
Depth Uncertainty Networks for
Active Learning

Chelsea Murray

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Corpus Christi College August 2021

Declaration

I, Chelsea Murray of Corpus Christi College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that this report and the work described in
it are my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable purpose.

Existing software: The software used in this thesis extends upon code contained in the
following repository by Antorán et al. (2020): https://github.com/cambridge-mlg/DUN. All
software is implemented in Python using PyTorch. No proprietary software tools were used.

Word count: 14,964

Chelsea Murray
August 2021

https://github.com/cambridge-mlg/DUN

Acknowledgements

I would like to extend my gratitude first and foremost to my supervisors, James Allingham
and Javier Antorán, for being incredibly generous with their time and ideas throughout the
course of this project. Their enthusiasm and support have made the project a pleasure to work
on. I am grateful also to José Miguel Hernández-Lobato for his guidance during the project.

I would like to acknowledge the use of CPU and GPU credits on the University of Cambridge
HPC provided courtesy of the Functional Uncertainty in Neural Networks through Stochastic
Depth project from the Department of Engineering.

Thank you also to Sebastian Farquhar for helpful clarification about the implementation of
the active learning bias experiments.

Abstract

In many important applications of machine learning, labelled data are often scarce and
expensive to obtain. A challenge in such settings is data efficient learning, such that vast
quantities of labelled data are not required to attain good model performance. Active learning
is one approach to improving data efficiency. Given a fixed labelling budget, the objective of
active learning is to identify examples that maximise the expected gain in model performance.
This thesis investigates the application of depth uncertainty networks (DUNs), a variant of
Bayesian neural networks, to active learning problems. In DUNs, probabilistic inference is
performed over the depth of the network, and uncertainty about the optimal depth is translated
into model uncertainty via marginalisation.

This thesis proposes and tests several hypotheses about the performance of DUNs in active
learning settings. Firstly, the ability to infer depth is expected to enable DUNs to adapt model
complexity to the varying size of the training dataset as additional labels are acquired. Exper-
imental evidence validates this hypothesis and shows that this property yields performance
advantages. Secondly, we propose that flexibility over depth results in reduced overfitting
bias in DUNs, an intuition that is confirmed by empirical results. This finding implies, in
theory, that eliminating the bias induced by active sampling of training data should improve
the performance of DUNs, but this is found not to be the case in practice. We also investigate
whether the prior over depth can be exploited as a further regularisation mechanism, but find
that it has minimal impact on the posterior.

Finally, two modifications to existing acquisition strategies are introduced. The first method
aims to ameliorate the impact of model misspecification bias, which causes uncertainty
estimates of DUNs and other complex models to be unreasonably large outside the range
of observed data. The second method addresses the issue of correlation in batch-mode
acquisition by targeting the diversity of the acquired batch.

Table of contents

List of figures xi

List of tables xv

Nomenclature xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis outline . 3

2 Background 5
2.1 Active learning . 5

2.1.1 Acquisition functions . 6
2.2 Bayesian deep learning . 10

2.2.1 Variational inference . 12
2.2.2 Monte Carlo dropout . 18
2.2.3 Depth uncertainty networks . 20

2.3 Bias in active learning . 23
2.3.1 Unbiased risk estimators . 24
2.3.2 Interaction of biases in active learning 25

3 Hypotheses: addressing biases in active learning with DUNs 27
3.1 DUNs for active learning . 28
3.2 Addressing misspecification bias . 29

3.2.1 Correlation in batch acquisition 30
3.3 Investigating active learning bias . 30

x Table of contents

4 Results 33
4.1 Experimental setup . 33

4.1.1 Data . 33
4.1.2 Model specifications . 35

4.2 Acquisition functions . 36
4.2.1 Toy regression with naïve batch acquisition 37
4.2.2 Truncated BALD . 37
4.2.3 Stochastic BALD . 39

4.3 DUN and baseline performance . 43
4.3.1 Toy datasets . 43
4.3.2 Tabular regression . 45
4.3.3 Image classification . 47

4.4 Bias in active learning . 48
4.4.1 Quantifying active learning bias 49
4.4.2 Training with unbiased risk estimators 51
4.4.3 Overfitting bias . 55
4.4.4 Impact of the depth prior . 57

5 Conclusion 63
5.1 Summary of findings . 63
5.2 Limitations and future work . 64

References 67

Appendix A Additional results 73
A.1 Acquisition function comparisons . 73
A.2 DUN and baselines comparisons . 77
A.3 Active learning bias experiments . 79
A.4 Alternative depths for baseline methods 81

List of figures

2.1 Representation of a MAP neural network and a BNN. 11
2.2 DUN computational model. 21
2.3 Graphical models of BNNs and DUNs. 22
2.4 Illustrative linear regression under active learning bias. 26

4.1 Toy datasets with train-test splits. 34
4.2 Test NLL vs. number of training points for DUNs evaluated on toy datasets.

Maximum entropy and BALD acquisition functions are compared to a ran-
dom acquisition baseline. 37

4.3 Example acquisition steps with standard BALD and truncated BALD acqui-
sition functions. 39

4.4 Initial acquisition steps with truncated BALD acquisition. 40
4.5 NLL of stochastic BALD with varying temperatures. 41
4.6 Test NLL vs. number of training points for DUNs evaluated on UCI datasets.

