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Abstract

Data-to-text generation means the formulation of fluent text, given a

set of information encoded in an abstract meaning representation (knowl-

edge graph, table, etc.).

One fundamental challenge in data-to-text generation is that the set of

information contained in the text must exactly match the set of infor-

mation covered by the information source. Existing data-to-text systems

however tend to omit, falsify, or hallucinate facts in their generated text.

This pathology is additionally fuelled by low semantic overlap among most

available data-to-text corpora.

Common approaches to encourage semantic accuracy involve endowing

the language model with additional structure, meant to prevent the model

from generating unfaithfully (i.e. diverge from the facts) in the first place.

This work however aims to distribute the task of faithful generation across

several system components, placing less responsibility on the generator.

Our approach can thus be partitioned into three stages - dataset prepa-

ration, generation of candidate texts, and candidate filtering.

We propose an end-to-end data-to-text generation system, re-using the

generator-classifier approach of the DataTuner (Harkous, Groves, and

Saffari, 2020). In addition however, we pay special attention to the dataset

preparation, actively increasing faithfulness among the examples, and

training on mixed corpora. We find the semantic cleaning and the mixed-

corpus training to be a viable means of improving generator quality.

In the next step, we train a T5 langugage generator on our now de-noised

joint data-to-text corpus. We generate five candidate sentences for each

information source. Finally, we let a RoBERTa semantic fidelity classifier

pick the system output among the candidates.

We achieve higher pre-filtering METEOR scores than Harkous et al.,

and increase METEOR by 4.72% through filtering with RoBERTa, com-

pared to 1.19% in Harkous et al.. This may be an unfair comparison, due

to METEOR picking up on more overlap in our de-noised datasets. Nev-

ertheless, the performance increase measured from employing de-noised

datasets as well as mixed-corpus training ultimately demonstrates an en-

hancement to the DataTuner. The effect of qualitative differences be-

tween their generator (GPT-2) and ours (T5) are difficult to assess.

In human reviews of T5’s output, we rarely spot hallucination, but numer-

ous omissions, the opposite phenomenon of hallucination. We attribute

this observation to a scale of locquacity among language models, i.e. they

are either too ‘talkative’ or too ‘quiet’.
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1 Introduction

Ever-growing databases, holding unwieldy amounts of data, theoretically grant

us access to an abundance of knowledge, which we however rarely retrieve due

to the practical inaccessibility of the storage format. Mechanisms which auto-

matically transform the inaccessible data structures into fluent text could thus

remove the need for a laborious routine of information retrieval, information re-

structuring and write-up. On the other hand, tasks that involve smaller, more

manageable datasets, may come with an aspect of repetitiveness when trans-

lating into text, for example the routinely presentation of a small dataset in

weather forecasts, Premier League rankings, or medical reports. Chatbot sys-

tems must be able to incorporate information retrieved from a knowledge base

into the conversation. Yet the automation of the above tasks remains non-

trivial, and simply plugging values into pre-made templates is not sufficient.

We shall refer the general task described above as data-to-text generation.

With the considerable advances in Natural Language Processing in general, and

Natural Language Generation, in particular since the invention of the Trans-

former (Vaswani et al., 2017), neural text production has taken a serious step

towards commercial applicability (R. Dale, 2019, ch. 8), such that the formula-

tion of knowledge base content into text is now a potentially achievable skill.

In any conditional generation1 setting, staying faithful to the input has proved

a challenge even with modern-day neural models. In particular, models tend

to hallucinate persistently, i.e. include information in the generated text that

did not appear in the data. This of course questions the real-life applicability

of such neural data-to-text systems, as a lack of content accuracy makes them

redundant.

Looking at an example, a table was first linearised into slot-value pairs, from

which a sentence was generated, containing hallucinations:

data: {(name, Sir Francis Drake); (born, 1540); (occupation, naval officer)}

1. text: “Sir Francis Drake, born in 1540, was an English naval officer.”

Although it is true that Drake was English, the model needs to content itself

1Conditional generation refers to having generating text after seeing an input (e.g. a source
sentence to be translated, a paragraph to be summarised, a dataset to be put into words, etc.)
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with the given data. Of course, models mostly hallucinate false information,

such as saying

2. text: “Sir Francis Drake, born in 1540, was a naval officer and trades-

man.”

3. text: “Sir Francis Drake, a naval officer, born in 1540, was the first man

to sail around the world.”

Mdels thus add small to big portions of semantic content that is not supported

by the data.

Other semantic error types of course exist, such as repetitions, value errors and

omissions, whose meanings are evident from the terminology.

This thesis aims to facilitate semantically faithful data-to-text generation, in

particular with regards to hallucinations. The problem of controlling halluci-

nations can be approached from various angles, such as dataset pre-processing,

refining the model structure, pre-training and many more. We will take a siev-

ing approach, generating a set of candidate sentences first, and then selecting

the most faithful candidate according to a semantic fidelity classifier network.

This approach was first used by Harkous, Groves, and Saffari, 2020 in their

DataTuner, and will be described in more detail in Subsection 3.1.

Initially, it was planned to use DataTuner as a baseline system, due to its solid

results and elegant approach. The DataTuner separates the task of faithful

data-to-text generation into candidate text generation and semantic fidelity clas-

sification, instantiating a separate model for each of the two subtasks. The code

is available on Amazon Research’s Github2. However, after extensive efforts to

run the the DataTuner, it was confirmed with the authors (Harkous, Groves,

and Saffari, 2020) that relevant files were missing from the Github page.

Instead of performing changes on the DataTuner baseline system, it was thus

decided to build a system with the same generator-classifier architecture, but

some crucial differences:

• We use Google’s T5 for text generation, whereas the DataTuner uses

OpenAI’s GPT-2

• We apply additional cleaning to the datasets used by the DataTuner

2https://github.com/amazon-research/datatuner
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• We explore different training techniques, such as

– conjoining disparate data-to-text corpora into one mixed corpus (for

both generator and classifier)

– applying a hard-engineered procedure to increase faithfulness among

the data-to-text examples before training

– linearising the abstract meaning representation of the data in a sim-

plified manner

– varying the number of labels in the semantic fidelity classifier

– testing different model sizes of T5 and RoBERTa

In Section 2, the background of our work will be laid out, introducing ba-

sic language modelling terminology and concepts, work done on faithfulness in

data-to-text generation, and the tools we use to measure performance, including

their limitations.

In Section 3, we provide practical details of our approach, concerning model

configuration, cleaning & linearisation methods, training dataset assembly, im-

plementation issues and how we want to assess our generator’s quality. Next,

in Section 4, we present in logical order the set of experiments done on text

generation, semantic fidelity classification, and the combined system. In Sec-

tion 5, results to the experiments will be revealed and discussed, evaluating any

significant findings. Figure 6 finally draws all findings together, explaining their

significance in the current research context, and points out opportunities for

further research.
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2 Background

2.1 Neural approaches to Language Modelling

The task of language modelling describes the the attempt to integrate an under-

standing of language into a model. More formally - by looking at the context

of a piece of text, a language model assigns a probability to the string, based

on statistical/handcrafted rules, or a learnt latent-variable representation of the

language. Language models frequently serve as a fundamental building block in

any NLP system, in the pursuit of a basic language endowment.

Previously, NLP tasks were portioned into subtasks, for which a simpler sys-

tem could cover the restricted problem space sufficiently. For instance language

generation, which plays a substantial role in verbalising structured data, was

previously segmented into content determination, structuring/grouping of infor-

mation, and surface realisation (Reiter and R. Dale, 1997), where the subtasks

relied on manually engineered system behaviour. The general approach has now

shifted towards end-to-end neural approaches, incorporating each of the previ-

ously mentioned steps. For the remainder of this subsection, basic concepts of

those end-to-end neural systems will be described.

2.1.1 Pre-Trained Language Models

With the removal of task structure in end-to-end neural approaches, the system

is faced with the responsibility of finding its own path through the subtasks,

resulting in a significantly more challenge. The pre-training of language models

has been found to equip NLP systems with a general understanding of lan-

guage, which prepares them for handling this responsibility. In our context,

the language model takes on the form of a large neural network with millions

of parameters. More will be said about the nature of the neural networks in

Subsection 2.1.4.

Irrespective of the task to be completed, the language models are trained on

large3, unspecific text corpora in an unsupervised fashion, for instance by be-

ing asked to predict the identity of words masked in the text (Radford and

Narasimhan, 2018):

Given a set of tokens U with ui ∈ U , and e.g. a symmetrical context window

Cj = {uj−k, ..., uj−1, uj+1, ..., uj+k}
3The number of training examples being in the billions easily

9



of size 2k, estimate the probability of token uj , using a neural network’s param-

eters θ:

p(uj |Cj ; θ) (1)

Parameters θ are trained with complex iterative optimisation methods, such as

stochastic gradient descent, to maximise an objective function, e.g.

L(θ) =
∑
j

log p(uj |Cj ; θ) (2)

The ability to predict words from the context is believed to induce the typically

gained general understanding of language and its structure.

Other forms of pre-training exist, such as training an embedding, a vectorial

representation of single words (Mikolov et al., 2013) or sentences (Q. Le and

Mikolov, 2014), which however we will not consider here.

Pre-training from scratch any of this thesis’ language models would require

extensive computational resources for parallelised training, as well as weeks

of waiting time. It is thus common practice to download pre-trained models.

We download our pre-trained language models from https://huggingface.co/

transformers/pretrained_models.html.

Another view on pre-training is that it initialises a model’s parameters so that

they can be quickly adapted to specific task. The adaption to a a certain task

is called fine-tuning and will be described in the coming sub-subsection.

2.1.2 Fine-tuning

Having pre-trained a model, the model can be adapted to a downstream task, by

fine-tuning it on a smaller4, task-specific dataset in a supervised fashion. NLG-

specific task examples include text summarisation, image captioning, question

answering, data-to-text generation, story writing, and arguably machine trans-

lation.

In practice, fine-tuning involves training a model from a weight checkpoint

stored during pre-training.

4ranging from very few (e.g. 5) to few (e.g. 200) examples (Z. Chen, Eavani, W. Chen,
et al., 2020)
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2.1.3 Transformers & Attention

Traditionally, sequence models for language processing relied on variants of

Recurrent5 Neural Networks (RNNs) (e.g. Sutskever, Vinyals, and Q. V. Le,

2014). The processing of a sequence x = (x1, x2, ..., xT ) in RNN-related models

evolves chronologically, with each token xt marking one computation time step

t ∈ {1, ..., T}. From token xt and the previous hidden state ht−1, a hidden state

ht is computed:

ht = F(xt, ht−1)

Due to the derivation of ht from ht−1, intra-sequential dependencies can only

be established between tokens within certain proximity6, since the signal from

earlier hidden states and thus inputs weakens over time.

With the recent advent of the Transformer (Vaswani et al., 2017), the field of

Natural Language Processing (NLP) has been revolutionised, abandoning the

sequential nature found in RNN architectures. Instead, the Attention mecha-

nism underlying the Transformer views the sequence as a whole, allowing de-

pendencies to be established position-independently. Essentially, when trying

to encode the ith word wi in a sequence, Attention gives a weighting over each

word wj ∈ {wj}Nj=1, determining its relevance in encoding wi.

While Attention is by far not the Transformer’s only relevant mechanism, it yet

marks the fundamental difference between RNN models and the Transformer.

Therefore, we will give a quick mathematical overview of Attention in Trans-

formers below.

Words are commonly represented as points in high-dimensional space (embed-

ding vectors) in modern-day language models (e.g. Pennington, Socher, and C.

Manning, 2014). To retain a notion of location in the input elements, a posi-

tional encoding term is added to every embedding vector xi to mark its position

in the sequence:

xi ←− xi + PE[i]

To enable attention over a given input sequence X = (x1,x2, ...,xN ) of embed-

5We treat RNNs as a collective term for vanilla RNNs, LSTMs, Gated RNNs, etc.
6One-directional proximity for unidirectional (standard) RNNs, and general proximity for

bidirectional RNNs
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ding vectors, we first compute for each vector xi a query vector qi ∈ Rdk , a

key vector ki ∈ Rdk and a value vector vi ∈ Rdv , using three previously trained

matrices:

βi = W βxi, for β ∈ {q, k, v}

Then, to encode word wi, we regard its embedding vector xi as the query, and

dot it with each word’s key vector:

[qiK
>]j = qi · kj , for qi,kj ∈ Rdk , K ∈ RN×dk

In Vaswani et al., the resulting vectors are normalised by
√
dk due to the sub-

sequent application of softmax, which has vanishing gradients for arguments

with large absolute values. The importance of word wj in encoding wi is thus

given by

αij = softmax(
qiK

>
√
dk

)j ∈ R,

so that the encoding of wi is a weighted average of each word’s value vector:

ci =

N∑
j=1

αijvj

=

N∑
j=1

softmax(
qiK

>
√
dk

)jvj ∈ Rdv
(3)

for word wi. Figure 1 shows a practical example of the above concept, from an

application in Machine Translation.

The structure that makes most extensive use of Attention is the Transformer

(Vaswani et al., 2017), which is a basic building block of the more complex

models we use.

The Transformer enables an auto-regressive7 encoder-decoder structure. The

encoder maps input sequence X = (x1,x2, ...,xN ) to a continuous sequential

representation Z = (z1, z2, ..., zN ), which the decoder takes as an input to gener-

ate an output sequence Y = (y1,y2, ...,yN ). Encoder and decoder both consist

of L identical layers, respectively. Every encoder -layer consists of two sublayers

7i.e. previously generated tokens are considered part of the model input
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Figure 1: Attention weights aij in translating English to French.
Figure taken from Bahdanau, Cho, and Bengio, 2014. High aij correspond to
brighter cells.
Most English words can just be literally translated from English to French.
Thus little attention needs to be paid to source words w6=i resulting in one
highly dominant cell in most rows. Diagonal cells tend to be brighter since
English and French have similar word order. Satisfyingly, increased attention is
visible beyond the diagonal when there exist grammatical relationships between
words (e.g. relative pronoun que grammatically relates to subject It, and it
indeed pays attention to It as well, beyond its literal translation that).
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(multi-head self-attention8, position-wise feed-forward neural network) wrapped

by a residual connection and layer normalisation each. The m decoder -layers

work like the encoder-layers, with the addition of a multi-head attention over

encoder-output Z. Multiple heads allow the transformer to consider different

representation subspaces (at different positions).

