represented,
along with a black segment that connects them to their embedding in the plane. Each of
the two halves have roughly the same image.

Other classical methods (also their scikit-learn implementations) perform in different
ways; for example, MDS produces an encoding similar to that of Isomap, while Spectral
Embedding and LLE fail to run (due to the problem being too singular) - this is not entirely
surprising, as they aim to embed the sphere in R2 (by respecting the structure of small
neighborhoods), which is impossible.

We also trained a simple autoencoder6. We can see at the top left of Figure 2.3 that
the mapping it learns is much less regular than the one applied by Isomap. Analyzing it

ifold learning techniques on a severed sphere rather a complete one.
6Its encoder was composed of two fully connected layers with 10 units each and tanh activation functions

and a final linear layer with 2 units; its decoder was also composed of two fully connected layers with 10
units each and tanh activation functions and a linear output layer with 3 units. The loss function was the
square distance between the original point and its reconstruction by the autoencoder.

2.2. EXPERIMENTAL ILLUSTRATION 23

Figure 2.2 – Isomap encoding of the 2-dimensional sphere. At the top, the original points
and their encodings in the plane are represented; each point has the same color as its image
to help visualise the mapping. Below, the sphere is split into two halves, and each point
is linked to its image by a segment. We see that the two halves are mapped to the same
image - the mapping is very non-injective.

24 CHAPTER 2.

Figure 2.3 – Encoding of the 2-dimensional sphere by an autoencoder. At the top left,
the points are represented jointly with their encodings in the plane. At the top right, the
initial points (in blue) are connected to their reconstructions (in red) by black segments.
We see that most of the sphere is correctly reconstructed, except a small cap on the right.
Below (where each point is linked to its image), we see that the image of this small cap by
the mapping (on the right) is the same as the image of the rest of the sphere (on the left):
the mapping is very non-injective.

2.2. EXPERIMENTAL ILLUSTRATION 25

Figure 2.4 – 2-dimensional encoding of a severed sphere by Isomap (left), an autoencoder
(middle) and Spectral Embedding (right). Each point has the same color as its image, to
help visualise the mapping. We see that Isomap and the autoencoder successfully unfold
and embed the severed sphere, while Spectral Embedding flattens it vertically in a non-
injective way.

further, we see that the encoder actually learnt the "almost everywhere injective" mapping
described in Section 2.1: most of the sphere is flattened on the plane in an injective and
somewhat regular fashion, except for a small cap, representing less than 10% of its surface,
whose image covers the image of the entire rest of the sphere - this is illustrated on the
bottom row of Figure 2.3, with the mapping of the small cap on the right and the mapping
of the rest of the sphere on the left.
At the top right, initial points (in black) are connected to their reconstruction (in red) by
blue segments. We see that the encoding learnt efficiently stores the information of most
points, which allows them to be correctly reconstructed, at the cost of the few points of
the cap being mapped to completely erratic reconstructions. The consequences in terms of
unsupervised anomaly detection of this type of behaviour are discussed later in the thesis.
Some testing showed that deeper autoencoders result in smaller, more concentrated caps
(as they are capable of learning more complicated, less regular functions).

By contrast, we consider the sphere from which both poles and a slice connecting them
were removed. As it is now homeomorphic to a disk, there is no theoretical hurdle to
embedding it in the plane7. We see in Figure 2.4 that the autoencoder (on the right) and
Isomap do it well, while the Spectral Embedding technique (with the default hyperparam-
eters of the scikit-learn library) still struggles and flattens the punctured sphere vertically
in a non-injective fashion.

7This would also be the case for a sphere from which a single pole has been removed, but we observed
that most methods (except deep autoencoders) still struggle with it, for reasons that vary depending on
the technique used.

26 CHAPTER 2.

Part II

27

Chapter 3

Unsupervised anomaly detection

As explained in the Introduction, we are interested in examining the assumptions under-
lying autoencoder-based unsupervised anomaly detection algorithms. In this chapter, we
define unsupervised anomaly detection and discuss the possible consequences of the use
of autoencoders as an anomaly detection system, particularly in light of our findings of
Chapter 2.

3.1 Definition and motivation

Unsupervised Anomaly Detection (UAD) is the task of identifying anomalous data points
in a set in which they are mixed with normal points, all of them being unlabelled. Anomaly
detection problems can arise in a wide range of situations: to protect a system against cy-
berattacks, as in the pioneering article [Eskin et al., 2002], prevent damage to industrial
machines, as in [Martí et al., 2015], detect health conditions, as in [Schlegl et al., 2017],
etc. In many cases (as in data science in general), labelled data is either costly or intrinsi-
cally difficult to obtain (as noted in [Eskin et al., 2002]), for example when looking for yet
unknown genetic anomalies or new computer viruses.

The variety of contexts in which UAD can be performed begets unique challenges; in
particular, there is no universal and rigorous definition (from a data science/information
theory point of view) of what constitutes an anomaly. What criterion should al-
gorithms use to identify anomalies? In most of the literature (e.g. in the survey
[Goldstein and Uchida, 2016]), anomalies are usually loosely described as points

• whose features differ from normal points, usually by being less structured, and

• which are rare compared to normal points.

A simple case is illustrated in Figure 3.1. Many efficient UAD techniques have nonetheless
been developed (see the surveys [Goldstein and Uchida, 2016] or [Thudumu et al., 2020]);

29

30 CHAPTER 3.

Figure 3.1 – The normal distribution (in blue) is a normal Gaussian, while the anomalies
(in red) are more spread out.

we will discuss some of them later in Chapter 4. In the next section, we focus on the
autoencoder-based UAD techniques that are our main interest.

3.2 Unsupervised anomaly detection and autoencoders

As discussed in the Introduction, a recent development has been the introduction of deep
learning techniques in UAD (see [Chalapathy and Chawla, 2019] for a survey), which have
led to successive improvements of the state of the art - see [Sakurada and Yairi, 2014],
[Zong et al., 2018], [Bergman and Hoshen, 2020] and [Yoon et al., 2021]. Though each new
algorithm introduces its own subtle refinements1, the basic premise is often the same: an
autoencoder composed of neural networks learns a representation of the data set, which
contains both normal and anomalous unlabelled data.

As anomalous data points are expected to be both less numerous and more “wild" than
the normal ones, they should be less well reconstructed by the autoencoder, which should
have learnt the structure of the normal data. Some function of the reconstruction error
(either its norm, or something more ingenious, as in [Zong et al., 2018]) can then be used
to detect anomalies. Hence, while a classification algorithm might still be able to correctly
classify points using an encoding of poor quality, an autoencoder-based UAD algorithm
will always identify a normal but poorly reconstructed point as an anomaly. This makes
autoencoder-based UAD methods particularly dependent on the quality of the encodings
and reconstructions.

1We also discuss the fundamental nature of most of those refinements in Chapter 4.

3.2. UNSUPERVISED ANOMALY DETECTION AND AUTOENCODERS 31

This class of techniques rests on two important (and often implicit) assumptions. The
first is that autoencoders are a suitably flexible tool, capable (assuming the autoencoder is
powerful enough) of faithfully reconstructing points similar to those in its training set; it
is also expected that regions with a high density of training points will be more precisely
encoded than those with a low density. The second assumption, which is explicitly made in
[Xu et al., 2018] or [Eskin et al., 2002] but always implicitly present, is that normal points
are found in high-density areas of the underlying distribution, while anomalies are in low-
density ones; in other words, that anomalies are statistical outliers. We find both those
assumptions overly optimistic and simplistic - we discuss the first one here below, and
the second one in Chapter 4, in the context of a more general reflection on the nature of
anomalies.

Though autoencoders have many qualities, autoencoder-based UAD algorithms can
suffer from their continuity (and even smoothness) in two ways:

The first one, which is our main focus, is a consequence of what has been exposed in
Section 2.1. As autoencoder-based UAD algorithms use the autoencoder’s reconstruction
error to identify anomalies, they are dependent on the quality of the encoding of normal
points. We have seen that continuous autoencoders cannot hope to learn perfect encodings
of the entirety of closed manifolds without boundaries, and are likely to struggle with many
“manifold-like" structures. This means that if the normal points of a UAD problem live
on such a structure, and are distributed densely enough that there can be no “hole" in the
manifold that would make it topologically simpler (and thus possible to embed), some of
those normal points will necessarily be poorly reconstructed (as was shown in the case of
the sphere in Figure 2.3 in Section 2.2), and are then likely to be falsely categorized as
anomalies. This phenomenon was illustrated at lengths on various data sets from particle
physics by the authors of [Batson et al., 2021] (though they gave no theoretical explanation
for it).

Note that increasing the dimension of the latent space so that it is large enough for
the manifold to be embedded is not a good solution: though it should allow the system
to faithfully reconstruct the normal points, it also means that more information than
strictly necessary is being encoded, which increases the risk of points outside the normal
distribution being correctly reconstructed - including anomalies, which would then not be
detected.

The second way (which was also illustrated in [Batson et al., 2021]) in which the
smoothness of autoencoders can do a disservice to UAD algorithms could be described
as “overzealous continuous extrapolation": it arises when the autoencoder unexpectedly
learns how to faithfully encode anomalous points despite them being very different from
the normal points that made up most of the training set, due to them lying in some smooth
prolongation of the areas of high density where normal points lie. As an example, consider
Figure 3.2, where a toy data set in R2 comprised of normal points (in blue) and anomalous

32 CHAPTER 3.

Figure 3.2 – A simple anomaly detection data set. The blue points are normal, while
the red points are anomalies. The anomalies and the normal points all live on the same
submanifold of the ambient space (a line).

data points (in red) is represented. Though the normal points are easily distinguishable
from the anomalies, they all lie on the same line. The easiest 1-dimensional representation
of this set is the linear projection of the plane onto that line - an autoencoder that has
learnt such a representation would be capable of faithfully reconstructing any point on the
line, even if it is very distant from the training points - hence including the anomalies.

Chapter 4

Anomalies and structure

4.1 Introduction

We feel that while many clever UAD algorithms have been developed, the more theoretical
aspects of the task have been somewhat neglected - specifically, there seems to be a lack of
reflection regarding what anomalies truly are, how their possible definitions are connected
to various notions of structure, and how the implicit definition of anomalies underlying
various algorithms could make them more or less suited to given data sets. For example,
we discussed in Section 3.2 how autoencoder-based UAD techniques expect anomalies to
be outliers of the total data distribution.

Analyzing such unstated assumptions (e.g. in the spirit of [Rainforth et al., 2018] or
[Curth and van der Schaar, 2021]) can often lead to a better theoretical understanding
of research problematics, as well as open the way to concrete improvements to existing
algorithms

In this chapter, we aim to partially make up for this lack of reflection. In particular, we
discuss the nature of anomalies in Section 4.2 through a series of archetypal examples and
identify three levels of structure on which anomalies can differ from normal data. We also
explore the assumptions underlying most methods currently used and their consequences
in Section 4.3.

4.2 What is an anomaly?

Ultimately, the definition of what constitutes an anomaly is task-dependant: an anomaly
is what we categorize as such in a given context. Accordingly, semi-supervised learning
might be the most natural framework in which to work: an end user classifies a small
fraction of the data as either anomalies or normal points, which then serves as a guideline
for the classification of the rest of the dataset1.