Truncated and stochastic BALD acquisition functions are compared to stan-
dard BALD. 42

4.7 Test NLL vs. number of training points for DUNs evaluated on UCI datasets.
Maximum entropy and stochastic BALD acquisition functions are compared
to a random acquisition baseline. 43

4.8 Classification accuracy and NLL vs. number of training points for DUNs
evaluated on MNIST. Maximum entropy, standard BALD, and stochastic
BALD acquisition functions are compared to a random acquisition baseline. 44

4.9 NLL vs. number of training points for DUNs, MCDO and MFVI evaluated
on toy datasets. 45

4.10 Model fit of a DUN, MCDO and MFVI on the Matern and Wiggle datasets. 46
4.11 NLL vs. number of training points for DUNs, MCDO and MFVI using

2,000 training epochs. 46
4.12 Posterior probabilities over depth for DUNs trained on toy datasets. 47

xii List of figures

4.13 NLL vs. number of training points for DUNs, MCDO and MFVI evaluated
on UCI datasets. 48

4.14 Posterior probabilities over depth for DUNs trained on UCI regression datasets. 49
4.15 Accuracy and NLL vs. number of training points for DUNs and MCDO

evaluated on MNIST. 50
4.16 Active learning bias for DUNs, evaluated using R̃ and R̃LURE 51
4.17 Active learning bias for DUNs and MCDO, evaluated using R̃ and R̃LURE . . 52
4.18 NLL for DUNs trained with R̃ and R̃LURE 53
4.19 NLL for DUNs and MCDO trained with R̃ and R̃LURE 54
4.20 Overfitting bias for DUNs and MCDO trained with R̃ and R̃LURE 56
4.21 NLL for DUNs with uniform and decaying priors trained with R̃ and R̃LURE . 58
4.22 Posterior probabilities for DUNs with uniform and exponentially decaying

priors. 59
4.23 NLL vs. number of training points for DUNs using uniform and exponentially

decaying priors. 60
4.24 Overfitting bias for DUNs with uniform and decaying priors trained with R̃

and R̃LURE . 62

A.1 NLL vs. number of training points for DUNs evaluated on toy datasets.
Truncated BALD and stochastic BALD acquisition functions are compared
to standard BALD. 73

A.2 NLL vs. number of training points for DUNs evaluated on toy datasets.
Stochastic BALD acquisition with and without prior truncation are compared. 74

A.3 NLL vs. number of training points for DUNs evaluated on toy datasets. Max-
imum entropy and stochastic BALD are compared to a random acquisition
baseline. 75

A.4 RMSE vs. number of training points for DUNs evaluated on toy datasets.
Maximum entropy and stochastic BALD are compared to a random acquisi-
tion baseline. 75

A.5 RMSE vs. number of training points for DUNs evaluated on UCI datasets.
Maximum entropy and stochastic BALD acquisition functions are compared
to a random acquisition baseline. 76

A.6 RMSE vs. number of training points for DUNs, MCDO and MFVI evaluated
on toy datasets. 77

A.7 RMSE vs. number of training points for DUNs, MCDO and MFVI evaluated
on UCI datasets. 78

A.8 RMSE for DUNs trained with R̃ and R̃LURE 79

List of figures xiii

A.9 NLL for DUNs with decaying priors trained with R̃ and R̃LURE 80
A.10 NLL vs. number of training points for baseline methods of varying depths. . 83
A.11 RMSE vs. number of training points for baseline methods of varying depths. 85

List of tables

4.1 Summary of datasets and active learning specifications. 35

Nomenclature

Acronyms / Abbreviations

BALD Bayesian active learning by disagreement

BNN Bayesian neural network

DUN Depth uncertainty network

ELBO Evidence lower bound

KL Kullback-Leibler

LURE Levelled unbiased risk estimator

MAP Maximum a-posteriori

MC Monte Carlo

MCDO Monte Carlo dropout

MCMC Markov Chain Monte Carlo

MFVI Mean-field variational inference

MLE Maximum likelihood estimation

NLL Negative log-likelihood

PURE Plain unbiased risk estimator

RMSE Root mean-squared error

SGD Stochastic gradient descent

SGVB Stochastic gradient variational Bayes

VI Variational inference

1

Introduction

1.1 Motivation

Much of the success of modern machine learning has been facilitated by the availability of
vast quantities of data that have been generated in recent decades. Deep learning models,
in particular, tend to be characterised by a dependence on large pools of training data in
order to generalise well. Krizhevsky et al. (2012), for example, achieved state-of-the-art
image classification performance (at the time of publication) by training a deep convolutional
neural network on hundreds of gigabytes of labelled images. A second highly publicised
example is the Generative Pre-Trained Transformer 3 (GPT-3) language model, which relies
on pre-training with an enormous corpus of 45TB of diverse text data in order to learn the
ability to generate remarkably human-like written text (Brown et al., 2020).