2.1.4 The Transformer architecture in use

Attention and the emergent Transformer architecture, as discussed in Subsec-

tion 2.1.3, allow drawing dependencies between any set of sequence elements,

regardless of their relative locations. Transformers can be integrated into in

more complex models, such as the models we will be using for text classification

& generation.

An early well-known large-scale application of Transformers is the BERT model

(Devlin et al., 2018), whose base-version consists of L = 12 Transformer En-

coder blocks and H = 12 heads. A refined general setup for working with

BERT is given in Yinhan Liu et al., 2019), i.e. RoBERTa (“Robust optimisation

BERT approach”). RoBERTa has the same transformer-based architecture as

BERT, but differs in pre-training techniques and data preprocessing. Although

RoBERTa technically only describes a way of using the BERT model, we will

continue to refer to RoBERTa as model.

As opposed to BERT, RoBERTa is trained on 160GB of data, amounting to

10 times the original BERT corpus. Furthermore, Liu et al. note that their

batch sizes up to 2′000−8′000, in comparison to BERT’s 256, reduce perplexity

w.r.t. unseen examples, and can potentially increase optimisation speed, and

even improve performance on downstream task.

During masked language model pre-training, Devlin et al. keep the selection

of masked tokens static (determined during pre-processing), whereas Liu et al.

mask tokens dynamically, by applying a new masking to a sequence every time

it is fed into the model. Finally, Liu et al. have undertaken careful tuning of

the Adam optimiser’s parameters, as well as the learning rate. Both models are

trained on a thematically broad corpus, consisting of English Wikipedia and

the BookCorpus (Zhu et al., 2015), while RoBERTa is additionally trained on

63 English news articles (CC-News9), Reddit posts (OpenWebTexthttp://

8multi-head: for each word wi store H different qi,ki,vi, i.e. {(qih ,kih ,vih )}Hh=1
(“H-headed attention”).

Each head linearly transforms qi,ki,vi its own way: βih = Wβ
ih
βi, for β ∈ {q, k, v}.

9http://web.archive.org/save/http://commoncrawl.org/2016/10/
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web.archive.org/save/http://Skylion007.github.io/OpenWebTextCorpus.)

RoBERTa in our case takes as input a sequence

[CLS] x1, x2, ..., xN [SEP ] y1, y2, ..., yM [EOS],

where [CLS] signifies a classification task involving source sequence {xi}Ni=1,

and output sequence {yi}Mi=1, and a label l ∈ {lk}Kk=1 to be predicted.

The two subsequent tokens represent a separator between source - & output

sentence, and an end-of-sentence marker.

From the above example, it is apparent that RoBERTa is well-suited to text

generation ({xi}Ni=1 given before generation; {yi}Mi=1 generated on the basis of

{xi}Ni=1). HuggingFace10 however also provides a version with a sequence clas-

sification/regression head on top (a linear layer on top of the pooled output),

which lets us apply RoBERTa to our multi-label classification problem for se-

quence pairs (problem set described in 2.3.2).

2.2 Data-to-Text generation

In the first part of this Subsection (2.1), we have introduced some methods for

training Language Models, such as pre-training models on general problems and

then using the obtained parameter values as clever initialisations for fine-tuning

to downstream tasks. We have also studied powerful state-of-the-art model ar-

chitectures centered around Attention which we will deploy later.

With the sequence-to-sequence methods and models discussed, we shall now

turn over to the problem set at hand.

2.2.1 Problem Setup

The recent upsurge in powerful and easily applicable sequence-to-sequence mod-

els such as from HuggingFace11 has opened the opportunity data-to-text gener-

ation, where data & text constitute one sequence each.

newsdataset-available.
10https://huggingface.co/transformers/model_doc/roberta.html#

robertaforsequenceclassification
11https://huggingface.co/inference-api?utm_source=Google&utm_medium=

Search&utm_campaign=Transformers+10x+Faster&utm_id=12055067954&gclid=

CjwKCAjwx8iIBhBwEiwA2quaq8n0C4FWWrIAejitbVm0oCiTbzT3RaZhRUcrFVOupnU6S_

KRLryLgBoCKHgQAvD_BwE
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Formally, the task is defined as putting into words a collection of structured data

X, where X is initially often non-sequential, but will in our case be linearised

to be processed by a sequence-to-sequence model. Examples of shapes X can

be in include

• tables, e.g. linearised to sequences of slot-value pairs

• knowledge graphs, e.g. linearised to sequences of knowledge triplets

Due to the inherently different structure of tables vs. knowledge graphs, simply

applying sequential models to both data types might seem ill-advised. However,

Chen et al. have contrasted the performance of sequence vs. graph encoder net-

works on knowledge-graph data, and found that sequential models score higher

on several fluency metrics (BLEU, METEOR, ROUGE) than graph models (W.

Chen et al., 2020). Chen et al. also find that graph models lead to more seman-

tically faithful generation, however since the generator’s focus is on generating

fluent text, we picked a sequence encoder. Determining faithfulness will be

handled by a semantic fidelity classifier, introduced in 2.3.2.

An important constraint on data-to-text generation is remaining semantically

faithful, i.e. generating only content that is supported by the data, but also

covering all of the information present in the data.

2.2.2 Linearisation techniques on datasets

When encoding meaning in a structured manner, we rely on concepts of almost

spatial nature to help us associate certain pieces of information more closely

than others, or relate pieces of information under a certain notion. For in-

stance, the concept of a table cell, and the emerging rows/columns, assign a

more close relationship to information within the same row/column, or perhaps

emphasise diagonal values, etc. . Furthermore, the relationship between a name

row/column and actual values is of a classificational nature, whereas relation-

ships between value-cells are purely factual. Similarly, in a knowledge graph,

arcs stand for relationships between nodes (i.e. predicates linking entities), but

the emergent tree also states a notion of proximity/distance between any two

pieces of information within the graph (Hamilton et al., 2018).

It is thus obvious that the information content of a structured meaning represen-

tation is not exclusively based on the data contained, but also on the structure
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in which the data is configured.

Sequential models, such as Transformer-based architectures, can however most

easily process sequences, demanding from us a linearised version of the spacially

structured input data. Typically, a linearised sequence S of structured data D

consists of meaning-bearing tokens and special tokens, where the special tokens

help emulating a notion of structure. For example, in a knowledge graph setting,

we have the node N: Einstein connected with two other nodes N: 1879 and

N: Ulm, by arcs A: birthyear and A: birthplace, respectively. We can now

use special tokens to encode this graph:

(Einstein, birthyear, 1879)

(Einstein, birthplace, Ulm)

Above, it is implied that the slot roles in the above triplets are (node, arc-name, node)

Employing more complex tokens to separate the slots, we can even represent

each slot’s role in assembling a graph edge:

<subject> Einstein <predicate> birthyear <object> 1879

<subject> Einstein <predicate> birthplace <object> Ulm

A concatenation of the above edge representations (e.g. with another special

token ;) then symbolises an entire graph. In the linearisation technique above,

spatial proximity between nodes is only conveyed very implicitly, since any per-

mutation of a set of triplets within the linearisation encodes the same knowledge

graph.

While it is technically possible to fully encode complex information structures

within a linearised string, it remains to be seen to what extent the system can

to profit from the extra information. Furthermore, a detailed representation of

structure in the linearisation might distract the data-to-text system from the

actual information content. Depending on their computational resources, re-

searchers are also often limited in sequence length, so that the aim is to keep

the input sequences as short as possible. For the above reasons, in practice,

linearisation almost necessarily comes with information loss compared to the

original structure.

The above linearisation technique is the standard manner in which the WebNLG
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dataset (Colin et al., 2016) is linearised, although originally WebNLG is given

in an xml-tree format12. The extensive attention mechanism in the Transformer

(as described in 2.1.3) allowing multiple representation subspaces, gives rise to

questioning the value of using differentiated separator tokens. It remains to

be seen whether Transformer-based T5 is able to learn the meanings of the

standardised triplet positions itself. In our experiments, we will investigate

employing one standard separator token |) instead of <subject>, <subject> &

<subject>, leaving the role of standardised slots to be learnt by the model. The

use of a standard separator might be less distractive, channelling the model’s

attention to the data content.

There are of course datasets that do not require linearisation, since they do

not originate from an information structure. Instead, they have been especially

created for data-to-text generation. For instance, the ViGGO dataset (Juraska,

Bowden, and Walker, 2019), which we will employ due to its perfect factual

reliability, consists of dialogue acts, with each dialogue act being associated

with a set of slot-value pairs, e.g.:

give opinion(name [SpellForce 3], rating [poor], genres [strategy, role-playing])

In summary, linearisation is a technique whereby the content information from a

datastructure are merged into a linearised sequence, in combination with special

tokens encoding (parts of the) original structure in which the information were

grouped. Linearisation allows us to feed structured data into sequential models,

where loss of structural information has to be weighed up against input sequence

length, complexity/readability as well as system performance.

2.2.3 Diversions from Input Data

Among the various examples of conditional13 language generation (e.g. sum-

marisation, question answering, translation, image captioning), an ever-present

phenomenon is the factual diversion from the information given in the source

when generating text (image-to-text: Rohrbach et al., 2018; text-to-text: Nie

et al., 2019). A diversion from the input text is when a fact appearing in the

generation is not supported by the input text, or vice-versa. Even state-of-

12https://github.com/WebNLG/WebNLG-Text-to-triples
13Text being generated, given an information value (some text or an image). Other types

of generation include creative tasks such as storytelling.
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the-art models, which generate highly fluent text, suffer from this pathology,

rendering them ill-suited for commercial application, since their output can not

be trusted in general. The diversion pathology is thus a bottleneck to the as-

tounding progress in conditional generation and its fluency.

In order to tackle diversion, we first require a means of quantisation thereof.

Factual errors in generated text are subtle and difficult to measure (more in

2.3.2). Due to their subtle nature, a trade-off is to be made between unravelling

the subtleties, and feasibility. With a more refined error analysis, the model

determining the error type requires more intricacy, increasing the classification

cost.

A model that classifies text according to their semantic faithfulness will be

discussed in Sub-subsection 2.3.2.

2.2.4 Existing remedies to diversion

As mentioned in the 2.2.1, unfaithfulness, in particular hallucination, is a per-

sistent problem in conditional generation with neural models. For the data-to-

text generation task, one contributing factor, though not the only culprit, is

the ubiquitous semantic diversion of the reference sentence (which is given as

ground truth) from the structured data in data-to-text corpora. Parikh et al.,

2020 note that the target sentence frequently contains information that cannot

be directly inferred from the data source (i.e. hallucination).

From a naive perspective, one would thus suggest curing hallucinative genera-

tion by training a data-to-text system on an as-clean-as-possible dataset. Parikh

et al., 2020 have constructed a dataset cleaning procedure to obtain semantically

perfectly aligned data-text pairs. The semantic alignment is ensured a hand-

engineered system in combination with human review. However, when training

a BERT-to-BERT model on the Books Corpus (Zhu et al., 2015) cleaned with

Parikh et al.’s method, the best-performing model only generates 78% of its sen-

tences so that all generated meaning is supported by the data (measured through

human assessment of information precision). The 22% proportion of sentences

containing excess information despite the faithful-dataset approach proves that

hallucinative behaviour cannot solely be a consequence of data noise, and that

modelling weaknesses must be considered.

A piece of model-structure that aims to directly address the hallucination prob-
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lem is the copy-generate gate, e.g. within an LSTM positional encoder, alongside

a powerful pre-trained language model (GPT-214), as described in Z. Chen, Ea-

vani, Yinyin Liu, et al., 2019. The copy-generate gate pcopy is a linear transform

Φ of LSTM encoder hidden states ct, state weights st and decoder inputs xt:

pcopy = sigmoid[Φ(ct, st, xt)] ∈ (0, 1),

built into the LSTM decoder. pcopy acts as a soft switch within data-to-text con-

text selection, implying two modes, a copy-from-data mode and a generate-with-

language-model mode. The switch between the two modes allows for explicitly

learning when to generate novel text (instead of copying from the source), which

upon perfection could avoid generating superfluous text, i.e. hallucinations.

While this additional-structure approach suggested by Chen et al. is worthy

of noting, their dataset construction process significantly simplified the task, as

any examples with out-of-vocabulary (OOV) tokens in the reference (compared

to the data source) were left out. With the reference tokens being a subset of

the source tokens, the copy-generate gate is merely trained on comparing to-

ken identities. Therefore, Chen et al. are not simulating real-life data-to-text

scenarios, where heavy rephrasing of the original data is necessary to create

fluency among the generation. Hence why the approach is only evaluated on

significantly constricted topic landscapes (WikiBio: Humans, Books & Songs,

each separately). Thus the method’s fitness for a more general setting in terms

of paraphrasing-flexibility & topic landscape is not evident from this paper.

14https://github.com/openai/gpt-2
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Listing 1: An example of LDC2017T10, a high-lexical-variability dataset.
Pre-processed by Harkous et al., to be fed to RoBERTa semantic fidelity classi-
fier.

1 {
2 "data" : "( respond <:ARG0 >

3 (country <:name > (United States))

4 <:ARG1 > (develop <:mod > (that))

5 <:ARG2 > (condemn <:manner > (swift)))",

6
7 "text" : "The United States responded to that development with

swift condemnation ."

8 }

Another example of the additional-structure approach is the DataTuner (Hark-

ous, Groves, and Saffari, 2020), where the additional structure is less discreet,

forming one of two building blocks: The data-to-text system consists of a gen-

erator and a classifier, where the generator produces e.g. 5 candidate sentences

and the classifier selects the one deemed most faithful to the data source.

The DataTuner has been tested on 4 distinct datasets (WebNLG, LDC2017T10,

ViGGO, Cleaned E2E) with diverse meaning representations, each of them serv-

ing a different purpose:

• WebNLG: generalisation to unseen topics in the test set

• LDC2017T10: topic variability and high lexical diversity/difficulty15

• ViGGO & Cleaned E2E: semantic faithfulness

Examples of ViGGO and WebNLG can be found in Subsection 3.2.2 (since we

will be using those datasets). Examples of LDC2017T10 and Cleaned E2E can

be found in Listings 1 & 2, respectively.