1This, in turns, raises interesting questions in terms of interactive machine learning: given a dataset,
which points should the algorithm ask the user to label in order to maximise the quality of the subsequent

33

34 CHAPTER 4.

However, human intervention is not always possible, either because it is too costly or
because humans experts themselves cannot identify anomalies due to the nature and com-
plexity of the data (genomics, cybersecurity, etc.). Hence the demand for UAD algorithms,
which in turn must necessarily rely on some aspects of the data to classify them as either
normal or anomalous.

Ideally, we would like to come up with a working definition of “anomaly" that satis-
fyingly captures those aspects. As tasks are designed by humans and require to identify
what human users think of as anomalies, a definition should preferably also align with
the human intuition of what constitutes an anomaly. However, even an informal defini-
tion proves to be hard to formulate. Most articles either do not define what an anomaly
is at all and assume it to be common knowledge (including good papers that introduce
very efficient techniques, such as [Bergman and Hoshen, 2020]), or rely on overly vague
statements such as those mentioned in Chapter 3 (see e.g. [Goldstein and Uchida, 2016]
or [Chalapathy and Chawla, 2019]): anomalies

• differ from normal points in their features, and

• are few in numbers compared to normal points.

Defining what is meant by “differ" is a non-trivial question that has important practical
consequences (as discussed in Section 4.3). For example, it is often assumed that normal
points have structure, while anomalous points are more wild, i.e. noisy, spread out, etc.
There are many cases in which such assumptions fail. Consider the case of medical data:
while some anomalies are likely not to follow any fixed pattern, e.g. injuries resulting from
violent accidents, other anomalies, e.g. cancers, will be structured and follow patterns,
even if these patterns will be different from those in normal data.

Though we cannot hope for a perfect definition of anomality, a higher level of precision
than “they differ from the norm" should be achievable. In this spirit, we identify three
levels on which data in the Euclidean space2 can behave anomalously compared to the rest
of a distribution. Let pa be the distribution of the anomalies, pn the distribution of the
normal points, and pt the distribution of the total data set.

• Probabilistic: pa can differ from pn in ways that are purely probabilistic - in other
words, they can be formulated purely in terms of probability spaces, without taking
into consideration the topology, the metricity or the differential structure of the
ambient space Rn. The simplest example is for the anomalies to be outliers for the
distribution pn (and hence also for pt, as there are few anomalies) - this is in fact the
criterion used to define anomalies in some articles (e.g. [Zong et al., 2018]).

classification?
2Parts of these reflections also apply to categorical data.

4.2. WHAT IS AN ANOMALY? 35

• Metric: anomalies can differ from normal points by their position in space, for ex-
ample by being very far for the Euclidean distance from most of the normal points,
or by having a very different variance.

• Continuous/differential: anomalies can differ from normal points in subtler ways,
related to continuous or even differential structures. Example: all normal points lie
on a smooth manifold while anomalies do not, even though they are sufficiently close
to the manifold that metric methods would have a hard time identifying them as
anomalous.
This type of anomality is the hardest to capture using formal criteria, though not
necessarily the hardest to handle in practice (see Section 4.3).

The percentage of anomalies in the total data set also plays an important role, as showcased
below, which further complicates the picture.

4.2.1 Menagerie of examples

Though this taxonomy of anomalies is not perfect, we prove its usefulness by applying it
to the analysis of a few schematic data sets3 that allow us to demonstrate the difficulty of
formulating a single, unifying definition of “anomaly".

• The simplest, least ambiguous example might be that in which the normal points fol-
low a simple, relatively concentrated distribution (for example a low-variance Gaus-
sian), while the anomalies follow an extremely spread out one (for example a very
high-variance Gaussian). This is illustrated in Figure 4.1.
Note that we do not mean that each anomalous point is necessarily easy to identify as
such (as some might fall in the middle of normal points), but rather that anomalies,
as a group, behave very distinctly from normal points. Not only are most anomalies
outliers for the normal distribution, but they also tend to be quite distant from most
normal points: they differ both on a probabilistic and a metric level.

3We do not pretend that all of these situations are equally likely to appear in real data sets - they
nonetheless constitute interesting thought experiments.

36 CHAPTER 4.

Figure 4.1 – The normal distribution (in blue) is a Gaussian, while the anomalies (in
red) are more spread out.

• Consider now the case where the normal points follow a normal Gaussian distribution
while the anomalous distribution pa is another, much more concentrated Gaussian
distribution, as in Figure 4.2 (this could for example represent measurements from
a sensor that sometimes dysfunctions and returns 0 readings). It illustrates two
difficulties. The first is the impact of the proportion of anomalies in the total dis-
tribution on the definition of what constitutes an anomaly, particularly when some
points form micro clusters away from the others (this terminology is used e.g. by
[Goldstein and Uchida, 2016]), as the red points do here. If there are only a few of
them, they can be safely categorized as anomalous, but if they represent 30% of the
data set, they cannot (without additional information) be unambiguously declared
to be anomalies rather than another regular subset of the normal distribution.
We can also see here the limits of purely probabilistic definitions of anomality. If
the percentage of anomalies is low (which allows us to unambiguously define them
as anomalies), but not too low, and if pa is sufficiently concentrated, the area where
the anomalies are found will have a higher density for the total distribution pt; in
other words, anomalies will tend to be LESS “outlierish" than normal points. On the
other hand, metric criteria can easily identify anomalies as such here.

Figure 4.2 – The normal distribution (in blue) is a Gaussian and the anomalous
distribution (in red) is another, more concentrated Gaussian.

4.2. WHAT IS AN ANOMALY? 37

• Even more tricky is the case4 of a normal Gaussian, and another, extremely concen-
trated Gaussian with the same mean (almost a Dirac), as in Figure 4.3. Not only
are the anomalous points less “outlierish" than normal points rather than more, as
before (note that this could also be used as a criterion), but metric methods will also
struggle to distinguish them from normal points.
It provides another illustration of the importance of the percentage of anomalies.
Should it be very low and the data set relatively small, the fact that some points
do not follow the normal distribution would be almost impossible to detect, while it
would become very apparent once the percentage becomes high enough (which does
not mean that a given anomaly would become easy to distinguish from a normal
point). Interestingly, the more concentrated the anomalous distribution and the eas-
ier the problem (as the over-concentration of points near the mean would stand out
more).

Figure 4.3 – The normal distribution (in blue) is a Gaussian and the anomalous dis-
tribution (in red) is another Gaussian with the same mean but much lower variance.

• Figure 4.4 represents perhaps the most problematic and subtle of the configurations
considered here. The normal distribution is a mixture of Gaussians. The anomalous
points (which constitute about 10% of points here) are distributed according to a
Gaussian, distinct from any Gaussian that makes up the mixture, but similar to
them. In a purely unsupervised setting, this problem is impossible, as there is no a
priori way of telling which of the Gaussians is the anomalous one - yet the anomalous
distribution is very different from the normal one both in probabilistic and metric
terms (since the anomalies are all rather clustered, and fairly distant from normal
points), which shows that such differences in behaviour are not enough to make a
problem easy.
The key element here is that while the anomalous distribution pa is very different
from the normal one pn, the total distribution pt is very similar in nature to pn,
essentially because “pa locally looks like pn". We have found this intuition difficult
to formalize.

4One could for example imagine that some sensors sometimes dysfunction and return 0 readings.

38 CHAPTER 4.

Figure 4.4 – The normal distribution (in blue) is mixture of Gaussians and the
anomalous distribution (in red) is another Gaussian, distinct from but similar to
those in the mixture.

• In Figure 4.5, we see the importance of more continuous or even smooth structures,
such as manifolds: what clearly (for a human observer) distinguishes the red points
from the rest is that while they are close to some normal points, they are not on the
same line, which can be hard to capture for purely distance-based algorithms.

Figure 4.5 – The normal points in blue all lie on a line, while the anomalies in red
do not.

• Conversely, anomality could be characterized by an excess of geometrical structure
(for example in a situation where anomalies are meaningful events among noisy back-
ground activity), as in Figure 4.6, where most points follow a non-degenerate two
dimensional Gaussian distribution, while a small subset of them lie on a line.

4.2. WHAT IS AN ANOMALY? 39

Figure 4.6 – The normal points in blue are sampled from a non-degenerate Gaussian
distribution, while the anomalies in red all lie on a line.

• Finally, one can see in Figure 4.7 a case in which the anomalies and the normal
points follow the same geometric constraints (they all lie on a line), but differ-
ent distributions within those constraints (similar to the data sets described in
[Batson et al., 2021]); here, distance-based methods might be more efficient than
those that capitalize on smoother structures (more on this in the next section).

Figure 4.7 – The normal points in blue and the anomalies in red are concentrated in
different regions of the line.

Observe that while we struggle to find a unifying definition of “anomaly", an untrained
human would easily and unambiguously identify the anomalous points in most of these
cases, which suggests that such a definition should be possible.

Though the artificial examples examined above represent reasonable situations that are
likely to exist in the real world, it would be valuable to measure the prevalence of each
type of anomalies in typical data sets of various fields of application.

40 CHAPTER 4.

4.3 How do we identify anomalies?

In this section, we discuss the criteria explicitly or implicitly used by a few existing UAD
algorithms to identify anomalies, with a particular emphasis put on encoder-based tech-
niques, in connection to the rest of this thesis.

Following the taxonomy which we developed in Section 4.2, many classical UAD al-
gorithms (see [Goldstein and Uchida, 2016] for a survey) were based on metric criteria
to identify anomalies: for example, the k-nearest neighbour global anomaly score (see
[Ramaswamy et al., 2000]) uses the distance between a point and its k-th nearest neigh-
bour as a measure of anomality. Others took a more probabilistic approach: for example,
Cluster-Based Local Outlier Factor (CBLOF, see [He et al., 2003]) clusters the data (using
the Euclidean distance); the clustering is then used to make distribution density estima-
tions. Conversely, one-class Support Vector Machine (SVM) methods adapted to UAD (see
[Amer et al., 2013], in which a one-class SVM is used to separate the image of the entire
data set from the origin in a kernel space (using a kernel trick) relies almost entirely on
continuous/smooth criteria dictated by the choice of kernel function, as the implicit feature
map needs not to respect Euclidean distances and no estimation of density is explicitly car-
ried out. In Table 4.8, we give a rough classification of some well-known methods according
to which criteria (probabilistic, metric or continous/smooth) they use to distinguish normal
points from anomalies.

A few UAD algorithms

Name Reference Probabilistic Metric
Continuous/

Smooth

Autoencoder-based
techniques

[Chalapathy and Chawla, 2019] 7

k-nearest neighbours
global anomaly score

[Ramaswamy et al., 2000] 7 7

LOF [Breunig et al., 2000] 7

CBLOF [He et al., 2003] 7

HBOS [Goldstein and Dengel, 2012] 7 7

One-class SVM
for UAD

[Amer et al., 2013] 7 7

Figure 4.8 – A few UAD algorithms or family of algorithms, with either the original refer-
ence or a more accessible and up-to-date one. We indicate which criteria of the taxonomy
introduced in Section 4.2 - probabilistic, metric, continous/smooth - the method (primar-
ily) uses to identify anomalies.

We choose to focus on the more recently developed deep learning-based techniques that
have enjoyed considerable success (see for example [Chalapathy and Chawla, 2019]). As
explained in Section 3.2, most of these algorithms train an autoencoder to reconstruct
the training data, and use some function of the reconstruction error as an anomaly score

4.3. HOW DO WE IDENTIFY ANOMALIES? 41

- the assumption being that normal points, being prevalent in the training data, will
be better reconstructed than anomalies, as the encoding and decoding will be of better
quality in regions where many training points can be found. Of course, various refinements
can be brought to that basic idea, such as the use of more sophisticated neural network
architectures (Convolutional Neural Networks, Long Short-Term Memory, etc.).