Despite enabling important advances in the field, such dependence on massive datasets is not
necessarily desirable, for both practical and theoretical reasons. From a modelling perspec-
tive, it is reasonable to expect that a model should extract as much information as possible
from the available data in order to maximise performance on a given task. A reliance on vast
quantities of data is therefore potentially a sign of a poorly specified modelling framework
that does not learn in a data-efficient manner. A practical consideration is that, in the context
of supervised learning, training requires labelled data, which are in many cases scarce or
difficult to obtain. Applications of machine learning in fields such as medical imaging or
speech recognition, for example, depend on the input of domain experts to annotate images
or speech utterances, often a time-consuming and tedious process (Settles, 2010).

Unlabelled data, in contrast, are in many situations abundant and easy to obtain, and we
often wish to make use of these data. Active learning is a framework that aims to learn

2 Introduction

in such settings, by using measures of model uncertainty to determine which of a set of
unlabelled candidate points are likely to be most informative, and obtaining labels only for
this subset of the data. The principle behind this approach is that learning can be made more
efficient by intelligently selecting examples that provide the most information about the
correct values of the model parameters (Cohn et al., 1995). Standard deep learning models do
not lend themselves well to the active learning paradigm out-of-the-box, as they are treated
as deterministic functions that do not provide measures of model uncertainty alongside their
predictions. We consider Bayesian neural networks (BNNs), which cast neural networks as
probabilistic models by treating network parameters as random variables.

Standard BNNs have been applied to active learning with empirical success in previous
work (Gal et al., 2017; Huang et al., 2018). This thesis focuses instead on a recently
proposed form of BNN, depth uncertainty networks (DUNs), in which probabilistic inference
is performed over the depth of the network rather than over its weights (Antorán et al.,
2020). An interesting feature of DUNs is that predictions from different depths of the
network correspond to different types of predictive functions—shallow networks induce
simple functions, while deeper networks induce more complex functions. The aim of this
thesis is to leverage this property in the context of active learning, and to investigate whether
the ability to infer depth can allow DUNs to overcome some of the challenges of active
learning with deep neural networks, with a particular focus on biases in active learning.

1.2 Contributions

The primary contribution of this thesis is an empirical evaluation of a series of hypotheses
about biases in active learning and the performance of DUNs on active learning problems.
We propose that variable-depth networks provide advantages in the active learning set-
ting by enabling the model to better adapt to the complexity of the dataset, and confirm
this intuition by benchmarking DUNs’ performance against that of other BNN methods. A
second hypothesis is that the prior over depth can be manipulated in order to minimise
overfitting bias when there are few labelled data points. In practice, the impact of the prior
in DUNs is shown to be negligible. A detailed analysis of different sources of bias in active
learning is conducted, showing that overfitting bias is generally smaller in DUNs than in
other BNN methods. We apply a recently proposed unbiased risk estimator that corrects
for active learning bias, but find that it does not improve performance for DUNs. Finally,
we propose a modification to an information-based acquisition strategy, termed truncated
BALD, which mitigates bias caused by model misspecification. A further proposed modi-

1.3 Thesis outline 3

fication, stochastic BALD, is shown to improve diversity in batch acquisition and partially
recuperate information loss due to correlated acquisitions.

1.3 Thesis outline

The remainder of this report is structured as follows. Chapter 2 introduces active learning
and describes the acquisition strategies that are considered in this work. This is followed by
a review of BNN inference methods, as well as an explanation of DUNs. We also detail, for
each of these methods, how the uncertainty estimates required in active learning are computed.
The chapter concludes by reviewing recent work on bias in active learning. Chapter 3 presents
the hypotheses we wish to evaluate empirically and explains the methodological approaches
adopted for this evaluation. The experimental setup is detailed in chapter 4, followed by an
analysis of empirical results. Finally, chapter 5 summarises the findings and conclusions
from the thesis and proposes directions for further research.

2

Background

This chapter begins with a review of active learning, and of strategies for active data acquisi-
tion, in section 2.1. Section 2.2 introduces important concepts in Bayesian deep learning and
describes the BNN methods implemented in this work, including DUNs, in section 2.2.3. In
particular, we link the estimation of model predictive uncertainty in each of these methods to
the acquisition functions outlined in section 2.1.1. Finally, section 2.3 discusses recent work
on bias in active learning and approaches to addressing this bias.

2.1 Active learning

In supervised learning settings, the requirement for labelled data can limit the usefulness of
available data sources, where labels are costly, expensive, or otherwise difficult to obtain
(Jing and Tian, 2020). Given such a setting, the aim of active learning is to produce a model
with as high a level of performance as possible using as few labelled data points as possible.
In this framework, a learner is initially trained on a small labelled subset of the available data,
and additional unlabelled points are selected via an acquisition function to be labelled by an
external oracle (for example, a human expert) (Settles, 2010). The learner is subsequently
retrained with the additional labelled points included in the training set, and the process of
data acquisition and retraining is repeated iteratively until the targeted performance level is
achieved or the query budget is exhausted. By allowing the learner to select candidate points
that are expected to be most informative, training ideally becomes more data-efficient, thereby
minimising the cost of obtaining a labelled dataset for a given level of model performance.1

1A more accurate formulation of the objective of active learning is to identify the set of points (of size equal
to the query budget) that are maximally informative (Kirsch et al., 2019). Evaluating all possible subsets of the
pool set is, however, intractable, so in practice a greedy process involving iterative acquisition is implemented.