The DataTuner on average generates 85% = (84%+78%+86%+92%)/4 of the

sentences faithfully (according to 3 M-Turkers). The average is taken over the

faithfulness rate on each dataset listed above. The average of 85% a significantly

higher percentage than the copy-gate model (78%), which is even more notable

considering the DataTuner’s training data difficulty level. Both DataTuner

and Chen et al.’s copy-gate approach use a GPT-2 language model, so that the

comparison between the two approaches is fair, and lets us conlude that the

generation-classification approach should be preferred over a pointer-generator

15text difficulty is measured with the New Dale-Chall readability score (E. Dale and Chall,
1948)
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Listing 2: An example of Cleaned E2E, a dataset for perfect semantic
fidelity. Pre-processed by Harkous et al., to be fed to RoBERTa semantic fidelity
classifier.

1 {
2 "data" : "<name > name=[Zizzi]; <area > area=[riverside]

3 <eatType > eatType=[coffee shop]",

4
5 "text" : "You can find a coffee shop named Zizzi in the

riverside area"

6 }

network.

2.2.5 Harnessing the power of strong language models

This subsection will briefly introduce and justify our approach in tackling hal-

lucination, with special regards to the additions made compared to the previous

literature. While modern-day language models (GPT-2/3, T5, RoBERTa, etc.)

are very powerful, and diving into their structure to make them more power-

ful is difficult, we decided to pay attention to harnessing their full power by

constructing training sets in an advantageous way:

Considering that no complete solution to the hallucination pathology has been

found, we aim to draw together several existing mechanisms into one model,

and combine them with preprocessing/training techniques, in order to maxi-

mally encourage faithfulness, and in particular limit hallucination.

Due to its high semantic accuracy and robustness in different data settings,

we will adopt the DataTuner’s generator-classifier approach, effectively dis-

tributing the responsibility of ensuring faithfulness across two models. While

we hope to construct a generator that generates maximally faithfully, we obtain

an additional backup from the classifier, which can detect & rule out unfaithful

generations.

Previous work commonly paid little attention to dataset assembly, focussing

mainly on model structures. For example, the previously reviewed paper by

Z. Chen, Eavani, Yinyin Liu, et al., 2019 states “[...] we collect datasets from

two new domains: Books and Songs by crawling Wikipedia pages. After filtering

and cleanup, we end up with 23,651 instances [...]”, allowing no analysis of pre-

processing methods. The DataTuner paper mentions the addition of special

tokens, indicating grammatical roles of text-tokens, e.g. in WebNLG:
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Albert Einstein‖birthyear‖1879; Albert Einstein‖occupation‖physicist

→ <subject> Albert Einstein <predicate> birthyear <object> 1879;

<subject> Albert Einstein <predicate> occupation <object> physicist

In addition to those formal dataset adjustments, we propose a simple yet effec-

tive procedure of semantic cleaning, i.e. making noisy datasets more faithful.

As Parikh et al., 2020 describe, most data-to-text datasets are highly noisy,

essentially preprogramming hallucinative behaviour in any data-to-text system.

However, the dataset cleaning method proposed by Parikh et al., 2020 is mainly

a benchmark for testing a model’s ability to narrow its focus to a subset of the

given information, creating an unnatural generation task. We have thus identi-

fied a need for a less invasive, quick-to-implement method which does not alter

the nature of the task, and can thus be included in any data-to-text system

training procedure. The cleaning method will be described in Section 3.3.

Given that better language models also tend to result in higher semantic accu-

racy, we aim to fully exploit the language model factor, without actually altering

the model structure.

Through training on a mix of datasets all at once, we will reap two benefits:

On the one hand we will be able to provide the decoder with more examples

of how to generate fluent text. On the other hand, we shift the focus from

perfecting the meaning retrieval for one particular dataset (i.e. way of encoding

meaning) towards a structure-agnostic understanding of meaning, a skill that

signifies general language understanding, and thus correlates with strong lan-

guage models.

In this subsection, we have presented the task of data-to-text generation, along-

side some basic pre-processing techniques such as the introduction of segmen-

tation tokens to segment the data-to-text examples into meaningful chunks for

easier language understanding in the model. We have described the challenge

of semantic diversions in generations w.r.t. the data source, in particular with

regards to hallucination, linking it to the omnipresence of noise in typical data-

to-text datasets, as well as weaknesses in language modelling. In response,

we evaluated the approach of additonal model structure to limit unfaithful-
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ness, where structure was added generator-internally (e.g. copy-gate), or existed

alongside the generator (e.g. a semantic fidelity classifier in the DataTuner).

We have finally noted the potential of enhancing the language model through

cross-dataset training, as well as manually increasing dataset fidelity; both of

which can contribute to increasing semantic accuracy without the construction

of a more complex model.

2.3 Measuring Semantic Faithfulness

Having presented methods to avoid semantic diversions in Subsection 2.2.5 from

a theoretical perspective, we also require the skill to assess a model’s semantic

accuracy in practice.

Given a set of structured data, we output a text sequence, whose semantic con-

tent should mirror all and only information from the structured data, i.e. the

semantic union of reference output and generated output equals their intersec-

tion. While complete semantic overlap is a straightforward concept to humans,

it is difficult to measure in practice, as there exists no completely reliable map

from text to an abstract meaning representation, where the meaning represen-

tation fully and unambiguously captures every aspect of semantic content, and

only that. Thus, all meaning-related assessment will be imperfect to some ex-

tent.

This section will present some basic tools for assessing semantic fidelity, of vari-

ous levels of complexity & accuracy. Of course, the option of human judgement

always exists, but we will for now focus on system-integrated faithfulness eval-

uation, the less straightforward assessment method.

2.3.1 Automatic metrics for measuring faithfulness

In contrast to neural models assessing the degree of agreement between gener-

ated sentence and reference sentence or data source, the comparison of the for-

mer can be hand-engineered. Such hand-engineered evaluation methods result

in automatic metrics, a few of which we will described below. Hand-engineered

methods typically only apply minor transformations (e.g. lowering, potentially

stemming) to the metric input, allowing for little flexibility and grace in declar-

ing generations as “faithful”.

Traditionally, the overlap between reference and generation is automatically

24



measured through a comparison of n-grams. For instance, BLEU (Bilingual

Evaluation Understudy, Papineni et al., 2002) computes a score based on n-

gram precision for n ∈ {1, 2, 3, 4}:

pn =

∑
Gn∈gen cntclip(Gn)∑
G′

n∈gen
cnt(G′n)

, where cntclip(Gn) =

cntgen(Gn) if cntgen(Gn) < cntref(Gn)

cntref(Gn) if cntgen(Gn) ≥ cntref(Gn)
,

for Gn an n-gram.

The final BLEU-score is then the exponential of the weighted average of n-gram

precisions, factored by a brevity penalty term16 β ∈ [0, 1]:

BLEU(gen, ref) = β exp (

N∑
n=1

wnpn)

A similar approach, but recall-oriented, is taken by the ROUGE metric (Recall-

Oriented Understudy for Gisting Evaluation; Lin, 2004), whose default version

considers for every example the fraction of the reference n-grams that are re-

membered by the system, i.e. appear in the generation.

In comparing n-grams, both BLEU and ROUGE will only recognise semantic

overlap if the meaning is expressed with very similar wording. To see why this

is problematic, consider the BLEU column in Table 1.

Since purely n-gram based scores are blind to rephrasing, for example using

synonyms, or using a stem in a different form, and decrease with changes in

word-order, they are less reliable, and yet widely used.

METEOR (Lavie and Agarwal, 2007), a more complex n-gram based metric,

also takes into account stemmed versions of words, as well as synonymy.

In particular, METEOR finds a 1-1 mapping (“alignment”) between reference

words and generated words, where words can be mapped to each other if they

agree exactly, their stems agree, or they are synonymous. Stems are extracted

using the PorterStemmer17, syononymy is detected according to affiliation with

the same ”synset” in WordNet18. The METEOR score is then computed as

the parameterised harmonic mean of precision P = #mappings
#generation words and recall

16compares reference - & generation length, see Papineni et al., 2002 for details
17https://www.nltk.org/_modules/nltk/stem/porter.html
18https://wordnet.princeton.edu/
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semantic overlap reference-hypothesis pair B M M − B

unrelated ref: My friend had spaghetti for lunch. 0 0 0
hyp: Internet criminality has risen in the UK.

vague ref: John waited patiently outside the doctor’s office. 0 7.14 7.14
hyp: Waiting times in UK surgeries have doubled.

synonymy ref: Max sat a hard exam today. 10.68 80.67 69.99
hyp: Max took a difficult test today.

word order change ref: Tennis is my favourite sport. 45.18 89.2 44.02
hyp: My favourite sport is tennis.

same stem ref: Max is eating spaghetti with tomato sauce. 45.48 85.35 39.87
hyp: Max eats spaghetti with tomato sauce.

same ref: Max eats spaghetti with tomato sauce. 100.0 99.77 -0.23
hyp: Max eats spaghetti with tomato sauce.

Table 1: Comparison of metric sensitivity in detecting semantic over-
lap, trialling at different levels of semantic overlap (first column).
The table shows automatic metric responses for BLEU (B) & METEOR (M).
Differences larger than 5 are highlighted (last column).
When both sentences are either the same or unrelated, both metrics correctly
assign 0% and 100% (up to round-off errors), respectively. In more gradual set-
tings, the verdict is less unanimous:
The n-gram focused BLEU-metric does not pick up on vague semantic overlap
if the two sentences have no words in common (0%). In contrast, METEOR ap-
propriately assigns a small score to examples with even vague semantic overlap
(7.14%), due to its knowledge of semantic fields (“synsets”). Similarly, BLEU
completely misses the shared meaning in synonymy, only assigning points for the
actually overlapping unigrams (10.68%). METEOR however assigns ca. 70%,
clearly indicating the semantic overlap present. When two identical sentences
only differ in word order, METEOR is barely affected (ca. 90%), whereas the
number of recognised higher-order n-grams decreases in BLEU, unnecessarily
lowering the BLEU-score. BLEU also fails to recognise that “eats” and “is eat-
ing” have the same meaning, unlike METEOR, which recognises the common
stem “eat” and still assigns approx. 85%.
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R = #mappings
#reference words :

METEOR(gen, ref) = (1− pen) · P ·R
α ·+(1− α) ·R

= (1− pen) · Fmean

(4)

A change in word order can be penalised through

pen = γ1 · (
#chunks

#mappings
)γ2 , (5)

which measures word order similarity between reference and generation by con-

sidering the smallest number of “chunks” into which the generation output can

be divided, where a chunk is defined as a string of generated words that are

contiguous in the reference.

METEOR correlates with human similarity judgement significantly more strongly

than BLEU. Table 1 confirms this empirically. All METEOR scores in Table 1

were computed with default parameter settings α = 0.9; γ1 = 0.5; γ2 = 3).

In line with the strong correspondence between METEOR and human judge-

ments, METEOR captures semantic similarity between reference sentence and

generation (i.e. “hypothesis”) more independently of the sentence phrasing

(choice of words, word order). BLEU’s assessment of semantic similarity is how-

ever strongly contingent on similarity in the surface realisation of the underlying

meaning. Hence, METEOR is the superior sentence-meaning comparison tool,

but we will maintain BLEU as well due to its traction among the research com-

munity.

Many n-gram based metrics (BLEU, ROUGE, METEOR), which were originally

invented for Machine Translation, rely on the reference output being the ideal

output. For instance, the German sentence Die Katze saß auf der Matte is the

optimal translation of the English sentence The cat sat on the mat. However,

this assumption is rarely true in our context, since in the vast majority of data-

to-text datasets, the reference sentence associated with a set of structured data

is not faithful to the data, i.e. we have a lack of high-quality datasets. The lack

of trustworthiness in data-to-text reference sentences calls for a metric which

can compare a generated sentence to the source data directly. In fact, Dhingra

et al. have created such a metric, especially for measuring the quality of data-to-
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text systems, instead of borrowing from Machine Translation. which compares

the generation to the data source, instead of the potentially unfaithful reference

sentence. The suggested metric PARENT (Precision And Recall of Entailed

N-grams from the Table, Dhingra et al., 2019) compares the n-grams in the

generation to the reference sentence as well as the data source. PARENT is the

F-score of what the authors call entailed precision and entailed recall:

PARENT = 2 · PEntREnt

PEnt +REnt
,

where PEnt & REnt are the geometric mean of the sub-quantities PEnt
n & REnt

n ,

for the particular n-gram sizes.

Let Pr(Gn) be the fraction of words in n-gram Gn that occur in the table. Then

the entailed precision of a generated sentence (“hypothesis”) for n-gram size n

is defined as

PEnt
n =

∑
Gn∈hyp Pr(Gn) + (1− Pr(Gn))1(Gn ∈ ref)∑

Gn∈hyp 1
,

rewarding n-gram words occurring either in the data source or in the reference.

The entailed recall allows a weighting between recall from the table vs. from the

reference. It is a geometric average of data-recall REnt
n (d) and reference recall

REnt
n (r), weighted by λ:

REnt
n = REnt

n (r)(1−λ) ·REnt
n (d)λ

By default, λ = 0.5.

PARENT is thus an n-gram based metric, tailored to data-to-text generation,

by not fully relying on the reference sentence, and taking into account the data

source instead.

Below is an example of PARENT’s attention to the data source, even if the

reference says otherwise:

• data: <subject> Albert Jennings <predicate> birth place <object>

New York

• reference:

Albert Jennings was born in New York, United States. He died

in 1946, after short illness.
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• generation: Albert Jennings was born in New York.

Although the reference is highly hallucinative, mentioning the US, the death,

and a short illness, the generation is awarded a PARENT score of 79.93. When

both reference and generation capture the data perfectly, PARENT is 96.41 in

this example. The score of 79.93 is still overall positive, indicating good overlap

between generation and data.

When flipping the roles of reference and generation (i.e. the generation is now

hallucinative), we only obtain 47.99.

This example has thus verified PARENT’s attention to the data source (along-

side the reference).

2.3.2 Semantic evaluation with neural models

Above, we have seen how automatic metrics can be used to rate semantic ac-

curacy of generated text. Their behaviour is essentially n-gram based, making

them transparent on the one hand, but inflexible on the other. We will now

turn to using neural models to assess semantic faithfulness, where we hope to

trade some transparency for reliability.

In particular, the semantic classifier approach, where linguistic pairs are labelled

according to semantic overlap, is a common form of employing neural models for

assessing semantic accuracy, as suggested by the existence of the Stanford NLI

Corpus (MacCartney and C. D. Manning, 2008), which labels sentence pairs ei-

ther entailment, contradiction, or neutral. We will adopt this approach. It is also

used in the semantic fidelity classifier of the DataTuner, whose architecture

we have largely adopted.