Though it is usually not formulated in those terms, learning the anomaly scored ob-
tained as a function of the reconstruction error can be thought of as somewhat equivalent
to learning the (unnormalized) density function of a distribution that models the training
set, except that the reconstruction error is a decreasing function of that density: the re-
construction error will be low in regions of high density, and high in regions of low density.
More specifically, we are (indirectly) learning some distribution that fits the data under
some regularity constraints that are induced by the architecture chosen and the details of
the algorithm. If we go back to the taxonomy introduced in Section 4.2, we see that the
assumption underlying those techniques is that anomalies can be identified thanks to a
mix of probabilistic criteria (anomalies are outliers, found in regions of low density) and
smooth/geometric criteria (induced by the regularity constraints).

As discussed previously in our analysis of Figures 4.2 and 4.3, learning a distribution
(or something equivalent to a distribution, such as the reconstruction error) and treating
outliers as anomalies is not a sure-fire strategy: a sufficiently powerful autoencoder will
be able learn good encodings of small, concentrated clusters of anomalies, and will fail to
correctly identify them as anomalies. This should also apply to other methods relying on
density estimations, such as CBLOF.

There are also consequences to the ways regularity constraints are practically imple-
mented in those algorithms. They stem from basic architecture choices, such as the width,
depth and activation functions of the neural networks used, but also from more subtle ma-
nipulations. A good example is that of the Self-Trained One-class Classification algorithm
presented in [Yoon et al., 2021], which achieved excellent performances. The core idea is
to iteratively refine the training set: an unsupervised anomaly detector (based on some
version of the “autoencoder/reconstruction error as anomaly score" idea) is trained, then
used to remove from the training set points that are suspected of being anomalous. A new
detector is trained on the refined data set, which is then used to further refine it, etc. The
basic ingredient is always the reconstruction error: all that this clever iterative procedure
does is impose some kind of regularity constraint on the final classification.

These regularity constraints are crucial: without them, a model powerful enough would
be able to perfectly encode and decode a given data set, normal points and anomalies alike,
resulting in abysmally poor performances. The issue is that the way those constraints are
brought about is almost entirely implicit: they depend on the network architecture and
on clever yet unprincipled design choices and “tricks", such as those in [Yoon et al., 2021]
or [Zong et al., 2018]; there is no real justification, besides somewhat convincing heuristic

42 CHAPTER 4.

arguments, as to how they improve performance. This is beyond the scope of this work,
but creating an efficient unsupervised anomaly detection algorithm that would learn a
distribution with an explicit regularity parameter5 could be an interesting research project.

The particular architecture of autoencoder-based methods also has specific conse-
quences, which we already discussed in Section 3.2: though it is in an unprincipled way,
they are naturally suited to learning smooth structures, such as manifolds, as their acti-
vation functions are themselves smooth or piecewise smooth. While this can be benefi-
cial, they can be TOO good at it, as they will faithfully reconstruct anomalies that are
well-structured, particularly if they have the same structure as the normal points (but
can be distinguished in other ways) - this was observed on high energy physics data in
[Batson et al., 2021]. The second consequence of the continuity of the encoding learnt by
classical autoencoders is that they will struggle to encode closed compact manifolds, as
was argued at length in Chapter 2.

5Parameters are bad, but having no explicit control over the regularity of the distribution learnt is
probably worse.

Part III

43

Chapter 5

Deep Atlas

In this chapter, we present a novel piecewise-continuous autoencoder called Deep Atlas
which we hope might avoid the limitations of classical autoencoders discussed in Chapter
2. We start with an exposition of the mathematical intuition behind it.

5.1 A geometric intuition

In Section 2.1, we recalled the definition of an n-dimensional topological manifold M as a
space that is locally similar to subsets of Rn (see [Munkres, 2000] for more on manifolds).
An indexed collection tUα, φαu of sets Uα ĂM and maps φα : Uα Ñ Rn that certifies this
property, i.e. such that

Ť

α Uα “ M and φα|φαpUαq : Uα Ñ φαpUαq is an homeomorphism
for all index α, is called an atlas1. The couples pUα, φαq are called charts. It is easy to
show that any n-dimensional manifold M admits an atlas such that φαpUαq is the open
Euclidian ball in Rn; in other words, it can be covered by simple subspaces homeomorphic
to balls.

We think that there is an interesting intuition here, that applies both to proper mani-
folds and to messier “manifold-like" geometric structures: though they can be overall very
complicated, their local structure is much simpler. This is illustrated in Figure 5.1, where
the circle is decomposed into subsets homeomorphic to segments.

Hence the idea to build an autoencoder using a collection of smaller autoencoders, each
playing the role of a chart: each autoencoder specializes in a small region of the space to
be encoded, and a gating network is tasked with sending the input to the appropriate
autoencoder. This is described in details in the next section.

There are two things we hope to gain from this architecture. We have seen in Chapter
2 that as neural networks encode continuous maps (at least with the vast majority of
activation functions used), a single big neural network simply cannot learn a good encoding
of many simple manifolds. By introducing an element of discontinuity through the gating

1A similar, though more constraining definition is used in the case of differential manifolds.

45

46 CHAPTER 5.

Figure 5.1 – An atlas on the circle.

network, we avoid this limitation.

From a more computational point of view, we suspect that having one big neural
network learn an encoding might also be less efficient than having several smaller networks
learn local maps (partially for the same reasons that support the use of ensemble learning,
see [Sagi and Rokach, 2018]). Consider a basic example: it is easy to approximately map
a segment to a part of the circle with a simple quadratic polynomial, but mapping it to
the entire circle is much harder for a typical neural network. It can be done by making
the network deeper and wider, but it is computationally expensive and increases the risk
of overfitting.

5.2 The main algorithm

We call the autoencoding system inspired by the considerations exposed above a deep
atlas. As mentioned before, its core components are a gating network G and a collection
of autoencoders tCiuki“1, which we call charts. The gating network is a neural network
that takes as input a data point X P Rm (for some fixed m P N) and outputs weights
GpXq “ pGpXq1, . . . , GpXqkq. We typically use a softmax following a linear output layer
to obtain GpXq. Each chart Ci is an autoencoder, i.e. the combination of a neural network
Ei, called the encoder, and another neural network Di, called the decoder, such that the
output dimension n of the encoder is the input dimension of the decoder; it is normally
meant to be smaller than m. Various architectures can be chosen for the decoder and
the encoder. In what follows, we use simple feedforward neural networks. Likewise, any
reasonable activation functions (tanh, ReLu, etc.) can a priori be used, though the output
layer of the decoder should be linear (unless there is some known special constraint on the
data).

5.3. TRAINING 47

Gating
network

Encoder
1

Data

Encoder
k

Encoder
i

Encoder
2

...

...

Decoder
1

Decoder
k

Decoder
i

Decoder
2

...

...
X

i

(X,i)
(Z,i) X̃

Input

Index

Encoding Reconstruction

Encoder Decoder

A chart

Figure 5.2 – Diagram of the proposed system.

At inference, the gating network takes the input X and outputs the weights GpXq. They
are used to select an index j :“ argmaxtGpXqj |i “ 1, . . . , ku. The encoding of X is then
defined as the pair pZ, jq, where Z :“ EjpXq P Rn, and its reconstruction as X̃ :“ DjpZq “

DjpEjpXqq P Rm. This is illustrated in Figure 5.2.

5.3 Training

There are several difficulties to setting up and training a deep atlas, among which:

• Train an intrinsically discontinuous system using continuous methods.

• Help charts specialize in different regions of the input space.

• Balance the load between charts, so that no chart ends up useless.

• Choose an appropriate number of charts, and an appropriate level of complexity for
the encoders and decoders.

We address the first three points using appropriate loss functions in Subsection 5.3.1,
and the last one with a chart splitting mechanism in Subsection 5.3.2. All of our code is
available on https://github.com/CharlesArnal/Deep_Atlas.

https://github.com/CharlesArnal/Deep_Atlas

48 CHAPTER 5.

5.3.1 Losses

We define the total loss function L to minimize as a weighted sum of a collection of
specialized loss functions:

• The main reconstruction loss function, which forces the reconstructed output of the
encoder to be close to its input:

LRpDq :“
1

|D|
ÿ

XPD

k
ÿ

i“1

αi||DipEipXqq ´X||
2
2, (5.3.1)

where pα1, . . . , αkq “ softmaxpGpXq1, . . . , GpXqkq and D is the training set. The
softmax allows the loss function to be differentiable, while still being a reasonably
good approximation of

||DjpEjpXqq ´X||
2
2 j :“ argmax tGpXqi|i “ 1, . . . , ku .

Hopefully LR should encourage both the gating network to maximise the weight
GpXql corresponding to the chart Cl best suited forX (i.e. that for which ||DlpElpXqq´

X||22 is minimal), as well as help Cl improve its reconstruction of X.
We consider three possible variations to LR: the first one would be to replace it by

LinsideR pDq :“
1

|D|
ÿ

XPD

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

αiDipEipXqq ´X

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2

,

where αi is as before. We expect LinsideR to yield poorer results, as it encourages
a linear combination of the reconstructions to be good, instead of the best among
them.
The second variation, which was introduced in [Jacobs et al., 1991b] for mixtures of
experts in general, would be to replace LR by

LexpR pDq :“
´1

|D|
ÿ

XPD
log

˜

k
ÿ

i“1

αi exp

„

´
1

2
||DipEipXqq ´X||

2



¸

.

We would like each chart to specialize and become particularly adept at reconstruct-
ing the points that are assigned to it. However, as chart Ci gets better at recon-
structing a given point X, the gradient

BLRpXq

BWi
:“ 2

k
ÿ

i“1

αipDipEipXqq ´Xq

of LR with respect to the weights Wi of Ci becomes smaller in norm, while it is
not the case for the gradient with respect to the charts that poorly reconstruct X -

5.3. TRAINING 49

it means that X might paradoxically have a larger effect on charts that are poorly
suited to encoding it (though this effect is partially compensated by the fact that the
coefficients αi should be large for charts that reconstruct X well).
This risk is averted with LexpR , as we see that

BLexpR pXq

BWi
:“

αi exp
“

´1
2 ||DipEipXqq ´X||

2
‰

řk
i“1 αi exp

“

´1
2 ||DipEipXqq ´X||2

‰
pDipEipXqq ´Xq,

hence DipEipXqq ´X appears in the gradient of LexpR with respect to Wi multiplied
by a renormalizing factor that is larger when DipEipXqq ´ X is small in norm, i.e.
when the chart correctly reconstructs X.
The third variation (which can be combined with either LR, LinsideR or LexpR) would
be to compute the coefficients αi in Formula (5.3.1) with a modified, more “intense"
softmax:

αi :“
exppλGpXqlq

ř

l exppλGpXqlq

for some λ ą 1. This would have the effect of giving even more weight to the dominant
chart j :“ argmax tGpXqi|i “ 1, . . . , ku, and thus make LR a better approximation
of ||DjpEjpXqq ´X||

2
2.