6 Background

This work concentrates on pool-based active learning, applicable in cases where a large pool
of unlabelled data is easy to obtain, but labelling is expensive (Lewis and Gale, 1994). An
alternative scenario is online or stream-based active learning, in which a determination about
whether or not to request a label for a given data point is made in an online fashion, as single
data points are sampled sequentially from the actual distribution (Tong and Koller, 2001).
We focus on the former configuration since it is more prevalent than online active learning
among application papers, as noted by Settles (2010).

2.1.1 Acquisition functions

The key feature distinguishing active learning from passive learning is the use of an ac-
quisition function to rank points in the pool set by their potential informativeness. Given
a model with parameters θ trained on training data Dtrain = {xi,yi}Ntrain

i=1 , where y ∈ Y , the
acquisition function α(·) is a function of x that scores all unlabelled examples in the pool set
Dpool =

{
x j
}Npool

j=1 . These scores are used to select the next point x⋆ to be labelled:

x⋆ = argmax
x∈Dpool

α (x;θ ,Dtrain) . (2.1)

The literature on acquisition strategies in active learning is vast. Following MacKay (1992a),
this work considers information theoretic approaches, which seek to choose x⋆ that are most
informative about the values of θ . In the Bayesian framework, this equates to maximally
reducing the uncertainty in the posterior over model parameters. Two quantities commonly
used to capture this uncertainty are the predictive entropy and mutual information.

Maximum entropy

Shannon’s entropy (Shannon, 1948), defined as

H [y | x,Dtrain]≡− ∑
y∈Y

p(y | x,Dtrain) log p(y | x,Dtrain) , (2.2)

is an information theoretic measure of the amount of uncertainty in the distribution p(y | x,Dtrain).
Larger values of H [y | x,Dtrain] reflect a distribution that assigns more uniform probabilities
across the possible values of y, indicating greater uncertainty in the prediction. We can thus
use this quantity to define an acquisition function:

αEntropy (x;θ ,Dtrain) =H [y | x,Dtrain] . (2.3)

2.1 Active learning 7

Maximising αEntropy (x;θ ,Dtrain) corresponds to selecting the datum from Dpool for which
the predictive distribution under the current model contains the least information.

Shannon’s entropy is defined for variables taking discrete values, so is straightforward to
apply to the classification case, where the summation in equation (2.2) is computed over the
prediction for each category. For regression problems, however, the predictive distribution is
a mixture of Gaussians, for which the entropy must be approximated.2 The approach adopted
in this work is to obtain repeated samples of y using the methods described in section 2.2
for each BNN. A histogram over the continuous-valued samples can be constructed by
allocating the samples to bins, and the entropy over the histogram is calculated. This method
is simple to implement and fast to compute, however can be affected by parameter settings
such as the number of samples or number of histogram bins used (Depeweg et al., 2018).
Alternative approximation methods include nearest neighbour approaches (Kozachenko and
Leonenko, 1987) and kernel density estimation (Beirlant et al., 1997). These methods are not
implemented as they are not relevant to the main objectives of this work.

Bayesian active learning by disagreement

MacKay (1992a) proposes a Bayesian approach that aims to maximise the reduction in the
model’s posterior entropy after observing the label of a given data point x,

argmax
x

H[θ | Dtrain]−Ey∼p(y|x,Dtrain) [H [θ | y,x,Dtrain]] . (2.4)

This objective maximises the expected amount of uncertainty in θ that is removed by know-
ing y | x. As highlighted by Houlsby et al. (2011), computing the entropy over parameter
posteriors is often intractable due to the high dimensionality of the parameter space. This
objective can be re-expressed in terms of entropies in output space by observing that the ex-
pression inside the argmax operator in equation (2.4) is, by definition, the mutual information
between the predictions and the model posterior, I[θ ,y | x,Dtrain]. Applying the symmetry
property of the mutual information and the definition of mutual information, we obtain

I[θ ,y | x,Dtrain] = I[y,θ | x,Dtrain] =H [y | x,Dtrain]−Eθ∼p(θ |Dtrain)[H[y | x,θ]]. (2.5)

The acquisition function can hence be written as

αBALD (x;θ ,Dtrain) =H [y | x,Dtrain]−Eθ∼p(θ |Dtrain)[H[y | x,θ]], (2.6)

2Refer to section 2.2 for a more detailed treatment of modelling assumptions.

8 Background

and can be interpreted as selecting the observation that provides the most information about
the model parameters. This formulation is termed Bayesian active learning by disagreement
(BALD) by Houlsby et al. (2011), as it selects points for which the predictions of individual
parameterisations maximally disagree—i.e., where there is high uncertainty in the predictive
posterior on average, but the predictions of individual parameter settings are confident.