One simple low-cost approach would be to distinguish between accurate and

inaccurate generations, given the data. However, this division would tell little

about the nature of the error, making it impossible to change the setup/model

in an advantageous way to possibly avoid that error. Instead, we could focus

on one particular error type, to learn more about the model’s rationale:

Since hallucination has been the most perplexing semantic error type, having

been investigated extensively in the literature, we will focus our scope on hallu-

cination. Now given a data-text pair, the simplest classification scenario would

be hallucination vs. not hallucination. This division would however force very

disparate generation types into the not hallucination class (e.g. sentences con-

taining value errors together with fully accurate sentences).
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To avoid the most contradictory class mix-up described above, accurate gen-

erations would have to be separate from any faulty generations, forcing us to

abandon the binary classification setting, in favour of a accurate-hallucination-

other error setting.

An even more ontologically sensible division is implied by the Stanford NLI,

where sentence pairs are labelled as contradictory, neutral or entailment. It is

possible to define several error classes, given the ability to detect which infor-

mation in the generation can be inferred from the source and vice-versa. For

instance:

• a bidirectional contradiction would constitute a value error,

• the source sentence being entailed by the generation and the generation

being neutral towards the source would constitute a hallucination

• an omission is equivalent to a hallucination, when source and generation

are swapped

• a bidirectional entailment would classify as accurate

While the above setup works from basic principles, and thus might be easier

to grasp for any classification model, one frequent data-to-text generation error

type remains to be covered by this model: repetition. Even under the strict ex-

amination of entailment, repetition can go unchecked, since it would not change

the set of information present.

This brings us to the most extensive classification scenario, suggested in Hark-

ous, Groves, and Saffari, 2020 in the DataTuner, which distinguishes 5 classes

(accurate, hallucination, omission, value error, repetition).

We will build on this framework, experimenting with reduced class-settings to

question the necessity of such a number of classes, when we are only interested

in the presence of one of them (hallucination).

One important advantage of training a model to assess faithfulness is that it

can be trained on any form of data, i.e. comparing the data source to fluent

text is no problem. This used to pose a hurdle for automatic metrics, who were

very inflexible w.r.t. switching between data representation mode (i.e. text vs.

linearised data), due to their reliance on n-grams.
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In this Subsection, we have seen the two entirely different approaches (neural vs.

hand-engineered) that can be taken in evaluating data-to-text output. While

automatic metrics are transparent, they can be used for comparability to other

systems. The performance of neural models in assessing semantic accuracy is

very unpredictable, due to the various design choices the researcher can make.

2.4 Data-to-text corpora

We have discussed how the generation quality of a data-to-text system can

be assessed. As opposed to neural models, automatic metrics for data-to-text

generation judge a generation’s quality by comparing the generation to the

data/reference according to a hard-engineered set of rules. Thus in particular

for automatic metrics, it is clear that the metrics’ meaningfulness depends on

the dataset in many ways.

The most obvious dependency arises from the semantic fidelity among the

dataset, i.e. how closely the references themselves cover what is mentioned

in the data source. Automatic metrics tend to measure overlap between gener-

ation and reference, so that their reliability depends directly on the reliability

of the references.

The most widely-used graph-to-text corpus is WebNLG, where each example

consists of 1-7 subject-predicate-object triplets (see Section 2.2.2), spans 15

topics, of which 10 are represented in the training set. WebNLG is commonly

evaluated with BLEU and METEOR (e.g. Harkous, Groves, and Saffari, 2020;

W. Chen et al., 2020; Ribeiro et al., 2020), and sometimes with ROUGE. Preci-

sion metric BLEU can potentially pick up on hallucinations, since any statement

made in the generation that is not supported by the reference will decrease pre-

cision. Of course BLEU is thus only effective in measuring fidelity to the data

source if the reference sentence mirrors the data well. ROUGE however, the

recall counterpart of BLEU, is less meaningful in our research question, since

the information recalled in the generation are unaffected by potentially halluci-

nated extra-information in the generation. We will thus avoid using ROUGE.

Taking the oblivion of recall to an extreme, the system could learn to generate

a minimum amount of information from the data, so that most facts are omit-

ted. Such outputs would still achieve high precision. In a holistic evaluation

of a data-to-text system, recall thus still plays a subordinate role. PARENT

is an F1-score, evaluating PEnt and REnt, so that a recall-containing metric is

available. Given that REnt takes into account the structured data too, REnt
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might even be preferred to ROUGE, which considers just the n-grams of the

potentially noisy reference.

The previously mentioned dialogue dataset ViGGO (Juraska, Bowden, and

Walker, 2019) is a smaller dataset restricted to questions about gaming user

experience. The data hold a dialogue act each, which then applies to 1-8 slot-

value pairs (see Section 2.2.2). However, only 9 dialogue acts and 14 slot names

are available, limiting semantic diversity among the corpus. In turn though,

ViGGO was created with the aim of total semantic faithfulness, making it a

worthwile choice still in tackling hallucination.

Data-to-text systems trained on ViGGO are commonly assessed with METEOR

too (Juraska, Bowden, and Walker, 2019; Harkous, Groves, and Saffari, 2020),

alongside BLEU and PARENT.

For the WikiInfo2Text dataset (S. Chen et al., 2019), the widely-used WikiBio

dataset has been merged with 20 self-collected categories from Wikipedia, such

as UK place, Book, Automobile, Military conflict & French commune. Origi-

nally, WikiInfo2Text was created to investigate the the inclusion of external

knowledge from WikiData in the data source (see example in Listing 3). Wiki-

Info2Text has not gained much traction yet, as without the exclusion of the

external knowledge, sentences can hardly be faithful to the data source. Due to

its topic variability, we will use WikiInfo2Text, removing WikiData information.

Listing 3: A WikiInfo2Text example in raw form. (Lengthy entries cut

with three dots.)

Many data entries seem cryptic (e.g. the field KB id tuples) and/or irrelevant

(e.g. KB str tuples) to the reference text.

1 {
2 "Sentences": [

3 "The soundtrack to \" Raiders of the Lost Ark \" was released

by Columbia Records in June 1981 .",

4 "The music was composed and conducted by John Williams , and

performed by the London Symphony Orchestra ."

5 ],

6 "name": "Raiders of the Lost Ark",

7 "artist": "\" Indiana Jones \"",

8 "cover": "Raiders soundtrack.jpg",

9 "released": "June 1981",
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10 ...

11 "KB_id_tuples": [

12 [ "genre", "Q217199", "P279", "Q2188189" ],

13 ...

14 [ "next_album", "Q6023297", "P31", "Q482994" ]

15 ],

16 "KB_str_tuples": [

17 [ "genre", "soundtrack", "subclass_of", "musical_work" ],

18 ...

19 ["instance_of", "album" ]

20 ]

21 }

In this Section, we have reviewed basic techniques of modern-day Natural Lan-

guage Generation, and data-to-text generation in particular, in terms of datasets,

data-preprocessing, training and evaluation. We have explored the additional

challenges mainly arising from noisy data-to-text attests, creating a need for

special automatic metrics and to some extent even measures to limit the om-

nipresent phenomenon of hallucination. In the next Section, we will turn to

describing and justifying the particular approach selected for this thesis.

33



3 Approach

This Section aims to clarify the conditions under which the experiments will be

carried out, mainly for reference and replicability. It contains practical details

of models, datasets and metrics, as well as departures from previously published

approaches.

We will begin by describing the system architecture and its components in

Subsection 3.1, followed by an elaboration on the changes applied to the raw

datasets (Subsection 3.2). In Subsection 3.3, we will present our ’cheap and

cheerful’ corpus faithfulness boosting procedure, which allows us to manually

increase semantic overlap between data and text in often noisy data-to-text cor-

pora. After giving some practical details on training techniques in Subsection

3.4, we will finally turn to evaluation, explaining how we assess our genera-

tor’s quality w.r.t. semantic accuracy in Subsection 3.5, taking into account

automatic metrics, human judgement and a RoBERTa-based semantic fidelity

classifier.

3.1 Generator-Classifier architecture

The challenge of faithful data-to-text generation can be tackled in many ways,

as described in Background subsection 2.2.4. We have decided for the approach

taken by Harkous, Groves, and Saffari, 2020 in their DataTuner, which dis-

tributes responsibility to two models:

The generator will be concerned with turning a linearised abstract meaning

representation of some information (data) into fluent text, whereby we will en-

deavour to make its generations as faithful as possible to the data source given.

The classifier is then an independently trained system, which we will employ to

judge the generations’ faithfulness to the data, by assigning one out of a fixed

number of semantic relationship labels.

3.1.1 T5 Generator

In our experiments, the T5 was presented with a string representing the data
source in a manner prescribed by the linearisation technique. For example19

webnlg: <subject> Bhajji <predicate> country <object> India ;

<subject> India <predicate> leader name <object> Mahajan </s>,

19A complete list of linearisation examples for every dataset will be given in 3.2.2.
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where </s> is the mandatory T5 end-of-sequence token. The T5 was then asked

to generate a sentence, ideally in this case Bhajji is in India, where the

leader is Mahajan.

The generator was trained on datasets WebNLG, WikiInfo2Text and ViGGO

(with ViGGO’s repetitions removed during cleaning).

For all experiments, unless stated otherwise, we used the t5-base configuration,

which marks the second smallest among the released versions. Current options

on the HuggingFace model hub20 are small, base, large, 3b & 11b (size in

ascending order).

In its attention mechanisms, t5-base uses key/query/value vector dimension

dk,v = 64, the size of dff = 3072 for intermediate feed forward layer in each T5-

block, the size of dmodel = 768 for encoder layers and the pooler layer, 12 hidden

layers in the Transformer encoder, and 12 attention heads in each Transformer

encoder attention layer. Further technical details can be found in the standard

t5-base configuration file at https://huggingface.co/t5-base/tree/main.

Unless stated otherwise, the T5 was trained for one epoch, with batch size 4,

using the Adafactor optimizer (Shazeer and Stern, 2018), with learning rate

0.00121.

At the cost of speed, we had to enable gradient checkpointing for the one ex-

periment with t5-large, to reduce memory uptake.

3.1.2 RoBERTa Semantic Fidelity Classifier

The attentive reader might have noticed that RoBERTa is actually a sequence-

to-sequence model, but is used for outputting a class label here. In their reper-

toire of sequence classification models, HuggingFace have a model

RobertaForSequenceClassification listed, which is a standard RoBERTa

with an additional classification head on top. The RoBERTa will thus use

its encoder to process the data source, its decoder process the text given the

data, and finally, a classification head will assign a class based on the decoder

output.

Thus, one RoBERTa training example from the ViGGO would consist of three

parts (see Listing 4).

RoBERTa was trained on ViGGO (viggo & viggo-clean) and WebNLG. The

semantic-fidelity-classification versions of ViGGO & WebNLG that we use have

20https://huggingface.co/models
21Find more parameter settings in the code on https://github.com/tishaAnders/d2t_

generator.
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been manally assembled by Harkous, Groves, and Saffari, 2020. For each class

label, Harkous et al. hand-generated examples through sheer string manipula-

tion.

Listing 4: A pre-processed ViGGO example to be fed to RoBERTa

semantic fidelity classifier. The label-field carries 4, which in our case

stands for hallucination. In this case, the text enquires about indie adventure

games, when it should only ask why the user likes shooter games.

Fields label, data & text are handled by the classification head, the RoBERTa

encoder and the RoBERTa decoder, respectively.

1 {
2 "label" : 4,

3

4 "data" : "<request_explanation > request explanation ( <rating >

rating: [ excellent ], <genres > genres: [ shooter ]> )",

5

6 "text" : "Have you ever tried an indie adventure game, like The

Vanishing of Ethan Carter for example? What is it about

shooters that you find so great?"

7 }

The RobertaForSequenceClassification model is by default configured with

the values suggested by the developers of RoBERTa (Yinhan Liu et al., 2019).

RobertaForSequenceClassification can be used with either roberta-base

or roberta-large, both of which experimented with. We left the suggested

configurations unchanged, due to RoBERTa in fact being an instance of BERT,

with carefully selected parameter configurations (see Section 2.1.4).

3.2 Preparing the datasets

Having presented the technical details of the model architecture in the previous

subsection, we will now look at the data the models have been trained with,

and in particular the modifications made compared to the raw corpora. To

prepare our datasets for training and testing, we clear out undesirable elements

that occur in a repetitive fashion, either of structural or of substantial nature.

We then adjust the dataset to our purpose - restructuring of or picking from

the data might be necessary. Additionally, new structure might be added (e.g.

special tokens) to facilitate the model’s understanding of the data.

Both ViGGO and WebNLG were retrieved from their official sites, https://
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nlds.soe.ucsc.edu/viggo & https://github.com/ThiagoCF05/webnlg.git

(v1.4; Castro Ferreira et al., 2018, Gardent et al., 2017) respectively, and were

then adjusted with Harkous et al.’s pre-processing scripts.

The outcome of this pre-processing, as well as further steps taken, will be de-

scribed below.

3.2.1 Cleaning

The attentive reader might have noticed in Listing 4 the repetition of dialogue

acts and slot names in the data source, e.g.

<recommend> recommend ( <name> name: [ The Wolf Among Us ], <genres>

genres: [ adventure, point-and-click ], <available on steam> available

on steam: [ yes ]>

Given that Harkous et al. used this version of ViGGO examples to train their

DataTuner, we were sceptical of simply removing the repetitions (red), and

kept two versions of ViGGO instead (viggo & viggo-clean). It might have

been that RoBERTa learns best from this syntax. However, after close investi-

gations into the origin of the repetitions, they had been introduced by Harkous

et al.’s standardised pre-processing procedure.

The RoBERTa semantic classifier was trained on both sets, however when

ViGGO is mentioned in context of the T5 generator, we assume viggo-clean.

The WebNLG dataset, which has been widely used (e.g. in the WebNLG Chal-

lenges22), had no inconsistencies, apart from minor ones, which would immedi-

ately catch the reader’s eye.

WikiInfo2Text required intensive cleaning, however not of structural nature,

but concerning the content. Due to its general applicability, the WikiInfo2Text

semantic cleaning procedure will be laid out in 3.3.

3.2.2 Adjusting the datasets to our purpose

After some rudimentary cleaning described in 3.2.1, the next step is to make

the training examples easier to process and learn from for our models.