• A load loss, intended to help distribute somewhat evenly the data points among
the various charts. Similar losses are often used in Mixture of Experts systems to
keep issues such as the “zero-coefficient problem" - where the gating network never
attributes any data point to some of the experts (here some of the charts), see e.g.
[Hansen, 1999] - from arising.
We would like to define a load vector LoadpDq P Rk as

LoadipDq :“
ÿ

XPD
1ti “ argmax tGpXqi|i “ 1, . . . , kuu,

i.e. the i-th coordinate is the number of data points X P D attributed to the i-th
chart by the gating network. As this would not be continuous, we replace it with

LoadipDq :“
ÿ

XPD
F pαipXq, tαlpXqul‰iq , (5.3.2)

where F px, ty1, . . . , yn´1uq is a smooth approximation of 1tx ą maxpy1, . . . , yn´1qu.
In our implementation, we test two choices for F . The first is

LoadipDq :“
ÿ

XPD
Φ ppαipXq ´maxtαlpXqulq ¨ Ckq , (5.3.3)

50 CHAPTER 5.

where Φ is the cumulative function of the normal distribution2, C ą 0 is a constant
and k is the number of charts. The term Ck serves as a normalizing factor, as the
differences between the coefficients αi tend to get smaller when k gets larger. Though
Function (5.3.3) is continuous but not smooth, it is smooth almost everywhere - we
have not observed any problem during training. The other choice of F we have
considered is

LoadipDq :“
ÿ

XPD

αipXq
µ

ř

l αlpXq
µ
, (5.3.4)

for some constant µ ą 1.
We then define the load loss function on the training set D as

LloadpDq :“ CV pLoadpDqq2,

where CV is the coefficient of variation of LoadpDq, i.e. its standard deviation
divided by its mean. When all charts receive an equal number of points, LloadpDq
will be 0, while it will be large when the load is unevenly distributed. Our load loss
was inspired by the one introduced in [Shazeer et al., 2017], though we discarded the
probabilistic formulation used by the authors and generalized by focusing on what
we identified as the underlying principle at work (which is summarised in Formula
(5.3.2)).

• The importance loss is also intended to balance out the number of samples attributed
to each chart. We define the importance vector ImportancepDq P Rk as

ImportanceipDq :“
ÿ

XPD
αipXq,

where the αipXq are as before the coefficients obtained by applying a softmax to
GpXq. The importance loss function is

LimportancepDq :“ CV pImportancepDqq2,

where CV being as before the coefficient of variation.

• The inverse reconstruction loss

LIpDq :“
ÿ

XPD

ˇ

ˇ

ˇ

ˇEipXqpDipXqpZpXqqq ´ ZpXq
ˇ

ˇ

ˇ

ˇ

2

2
,

where pZpXq, ipXqq is the encoding of X, is meant to put additional constraint on
the encoders and decoders to be the inverse of each other (when restricted to the
training data). When computing the gradient of the loss (see below), the encodings

2Other (possibly computationally cheaper) smooth approximations of 1txą0u could also work.

5.3. TRAINING 51

pZpXq, ipXqq are treated as constants.

• The classification loss

LCpDq :“
ÿ

XPD
´ log

`

αipXqpDipXqpZqq
˘

,

where as above pZpXq, ipXqq is the encoding of X, encourages the decoder and the
gating network to place the reconstruction X̃ “ DipXqpZq in a region of the input
space associated to the ipXq-th chart by the gating network (as X comes from such
a region).

We define the total loss as

LpDq :“ LRpDq ` γloadLloadpDq ` γimportanceLimportancepDq ` γILIpDq ` γCLCpDq,

for weights γload, γimportance, γI , γC ą 0. The system is then trained using standard gradient
descent methods. Note that for Lload and Limportance to be accurately estimated during
training, the proportion of points attributed to each chart in each batch must be close to
the average proportion over the entire training set. Consequently, the dataset must have
been randomly shuffled, and the size of each batch divided by the number of charts cannot
be too small.

We do not necessarily expect all sub-losses to be useful. In particular, the importance
loss seems like a simpler, less relevant3 version of Lload; though we want to test its effects,
we expect it to be superfluous. The inverse reconstruction loss and the classification loss
were meant to allow us to exploit the training data more thoroughly, but they might also
turn out to be redundant when paired with the main reconstruction loss. In Chapter 7,
we test various choices of weights to compare the impacts of the sub-losses.

5.3.2 Chart splitting algorithm

Having to set a priori the “good" number of charts (see Section 5.4 for more on that)
would be an inconvenient limitation. As an answer to that, we have devised a chart-
splitting mechanism that automatically creates new charts during training to adapt to
the data. The core idea is for the system to identify every T epochs of gradient descent
training the worst-performing chart and to split it into two almost identical copies, that
are then free to specialize as training resumes. The rationale is that if a chart significantly
underperforms compared to the others, it must be because it is trying to encode a region
of space that is too complicated to be efficiently modeled by a single chart - the burden
must be shared. In more details:

3As what matters is the number of points attributed to each chart; if the coefficient αi associated to
chart Ci is the second largest for each data point, the importance of Ci might be large even though Ci is
never selected by the gating network.

52 CHAPTER 5.

• The performance of a chart Ci over the training set is measured using the average
square reconstruction error ERpCiq over the data points attributed to it.

• Every T epochs (for a fixed T P N), the worst performing chart Cj is selected. If
ERpCjq is larger than either a predefined threshold or than

MeanpERpC1q, . . . , ERpCkqq ` 1.5 ¨ IQRpERpC1q, . . . , ERpCkqq,

i.e. the average performance of all charts plus 1.5 times the interquartile range of
the performances4, then Cj undergoes the splitting procedure.

• We start by creating a copy C̃j of the chart Cj , i.e. a new Encoder-Decoder couple
with the exact same architecture and weights as Cj . This is illustrated in the upper
left part of Figure 5.3 (where the chart being split is the last chart Ck).

• We then need to create a new output unit associated to C̃j in the gating network.
When splitting the chart Cj , we want the set S of points of the training set attributed
to it by the gating network in inference mode to be distributed among Cj and C̃j

in a geometrically sensible way. For example, should the chart being split be tasked
with encoding two disconnected regions of the data manifold, we wish for each of
these regions to be inherited by a different copy so as to make the region encoded by
each chart as topologically simple as possible.
To ensure that, we apply a self-supervised clustering algorithm to either:

– The set S itself in the input space. It can be problematic if the input space is
very high-dimensional.

– The image of the set S by the encoder Ej .

– The image of the set S by the gating network minus the last linear layer.

The clustering algorithm must be set so that it identifies two clusters. In our imple-
mentation, we use either k-Means or Agglomerative clustering (from the scikit-learn
library, see [Pedregosa et al., 2011]) for the clustering algorithm. This yields a par-
tition of S into two sets, S1 and S2. We then use a Support Vector Machine (again
with scikit-learn, see also [Bishop, 2006, Chapter 7]) to separate the images of these
two sets by the first part of the gating network, i.e. all of it minus the last (linear)
output layer. The SVM gives us a separating hyperplane tV ¨ X ` b “ 0u. This is
illustrated in the upper right part of Figure 5.3.

• We create a copy of the output unit Uj associated to the chart Cj in the last linear
layer of the gating network. It has the same weights and bias Wj , bj . We then add

4This is a somewhat arbitrary criterion to determine what an “outstandingly" bad performance is - it
was inspired by a similar criterion commonly used to define outliers.

5.4. ON THE MINIMAL NUMBER OF CHARTS REQUIRED 53

Figure 5.3 – Splitting a chart. The chart itself is duplicated (upper left), the points
attributed to it are clustered and separated (upper right), and the associated output unit
is copied and modified using the separating hyperplane (bottom).

to them the vector V and intercept b obtained from the SVM. We make sure to first
renormalize V and b so that they are very small compared to the rest of the weights of
the output layer. This new unit is associated to the new chart C̃j being constructed.
This has the effect that almost all points are attributed to the same charts as before,
except the points S previously attributed to Cj : the points that belong to S1 are
still attributed to Cj , while those that belong to S2 are now attributed to C̃j . This
is illustrated at the bottom of Figure 5.3.

5.4 On the minimal number of charts required

Instead of adaptively adding new charts, one might want to estimate a priori the num-
ber of charts required to encode the variety. Many methods have been developed to es-
timate the dimension of a manifold from data points that live on it (see for example

54 CHAPTER 5.

Figure 5.4 – The Stanford Bunny.

[Camastra and Staiano, 2016]). Once the dimension, or at least a good estimate of it, is
known, there are some theoretical guarantees: given an n dimensional connected com-
pact manifold M , let bpMq be the minimum number of (topological) balls needed to cover
M . Then bpMq ď n ` 1 if M has no boundary, and bpMq ď n if M has a non-empty
boundary (see [Cavicchioli and Grasselli, 1985]). The second bound becomes tight if we
ask that the balls’ intersections be particularly nice, but not necessarily otherwise (e.g.,
the n dimensional sphere Sn can always be covered by two balls).

However, this approach is not as relevant as it might seem, though it can give us
some useful early estimate. Indeed, the number of charts required to faithfully encode the
manifold in practice depends on the power of the charts used, i.e. the depth and width
of their neural networks, and might be much larger than the theoretical minimum: as the
approximation power of each of our chart is limited by the power of its encoder and decoder,
they cannot model correctly something that is topologically a ball but geometrically too
“wiggly". As an example, consider in Figure 5.4 the surface of the well-known Stanford
Bunny from [Turk and Levoy, 1994]: it is topologically a sphere, and can thus be covered
by two disks, but a small autoencoder would not be able to encode all the fine details of
half of its surface. Conversely, a powerful enough autoencoder can potentially faithfully
encode more than a single subset of the manifold homeomorphic to a ball; hence, any
theoretical lower bound is not to be trusted either.

Chapter 6

Comparison to other algorithms

In this section, we compare Deep Atlas to some existing systems with which it shares
commonships.

6.1 Autoencoders

Deep Atlas is a refinement of the original autoencoder idea (see [Kramer, 1991]). The
key difference is the introduction of the gating network, which induces an element of
discontinuity (whose importance was emphasized in Chapter 2) and allows subsystems
(the charts) to specialize in different regions of the input space.

Note that the charts which we consider in this thesis are themselves very basic au-
toencoders, as our focus was on the gating network and the chart splitting mechanism.
Of course, some of the various, more sophisticated types of autoencoders that have been
developed - sparse autoencoder, denoising autoencoder, variational autoencoder, etc. (see
[Bank et al., 2020] for a survey) - could be integrated to our architecture to improve the
performance of each individual chart.

6.2 Mixture of experts

At a first glance, Deep Atlas could be seen as a special case of the classi-
cal Mixture of Experts idea (introduced in [Jacobs et al., 1991b]). In their survey
[Masoudnia and Ebrahimpour, 2014], S. Masoudnia and R. Ebrahimpour distinguish be-
tween Mixtures of Implicitly Localised Experts (MILE), i.e. Mixtures of Experts in which
the attribution of the data points to different experts is trained conjointly with the experts,
and Mixtures of Explicitly Localised Experts (MELE), where the dataset is partitioned first
into subsets (using some clustering algorithm), then a different expert is trained on each of
these subsets. Following that taxinomy, Deep Atlas as we have implemented it would be
a MILE. It could be turned into a MELE by applying any kind of clustering algorithm to

55

56 CHAPTER 6.

the training dataset and training each chart on a specific subset, as well as replacing the
gating network by some classification algorithm that would learn that initial partition, but
we expect it not to be very efficient. Indeed, when performing manifold learning, obtaining
a reasonable partition of the data is in a sense the core of the problem, as opposed to some
secondary pre-processing task - it involves capturing part of the topology of the manifold,
and tends to be very hard (many clustering algorithms tend to struggle when applied to
manifolds). This is less the case for other tasks, such as classification, for which MELE
techniques have been successfully applied (e.g. in [Tang et al., 2002]).