Depeweg et al. (2018) provide an alternative interpretation of the BALD acquisition strategy
in terms of epistemic and aleatoric uncertainty. Aleatoric uncertainty refers to the component
of predictive uncertainty that is driven by inherent noise in the outcome variable, and is not
reduced with the observation of more data. Epistemic uncertainty, in contrast, is attributable
to a lack of knowledge about the correct model specification, in terms of either the values of
model parameters or the model’s functional form (Bhatt et al., 2021). The total uncertainty
of the predictive posterior,

p(y | x,Dtrain) =
∫

p(y | θ ,x) p(θ | Dtrain) dθ , (2.7)

can be quantified by the entropy H [y | x,Dtrain]. If, instead of integrating over θ , we condi-
tion on a single setting of the parameters, the quantity H[y | x,θ] represents the uncertainty in
the value of y for a given input x and parameter configuration. The expectation of H[y | x,θ]
under p(θ | Dtrain) measures the overall uncertainty in y due to observation noise, or aleatoric
uncertainty. Subtracting this quantity from the total predictive uncertainty thus leads to the
interpretation of the BALD acquisition function as an estimator of the epistemic uncertainty
for each candidate in Dpool. That is, under BALD we acquire points in input regions of low
observation noise—since there is little information to be gained about the optimal model
form in these regions—but high model uncertainty.

An equivalent interpretation can also be derived by considering the predictive variance, rather
than the entropy, as a measure of uncertainty (Depeweg et al., 2018). Under the assumption
of Gaussian likelihood in regression settings, the predictive entropy is a monotonic function
of the variance (Settles, 2010).3 As such, αBALD is computed using predictive variance in
place of entropy for regression problems, in order to avoid the approximations required when
computing the entropy of a continuous distribution.

For the general case, computing the quantities comprising αEntropy and αBALD is intractable
(regardless of whether variance or entropy is the uncertainty measure of interest). In sec-

3Refer to section 2.2 for a more detailed treatment of modelling assumptions and uncertainty quantification
in the models under consideration.

2.1 Active learning 9

tion 2.2 we detail how these functions are computed in practice for each of the model classes
considered in this work.

Random acquisition

Random acquisition is used as a baseline to assess the effectiveness of passive learning
strategies. Candidates are sampled randomly from Dpool with uniform probability:

αRandom (x;θ ,Dtrain) = u, u ∼ U(0,1). (2.8)

Batch-aware methods

In the classical setting, active learning algorithms select a single point to be added to Dtrain

at each acquisition step (serial acquisition); in many cases, however, this is an impractical
approach. Where labelling is performed by a human annotator, such as a medical expert,
it is a much more efficient use of the expert’s resources to request annotations for a batch
of examples at once, rather than repeatedly requesting labels for single examples. Serial
acquisition is also generally unsuitable when using overparameterised models such as neural
networks, as a single example is likely to have a negligible impact on the learning regime
(Sener and Savarese, 2018). In addition, although the primary concern in active learning is to
minimise the cost of labelling, model retraining is typically also expensive, so reducing the
frequency of retraining to a batch level rather than after each acquired example is desirable.

Batch acquisition is, however, a more challenging problem than acquiring individual ex-
amples. Naïvely applying the greedy algorithms presented above, by selecting the b-best
examples ranked by these acquisition functions, tends to produce correlated queries (Sener
and Savarese, 2018). Although individually informative, similar points are likely to contain
overlapping information, rendering labelling efforts partially redundant (Settles, 2011).

Several batch-aware active learning algorithms have been proposed that aim to take into
account the diversity of candidate points in the selection criterion. BatchBALD, for example,
extends αBALD to measure the mutual information between a joint of b data points and the
model parameters:

αBatchBALD ({x1, . . . ,xb} ;θ ,Dtrain) = I [y1, . . . ,yb,θ | x1, . . . ,xb,Dtrain] , (2.9)

a formulation that considers the dependencies within an acquisition batch and thus identifies
batches of informative points (Kirsch et al., 2019). An alternative approach is to focus purely

10 Background

on sampling for diversity, as in Sener and Savarese (2018), who propose framing active learn-
ing as a core-set selection problem. This approach equates to identifying unlabelled points
that are not well represented in the current Dtrain. Both of these methods are intractable and
require greedy approximations in their implementation. Other recent work on batch-mode
active learning focussing on diversity sampling include Pinsler et al. (2019) and Ash et al.
(2020), among others.

The experiments discussed in chapter 4 of this work generally implement batch acquisition
rather than serial acquisition due to the reasons outlined at the beginning of this section. Given
that the problem of batch-mode active learning is already investigated in the works referenced
above and by others, this thesis does not provide an in-depth treatment of the topic and does
not implement the batch-aware methods described here. We instead propose and evaluate an
ad-hoc technique for addressing correlation in batch queries in section 4.2.3, whose purpose
is to ensure that information-based acquisition performs at least as well as random, and
therefore that active learning performance reflects the quality of model uncertainty estimates.
The batch-mode results reported in chapter 4 can therefore be interpreted as a lower bound
on the performance of the models analysed.