In our case, this step comprises linearisation, the addition of end-of-sequence to-

kens, in combination with semantic faithfulness boosting (for the WikiInfo2Text

22https://webnlg-challenge.loria.fr/challenge_2020/
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Listing 5: A pre-processed WikiInfo2Text example, without a faithfulness
label, as we do not train the semantic classifier on WikiInfo2Text.

1 {
2 "data" : "<name > H Is for Homicide && <author > Sue Grafton && <

series > Alphabet Mysteries && <genre > Mystery && <pages >

256 pp " first edition " && <preceded_by > G Is for Gumshoe

&& <followed_by > I Is for Innocent && <articletitle > H Is

for Homicide </s>",

3
4 "text" : "H Is for Homicide is the eighth novel in Sue Grafton ’

s Alphabet series of mystery novels and features Kinsey

Millhone, a private eye based in Santa Teresa California ."

5 }

Listing 6: A pre-processed WebNLG example, labelled as semantically
faithful.

1 {
2 "label" : 0,

3
4 "data" : "<subject > Adam Holloway <predicate > alma mater <

object > Magdalene College, Cambridge ; <subject > Adam

Holloway <predicate > birth place <object > Kent </s>",

5
6 "text" : "Adam Holloway was born in Kent and attended Magdalene

College in Cambridge ."

7 }

corpus).

The procedure of linearising structured data into a string has been described

empirically for our datasets in 2.2.2. For completeness, we will list one rep-

resentative (cleaned & adjusted to purpose) training example for each corpus

included (Listings 5, 6 & 7)

3.3 Dialling semantic fidelity among the datasets

As described in Background Subsection 2.2.4, the semantic content of data and

text in data-to-text corpora is often highly divergent, which is believed to ag-

gravate hallucinative behaviour in data-to-text models.

Previous work typically trains their models on different datasets, stating their

assessment of the dataset’s semantic accuracy, and then evaluate their model

output’s faithfulness in the context of the dataset’s semantic accuracy level.

Commonly, two broad classes of data-to-text corpora exist: web-crawled (e.g.

WebNLG, WikiInfo2Text) vs. constructed aiming for complete faithfulness (e.g.
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Listing 7: A pre-processed viggo-clean example, labelled as semantically
faithful.

1 {
2 "label" : 0,

3
4 "data" : "<give_opinion > ( <name >: [ Undertale ], <rating >: [

excellent ], <has_multiplayer >: [ yes ]> ) </s>",

5
6 "text" : "I think Undertale was truly excellent. It also has a

multiplayer -mode."

7 }

ViGGO, ToTTo by Parikh et al., 2020). While the performance on web-crawled

vs. on supposedly faithful datasets reveals the model’s susceptibility to dataset

noise to some extent, the comparison is affected by other factors too, such as

lexical complexity differences (measured by Harkous, Groves, and Saffari, 2020),

cleanliness and suitability of linearisation technique.

A unique feature of this thesis is that we ruled out all other contributing factors,

by isolating data noise as a single parameter: For WebNLG and WikiInfo2Text,

we created instances of the same dataset that only differ in their semantic faith-

fulness level.

As mentioned in 3.2.2, Harkous et al. have handcrafted a WebNLG training

set for their semantic fidelity classifier, including faithful and unfaithful exam-

ples, which are also labelled as such. From this labelled dataset, we retrieved

webnlg-consist and webnlg, where the former considers only examples labelled

as semantically accurate, and the latter considers all examples.

The same procedure was used for ViGGO, to obtain viggo-consist and viggo.

With WikiInfo2Text, a corpus Harkous et al. do not use, we performed a

semantic cleaning procedure to the originally downloaded corpus, to obtain

wikiinfo-clean, in contrast to original wikiinfo. A descriptive flowchart of

the cleaning procedure can be found in Figure 2.

Due to WikiInfo2Text being crawled from Wikipedia, meta-data are also present.

Thus, any slot-value pair with the slot name containing at least one out of

["KB", "image", "website", "homepage", "caption", "coordinates", "postcode"]
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Figure 2: Cheap and cheerful semantic fidelity increasing, applied to the
WikiInfo2Text corpus.

would be removed from the training example. In the same vein, slot-value pairs

with values unrelated to the text were removed. To measure relatedness, a se-

mantic similarity checker was given a slot-value pair and the reference sentence,

upon which it returned a relationship strength r ∈ [0, 1]. Slot-value pairs were

kept if r > 0, since longer sentences would automatically result in lower r, so

that any r > 0 would imply a real semantic overlap. The semantic similarity

checker is based on Latent Semantic Indexing (Deerwester et al., 1990), which

picks up not only on synonyms, but also on concept-relatedness, by associating

terms that occur in similar contexts. The gensim instantiation23 LsiModel was

used. Beyond targeting specific elements due to their content, we can also infer

hallucinative behaviour from looking at macro-factors: Given the number of

data points (slot-value pairs or knowledge triplets) ndata pt , a maximum thresh-

old τ for the number ntext char of characters in the text can be determined, so

that any example included must fulfil

ntext char ≤ τ · ndata pt

The above constraint aims to rule out hallucinative examples, where the text-

23https://radimrehurek.com/gensim/models/lsimodel.html
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Figure 3: Empirical distribution of text-to-data length in the Wiki-
Info2Text corpus. The heavy positive skew justifies cutting off any examples
with ratio larger than τ = 60.

to-data ratio is typically increased due to added text with no grounding in the

data.

τ was found empirically, from considering a histogram of text-to-data ratios

among the dataset (see Figure 3). Choosing τ implied a trade-off between se-

mantic faithfulness and dataset size.

τ was set to 60, allowing within one example an average number of 60 characters

per data point, or approx. 10 words24. This left us with 89.04% of the dataset,

i.e. 1346 out of 12279 examples were excluded.

This Subsection has described how for ViGGO, WebNLG and WikiInfo2Text,

we obtained versions of the datasets that vary in semantic fidelity. For ViGGO

and WebNLG, we obtained a consistent and a noisy version by using a subset of

Harkous et al.’s semantic classification dataset. For WikiInfo2Text, irrelevant

slot-value pairs were deleted (based on their slot name or relevance of the slot

24The average word length in English is ntext char = 4.7 letters, but including spaces and
punctuation we arrive at ntext char ≈ 6.
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value), and examples with data-to-text ratio above τ = 60 were excluded.

The next Subsection presents practices worth noting for replicating the training

process.

3.4 Lab practice: Training techniques

While in Section 3.4.1, performance-relevant techniques will be laid out, the

subsequent part deal with implementation issues, such as a bug-fix in the Hug-

gingFace T5 configuration file (3.4.3).

3.4.1 Cross-training & alien datasets

At the end of all experiments, the system’s quality will be judged upon the gener-

ator’s faithfulness and the classifier’s accuracy, all tested on WebNLG. The gen-

erator will generate from the abstract meaning representations in webnlg-consist

and the semantic classifier will classify those generations. Therefore, WebNLG

is our target corpus we will finally evaluate on.

Yet we will investigate whether both T5 generator and RoBERTa classifier can

benefit from seeing examples from alien datasets (WikiInfo2Text, ViGGO).

Datasets do differ in meaning representation, according to their linearsiation

technique. However, the idea is that if the model is clever enough to over-

come the structural differences of the dataset-specific meaning representations,

it might profit from seeing more examples.

In the following, we will lay out the exact joining procedure for the multiple

datasets.

From the datasets webnlg-consist, viggo-consist & wikiinfo-consist, as

well as their inconsistent counterparts, all described in 3.3, it is possible to con-

struct joint datasets. The joining of two datasets dsA and dsB is done by first at-

taching a dataset identifier to each example’s linearised data string, i.e. “dsA: ”

or “dsB: ”. The dataset identifier is inspired by task-identifying prompts (Li

and Liang, 2021), in modern-day NLP tasks often attached at the beginning of

the input string (e.g. “summarize: ” or “translate-eng-to-fr: ”). Such

prompt prefixes allow the language models to learn several tasks at once, while

attending to their differences. We therefore treat different datasets as different

tasks here. Once every training example from both datasets has a dataset iden-

tifier prefix, the datasets will be merged by simply listing all examples from dsA
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and then from dsB, and mixing up the order afterwards.

We will join up to three datasets in this manner, never including the consistent

and the inconsistent version of the same dataset though (this would result in

examples appearing twice).

3.4.2 Training RoBERTa-large

Initially we planned on executing every semantic fidelity classification experi-

ment with both the base version and the large version of RoBERTa. However,

roberta-large turned out to require very careful tuning of the batchsize and

the learning rate. Otherwise, roberta-large would output the same label for

each data-text pair.

It was thereby beneficial to pick the maximum batch size given the GPU capac-

ity, and a very small learning rate. We picked batch size 4 for WebNLG and 8

for ViGGO, and learning rate 3× 10−6 for WebNLG and 5× 10−6 for ViGGO.

We used the HuggingFace AdamW Optimiser implementation25.

Sometimes even those precautions would not suffice, so that not all experiments

could be carried out on both roberta-base and roberta-large.

While roberta-large did on average provide a small classiification accuracy

increase, we decided to focus on roberta-base instead, as the best-performing

model turned out to be a roberta-base.

3.4.3 Bug-fix: Configuring T5

When implementing the t5-base for text generation using the original Hugging-

Face instructions, the T5 always stopped generating at exactly 20 characters for

any example, making it futile for any experiments. Initially, my supervisor and I

suspected an optimisation-related problem, such as not finding a suitable mini-

mum. However, numerous other users seemed to have encountered this problem.

In many cases, the HuggingFace team had responded to posts, but none of the

tricks suggested seemed to help. After 3 days of investigation, I discovered that

the advice given by the HuggingFace team would never work for people with

exotic tasks (i.e. not summarisation or translation). Much of the advice given,

such as using a different generate function or including a max len parame-

ter in the generate function, which later turned out to be obsolete, did not

make a difference. Once I configured a new task text-generation in the T5

25https://huggingface.co/transformers/main_classes/optimizer_schedules.html#

transformers.AdamW
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config file, with a max len parameter too, the max len instruction was sud-

denly understood by T5. However, the existence of a task configuration, where

a universal max len parameter value would be set, was neither mentioned as a

condition in the Huggingface documentation, nor in the forums maintained by

the HuggingFace team.

3.5 Measuring generator quality

The quality of the T5 generator is affected by two factors: faithfulness and

fluency.

Faithfulness has been mentioned throughout this report, and is present if all and

only information from the data source are present in the generated sentence.

Repetitions of semantic content do not add to the fact pool and thus do not

harm faithfulness.

Fluency is a concept detached from semantics, purely judging whether the order

in which the words appear is correct. For instance, “The flute killed the stone”

is a fluent sentence.

With the evaluation techniques described below, we will attempt to capture

both fluency and faithfulness.

3.5.1 Automatic metric scores

As laid out in Background Subsection 2.3.1, we have selected three automatic

metrics:

1. PARENT: A metric specifically for data-to-text tasks, considering a

quantity related to n-gram precision and recall, comparing the genera-

tion to both the reference and the data source.

2. METEOR: A more complex n-gram based metric, which understands

more vague semantic relationships due to its understanding of stems &

synonyms

3. BLEU: The n-gram precision of generation in the reference, borrowed

from translation

Parameter values for each metric are listed in Table 2.

The nltk BLEU implementation26 we use returns a final score of 0 when for

any n ∈ {1, 2, 3, 4} no n-grams can be found, disregarding the contribution

26nltk.translate.bleu score.sentence bleu
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metric name param. settings

PARENT λ = 0.5
METEOR α = 0.9;

γ1 = 0.5;
γ2 = 3

BLEU all ns have equal weight
(wn = 0.25 for n ∈ {1, 2, 3, 4})

Table 2: Parameter values used in automatic metrics. All values corre-
spond to the default.

of any lower-order n-grams. This effect can be mitigated by using smoothing

functions.

We used smoothing method27 3, which assigns to any pn that is 0 a small

quantity 1
2n . In our case, the lowest order n-gram that could not be found had

n = 3.

Since all metrics to some extent rely on spotting n-grams in the reference, their

precision in detecting fluency is high, provided the reference is fluent (which

mostly is the case). High scores would correlate with fluent examples.

However, the automatic metrics might not detect fluency if few n-grams overlap.

This makes a human evaluation indispensable in measuring overall fluency.

As discussed in 2.3.1, the ability of automatic metrics to detect faithfulness

given in PARENT, and depending on the reference quality, also in METEOR.

Being purely a precision measure, BLEU technically decreases with hallucina-

tion, however mostly suffers from inflexibility in measuring semantic overlap,

due to considering just n-gram overlap.

3.5.2 Small subsample human evaluation

Due to the lack of reliability in detecting both faithfulness and fluency, which we

have identified in 3.5.1, human judgement should be the most reliable verdict

in both aspects. However, due to the strong focus required to detect minor

inconsistencies in fluency & faithfulness, only a small subsample of generations

can be evaluated. With every judgment, we also judge whether the reference

sentence was fluent and faithful. Furthermore, due to our focus on hallucination,

we ask reviewers to indicate whether extra information was present in case they

27https://www.nltk.org/_modules/nltk/translate/bleu_score.html#

SmoothingFunction.method3
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label the generation as unfaithful.

3.5.3 Classifying generative faithfulness with RoBERTa

Finally, in order to obtain an end-to-end system such as the DataTuner, which

is able to filter out less fluent/faithful generations before outputting a sentence,

we require judgment more reliable than METEOR and BLEU in particular.

We will investigate to what extent our RoBERTa semantic fidelity classifier can

pick faithful generations from a set of 5 candidate generations {c1, c2, c3, c4, c5}.
Outputting the generation c∗ that was deemed most faithful by the classifier,

instead of just an unfiltered output, will hopefully increase semantic fidelity of

the overall system.

We determine c∗ by picking the generation associated the highest activation

score for the accurate-class.

Alternatively, one might choose c∗ by picking ci = c∗ with the lowest halluci-

nation activation, however this does not ensure low activation scores for other

error types, encouraging unfaithful generation still.