There are however important differences between Deep Atlas and most existing Mixture
of experts-like algorithms (beyond the fact that many do not use deep learning to its full
potential, due to having been developed before it became fashionable).

The first would be that the use of several experts is usually motivated by increased
robustness, as their errors are hoped to be partially uncorrelated, which would allow them
to compensate for each other’s failures, as well as by increased performance due to spe-
cialization (see [Nowlan and Hinton, 1991]). Though Deep Atlas also benefits from those
effects, our core reason to advocate for the use of several charts is much more data-driven:
we have argued in Chapters 2 and 5 that using several charts coupled with a discontin-
uous gating mechanism is not only better suited to the task of manifold learning, but a
theoretical necessity in many cases.

A second difference is that most Mixture of Experts systems output some linear combi-
nation of the predictions of their experts. This often encourages several experts to produce
a somewhat good prediction for a given data point, though some might dominate. Con-
versely, a single chart is selected for each point by Deep Atlas; the predictions of the others
can be absolutely aberrant, and are in fact expected NOT to be relevant for most points
that are not attributed to them (this is illustrated in Section 7.2).
This sparsity and discontinuity of the output makes Deep Atlas somewhat comparable to
[Shazeer et al., 2017], where the predictions of only the top k-experts are combined. How-
ever, the fact that k “ 1 in our case creates important differences. In particular, the train-
ing loss must be adapted and a distinction training/inference must be made, as computing
the loss using predictions made in inference mode (as is done in [Shazeer et al., 2017]), i.e.
with a single chart per data point, would result in the gradient being 0 for the weights of all
charts except one (for a given data point), as well as for the weights of the gating network.
The system would get stuck in very suboptimal local optima. Another distinction in spirit
is that as with other Mixture of Experts, the experts of [Shazeer et al., 2017] are meant to
compute the same thing, though they are specialized in different subsets of the data, which
is not the case for Deep Atlas: each chart represents a different encoding, and the output
of the encoder of a chart cannot be meaningfully compared to that of another encoder.

The last core difference to classical Mixtures of Encoders is the adaptive creation of new
experts, in the form of the chart-splitting mechanism. There have been similarly minded

6.3. OTHER PIECEWISE CONTINUOUS MANIFOLD LEARNING TECHNIQUES57

efforts to adapt the system as a function of the results, but only in the form of changes to
the gating network (as far as the author is aware), as in [Jacobs et al., 1991a].
More generally, adaptive neural networks have been designed, but the changes possi-
ble seem to usually be limited to adding new fully or partially connected layers, as in
[Cortes et al., 2017], as opposed to an entire sub-neural network coupled with a non-
continuous gating network, as is the case with Deep Atlas. The specific mechanism by
which we initialize the weights of the new expert and create an associated output unit for
the gating network seems to be original as well.

Splitting the charts also allows us to partially alleviate a problem that often plagues
MILEs (as was observed in [Tang et al., 2002]), which is for the learnt partitions of the
dataset to be nonsensical, e.g. with unrelated and disconnected regions of space attributed
to the same expert. Should the chart being split cover several disconnected regions of the
manifold, the technique used (see details in Section 5.3) aims to distribute these among
the old chart and the newly created one, reducing the number of disconnected regions per
chart.

6.3 Other piecewise continuous manifold learning techniques

The idea of learning a manifold as an atlas was first discussed in [Pitelis et al., 2013] -
their geometric intuition was similar to ours, though they do not discuss the theoretical
limitations of continuous encoding algorithms in as much detail. However, their imple-
mentation of that initial intuition is very different. Firstly, the authors limit themselves
to linear charts, rather than using deep autoencoders as we do. Though manifolds can
be well-modelled by linear charts (as long as there are enough of them), one can hope for
deeper models to achieve better performances. Another difference is that they do not use
a gating network to attribute points to charts - instead, the points are hard-assigned to
charts under some constraints regarding the assignments of their k-nearest neighbours. As
a result, the training procedure (which is based on an Expectation-Maximisation process)
is entirely different from ours, and their system does not explicitly learn a mapping from
the input space to the latent space and vice-versa (though some nearest neighbours-based
trick could be used to encode out-of-sample points). Finally, there is no analog to our
chart-splitting mechanism that would allow the number of charts to increase adaptively.

58 CHAPTER 6.

Chapter 7

Experiments

7.1 Introduction

In this chapter, we test our implementation of Deep Atlas on a variety of tasks and data
sets. More specifically, we present the data sets used, we run simple experiments to illus-
trate the main mechanisms of Deep Atlas in Section 7.2, we test various hyperparameters
combinations in Section 7.3 to measure their effect on performance, and we compare Deep
Atlas (with the best hyperparameters combination found) to a classical autoencoder on
classification and unsupervised anomaly detection tasks in Sections 7.4 and 7.5.
Our main goal here is to study the core principles underlying Deep Atlas, and to compare
it to classical autoencoders; consequently, we choose for each data set a reasonable config-
uration but do not spend significant time trying to optimize it to maximise performance.
In particular, we do not use convolutional layers for image data sets.

We use four toy data sets where the points lie on nice, smooth manifolds: a sphere in R3,
the union of a sphere and a torus in R3, the famous Swiss roll, and a 40-dimensional sphere
embedded in R80. We split those data sets into classes (5, 4 and 3 classes respectively) in
such a way that the classes roughly correspond to distinct regions of space. The dimension

Figure 7.1 – The union of the sphere and the torus, a digit from the MNIST data set and
the Swiss roll.

59

60 CHAPTER 7.

of the latent space was 2 for the 2-sphere, union of sphere and torus and Swiss roll and 40

for the 40-dimensional sphere. We also add 5% of noisy anomalies to the data sets when
performing unsupervised anomaly detection. Additional details on the generation of those
data sets can be found in Appendix A.

We also use a classical benchmark data, the MNIST collection of 28 ˆ 28 pictures of
handwritten digits (601000 in the training set, 101000 in the test set), which we flatten
into vectors of R784 (see [LeCun et al., 2010]). When performing classification, we use as
classes the numbers represented. The latent space dimension chosen was 50 (similar to
what is done in [Burda et al., 2016]). The union of the sphere and the torus, a digit from
the MNIST data set and the Swiss roll are represented in Figure 7.1.

All data sets are renormalised to be of variance 1 before running experiments so as to
make reconstruction losses comparable.

The artificial data sets were chosen to help us capture in a simple, easy to analyze
context the essence of the properties in which we are interested, i.e. manifold-like structure
(and more specifically closed manifold-like structure in the case of the spheres and the
torus). The 40-dimensional sphere is meant to help us study Deep Atlas’s behavior in
higher dimensions, while remaining mathematically simple. Conversely, the MNIST data
set should help us test the limits of Deep Atlas, and see whether it can be of use in cases
where no manifold-like structure is expected (unlike what might be the case with data from
physics or computer vision).

7.2 Illustration of the main mechanisms

In this section, we illustrate with simple qualitative experiments the working of Deep Atlas.
In Figure 7.2, a Deep Atlas with 4 charts is trained to encode in 2 dimensions and recon-
struct points from the 2-dimensional sphere in R3. The original data set is represented
at the top of the left part of the figure; the color of the points indicate which charts they
have been assigned to at inference time. Each chart encodes the points associated to it
in a different copy of R2; those encodings are represented conjointly below the sphere (at
different vertical coordinates) for ease of visualisation. We see that the gating network
has successfully learnt to separate the sphere into subsets that are easy to encode. On
the right part of the figure, the points are shown in black, their reconstruction in red, and
a blue segment connects each point to its reconstruction. We see that no point is dra-
matically poorly reconstructed, unlike what was observed when using a single continuous
autoencoder in Section 2.2.

In Figure 7.3, we see that Deep Atlas learns relevant decompositions into charts: each
branch of the simple V-shaped data set is attributed to a different chart (as indicated by
the color scheme), which allows them to be correctly encoded and decoded by simple linear
maps.

7.2. ILLUSTRATION OF THE MAIN MECHANISMS 61

Figure 7.2 – On the left, Deep Atlas separates the 2-dimensional sphere into 4 distinct
charts; the encodings are represented below the sphere. On the right, the data points (in
black) are represented jointly with their reconstruction (in red).

Figure 7.3 – Deep Atlas learns to split the V-shaped data set into charts in a relevant
fashion.

62 CHAPTER 7.

Figure 7.4 – The charts are organized in a non-trivial way: no point is attributed to two
of them, and the points associated to charts number 5 form a topologically non-trivial
submanifold of the sphere.

In Figure 7.4, another instance of training a Deep Atlas on the 2-sphere. We see that the
repartition of the points between the different charts can sometimes be more complicated
than in Figure 7.2: after training, the gating network does not attribute any point to
charts number 2 and 4, and the points attributed to chart number 5 form a topologically
non-trivial subset of the sphere (though it can be faithfully embedded in R2).

Charts are only meant to be locally relevant, in the sense that they should faithfully
encode and decode points in the region of the data set that is attributed to them by the
gating network. This is illustrated in Figure 7.5, where we depict how the charts of a Deep
Atlas trained to encode the 2-sphere map the encoding space R2 to R3; in other words,
instead of only depicting the images by the decoder Di of the encodings by Ei of the points
attributed to chart Ci by the gating network, we show the extended graph of the decoder
Di : R2 Ñ R3.

We see that as expected, the graph of the decoders are tightly wrapped around the area
of the sphere attributed to the relevant chart, but diverge from the surface of the sphere
and become “nonsensical" away from those areas - the charts are not meant to faithfully
encode and decode the entire manifold, only regions of it.
The complexity of the mappings learnt by the charts depends on the architecture of their
encoder and decoder. Figure 7.6 represents the graphs of decoders of a Deep Atlas that
were limited to a single linear layer. As a result, they learnt very crude local linear
approximations of the surface of the Swiss roll that they are trying to encode.

In Figure 7.7, we illustrate the chart splitting mechanism. On the left, we see that the

7.2. ILLUSTRATION OF THE MAIN MECHANISMS 63

Figure 7.5 – The graphs of the decoder of various charts of a Deep Atlas trained on the
2-sphere.

Figure 7.6 – The graphs of the decoders of the charts of a Deep Atlas; those decoders were
constrained to be linear.

64 CHAPTER 7.

Figure 7.7 – On the left, the regions attributed to various charts of a Deep Atlas - we see
that some of these regions are not connected. On the left, the region associated to the
worst performing chart is split in two by a clustering algorithm.

points attributed to some of the charts form disconnected subsets of the Swiss roll. As we
would like each chart to encode a region of the data set as simple as possible, we wish to
avoid such situations.

When splitting charts, the worst performing chart is selected - in this case, the chart
represented in yellow. A clustering algorithm is applied either to the points associated to
the chart, or to some encoding of them (see Subsection 5.3.2 for details). On the right, we
see that it successfully separates the two connected component of the region attributed to
the chart. Two charts are then created to replace the yellow chart, each inheriting one of
the two connected components.

7.3 Hyperparameter testing

In Chapter 5, our architecture was introduced with many possible variations and hyper-
parameters to set. In this Section, we explore the effects of those hyperparameters.