2.2 Bayesian deep learning

Applying deep learning in an active learning framework poses several challenges. Perhaps
most crucially, many active learning acquisition functions rely on measures of model un-
certainty, which are generally not provided by standard neural networks. Second, active
learning aims to attain good generalisation performance using as small a training set as
possible. Deep neural networks, on the other hand, are prone to overfitting and thus tend
to generalise poorly in low data regimes. Finally, training deep models can be difficult and
computationally expensive, however training is a process that must be repeated several times
during the course of active learning.

Bayesian deep learning provides a solution to the first two of these issues. In BNNs, weights
are treated as random variables and are represented by probability distributions, rather than
by point estimates, as illustrated in figure 2.1, and in figure 2.3 as a graphical model. A
prior distribution p(θ) over the weights is defined, and the posterior is obtained by applying
Bayes’ rule, as follows:

p(θ |Dtrain) =
p(Dtrain | θ)p(θ)

p(Dtrain)
. (2.10)

2.2 Bayesian deep learning 11

Figure 2.1: Left: In a standard neural network each weight has a maximum likelihood point
estimate value. Right: In a BNN each weight is represented by a distribution (Antorán, 2019).

Marginalisation of the posterior distribution over weights yields the predictive distribution,
given by equation (2.13), which can be used to obtain the uncertainty estimates required in
active learning. By accounting for uncertainty in the weight values, BNNs are more robust to
overfitting than deterministic networks, especially for smaller training sets (MacKay, 1992b;
Neal, 1995).

To introduce the theory behind BNNs, we consider a neural network as a probabilistic model
p(y | x,θ) that maps an input x to probabilities over the space of possible outputs y ∈ Y
using the set of parameters θ . A standard approach to learning the parameters of this model
uses maximum likelihood estimation (MLE) to generate point estimates θ MLE of the weights,
being the values that maximise the log-likelihood of the observed training data Dtrain:

θ
MLE = argmax

θ

log p(Dtrain | θ). (2.11)

It is a well-known phenomenon that using MLE with flexible models such as neural networks
typically leads to overfitting, as the only incentive during training is to fit the training data as
well as possible (Bishop, 2007). One approach to regularising MLE is maximum a-posteriori
(MAP) estimation. A prior p(θ) is placed on the weights and point estimates are obtained
via

θ
MAP = argmax

θ

log p(θ | Dtrain)

= argmax
θ

log p(Dtrain | θ)p(θ)

= argmax
θ

log p(Dtrain | θ)+ log p(θ),

(2.12)

12 Background

which embodies the assumption that the posterior p(θ | Dtrain) is well-approximated by a
point mass at its mode. Although more robust to overfitting than MLE, MAP estimation still
relies on point estimates of the parameters and therefore fails to quantify confidence in the
resulting predictions.

BNNs, in contrast, estimate the posterior probability distribution of the weights, given by
equation (2.10). The predictive distribution is obtained by averaging over all possible settings
of the weights, using the posterior p(θ |Dtrain) to weight the predictions made under each of
these settings:

p(y∗ | x∗,Dtrain) = Ep(θ |Dtrain)[p(y∗ | x∗,θ)]. (2.13)

This approach is equivalent to performing Bayesian model averaging over an infinite number
of ensemble elements, where the variability across predictions of these ensembled networks
can be interpreted as a measure of the model’s predictive uncertainty (Blundell et al., 2015).

In general, exact Bayesian inference over the weight-space of a neural network is intractable,
necessitating the use of approximations. Laplace’s approximation (MacKay, 1992b) and
Markov Chain Monte Carlo (MCMC) methods (Neal, 1995) are two of the earliest proposed
approaches. This thesis considers variational inference (VI)-based methods (Graves, 2011;
Hinton and Van Camp, 1993), including mean-field variational inference (MFVI) (Blun-
dell et al., 2015), reviewed in section 2.2.1, and Monte Carlo dropout (MCDO) (Gal and
Ghahramani, 2016), described in section 2.2.2.

2.2.1 Variational inference

VI methods attempt to solve the problem of estimating the intractable posterior by proposing
a family of tractable distributions Q, and finding the distribution q within that family that
best approximates the true posterior (Blei et al., 2017; Wainwright and Jordan, 2008). This
is done by learning the parameters φ of the variational distribution q(θ | φ) such that the
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between q(θ | φ) and the

2.2 Bayesian deep learning 13

true posterior p(θ | Dtrain) is minimised:

φ
⋆ = argmin

φ

KL[q(θ | φ) ∥ p(θ | Dtrain)]

= argmin
φ

∫
q(θ | φ) log

q(θ | φ)

p(θ | Dtrain)
dθ

= argmin
φ

∫
q(θ | φ) log

q(θ | φ)

p(θ)p(Dtrain | θ)
dθ + const.

= argmin
φ

KL[q(θ | φ) ∥ p(θ)]−Eq(θ |φ)[log p(Dtrain | θ)].