3.5.4 Measuring classification accuracy in RoBERTa

The evaluation of the RoBERTa classifier is by far less ambiguous than the

evaluation of the T5 generator. Although assessing classification quality comes

down to comparing predicted labels to target labels, it is yet important to con-

sider which quantities to consider:

To assess the overall quality of the classifier, we will of course measure accuracy,

i.e. the percentage of labels correctly predicted. However, to better answer our

research question of how to control hallucination, we will isolate the hallucina-

tion class from all other classes and compute a binarised accuracy :

Let

B : {accurate,hallucination, omission, repetition, value error} 7−→ {hallucination,not hallucination}

be the label-binariser function, i.e. for any label y0 from the domain, B is

defined as
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B(y0) =

y0 if y0 = hallucination

not hallucination else

Then, for target and prediction labels {yn, ŷ}Nn , the binarised accuracy B\ com-

putes as

B =

∑N
n=1 1[B(y) = B(ŷ)]

N
(6)

For the classification of T5-generated sentences, the evaluation of RoBERTa

is less straightforward. Given that the faithfulness of data-to-text generation

is best evaluated with human judgment, which is however difficult to obtain,

we will only evaluate the system which shows the largest performance increase

compared to pre-filtering on the automatic metrics. write summary of approach

chapter
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4 Experiments

In the previous Section, we have presented our approach to the data-to-text

generation problem, naming some configuration details of the two system sub-

components - the T5 generator and the RoBERTa classifer, how datasets were

pre-processed and different consistency level versions of the datasets were instan-

tiated. We have also presented our cross-training approach, where we included

alien corpora into the training set, marking each training example with dataset-

identifying prefixes. Finally, we have given some technical details on automatic

metric evaluation, the questions asked during human judgement, and introduced

RoBERTa as a semantic fidelity classifier for our own generations.

Having laid out the setup in close detail in the Approach Section, we will now

present and put into context every experiment we performed.

4.1 Text generation

The first set of experiments, described in this Subsection, concerns the T5 gen-

erator, where the task is to generate fluent and faithful text, given a linearised

version of an abstract meaning representation.

All trained T5 model instances will be tested on the test set of webnlg-consist.

This makes WebNLG our target corpus; examples from any other corpus are

alien examples.

4.1.1 Dataset configurations

Since our approach lies in harnessing the power of strong language models, by

for example training them in an optimal manner, we have tested a number of

dataset configurations.

In our invented names for the dataset configurations, + signifies joining of

datasets, as described in 3.4.1. 0.5* implies that only half of the dataset has

been added. A dataset is referred to as “consistent” when, in its examples, the

text is (largely) semantically faithful to the data source.

Our experiments are guided by a number of questions, which are presented be-

low. For each question, we have listed the set of relevant dataset configurations

below the question. Some dataset constructions occur in more than one set of

experiments.
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A. Does the addition of alien corpora increase performance28 on the target

dataset (webnlg-consist)?

(All datasets involved are consistent.)

webnlg-consist

webnlg-consist + wikiinfo-consist

webnlg-consist + wikiinfo-consist + viggo-consist

B. Does training dataset consistency matter?

• consistency among the target dataset (while alien datasets are held con-

sistent)

webnlg

webnlg-consist

webnlg + wikiinfo-consist

webnlg-consist + wikiinfo-consist

• consistency among the alien datasets (while the target dataset is held

consistent)

webnlg-consist + wikiinfo

webnlg-consist + wikiinfo-consist

webnlg-consist + wikiinfo-consist + viggo

webnlg-consist + wikiinfo-consist + viggo-consist

C. Can alien examples compensate for a lack of target corpus examples?

wikiinfo-consist

wikiinfo-consist + 0.5*webnlg-consist

wikiinfo-consist + webnlg-consist

wikiinfo-consist + viggo-consist

wikiinfo-consist + viggo-consist + 0.5*webnlg-consist

wikiinfo-consist + viggo-consist + webnlg-consist

28fluency & faithfulness, measured in various ways (automatic metrics, human judgment,
RoBERTa semantic classifier)
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4.1.2 Special experiments with the best-performing generator

To investigate the effects of practical researcher choices, we trained with the

best-performing setup found so far, changing only one variable each time.

The best-performing model had been a t5-base, trained for one epoch, on the

triple joint dataset webnlg-consist + wikiinfo-consist + viggo-consist.

The different scenarios attempted were:

1. Uniform separators: Instead of using positional separators <subject>,

<predicate> & <object> in our target dataset webnlg-consist, we em-

ployed a uniform separator |.

2. No prefixes: We left out the dataset-indicating prefixes at the beginning

of each example over the entire joint dataset, leaving it to the model to

work out which meaning representation is being used.

3. 3 epochs: Instead of training for one epoch, we trained for 3.

4. T5-large: Instead of t5-base, we employed the next-larger version29 of

T5.

In this Subsection, all data-to-text generation experiments with T5 have been

introduced, as well as the rationale behind them. The T5 experiments aim

to show whether the addition of alien-dataset examples can improve genera-

tion quality, considering also scenarios where fewer target dataset examples are

available. Furthermore, the experiments investigate whether consistency among

the training data matters, for both the target dataset and the alien datasets.

Some more experiments at the end seek to push best-performing model to our

maximum attainable performance.

4.2 Semantic fidelity classification

The second set of experiments, described in this Subsection, concerns the RoBERTa

classifier, whose task it is to classify data-text pairs according to the faithfulness

of the text to the data. Given a linearised version of an abstract meaning rep-

resentation and some fluent text, RoBERTa will output one out of K ∈ {2, 3, 5}
labels (more in 4.2.2).

We will employ two differently sized versions of RoBERTa, training on ViGGO,

29Configuration file with technical details: https://huggingface.co/t5-large/blob/main/

config.json
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WebNLG and a joint version thereof, using prefixes again for the joint version.

A more detailed account of the different setups is given in the remainder of this

Subsection.

4.2.1 Datasets

We will investigate four different dataset configurations, all based on ViGGO

and WebNLG. The semantic-classification adaptations of those corpora were

manually synthesised by Harkous, Groves, and Saffari, 2020 (more detailed de-

scription in 3.1.2).

Raw vs. clean ViGGO

As explained in 3.2.1, the version of ViGGO used to train the DataTuner con-

tained repetitions of dialogue acts and slot names. Clearing those repetitions,

we have two datasets, viggo and viggo-clean. Although the repetitions do

not add semantic value to the data source, the effects of additional text might

pose practical problems by exploiting RoBERTa’s capacities unnecessarily. To

find out whether the repetitions actually affect performance, we train models of

the same configuration on both viggo and viggo-clean.

Cross-training with prefixes

Similar to our approach in generating with T5 (3.4.1), we will again conjoin

both corpora, by mixing examples of viggo-clean with webnlg30 to obtain

webnlg+viggo-clean. Each example in webnlg+viggo-clean will again carry

a prefix indicating its original corpus.

4.2.2 Exploring classification settings: Number of labels

In the discussion of approaches to semantic accuracy evaluation with neural

models in 2.3.2, several multi-class classification settings were analysed, mainly

in search of a sensible set of data-to-text semantic relationship classes. Remain-

ing close to Harkous et al.’s work on the DataTuner, we will adopt their setup,

however testing variations of it as well. Below, three possible classification prob-

lem setups are listed:

30Here webnlg refers to the hand-labelled dataset of data-text pairs, not to be confused with
T5’s inconsistent generation dataset.

51



• 5 labels: accurate, hallucination, repetition, omission, value error (DataTuner)

• 3 labels: accurate, hallucination, other error

• 2 labels: other, hallucination

Our main interest lies in the accurate class and the hallucination class. The

DataTuner setting has 5 labels, considering 3 other classes (repetition, omis-

sion, value error). Given that the interest in the 3 other classes is low, maintain-

ing 5 labels might perhaps result in an unnecessarily high-dimensional decision

boundary. A simpler setting would file all extraneous error types with one class

(other error, see “3 labels”). This reductionist approach can be taken to the

extreme, filtering hallucination against everything else, leaving us with only 2

classes.

We will test each of the settings, to identify the most suitable setting for our

research goal of reducing hallucination.

Having laid out all T5 generator and all RoBERTa semantic fidelity classifier

experiments, in the next Subsection, we can finally turn to the experiments with

combining the two.

4.3 Combined system

The goal of instantiating both a T5 data-to-text generator and a RoBERTa se-

mantic fidelity classifier was to eventually assess the T5’s generation faithfulness

with the RoBERTa classifier.

In the combined system, T5 generates 5 candidate outputs, which the classifier

then labels according to their semantic fidelity to the common data source.

To obtain the output candidates, we train 5 equivalent instances of a T5 gener-

ator in the best-performing setup. Generating candidates from the same model

often involved a lack of variety, so that training 5 different instances seems a

valid trade-off. Now, even in simple data sources, we have considerable variation

among the candidates (see Listing 8 for an example).

4.3.1 Picking a generation output from candidate generations

Once we have 5 candidate generations {c1, c2, c3, c4, c5} in place, we need to

label them to obtain c∗, the most faithful one.

The classifier will be an instance of RoBERTa with the largest binarised

accuracy in previous experiments.
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Listing 8: Linguistic variance among candidate generations. Despite only
one WebNLG triplet being present in the data source, among the 5 generations
we find 3 different ways of expressing the content. All generations are fluent
and faithful to the data source.

1
2 "data": "<subject > Farrar & Straus <predicate > parent company <

object > Macmillan Publishers",

3
4 "gen": [

5 "Farrar & Straus is a parent company of MacMillan Publishers .",

6 "Farrar & Straus are the parent company of Macmillan Publishers .",

7 "Macmillan Publishers is the parent company of Farrar & Straus .",

8 "Macmillan Publishers is the parent company of Farrar & Straus .",

9 "Farrar & Straus is owned by Macmillan Publishers ."

10 ],

11
12 "ref": "Macmillan Publishers is the parent company of Farrar,

Straus and Giroux ."

We select the generation to output by filtering out the candidate with highest

activation value for whichever class contains accurate examples.

Notice that since we are classifying real-life examples (our generations), no tar-

get labels are available. Hence, there is no way of evaluating the quality of

the classifier, apart from inspection. We will not perform a human evaluation

on the classification accuracy, since the classifier’s most relevant performance

metric is whether its filtering has boosted faithfulness among the final system’s

generations.

Since we will evaluate the final system’s output, i.e. the filtered generations, we

will obtain a quantity reflecting on the classifier’s performance.

In this Section, we have described the various experiments we will perform,

where we discussed data-to-text generation experiments first, and then seman-

tic fidelity classification experiments, to finally combine our knowledge gained

about the best-working techniques into a combined generator-classifier system.

For data-to-text generation, we are attempting to find which factors among the

dataset configuration are most beneficial whilst cheap to implement, such as

the addition of alien datasets, faithfulness (in target/alien corpus), and clean-

ing/linearisation methods. We additionally investigate running more epochs or

using a larger T5.

The semantic fidelity classification experiments target similar conditions, again
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comparing different dataset configurations in terms of cleaning/linearisation

(viggo vs. viggo-clean) and dataset joining (webnlg+viggo-clean).

Having analysed the two sub-compontents of our combined system thoroughly,

our final experiment will investigate the effect of filtering the candidate text,

aiming to produce the most faithful set of output generations.

In the next Section, the experimental results will be revealed and discussed,

upon which our system and its sub-components will be critically assessed in the

current research context.
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5 Results & Evaluation

In the previous Section, we have described various experiments, concerning the

T5 generator, the RoBERTa classifier, and the combined system emerging from

those two components. For both components, we experimented with different

dataset configurations, exploring the effect of dataset cleaning and semantic

de-noising, as well as joining datasets. Other notable aspects to analyse were

the choice of the number of classification labels, and cleaning and linearisation

techniques.

This Section will now present the results to all experiments with the RoBERTa

classifier and the T5 generator, as well as the combined system.

5.1 Data-to-text generation results

As previously explained, we deem the PARENT score the most accurate and

appropriate metric for data-to-text generation among BLEU, METEOR and

PARENT. However, in our experiments, we found the scores to be highly cor-

related, giving very similar judgements about the models (see Figure 4). While

BLEU and METEOR will be kept for reference, their values do not make a

fundamentally different statement from PARENT.

5.1.1 Dataset expansion with alien examples

In the first series of experiments, we added examples from other corpora (ViGGO,

WikiInfo2Text) to our WebNLG dataset, pre-pending each example with a

dataset-identifying prefix and then randomising the order of the examples.

The observed effects of expanding the training set in this manner are described

below, answering two of our questions.

Can alien datasets increase performance on the target dataset?

To see whether the addition of alien datasets can increase generation perfor-

mance, we first added wikiinfo-consist to target dataset webnlg-consist,

and in the next step also added viggo-consist.

We compared the resulting performances to a system trained on just webnlg-consist.

Detailed results on all three automatic metrics can be found in Table 3.

Figure 5 presents the PARENT scores of the three generators. Whereas the gen-

erator trained on just webnlg-consist scores 31.10, training on a mixed corpus

increases PARENT to 31.94 by adding one other corpus, and to 34.49 by adding
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Figure 4: The strong correlation between all three automatic metrics
can be observed by applying the Excel colour scale tool to each column sepa-
rately.
The small colour variations in each row reveal that essentially each metric would
rank the models similarly, not fundamentally disagreeing on any of the models’
performance.

two corpora. The gain from adding a second alien dataset (2.55) is considerably

larger than the gain from adding the first alien dataset (0.84), suggesting that

one benefit of mixed-corpus training lies in learning to generalise.

One theory as to why different datasets can contribute to the performance on

the target dataset is that T5 learns to generalise w.r.t. meaning extraction from

the linearisation, adapting to different syntaxes swiftly. Having overcome the

syntactic hurdle, adding more datasets results in having more examples of fluent

text, which of course is conducive to learning the task.

Mixing datasets can thus harness more of the language model’s power to gen-

erate from a particular corpus.

Alien examples and target-data scarcity

Having observed how adding alien datasets can boost generation quality on the

target dataset, we now investigate whether the mixed-corpus training technique

can compensate for a lack of target training examples. To that end, we tested

tested mixed-corpus training in three different scenarios:
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Figure 5: Adding alien examples to target dataset webnlg-consist.
With each new corpus added, the PARENT score increases, when testing on
webnlg-consist. A more significant increase is observed when adding the sec-
ond alien dataset.