In the experiments below, we let one parameter vary while the rest are set according
to our baseline configuration, which is as follows1:

• The main reconstruction loss is LexpR , with a softmax coefficient λ of 1.

• The weights γload, γimportance, γI and γC associated to the load loss, importance loss,
inverse reconstruction loss and classification loss are set to 0.

• The number of charts is fixed and set to 6 for the union of the torus and the sphere,
2 for the 40-dimensional sphere and 10 for the MNIST data set.

1See Section 5.3 for the definition of the various terms used.

7.3. HYPERPARAMETER TESTING 65

For each experiment, we then let one parameter vary. The exact architectures and training
procedures used are described in details in Appendix A. Performance is mainly measured
using the average reconstruction error

LEpDq :“
1

|D|
ÿ

XPD
||DipXqpEipXqpXqq ´X||

2
2

computed in inference mode on the test set (where ipXq “ argmax tGpXqj |j “ 1, . . . , ku).
In Table 7.8, we test the three main reconstruction losses LR, LinsideR and LexpR . As

LexpR seems to perform slightly better (most likely for reasons discussed in 5.3, and in line
with what was observed in [Jacobs et al., 1991b]).

Various reconstruction losses
Reconstruction loss

Data set LR LinsideR LexpR

Torus union sphere 0.0019 1.750 0.0016

40-dim sphere 0.173 2.702 0.170

MNIST 0.091 14.578 0.092

Figure 7.8 – Average reconstruction error using various main reconstruction losses during
training.

In Table 7.9, we test 4 different values for the softmax exponent λ used in the compu-
tation of the charts weights αi. It does not seem to have much of an impact, most likely
because the gating network naturally learns to give almost all the weight to the best chart
for a given point.

Choice of softmax exponent
Softmax exponent λ

Data set 1 2 4 8

Torus union sphere 0.0015 0.0015 0.0015 0.0075

40-dim sphere 0.173 0.181 0.174 0.173

MNIST 0.102 0.110 0.104 0.104

Figure 7.9 – Average reconstruction error using various softmax exponents λ in the com-
putation of the weights αi during training.

In Table 7.10, we test various combinations of weights γload and γimportance for the load
loss Lload and the importance loss Limportance and measure the average reconstruction error
and load loss (the load loss is computed using Formula (5.3.3)). We see that while they do
impact the load loss, a decrease in load loss does not translate to a significant improvement
in performance, unlike what was observed in [Shazeer et al., 2017]. In the case of the union

66 CHAPTER 7.

of the sphere and the torus, this is because the intrinsic geometry of the problems makes it
natural for some charts to have more points attributed to them than others: if the sphere
is split into 2 charts and the torus into 4, they will naturally have different number of
points, and forcing them to inherit points from the other connected component will hurt
performance. Moreover, denser regions do not necessarily need more charts to be properly
encoded, as long as their geometry is simple enough, leading the associated charts to
naturally receive more points than charts associated to sparser regions.

We also see that without any load or importance loss, the load loss on the MNIST tends
to be close to 9, which indicates that a single chart is tasked with encoding all the points;
the charts failed to specialize in different regions of the data set. However, performance
does not increase when the load loss forces the load to be more evenly distributed; we
discuss the reasons for this further below.

Impact of the load-balancing losses
pγload, γimportanceq

Data set p0, 0q p0.01, 0q p0.1, 0q

LE Lload LE Lload LE Lload

Torus union sphere 0.0014 0.429 0.0025 0.002 0.0040 0.002

40-dim sphere 0.173 0.078 0.172 0.001 0.173 0.003

MNIST 0.104 9.00 0.090 0.673 0.095 0.005

p0, 0.01q p0.01, 0.01q p0.1, 0.01q

LE Lload LE Lload LE Lload

Torus union sphere 0.0010 0.003 0.0020 0.001 0.0020 0.002

40-dim sphere 0.171 0.0002 0.172 0.0002 0.171 0.00008

MNIST 0.104 9.00 0.090 1.008 0.095 0.002

p0, 0.1q p0.01, 0.1q p0.1, 0.1q

LE Lload LE Lload LE Lload

Torus union sphere 0.0016 0.002 0.0023 0.004 0.0027 0.001

40-dim sphere 0.173 0.0002 0.172 0.004 0.171 0.00001

MNIST 0.095 0.004 0.096 0.005 0.095 0.004

Figure 7.10 – Average reconstruction error LE and load loss Lload using various combi-
nations of weights γload and γimportance for the load loss Lload and the importance loss
Limportance.

In Table 7.11, we test the alternate load loss defined with a softmax-like formula (see
Equation (5.3.4)) with various coefficients µ and a set value λload “ 0.01. A small im-
provement in performance seems to be observed for µ “ 4 on the union of the torus and
the sphere, but further testing on a wider variety of data sets would be necessary to reach
definitive conclusions.

7.3. HYPERPARAMETER TESTING 67

Alternative load loss Lload from Equation (5.3.4)
Softmax exponent for the load loss

Data set 1 2 4 8

Torus union sphere 0.0015 0.0004 0.0013 0.200 0.0011 0.002 0.0020 0.009

40-dim sphere 0.172 0.00006 0.171 0.006 0.171 0.0006 0.172 0.0001

MNIST 0.084 4.000 0.086 4.000 0.084 2.338 0.085 2.350

Figure 7.11 – Average reconstruction error LE and load loss Lload for various softmax
exponents µ in the alternative load loss formula from Equation (5.3.4), with a load loss
weight γload “ 0.01.

In Table 7.12, we test various weights for the inverse reconstruction loss LI and the
classification loss LC . No clear effect can be observed, most likely because they are made
redundant by the main reconstruction loss which encourages the same behaviour from the
system (good reconstruction and appropriate attribution of charts).

Inverse reconstruction loss and classification loss
γC

Data set 0 0.01 0.1 0.25

Torus union sphere 0.0011 0.0019 0.0033 0.0025

40-sphere 0.182 0.174 0.174 0.174

MNIST 0.108 0.105 0.103 0.104

γI

Data set 0 0.01 0.1 0.25

Torus union sphere 0.0014 0.0020 0.0021 0.0013

40-sphere 0.172 0.173 0.179 0.180

MNIST 0.102 0.104 0.104 0.111

Figure 7.12 – Average reconstruction error LE various inverse reconstruction loss weight
γI and classification loss weight γC .

In Table 7.13, we compare the reconstruction error obtained with various (fixed) num-
bers of charts. While it seems to have an important impact on performance for the union
of the torus and the sphere, with less than 6 charts leading to a lack in flexibility and 9

charts to some overfitting, it has very little effect for the other two data sets.

68 CHAPTER 7.

Various fixed number of charts

Torus union sphere
Num charts 1 3 6 12

R. E. 0.0331 0.0029 0.0012 0.0019

40-dim sphere
Num charts 1 2 4 8

R. E. 0.173 0.181 0.198 0.220

MNIST
Num charts 1 5 10 20

R. E. 0.105 0.103 0.102 0.102

Figure 7.13 – Average reconstruction error LE for various softmax exponents µ in the
alternative load loss formula from Equation (5.3.4), with a load loss weight γload “ 0.01.

In Table 7.14, we test the chart splitting mechanism by starting with a single chart, then
repeatedly splitting it (after a round of training) until reaching 6 charts for the union of the
torus and the sphere, 2 charts for the 40-dimensional sphere and 10 charts for the MNIST
data set. “Clustering space" indicates whether the clustering of the points attributed to
the split chart was done in the input space (“Input"), the latent representation space
(“Encoding"), or in the image of the hidden layers of the gating network (“Internal"). The
clustering algorithm was either k-means or agglomerative clustering, and the performance
of the charts was measured using either their total or average reconstruction error - see
Section 5.3.2 for further explanations.

We observe that applying the chart splitting mechanism leads to reduced performance
for all data sets compared to starting with a fixed and reasonable number of charts, proba-
bly because starting with a low number of charts gets the system stuck in a very suboptimal
local optimum. None of the variations in procedure seem to have a significant impact.

For comparison, we also measured average reconstruction error on the MNIST data set
when training for each class of digits a specialized autoencoder and using it to encode the
points of this class (on the row “Manually organized charts"); this should correspond to
an almost optimal chart distribution, where each chart is tasked with encoding a distinct
class. We see that the performance is no better than that obtained in previous experiments
(perhaps even slightly worse). We comment on this in Section 7.6.

7.3. HYPERPARAMETER TESTING 69

Chart splitting mechanism
Clust. space Clust. alg. Chart error Torus & sphere 40-sphere MNIST

Input
k-means

Total 0.0030 0.187 0.144

Average 0.0024 0.191 0.167

Agg. clust.
Total 0.0030 0.189 0.167

Average 0.0031 0.189 0.553

Encoding
k-means

Total 0.0025 0.190 0.193

Average 0.0030 0.188 6.288

Agg. clust.
Total 0.0023 0.190 0.175

Average 0.0040 0.187 0.195

Internal
k-means

Total 0.0023 0.188 0.147

Average 0.0024 0.191 0.187

Agg. clust.
Total 0.0024 0.191 0.180

Average 0.0034 0.189 0.211

Manually organised charts 0.112

Figure 7.14 – Average reconstruction error LE when starting with a single chart and re-
peatedly applying the chart splitting mechanism with various combinations of options. As
a comparison, we include the average reconstruction error obtained on the MNIST data
set with 10 charts, each trained and tested only on the pictures representing one of the 9
digits.

Finally, we test classical autoencoders of various sizes on the same data sets: the small
ones have roughly the same number of parameters as a single one of the charts we used
while the large ones have about as many parameters as a complete Deep Atlas 2. We
compare the best classical autoencoder configuration to Deep Atlas on the classification
and UAD tasks of the next sections.

Performance of classical autoencoders of various sizes
Simple autoencoder size

Data set Small Medium Large

Torus union sphere 0.0337 0.0256 0.0192

40-sphere 0.171 0.204 0.251

Swiss roll 0.062 0.045 0.055

MNIST 0.109 0.066 1.004

Figure 7.15 – Average reconstruction error for various sizes of classical autoencoders.

2See Annex A for exact descriptions.

70 CHAPTER 7.

7.4 Classification

We encode the data sets using either Deep Atlas or a classical autoencoder, then apply
a simple k-neighbour classification algorithm (using the scikit-learn implementation, see
[Pedregosa et al., 2011]) to the latent representations. For Deep Atlas, we use a distinct
classifier for each chart.

We see in Table 7.16 that Deep Atlas is about 8 and 6 times more precise than a
similarly sized classical autoencoder on the union of the sphere and the torus and the Swiss
roll, which leads to improved precision. On the other hand, Deep Atlas does not improve
performance on the 40-dimensional sphere or the MNIST data set (and reconstruction error
is even slightly worse for MNIST than with the best classical autoencoder).

Classification accuracy of classical autoencoders and Deep Atlas
Classical Autoencoder Deep Atlas

Data set Prec. R. error Prec. R. error

Torus union sphere 80.2 0.0206 88.3 0.0026

40-sphere 45.5 0.174 47.6 0.172

Swiss roll 69.9 0.0432 84.5 0.0071

MNIST 95.7 0.0637 95.1 0.093

Figure 7.16 – Classification precision (in % of correct answers) and average reconstruction
error of simple autoencoders and Deep Atlas.

7.5 Unsupervised anomaly detection

As detailed in Annex A, we added 5% of noisy anomalies to the artificial data sets. For
the MNIST data set, we used the classes 0, 1 and 2 as normal points, and added 10% of
points from the other classes as anomalies.