(2.14)

This expression allows the KL divergence to be minimised whilst not containing the explicit
form of the posterior p(θ | Dtrain). This transforms the integration problem into one of
optimisation, which scales more effectively to large datasets and models (Blei et al., 2017).
Once q(θ | φ) is selected, prediction proceeds by taking the expectation under the variational
posterior rather than the exact posterior,

p(y∗ | x∗,Dtrain) = Ep(θ |Dtrain) [p(y∗ | x∗,θ)]

≈ Eq(θ |φ) [p(y∗ | x∗,θ)] .
(2.15)

The objective in equation (2.14) corresponds to a loss function that is commonly referred to
as the negative evidence lower bound (ELBO) or variational free energy, denoted:

F(Dtrain,φ) = KL[q(θ | φ) ∥ p(θ)]−Eq(θ |φ)[log p(Dtrain | θ)]. (2.16)

This objective represents a trade-off: the likelihood cost encourages a close fit to the data,
while the KL divergence term imposes a penalty if q(θ |φ) moves far from the simple prior
distribution, and is thus known as the complexity cost (Blundell et al., 2015).

Reparameterisation trick and Monte Carlo approximation

A challenge in applying gradient descent to F(Dtrain,φ) is computing the derivative of the
expectation term. Blundell et al. (2015) apply the reparameterisation trick of Kingma et al.
(2015) to this problem as follows: introduce an auxiliary variable ε such that θ takes the
form θ = t(φ ,ε), where t(φ ,ε) is a deterministic function and ε ∼ q(ε). Then for a function

14 Background

f with derivatives in θ :

∂

∂φ
Eq(θ |φ)[f (θ ,φ)] =

∂

∂φ

∫
f (θ ,φ)q(θ | φ) dθ

=
∂

∂φ

∫
f (θ ,φ)q(ε) dε

= Eq(ε)

[
∂ f (θ ,φ)

∂θ

∂θ

∂φ
+

∂ f (θ ,φ)
∂φ

]
.

(2.17)

That is, the derivative of the expectation of f (θ ,φ) over q(θ | φ) can be re-written as the
expectation over q(ε) of the derivative of f . This formulation is known as a pathwise gradient
estimator (Mohamed et al., 2020). The random component is isolated into the auxiliary
variable ε , allowing samples from the (ideally easy-to-sample) distribution q(ε) to be trans-
formed into samples from the variational posterior q(θ | φ) via a deterministic function.

Re-writing the objective as

F(Dtrain,φ) =
∫

q(θ | φ) log
q(θ | φ)

p(θ)p(Dtrain | θ)
dθ

= Eq(θ |ε) [logq(θ | φ)− log p(θ)p(Dtrain | θ)]

(2.18)

and letting f (θ ,φ) = logq(θ | φ)− log p(θ)p(Dtrain | θ) allows us to apply equation (2.17)
to the optimisation of equation (2.16). The exact cost is approximated by the MC estimate

F(Dtrain,φ)≈
n

∑
i=1

logq
(

θ
(i) | φ

)
− log p

(
θ
(i)
)
− log p

(
Dtrain | θ

(i)
)
,

θ
(i) ∼ q(θ | φ).

(2.19)

Optimising equation (2.14) results in an estimation process called “Bayes by Backprop”
described by Blundell et al. (2015).

The objective function F(Dtrain,φ) is compatible with minibatch optimisation, in which Dtrain

is randomly split into equally-sized minibatches of size B in each epoch. The batch-level
objective function is then

Fi (Di,φ) =
B

Ntrain
KL[q(θ | φ)∥p(θ)]−Eq(θ |φ) [log p(Di | θ)] , (2.20)

where Di is the ith minibatch (Graves, 2011). During backpropagation, each gradient is
averaged over all elements in the minibatch. This procedure of minibatch-based optimisation

2.2 Bayesian deep learning 15

of the variational lower bound is known as stochastic gradient variational Bayes (SGVB).
The estimator is unbiased and differentiable with respect to φ , meaning that the gradient is
also unbiased (Kingma and Welling, 2014).

Local reparameterisation

Although the SGVB estimator is unbiased, the gradient signal can be subject to high variance,
potentially resulting in slow convergence (Robbins and Monro, 1951). Kingma et al. (2015)
introduce the local reparameterisation trick, which yields a lower-variance and computation-
ally efficient estimator by sampling activations rather than weights. Consider the expected
log likelihood term in equation (2.16), which can be re-written as

LDtrain(φ)≈ LSGV B
Dtrain

(φ) =
Ntrain

B

B

∑
i=1

log p(yi|xi,θ = t(φ ,ε)).4 (2.21)

Letting Li = log p(yi | xi,θ) be the contribution of the ith observation to the likelihood, the
variance of LD

SGV B
train (φ) is given by

Var[LSGV B
Dtrain

(φ)] = N2
train

(
1
B

Var[Li]+
B−1

B
Cov[Li,L j]

)
. (2.22)

This expression shows that, while the individual variance term scales inversely to B, the
covariance term does not, and hence dominates the variance as B increases. Obtaining a
low-variance estimator can thus be reduced to finding an estimator with Cov[Li,L j] = 0.