1. all of webnlg-consist is present

2. half of webnlg-consist is present

3. none of webnlg-consist is present

The three different scenarios were tested under the addition of both one alien

dataset and two alien datasets.

dataset configuration PARENT METEOR BLEU

webnlg-consist 31.1 51.04 23.08
webnlg-consist + wikiinfo-consist 31.94 51.43 24.58
webnlg-consist + wikiinfo-consist + viggo-consist 34.49 52.82 25.99

Table 3: Automatic metric scores on text generated from data, when we add
alien examples to target dataset webnlg-consist.
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dataset configuration PARENT METEOR BLEU

wikiinfo-consist 11.96 25.16 6.37
wikiinfo-consist + 0.5*webnlg-consist 28.04 44.44 20.56
wikiinfo-consist + webnlg-consist 31.94 51.43 24.58

wikiinfo-consist + viggo-consist 12.05 23.92 5.74
wikiinfo-consist + viggo-consist + 0.5*webnlg-consist 29.99 48.39 23.13
wikiinfo-consist + viggo-consist + webnlg-consist 34.49 52.82 25.99

Table 4: Automatic metric scores on text generated from data, in the attempt
to compansate for target data scarcity with alien examples.

Figure 6 shows that in target data scarcity situations, the generator benefits

from having more alien data. However, with many alien datasets, the maximum

attainable score is naturally higher (see the previous experiment’s Figure 5), so

that compared to the highest attainable score, wikiinfo-consist+viggo-consist+0.5*webnlg-consist

model loses a higher percentage of PARENT than wikiinfo-consist+0.5*webnlg-consist.

Comparing wikiinfo-consist+viggo-consist+0.5*webnlg-consist to train-

ing on just our entire target dataset webnlg-consist (Figure 5), we obtain re-

spective PARENT scores 30.14 and 31.10, so that the absence of half of WebNLG

cost us 0.96. It is therefore possible that, with statistical variance among re-

sults, the addition of alien datasets can compensate for small target datasets.

With larger alien datasets however, full compensation seems within reach.

Alien dataset size effects have not been investigated here, providing an oppor-

tunity for further research. We have however shown that it is fundamentally

possible to compensate for a lack of target dataset examples.

Find the complete set of scores in Table 4.

5.1.2 Influence of dataset consistency on generation fidelity

5.1.1 has presented results on dataset joining from a quanititative perspective,

i.e. how many datasets were joined. We will now shift the focus to dataset

quality, examining the effects of training set consistency, among both the target

dataset and any alien datasets.

Consistency among the target dataset

For both WebNLG alone and the combination of WebNLG and wikiinfo-consist,

Figure 7 shows significant performance loss in case target corpus WebNLG was
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Figure 6: Using alien examples to compensate for a lack of target ex-
amples.
For either one or two alien datasets (left & right), this plot shows PARENT
when WebNLG is either not present, half-present or fully present.
Even when not training on any webnlg-consist examples, PARENT is non-
zero for both one alien dataset and two alien datasets (see lightest series).
With just half of webnlg-consist available, the performance is almost fully ex-
ploited in the one-alien-dataset setting (29.99 vs. 31.94). While in the two-alien-
dataset setting, the performance gap between half and full webnlg-consist is
more considerable, the system yet benefits from having an extra alien dataset
(30.14− 29.99 > 0).
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dataset configuration no. of train. ex. PARENT METEOR BLEU

webnlg 100’000 20.78 37.79 18.19
webnlg-consist 20’000 31.1 51.04 23.08

webnlg + wikiinfo-consist 149’917 27.09 43.21 21.12
webnlg-consist + wikiinfo-consist 69’917 31.94 51.43 24.58

Table 5: Varying consistency among the target dataset, in absence and
presence of a consistent alien dataset.
Regardless of alien data being present, the performance on the consistent dataset
is substantially larger, despite only a fraction of the number of examples being
available.

noisy. (Alien corpus WikiInfo2Text was held consistent.)

We lose ca. 10 points on the PARENT scale training on webnlg instead of

webnlg-consist, and ca. 5 points training on webnlg+wikiinfo-consist in-

stead of webnlg-consist+wikiinfo-consist.

As webnlg contains 100′000 examples, whereas webnlg-consist contains only

20′000, the significantly higher performance on configurations involving webnlg-consist

is even more notable. Consistency weighing therefore seems to weigh much more

heavily than training set size.

Given the factor of 5 between the training set sizes, our findings also suggest

that training data consistency is an indispensable factor, which cannot be com-

pensated for by dataset size, if absent.

Find the complete set of scores and training set sizes in Table 5.

Consistency among the alien datasets

Beyond the consistency among the target dataset, we have also investigated the

effect of consistency among alien datasets.

We investigate adding either one or two inconsistent alien datasets to webnlg-consist.

Figure 8 reveals no significant effect of alien dataset consistency on performance

on the target set. This invariance of performance under e.g. noisy alien datasets

opens up an opportunity: A consistent-target-noisy-alien dataset allows for ben-

efits from joint-dataset synergy, while requiring little care for the alien datasets.

A possible explanation as to why the performance on WebNLG remains un-

changed under different alien dataset consistency levels, is that T5 learns to
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Figure 7: The effect of target dataset consistency on PARENT scores.
Left: When training on just WebNLG, having consistency among the
dataset boosts PARENT by more than 10. Right: When another dataset
(wikiinfo-consist) is present, using the consistent version of WebNLG still
increases PARENT by 4.85.

treat each present dataset as a separate task, developing an individual tech-

nique for generating from each dataset. The addition of dataset-indicating pre-

fixes helps this separation, as suggested by the successful use of task prompts

such as translate-en-to-fr or summarize (P. Liu et al., 2021), which move

well-trained modern-day language models into a completely different generation

mode.

For sections 5.1.1 and 5.1.2, T5 has been trained on various dataset configu-

rations, to investigate how performance can be increased in terms of joining a

dataset with alien datasets, and in terms of using training data as consistent

as possible. Since various settings beyond the dataset configuration remained

unchanged throughout the experiments, we will in 5.1.3 present some brief ex-

periments which aim to cover likely performance boosters.

Find all results in Table 6.

5.1.3 Testing the best-performing model under different conditions

From the above experiments, the t5-base, trained on one epoch, performed best

when trained the largest possible joint dataset, fully consistent, i.e. webnlg-consist+wikiinfo-consist+viggo-consist
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Figure 8: Alien dataset consistency has little effect on PARENT scores.
Adding one (left) vs. two (right) inconsistent datasets to consistent WebNLG.
The addition of inconsistent alien datasets (orange compared to blue) does not
have a strong effect on performance on the target dataset. Given a decrease in
one scenario, and a decrease in the other, the variations likely fall under the
statistical variance of model performance.

dataset configuration PARENT METEOR BLEU

webnlg-consist + wikiinfo 33.13 52.32 24.23
webnlg-consist + wikiinfo-consist 31.94 51.43 24.58

webnlg-consist + wikiinfo + viggo 33.2 53.53 26.02
webnlg-consist + wikiinfo-consist + viggo-consist 34.49 52.82 27.1

Table 6: Varying alien consistency has little effect on generation perfor-
mance. No major score differences are observable.
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Figure 9: Investigating the model under changed conditions.
Each bar corresponds to one condition being changed (except for the red bar).
Only by using uniform separators when linearising graph-based dataset
WebNLG, we obtain a performance increase. Training for 3 epochs or swapping
T5-large for T5-base does not help. The removal of datast-indicating prefixes
unsurprisingly results in a decrease as well.

(covered in 5.1.1). Figure 9 presents the PARENT score for this model config-

uration, with one condition altered each time.

All metric scores are available in Table 7.

Uniform WebNLG separator tokens

Harkous et. al have linearised the original WebNLG data using semantics-based

separator tokens <subject>, <predicate> & <object>.

Replacing the semantics-based separators <subject>, <predicate> & <object>

by a uniform one (|) has improved the PARENT score by 1.31, from 34.49 to

35.8. This performance increase suggests that the information extraction pro-

cess does not gain from the semantic structuring provided by the positional

separators. T5 might be able to keep track of semantic roles itself. In fact,

losing performance, T5 seems to be distracted by the changes in separators,

perceiving them as noise.

Training for 3 epochs
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experiment condition PARENT METEOR BLEU

uniform separators 35.8 55.07 27.1
standard 34.49 52.82 25.99
3 epochs 32.79 51.74 24.53
no prefixes 31.65 50.76 20.82
t5-large 28.92 46.6 22.31

Table 7: Selected experiments on the best-performing model (t5-base,
one epoch, webnlg-consist+wikiinfo-consist+viggo-consist).
Except for the use of simple separators, none of the changed conditions bring a
positive change.

Training on 3 instead of one epoch decreased performance slightly (from 34.49

to 32.79), implying that one epoch is sufficient for t5-base to yield its full po-

tential.

Leaving out the dataset-indicating prefix

The aim of this experiment was not to boost performance, but to investigate how

strongly the dataset tagging of training examples contributes to performance.

And indeed, PARENT drops from 34.49 to 31.65 without prefixes, emphasising

the helping function of prefixes. Given that task-specific prefixes work success-

fully with modern-day language models, the addition of dataset-specific prefixes

might help the model to treat the datasets as different tasks, reducing the ca-

pacity spent on identifying the linearisation syntax type.

Using T5-large

Similarly to the number of epochs being increased, t5-base seems to suffice

for the task, so that t5-large is not required. Performance drops significantly

with t5-large (from 34.49 to 28.92), which has many potential explanations;

the most probable one being overfitting.

5.1.4 Human faithfulness & fluency evaluation of the best-performing

model

We have obtained 114 human judgements on fluency and faithfulness of ref-

erence and generation in the best-performing model (t5-large, one epoch,

webnlg-consist+wikiinfo-consist+viggo-consist). Although evidently the

model was tested on the consistent version of WebNLG, only 50.0% of the ref-

erence sentences were fluent and faithful to the data source at the same time.
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While references were generally fluent, they displayed minor semantic inconsis-

tencies, such as forgetting to mention several letters:

• data: <subject> Aaron Hunt <predicate> club <object> SV Werder

Bremen ; <subject> Aaron Hunt <predicate> club <object> VfL Wolfsburg

• gen: Aaro plays for Vfl Wolfsburg and SV Werder Bremen.

In order to have a meaningful evaluation, even for small inconsistencies, the

sentence had to be marked as unfaithful.

74.56% of the generations were fluent, where the main culprit was the repetition

of substrings, such as:

A.F.C. A.F.C. A.F.C. Blackpool’s ground is The Mechanics.

We only evaluated faithfulness on fluent generations, since the meaning might

not be clear otherwise. Out of all fluent references, 50.59% were also faithful,

where minor inconsistencies weighed most heavily. When the WebNLG exam-

ple had more triplets (e.g. 5 to 7), the the generator would frequently forget

to addseveral facts. Though even for lower numbers of triplets, omissions ac-

counted for the vast majority of unfaithful generations. In many cases, very

subtle semantic mistakes occurred, which we marked as errors. However, they

did not even belong into any of the semantic fidelity classes identified in 4.2.2.

One example of subtle mistakes is not picking up on the past tense implied by

“worked”:

• data: <subject> Abdulsalami Abubakar <predicate> office (worked

at, worked as) <object> Chief of the Defence Staff (Nigeria) ;

...

• gen: Abdulsalami Abubakar [...] is the Chief of the Defence Staff

of Nigeria.

The semantic error was hallucination in 9.52% of the unfaithful examples,

amounting to 4 hallucinations, which is only 3.51% of the entire dataset. Upon

close inspection, none of the instances classed as hallucinations were typical ex-

amples - no entirely new piece of information was made up, except for one case

with a long data source, the generator added several instances of

The author of the book is Sumac.
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at the end of its generation. While Sumac had occurred in the data, a book was

never mentioned.

In summary, the human reviews have revealed that the best-performing model

is indeed not prone to hallucination, however frequently omits facts instead,

especially for long input data. We have also observed that the references of

webnlg-consist were of lower consistency than anticipated, which makes it

harder for generators to learn and score well on automatic metrics. In fact,

in 15.79% of the examples, the reference was labelled as “bad” (not fluent or

not unfaithful), whereas the generation was labelled as fluent and faithful. The

model output being superior to the reference in such a number of cases reveals

that the model has acquired some skill underlying fluent & faithful data-to-text

generation, instead of just copying what has been seen during training.

5.2 Semantic fidelity classification results

This Subsection presents the results on the RoBERTa semantic fidelity classifier,

which will serve as 1-out-of-5 candidates selector in the combined generator-

classifier system.

To increase RoBERTa’s potential to classify data-to-text semantic fidelity, we

have tested different dataset configurations, varying in levels of syntactic & se-

mantic cleaning, as well as the number of corpora joined. Furthermore, settings

with K = {2, 3, 5} classes were contrasted, as well as base and large version of

RoBERTa.

In search of methods to control hallucination, we report binarised accuracy

(Eqn. (6)). For all classification experiments, odels were tested on the test set

given for the training corpus.

5.2.1 Classification accuracy by dataset configuration

In order to later employ our classifier for picking the best candidate generation,

the classifier must be trained on the generator’s target dataset, WebNLG.

We have tested training on just WebNLG vs. on a joint datset (adding ViGGO).

Results are visualised in Figure 5.2.1.

Having evaluated viggo-clean against viggo, we conjoined WebNLG with

viggo-clean, which generally achieved marginally higher binary accuracy than

raw viggo.

66



Figure 10: Binarised classification accuracy: A comparison different

dataset configurations.

The data were collected during training various models in preparation of

this thesis. In total, just under 48 (= 4 datasets × 2 no. of epochs ×
3 no. labels × 2 model sizes) data points are available (excluding a few

non-working roberta-larges - see Section 3.4.2).

Dark blue: ViGGO, before vs. after cleaning repetitive dialogue acts & slot

names. We do in fact obtain a higher classification accuracy when cleaning

repetitions of dialogue acts / slot names in viggo-clean.

Light blue: webnlg, without vs. with viggo-clean. Conjoining webnlg with

viggo-clean helps.

Notably, the percentage of correct classifications for all models on average lies

around 99%, on a dataset-specific held-out test set.
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Since webnlg+viggo-clean achieves on average 0.5% more than webnlg alone,

we observe the same synergetic effects of joint training as in the generator exper-

iments. The gain might seem negligible, however considering that the majority

of results lies above 98.5%, a jump to 90.0% is worth noting.

For the system combination, we will thus train on webnlg+viggo-clean.

5.2.2 Optimal classification setting: Number of classes

We have tested K = {2, 3, 5} numbers of semantic fidelity clases, where hallu-

cination always constituted a class (details in 4.2.2).