We encode and reconstruct each training set, then use the norm of the reconstruction
error as a measure of anomaly. More specifically, we let ρ ą 0 be such that the percentage of
data points whose reconstruction error is of norm greater than ρ is equal to the percentage
of anomalies in the data set. We then classify a point as an anomaly if its reconstruction
error is of norm greater than ρ.

We observe in Table 7.17 that Deep Atlas underperforms compared to the simpler
classical autoencoders on all datasets.

7.6. DISCUSSION 71

UAD performance of classical autoencoders and Deep Atlas
Simple Autoencoder Deep Atlas

Data set TP TN TP TN

Torus union sphere 58.0 97.8 42.5 97.0

40-sphere 4.5 95.0 3.5 95.0

Swiss roll 45.0 97.1 27.0 96.2

MNIST 1.7 94.8 1.4 94.9

Figure 7.17 – True positive and true negative rates (in %) of simple autoencoders and Deep
Atlas.

7.6 Discussion

Somewhat disappointingly, most hyperparameter choices seem to have little impact, though
more systematic testing on wider variety of data sets might show some small effect.

As hoped for, Deep Atlas is much more precise than similarly sized classical autoen-
coders on simple manifolds, such as the Swiss roll or the union of the sphere and the torus.
Regarding the 40-dimensional sphere, we suspect that we might have underestimated the
complexity of the data set due to its mathematical simplicity: though we were not aiming
for state of the art performance, a single hidden layer in the encoder and the decoder was
probably largely insufficient to accurately encode it, leading to results too mediocre to
allow meaningful comparisons.

We chose MNIST on purpose as an example of a data set with little manifold-like
structure: indeed, manually distributing the charts in an a priori almost optimal way (one
autoencoder per class) leads to almost no improvement upon using either Deep Atlas or
a single big autoencoder. This seems to suggest that there is no easy way to split the
data set into simple, easy to encode regions3; rather than our method failing, our starting
assumptions regarding the structure of the data simply do not apply to MNIST.

The chart splitting mechanism seems to lead to worsened performance compared to
simply starting with a reasonable number of charts. As this is due to the system getting
stuck in bad local optima, a refinement in the training routine might help alleviate this
problem. As suggested by the case of the union of the torus and the sphere, using the
chart splitting mechanism might also beat starting with a much too low number of charts
when training on a data set for which a reasonable number of charts is hard to guess.

Regarding the classification task, increased encoding precision seems to yield increased
performance, as expected. This is not the case for unsupervised anomaly detection.
Though it might seem counter-intuitive, it is a consequence of the considerations exposed
in Chapter 3. As the number of charts increases, the volume of the regions where Deep

3Though it might be once again that deeper autoencoders would have been necessary to capture subtler
structure.

72 CHAPTER 7.

Atlas precisely reconstructs points increases as well; consequently, though normal points
are better reconstructed, so do some anomalies, and the latter effect seems to dominate4.

The terrible true positive rates of both the classical autoencoder and Deep Atlas on
MNIST illustrate the same problem: both models learn too much structure and become
TOO proficient at extrapolating, and thus manage to faithfully reconstruct digits that are
very rare in the data set.

4As we use a quantile-based anomaly score threshold, this impacts both the true positive AND the true
negative rate.

Conclusion

We have shown the existence of a theoretical limitation on the precision of continuous
autoencoders when encoding closed manifolds, illustrated how it can manifest, and dis-
cussed the effects it can have in the particular context of Unsupervised Anomaly Detection
(UAD).

We have also analyzed the assumptions regarding the nature of anomalies underlying
most UAD algorithms, and shown through a series of simple examples how they can be
limiting. We think that keeping such considerations in mind might lead to more principled
progresses in the field.

An important issue which we did not have the time or space to study is that of the
nature of most real life data: though we have shown that closed manifolds can be a weak-
ness of continuous autoencoders and that anomalies can a priori come in many forms and
need not necessarily be outliers of the total distribution, such phenomena have only been
seriously studied in some data sets from particle physics (see [Batson et al., 2021]). Mea-
suring how common closed manifolds or “non-outlierish" anomalies are in typical data sets
from various fields would be very valuable (though difficult), and help us decide whether
those are minor epiphenomena, or whether they should be treated as a major issue.

We have also tried to suggest a solution to the problem of continuous autoencoders
struggling to accurately model manifolds. Our model, Deep Atlas, significantly outper-
formed classical autoencoders in encoding precision on simple data sets meant to illustrate
the type of structure for which it was designed. Conversely, in the complete absence of
such structure (as with the MNIST data set), the gain in performance was essentially zero
(though this might have been partially due to training difficulties and suboptimal architec-
ture choices). We also observed that as predicted in Chapters 3 and 4, a gain in encoding
precision does not necessarily translate to an improvement in UAD performance.

The next steps would be to test Deep Atlas on a wider variety of appropriate real
world data sets using more finely tuned architectures in order to reach more definitive
conclusions, as well as to further refine the algorithm itself.

Possible improvements could be:

• Replacing the gating network by another system tasked with attributing points to
charts, e.g. using a k-means-like clustering subroutine. This might lead to a geo-

73

74 CONCLUSION

metrically more sensible distribution of points among the charts. Some Expectation-
Maximisation-like training could also help the model avoid local minima.

• Further improving the adaptiveness of the system by adding a chart destroying or
chart merging mechanism. Once a good system of dynamic chart management has
been identified, we could also try integrating it to various mixture of experts models
(adaptively adding or removing experts) used in tasks other than dimensionality
reduction.

• Adding a probabilistic component to the autoencoders, in the same spirit as Varia-
tional Autoencoders (see [Kingma and Welling, 2014]).

• Finding a way to link the charts together: currently, each chart is entirely indepen-
dent from the others, and there is no easy way to determine whether the regions
encoded by two charts are adjacent or distant. Such information might be useful, for
example when performing classification tasks.

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software available
from tensorflow.org.

[Amer et al., 2013] Amer, M., Goldstein, M., and Abdennadher, S. (2013). Enhancing
one-class support vector machines for unsupervised anomaly detection. pages 8–15.

[Balasubramanian and Schwartz, 2002] Balasubramanian, M. and Schwartz, E. (2002).
Schwartz, e.l.: The isomap algorithm and topological stability. science 295, 5552. Science
(New York, N.Y.), 295:7.

[Bank et al., 2020] Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoencoders.

[Batson et al., 2021] Batson, J., Haaf, C., Kahn, Y., and Roberts, D. (2021). Topological
obstructions to autoencoding.

[Bergman and Hoshen, 2020] Bergman, L. and Hoshen, Y. (2020). Classification-based
anomaly detection for general data. In International Conference on Learning Represen-
tations.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[Breunig et al., 2000] Breunig, M., Kriegel, H.-P., Ng, R., and Sander, J. (2000). Lof:
Identifying density-based local outliers. volume 29, pages 93–104.

[Burda et al., 2016] Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance
weighted autoencoders.

[Camastra and Staiano, 2016] Camastra, F. and Staiano, A. (2016). Intrinsic dimension
estimation: Advances and open problems. Information Sciences, 328:26–41.

75

76 BIBLIOGRAPHY

[Cavicchioli and Grasselli, 1985] Cavicchioli, A. and Grasselli, L. (1985). Minimal atlases
of manifolds. Cahiers de topologie et géométrie différentielle catégoriques, 26.

[Chalapathy and Chawla, 2019] Chalapathy, R. and Chawla, S. (2019). Deep learning for
anomaly detection: A survey.

[Cortes et al., 2017] Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and Yang, S.
(2017). AdaNet: Adaptive structural learning of artificial neural networks. In Precup,
D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pages 874–883.
PMLR.

[Curth and van der Schaar, 2021] Curth, A. and van der Schaar, M. (2021). Doing great at
estimating cate? on the neglected assumptions in benchmark comparisons of treatment
effect estimators.

[Engel et al., 2012] Engel, D., Hüttenberger, L., and Hamann, B. (2012). A survey of di-
mension reduction methods for high-dimensional data analysis and visualization. Ope-
nAccess Series in Informatics, 27:135–149.

[Eskin et al., 2002] Eskin, E., Arnold, A. O., and Prerau, M. (2002). A geometric frame-
work for unsupervised anomaly detection: Detecting intrusions in unlabeled data.

[Geng et al., 2015] Geng, J., Fan, J., Wang, H., Ma, X., Li, B., and Chen, F. (2015). High-
resolution sar image classification via deep convolutional autoencoders. IEEE Geoscience
and Remote Sensing Letters, 12(11):2351–2355.

[Goldstein and Dengel, 2012] Goldstein, M. and Dengel, A. (2012). Histogram-based out-
lier score (hbos): A fast unsupervised anomaly detection algorithm.

[Goldstein and Uchida, 2016] Goldstein, M. and Uchida, S. (2016). A comparative eval-
uation of unsupervised anomaly detection algorithms for multivariate data. PloS one,
11:e0152173.

[Gorban et al., 2008] Gorban, A., Kégl, B., Wunsch, D., and Zinovyev, A. (2008). Princi-
pal Manifolds for Data Visualisation and Dimension Reduction, LNCSE 58.

[Hansen, 1999] Hansen, J. V. (1999). Combining predictors: comparison of five meta
machine learning methods. Information Sciences, 119(1):91–105.

[Hatcher, 2005] Hatcher, A. (2005). Algebraic Topology. Cambridge University Press.

[He et al., 2003] He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local
outliers. Pattern Recognition Letters, 24(9):1641–1650.

BIBLIOGRAPHY 77

[Hinton and Salakhutdinov, 2006] Hinton, G. and Salakhutdinov, R. (2006). Reducing the
dimensionality of data with neural networks. Science (New York, N.Y.), 313:504–7.

[Jacobs et al., 1991a] Jacobs, R. A., Jordan, M. I., and Barto, A. G. (1991a). Task decom-
position through competition in a modular connectionist architecture: The what and
where vision tasks. Cognitive Science, 15(2):219–250.

[Jacobs et al., 1991b] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
(1991b). Adaptive mixtures of local experts. Neural Computation, 3(1):79–87.

[Johnstone and Titterington, 2009] Johnstone, I. and Titterington, D. (2009). Statistical
challenges of high-dimensional data. Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences, 367:4237–53.

[Jolliffe, 2002] Jolliffe, I. (2002). Principal Component Analysis. Springer Series in Statis-
tics. Springer.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic
optimization. International Conference on Learning Representations.

[Kingma and Welling, 2014] Kingma, D. and Welling, M. (2014). Auto-encoding varia-
tional bayes.

[Kramer, 1991] Kramer, M. A. (1991). Nonlinear principal component analysis using au-
toassociative neural networks. AIChE Journal, 37(2):233–243.

[Kruskal, 1964] Kruskal, J. (1964). Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27.

[LeCun et al., 2010] LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten
digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2.

[Lee et al., 2004] Lee, A. B., Pedersen, K., and Mumford, D. (2004). The nonlinear statis-
tics of high-contrast patches in natural images. International Journal of Computer
Vision, 54:83–103.

[Martí et al., 2015] Martí, L., Sánchez-Pi, N., Molina, J., and Garcia, A. C. (2015).
Anomaly detection based on sensor data in petroleum industry applications. Sensors,
15:2774–2797.

[Masoudnia and Ebrahimpour, 2014] Masoudnia, S. and Ebrahimpour, R. (2014). Mixture
of experts: A literature survey. Artificial Intelligence Review, 42.