As Figure 11 illustrates, when considering accuracy, we are led to believe that

K = 2 (low) is the most suitable setting. Higher K naturally lower accuracy, as

guessing more frequently leads to picking the wrong class. However, with high

K we also count errors that are irrelevant to controlling hallucination (e.g. for

K = 5: omission vs. value error). When we however isolate the relevant class

hallucination through binary accuracy, we observe the highest performance with

the most refined class setting (K = 5).

Thus, with K = 5, we identify hallucination the most accurately.

To see why a seemingly more complicated setup (e.g. K = 5) results in best

hallucination detection, consider the following data source and hypothetical

generations:

data source: <subject> Mary Stuart <predicate> crowned year <object> 1542

generation (value error): Mary Stuart was crowned in 1555.

generation (repetition): Mary Stuart was crowned in crowned in 1542.

Whereas value error detection requires comparing generation and datasource,

repetition requires comparisons among the generation. Therefore, the detection

of value error vs. repetition are two fundamentally different tasks. The lower
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Figure 11: Evolution of classification accuracy vs. binarised accuracy
as the number of classes increases.
Evaluated on the WebNLG dataset, but a similar trend is visible for any dataset.
As the number of labels increases, accuracy decreases, since guessing results
more likely in the wrong prediction.
Binarised accuracy however increases with more refined labels, so that for the
individual class of hallucination, we actually detect with higher accuracy.

binary accuracy for K = 2, where accurate and faulty generations are mixed,

and K = 3, where all non-hallucination errors are mixed, is thus less of a sur-

prise.

With K = 5 being most suitable for hallucination-detection, and K = 3 being

almost as good, the classifier seems to prefer homogeneity among the classes,

which is not given for K = 2. K = 3 allows for some homogeneity, not mixing

up accurate and faulty examples.

Given our findings, we will utilise 5 semantic error classification labels in our

combined system.

5.2.3 How the RoBERTa classifier thinks

To understand more about the semantic fidelity classifier’s ‘reasoning’, we have

counted the number of confusions between the K = 5 classes (see Figure 12).

We observe that classes containing shorter texts (accurate, omission, value er-

ror) are frequently confused. Furthermore, an elevated level of confusion is

present among the elongated classes hallucination & repetition. Instead of com-
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paring the semantic content of data and text, RoBERTa seems to derive labels

from macro-features in those cases. However, the vast majority (97.56%) of

examples are still classified correctly. Upon inspection, false labels occur only

in highly ambiguous cases, such as:

• data:

<subject> AIDAstella <predicate> christening date <object> 2013-03-16

• text: The AIDAstella was completed on March 11th 2013.

• target label: hallucination

• predicted label: accurate

Annotators have probably labelled this as hallucination as christening is dif-

ferent from completion, however those two events are very much related to the

same concept. Notice that being as strict, value error would also have made

sense.

The 2.44% of false classifications might overlap with the ambiguous examples

of the dataset.

The results obtained so far in this Section, on data-to-text generation (5.1) and

semantic fidelity classfication (5.2), have helped us identify a set of well-working

whilst practicable design choices for our generator-classifier combined system,

which we will turn to in 5.3.

Scores on all configurations relevant to the combined system are listed in Table

8.

5.3 Combined system results

Drawing together the expertise gained in the previous two subsections, the de-

sign choices for the combined system’s components are summarised below:

1. T5-generator:

• t5-base

• 1 epoch

• semantics-based separators (for comparability with Harkous, Groves,

and Saffari, 2020)
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Figure 12: The confusion matrix of the best-performing semantic fidelity clas-
sifier.
Diagonal values have been set to 0 since they do not constitute confusions.
We observe frequent confusions between value error, omission & accurate. Rep-
etition and hallucination are confused with some frequency as well.
Among those two groups of common confusion, a length pattern can be spotted
(resp. short vs. long).

number of epochs number of labels accuracy bin. accuracy

1 2 98.23 98.23
1 3 97.02 98.85
1 5 97.29 99.03

3 2 -∗ -∗

3 3 97.86 99.05
3 5 97.56 99.09

Table 8: Classification performance of roberta-base on best dataset,
webnlg+viggo-clean.
∗: Training failed due to the same pathology as in roberta-large.
Bold: Highest score - configuration will be used in combined system.
For more labels, 3 epochs are beneficial, since the classification problem is more
complex.
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• trained on webnlg-consist+wikiinfo-consist+viggo-consist, with

dataset-indicating prefixes

2. RoBERTa semantic fidelity classifier

• roberta-base (due to training complications with roberta-large)

• 3 epochs

• 5-label classification problem (accurate, hallucination, omission, rep-

etition, value error)

• trained on webnlg+viggo-clean

5.3.1 Automatic metric scores before semantic filtering

Before employing RoBERTa to filter out one out of five candidate gen-

erations, we must check for sufficient diversity among the candidates, to

ensure that the classifier has a range of choices. With insufficiently di-

verse candidates, the filtering through the classifier can barely change the

system output.

Sufficient diversity among the candidate generations has been confirmed

by inspection (Listing 8), as well as considerable variance in automatic

metric scores (see Figure 13).

5.3.2 Combined system results: Automatic metric scores after

semantic filtering

In Figure 14, we report pre-filtering metric scores (candidate average),

in comparison to post-filtering metric scores, i.e. the combined system’s

output. Every metric score is increased notably. All score changes are

contrasted in Table 9.

With BLEU having the largest relative increase (9.34%), the selection

process of a generation seems to have looked for n-gram overlap. This hy-

pothesis is further supported by METEOR undergoing a 4.72% increase,

about half the change of BLEU. METEOR pays attention to both n-grams

and general semantic overlap.

PARENT, which computes an n-gram F1-score w.r.t. to the data source,
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metric pre-filter score post-filter score absolute increase relative increase (%)

PARENT 33.16 36.06 2.9 8.75
METEOR 53.81 56.35 2.54 4.72
BLEU 25.59 27.98 2.39 9.34

Table 9: Automatic metric scores in the T5-generator (average of all candi-
date generators) vs. after filtering with a RoBERTa semantic fidelity classifier.

Figure 13: Automatic metric scores of the 5 candidate generators.
The plot shows 5 datapoints for each automatic metric, corresponding to the 5
candidate generator instances.
The training procedure for each candidate generator was identical.
PARENT varies between 31.11 and 34.9.
METEOR varies between 52.38 and 55.54.
BLEU varies between 23.98 and 27.19.
The automatic metric scores vary enough to assume diversity among the candi-
date generations.

increases almost as strongly as BLEU, by 8.75%. This large increase con-

firms that the RoBERTa classifier increases the generations’ faithfulness

to the data source.

The maximum boost on PARENT is 2.9.

5.4 Evaluation summary & findings

In this Section, we have presented our results to experiments concerning data-

to-text generation, as well as semantic fidelity classification.

For both sets of experiments, we have added alien corpora to target corpus

WebNLG, forcing the underlying language model to learn generalising over in-

put structures. Given that the joining was highly beneficial for both tasks,
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Figure 14: Pre-filtering vs. post-filtering performance: The effect of fil-
tering candidates according to their semantic fidelity before outputting.
The pre-filtering automatic metric scores are averages of the 5 candidate gener-
ators.
The semantic fidelity filtering increases each automatic metric score notably.
PARENT is increased from 33.16 to 36.06, by 2.9 points, corresponding to a
plus of 8.75%.
METEOR increases from 53.81 to 56.35, by 4.72%.
BLEU undergoes the largest relative change, increasing from 25.59 to 27.98, by
9.34%.
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language models seem to be highly flexible in adapting to structural differences

between corpora. From the positive effects of dataset-indicating prefixes mea-

sured in T5, we have inferred that in general addition of such prefixes allows

language models to perceive each corpus as a separate task, which ultimately

enables parallel learning from several corpora.

For data-to-text generation, we have also found that training set consistency

matters only among the target dataset. This allows for adding alien datasets

without performing extensive semantic cleaning on them in advance.

In fact, when the training set was consistent, considerably higher PARENT

scores were achieved, with just a fraction (> 20%) of the training data. While

this finding highlights a further dial in increasing performance, obtaining high-

fidelity datasets for data-to-text generation is often not possible without some

cleaning effort on the researcher’s side (Parikh et al., 2020).

Surprisingly, using uniform data separator tokens | in WebNLG was empiri-

cally beneficial to the performance, questioning the gain from semantics-based

tokens.

We have also established that the base versions of T5 and RoBERTa are suffi-

cient for our problem, training them on a small number of epochs (resp. 1 and

3).

Despite the seemingly complicated setup of having 5 semantic fidelity classes

when our main interest lies in hallucination and accurate, having one class for

each possible case facilitated drawing a meaningful decision boundary, and led

to more faithful detection of hallucination.

Finally, the human reviews of the pre-filtering outputs of T5 have revealed a

much stronger prevalence of omissions than hallucinations. We thus have little

hallucination left to control with RoBERTa. Due to the overwhelming number

of omissions observed, in contrast to the tiny amount of hallucination, it is pos-

sible that a scale of loquacity exists for language models, on which our generator

is rather low.

Whereas T5-generator’s quality was thoroughly assessed with three automatic

metrics and human reviewing, potential weaknesses of the classifier within the

combined system have not directly been investigated. Evidently, we have evalu-

ated the classifier on an artificial test set in 5.2, where the accuracy was mostly

> 98%. However, the only available token of classification accuracy on the gen-

erated set is the metric score change induced by filtering with the RoBERTa
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classifer. Since the increase percentages are quite considerable, also in compar-

ison to Harkous, Groves, and Saffari, 2020, we will for now assume a satisfying

level of classification accuracy on the set of generated sentences. Future work

might hand-label a subset of the generations, to obtain an estimate of classifi-

cation accuracy.

In their evaluation of the DataTuner on WebNLG, Harkous et al. obtain a

pre-filtering METEOR score of 41.9 on WebNLG, whereas we achieve 52.82 with

training a t5-base on webnlg-consist + wikiinfo-consist + viggo-consist

(5.1.1). With the simplified separators, we even obtain 55.07. Harkous et al.

can increase their METEOR score to 42.4 (+1.19%) through filtering, com-

pared to our 56.35 (+4.72%). However, given that we trained our generator

on a consistent version of WebNLG, it might be easier to score higher than on

raw WebNLG31, used by Harkous et al.. Ultimately, a direct comparison to

Harkous et al.’s METEOR score is therefore less informative, but substantial

deficits compared to the DataTuner seem unlikely.

31When the reference sentences are noisy, and METEOR measures the overlap between
generations and (noisy) reference, which is naturally lower.
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6 Conclusion & Future directions

In this thesis, we have chosen a three-stage approach to increasing semantic

faithfulness in data-to-text generation. We first ensure consistency among the

data, and conjoin distinct datasets for mixed-corpus training. Second, we gener-

ate 5 candidate texts with a T5-base, and lastly classify the semantic faithfulness

of each candidate to the data source with a RoBERTa-base. The candidate with

the highest activation for class accurate is selected as system output.

This approach was first explored by Harkous, Groves, and Saffari, 2020, in the

DataTuner.

The pre-existing hallucination pathology in conditional language generation is

in the case of data-to-text generation additionally fuelled by noisy training sets -

the of overlap between data and text among corpora has called for serious mea-

sures of faithfulness control in generators. Existing remedies, such as including

a copy-gate (W. Chen et al., 2020) or adding a Hidden Semi-Markov Model

to learn latent templates (Wiseman, Shieber, and Rush, 2018) tend to tackle

unfaithfulness during the generation process, making architectural additions to

their generators.

Contrarily, we interfere with neither the architecture of our core generator, nor

the classifier, in fact using the base configuration for both (t5-base, roberta-base).

Yet we were able to achieve considerable performance increases compared to as-

is use by presenting our training data in a strategic manner:

First, we performed additional cleaning to the DataTuner’s dataset. Then, for

the WikiInfo2Text dataset, we applied a semantic de-noising procedure, which

ruled out slot-value pairs if their slot name was deemed irrelevant in advance,

or if a Latent Semantic Indexing model could not find semantic overlap between

the reference and the value. Examples with a high text-to-datapoints ratio were

also excluded. In absence of semantic inconsistency, models trained on a small

number of faithful examples outperformed models trained on much larger, but

inconsistent, datasets. Given that in most of previous research, generators are

trained on data-to-text corpora without much semantic cleaning, dataset con-

sistency seems an underexplored dial in generating faithfully.

Furthermore, considerable performance gains were obtained, for both generation

and classification, by merging the target dataset (WebNLG) with other datasets

of the same task, pre-pending dataset-indicating prefixes to the linearised data
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sources. Even mixing vastly different datasets (slot-value pairs, triples, hierar-

chical encoding with dialogue acts), neither system component got confused by

the structural differences, and benefitted instead. Mixed-corpus training is thus

an efficient means of training a better language model.

Another convenience of mixed-corpus training, relevant to data-to-text genera-

tion, is that faithfulness among the dataset must only be ensured for the target

set among the mixed corpus. Alien dataset consistency does not seem to con-

tribute.

The unexpected performance increase from replacing semantics-based separator

tokens with a uniform separator once again underlines the potential in dataset

pre-processing. It also challenges the widespread perception that Transformer-

based language models will always benefit from special tokens emulating syn-

tactic structure.

Beyond the positive influence of cleaning, semantic de-noising and mixed-corpus

training on generation, faithfulness among generations could be boosted using

an external module - a semantic fidelity classifier, which selected one out of five

generator outputs as the final output. (faithfulness being measured through

automatic metrics here).

In our approach, we thus do not modify the architecture of the generator, in

contrast to existing approaches. Our approach differs from Harkous et al.’s

DataTuner in that we unlock greater potential of the generator through clean-

ing, semantic de-noising and joining corpora.

Finally, letting humans judge the end-to-end system’s output, in comparison to

the pre-filtered output, would have provided more insight into the effectiveness

of the semantic fidelity classifier. Due to the small number of hallucinations

found in the pre-filtering output, it would have taken a large sample size to

establish a significant change. However, we might have used human judgement

for checking whether the large number of omissions has decreased, since the

RoBERTa semantic fidelity classifier has been trained to detect omission as one

of its classes. The large-scale comparison of pre-filtering to post-filtering out-

puts is thus a further opportunity for evaluating the effectiveness of semantic

fidelity classifier approaches.

We have observed the performance boost in our T5-generator when training

examples were faithful. In answer to usually high levels of noise in data-to-
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text corpora, quick-to-use semantic cleaning methods, such as the procedure

described for WikiInfo2Text (3.3), for different types of meaning encodings, are

an opportunity for further research.
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