[Melas-Kyriazi, 2020] Melas-Kyriazi, L. (2020). The mathematical foundations of manifold
learning. CoRR, abs/2011.01307.

78 BIBLIOGRAPHY

[Michor et al., 2008] Michor, P., Scharlemann, M., Cox, D., Krantz, S., and Mazzeo, R.
(2008). Topics in Differential Geometry. Graduate studies in mathematics. American
Mathematical Society.

[Munkres, 2000] Munkres, J. (2000). Topology. Topology. Prentice-Hall.

[Nowlan and Hinton, 1991] Nowlan, S. and Hinton, G. E. (1991). Evaluation of adaptive
mixtures of competing experts. In Lippmann, R. P., Moody, J., and Touretzky, D., edi-
tors, Advances in Neural Information Processing Systems, volume 3. Morgan-Kaufmann.

[Outerelo and Ruiz, 2009] Outerelo, E. and Ruiz, J. (2009). Mapping Degree Theory. Grad-
uate studies in mathematics. American Mathematical Soc.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830.

[Pitelis et al., 2013] Pitelis, N., Russell, C., and Agapito, L. (2013). Learning a manifold
as an atlas*. IEEE Conference in Computer Vision and Pattern Recognition.

[Rainforth et al., 2018] Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M.,
Wood, F., and Teh, Y. (2018). Tighter variational bounds are not necessarily better. In
ICML.

[Ramaswamy et al., 2000] Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient
algorithms for mining outliers from large data sets. volume 29, pages 427–438.

[Roweis and Saul, 2000] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality
reduction by locally linear embedding. Science, 290(5500):2323–2326.

[Sagi and Rokach, 2018] Sagi, O. and Rokach, L. (2018). Ensemble learning: A survey.
WIREs Data Mining and Knowledge Discovery, 8(4):e1249.

[Sakurada and Yairi, 2014] Sakurada, M. and Yairi, T. (2014). Anomaly detection using
autoencoders with nonlinear dimensionality reduction. pages 4–11.

[Schlegl et al., 2017] Schlegl, T., Seeböck, P., Waldstein, S., Schmidt-Erfurth, U., and
Langs, G. (2017). Unsupervised anomaly detection with generative adversarial networks
to guide marker discovery. pages 146–157.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–
1319.

BIBLIOGRAPHY 79

[Shazeer et al., 2017] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hin-
ton, G., and Dean, J. (2017). Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. https://arxiv.org/abs/1701.06538.

[Sorzano et al., 2014] Sorzano, C., Vargas, J., and Montano, A. (2014). A survey of di-
mensionality reduction techniques.

[Steinbach et al., 2003] Steinbach, M., Ertöz, L., and Kumar, V. (2003). The challenges
of clustering high dimensional data. Univ. Minnesota Supercomp. Inst. Res. Rep., 213.

[Tang et al., 2002] Tang, B., Heywood, M., and Author, M. (2002). Input partitioning
to mixture of experts. Proceedings of the International Joint Conference on Neural
Networks, 1:227 – 232.

[Tenenbaum et al., 2000] Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323.

[Thudumu et al., 2020] Thudumu, S., Branch, P., Jin, J., and Singh, J. (2020). A compre-
hensive survey of anomaly detection techniques for high dimensional big data. Journal
of Big Data, 7.

[Turk and Levoy, 1994] Turk, G. and Levoy, M. (1994). Zippered polygon meshes from
range images. Proceedings of the 21st annual conference on Computer graphics and
interactive techniques.

[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (2008). Visualizing
data using t-sne. Journal of Machine Learning Research, 9(86):2579–2605.

[Vincent et al., 2008] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008).
Extracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, page 1096–1103,
New York, NY, USA. Association for Computing Machinery.

[Xu et al., 2018] Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., Liu, Y., Zhao, Y.,
Pei, D., Feng, Y., Chen, J. J., Wang, Z., and Qiao, H. (2018). Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. Proceedings
of the 2018 World Wide Web Conference.

[Yoon et al., 2021] Yoon, J., Sohn, K., Li, C.-L., Arik, S., Lee, C.-Y., and Pfister, T.
(2021). Self-trained one-class classification for unsupervised anomaly detection.

[Yoon et al., 2020] Yoon, J., Zhang, Y., Jordon, J., and van der Schaar, M. (2020). Vime:
Extending the success of self- and semi-supervised learning to tabular domain. Part of
Advances in Neural Information Processing Systems, 33.

https://arxiv.org/abs/1701.06538

80 BIBLIOGRAPHY

[Zong et al., 2018] Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D.,
and Chen, H. (2018). Deep autoencoding gaussian mixture model for unsupervised
anomaly detection. In International Conference on Learning Representations.

Appendix A

Additional details on the
experimental protocols

A.1 Datasets

We provide additional details on the generation of the artificial experimental data sets.

A.1.1 Torus union sphere

The first artificial data set is the union in R3 of a torus and a sphere. The points x on the
torus are obtained by uniformly sampling φ P r0, 2πs, θ P r0, 2πs and setting

x “ ppcospθq ` 2q cospφq, pcospθq ` 2q sinpφq, sinpθqq .

The points on the sphere are obtained by uniformly sampling from a three-dimensional
normal distribution, and dividing the samples by their norm. A Gaussian noise of covari-
ance 0.005 ˚ I3 (where I3 is the 3ˆ 3 identity matrix) is added to each point. We training
and the test set both contain 2500 points on the torus and 1000 on the sphere. We also
artificially attribute classes to the points using a mixture of Gaussians model, where each
Gaussian corresponds to a class1. As a result, the classes are organized in a “geometrically
coherent" fashion using , i.e. in such a way that each class roughly corresponds to a region
of space, as illustrated at the top of Figure A.1. In the training set, the five classes contain
781, 674, 300, 1367 and 378 points respectively - proportions are similar in the test set.
Anomalies for the UAD experiment were sampled from a Gaussian of mean p3, 0, 0q and
covariance 20 ¨ I3.

1Details can be found in the code.

81

82APPENDIX A. ADDITIONAL DETAILS ON THE EXPERIMENTAL PROTOCOLS

Figure A.1 – At the top, the union of a sphere and a torus. At the bottom, the Swiss roll
data set. Colors indicate classes used for the classification experiments.

A.2. MODEL CONFIGURATION AND TRAINING 83

A.1.2 2-dimensional sphere

The two dimensional sphere used to illustrate the main mechanisms of Deep Atlas was
obtained in the same way as the sphere component of the union of the sphere and the
torus described above. It contained 1000 samples.

A.1.3 Swiss roll

We use the scikit-learn library [Pedregosa et al., 2011] to sample points on the Swiss roll
manifold (plus a Gaussian noise of covariance 0.05˚I3), with 2000 points in the training set
and the test set each. Points are divided into four classes using a mixture of Gaussians2,
as is illustrated at the bottom of Figure A.1. In the training set, the classes contain
242, 510, 928 and 320 points respectively. Anomalies for the UAD experiment were sampled
from a Gaussian of mean 0 and covariance 100 ¨ I3.

A.1.4 40-dimensional sphere

We obtain points on the sphere of dimension 40 embedded in R80 by sampling from a
Gaussian of covariance

C “

«

I41 041ˆ39

039ˆ41 039ˆ39

ff

and dividing the samples by their norm, where In is the identity n ˆ n matrix and 0nˆm

is the nˆm zero matrix. A Gaussian noise of covariance 0.05 ˚ I80 is then added. There
are 1000 points in the training set and another 1000 in the test set. As above, the samples
are split into classes using a mixture of Gaussians. In the training set, the classes con-
tain 159, 564 and 277 points respectively, and the proportions are similar in the test set.
Anomalies for the UAD experiment were obtained by sampling points on the sphere and
adding a Gaussian noise of mean 0 and covariance 0.005 ¨ I80.

A.2 Model configuration and training

We detail the architecture of the charts and gating network chosen for each data set in our
quantitative experiments, as well as the training procedure.

Our neural networks used Scaled Exponential Linear Units (SELU) activation functions
for their hidden layers, and linear activation for their output layers. With each data set,
we used the Tensorflow implementation of the Adam optimizer (see [Abadi et al., 2015]
and [Kingma and Ba, 2014]), with an initial learning rate of 10´3 which we divided by 10

after each epoch of training. Batch size was set to 1000.

2Details can be found in the code.

84APPENDIX A. ADDITIONAL DETAILS ON THE EXPERIMENTAL PROTOCOLS

A.2.1 Torus union sphere

Both our encoders and decoders had 3 hidden layers of 7 units. The gating network had
two hidden layers of 10 units each. When testing various simple autoencoders sizes, the
encoder and decoder of the small one had 3 hidden layers of 7 units each. The encoder
and decoder of the medium one had 3 hidden layers of 21 units each, and the the encoder
and decoder of the large one had 3 hidden layers of 42 units each. We ran 3 training
epochs of 2000, 4000 and 8000 passes respectively (both for Deep Atlas and for the simple
autoencoders).

A.2.2 Swiss roll

The architectures chosen for the Swiss roll are exactly the same as for the union of the
sphere and the torus.

A.2.3 40-dimensional sphere

Both our encoders and decoders had 1 hidden layers of 40 units. The gating network had
0 hidden layer. When testing various simple autoencoders sizes, the encoder and decoder
had 1 hidden layers of 40 (respectively 60 and 80) units each for the small autoencoder
(respectively the medium and large ones). We ran 3 training epochs of 2000, 4000 and 8000

passes respectively.

A.2.4 MNIST

The encoder had 2 hidden layers of 250 and 100 hidden units respectively; the decoder had
2 hidden layers of 100 and 250 hidden units respectively (we followed [Burda et al., 2016]
regarding what constitutes a “reasonable" configuration). The gating network had 2 hidden
layers of 250 and 50 units each. When testing various simple autoencoders sizes, the
encoder (respectively decoder) of the small one had 2 hidden layers of 250 and 150 units
(respectively 2 hidden layers of 100 and 200 units). The encoder (respectively decoder)
of the medium one had 2 hidden layers of 750 and 300 units (respectively 2 hidden layers
of 300 and 600 units). The encoder (respectively decoder) of the large one had 2 hidden
layers of 2500 and 1500 units (respectively 2 hidden layers of 1000 and 2000 units). We
ran 3 training epochs of 500, 2000 and 4000 passes respectively.

	Introduction
	I
	Dimensionality reduction
	Definition, motivation and existing techniques

	Limitations of continuous dimensionality reduction algorithms
	Theoretical aspects
	Experimental illustration

	II
	Unsupervised anomaly detection
	Definition and motivation
	Unsupervised anomaly detection and autoencoders

	Anomalies and structure
	Introduction
	What is an anomaly?
	Menagerie of examples

	How do we identify anomalies?

	III
	Deep Atlas
	A geometric intuition
	The main algorithm
	Training
	Losses
	Chart splitting algorithm

	On the minimal number of charts required

	Comparison to other algorithms
	Autoencoders
	Mixture of experts
	Other piecewise continuous manifold learning techniques

	Experiments
	Introduction
	Illustration of the main mechanisms
	Hyperparameter testing
	Classification
	Unsupervised anomaly detection
	Discussion

	Conclusion
	Bibliography
	Additional details on the experimental protocols
	Datasets
	Torus union sphere
	2-dimensional sphere
	Swiss roll
	40-dimensional sphere

	Model configuration and training
	Torus union sphere
	Swiss roll
	40-dimensional sphere
	MNIST