Given that the weights θ directly influence the activations, it is possible to exchange sampling
weights with sampling the activations. To illustrate how this reduces variance, suppose that
the variational posterior is a fully factorised Gaussian, qφ (θi, j) =N (µi, j,σi, j), implying that
the activations bm, j are also drawn from a factorised Gaussian: qφ (bm, j | A) =N (γm, j,δm, j),
where A is the input matrix to the activation function with size M × Q. Applying the
reparameterisation trick described in section 2.2.1 to bm, j, samples of the activations can be
obtained directly from the implied Gaussian as follows:

bm, j = γm, j +
√

δm, jζm, j ; ζm, j ∼N (0,1). (2.23)

4The following analysis extends straightforwardly to the KL term.

16 Background

Since a separate ζm, j is sampled for each activation, we have that Cov[Li,L j] = 0, as required.
Since the activations are lower-dimensional than the weights, fewer sampling operations are
required and the locally reparameterised estimator is also more computationally efficient.

Variational posterior specification

A common choice for the form of the variational posterior is a fully factorised or mean-field
Gaussian distribution, in which case the variational parameters φ are a vector of means
and variances (Foong et al., 2020). The resulting approximate estimation procedure is
referred to as mean-field variational inference (MFVI). The reparameterisation trick implies
that sampling θ from this posterior can be achieved by transforming samples from a unit
Gaussian as follows:

w = t(φ ,ε) = µ +σ ◦ ε ; ε ∼N (0, I), (2.24)

where µ and σ are the variational posterior mean and standard deviation. This allows path-
based derivatives to be calculated with respect to the variational parameters φ and standard
stochastic backpropagation techniques to be used.

The choice of mean-field Gaussians as the family of approximating distributions is motivated
primarily by considerations of computational convenience. Such distributions are largely
free of numerical issues, and provide each weight with its own measure of uncertainty whilst
only doubling the number of parameters to be optimised ((µ,σ) parameters per weight)
relative to an equivalently-sized regular neural network (Blundell et al., 2015). Modelling the
full (as opposed to factorised) covariance, in contrast, would require estimating N(N +1)/2
parameters for a network with N weights. The mean-field approximation has, however, been
shown to have limited expressiveness in function space (Foong et al., 2020). For example,
the MFVI estimator tends to underestimate “in-between” uncertainty—uncertainty in regions
of low information that lie between regions of high certainty (Foong et al., 2019).

Computing MFVI uncertainties

We return now to the problem of computing αEntropy and αBALD (section 2.1.1) for the
MFVI estimator. Let f (x∗,θ) be the output of the network for a given test point x∗ and
given weight configuration sampled from the variational posterior, θ ∼ q(θ | φ). Since the
expectation under the variational posterior in equation (2.15) cannot be computed exactly, it

2.2 Bayesian deep learning 17

is approximated using M MC samples:

p(y∗ | x∗,Dtrain) = Ep(θ |Dtrain) [p(y∗ | x∗,θ)]

≈ 1
M

M

∑
i=1

f
(

x∗,θ (i)
)

; θ
(i) ∼ q(θ | φ).

(2.25)

For classification models with categorical likelihood function p(y | x,θ) = Cat(y; f (x,θ)),
the approximate predictive distribution is also categorical. Its entropy can thus by computed
exactly by summing over the classes {ck}K

k=1, yielding αEntropy:

αEntropy(x∗;θ ,Dtrain) =H [y | x,Dtrain]

=−
K

∑
k=1

p(y∗ = ck | x∗,Dtrain) log p(y∗ = ck | x∗,Dtrain) .
(2.26)

For regression models, the presence of a mixture of Gaussians predictive distribution necessi-
tates the approximation of αEntropy(x∗;θ ,Dtrain). The histogram-based approach described in
section 2.1.1 implies sampling several weight configurations θ (i) and collecting the resulting
outputs f (x∗,θ (i)). A discrete distribution can be constructed from the samples via binning,
and the entropy over this distribution calculated.

Computing αBALD likewise requires approximations. In the regression case, consider a
homoscedastic Gaussian likelihood function with mean parameterised by the neural network
output f (x∗,θ): p(y | x,θ) =N (y; f (x∗,θ),σ2) (the variance σ2 is learnt as a standalone
parameter). This induces a mixture of Gaussians predictive posterior distribution. Following
Lakshminarayanan et al. (2017), we approximate this mixture with a single Gaussian via
moment matching, p(y∗ | x∗,Dtrain) ≈ N (y; µa,σ

2
a), with the mean estimated using MC

sampling:

µa ≈
1
M

M

∑
i=1

f
(

x∗,θ (i)
)

; θ
(i) ∼ q(θ | φ). (2.27)

The predictive variance is given by the variance of the Gaussian mixture, which we approxi-
mate with MC sampling:

σ
2
a ≈ 1

M

M

∑
i=1

f
(

x∗,θ (i)
)2

−µ
2
a +σ

2 ; θ
(i) ∼ q(θ | φ). (2.28)

This expression is composed of the epistemic uncertainty and aleatoric uncertainty. Recall
from section 2.1.1 that αBALD is equivalent to the epistemic component of predictive variance
(under a Gaussian likelihood); we can thus use the part of equation (2.28) measuring the

18 Background

epistemic uncertainty to compute BALD acquisition function scores for regression problems.

For classification problems, the likelihood is not Gaussian, so αBALD is obtained by comput-
ing entropies rather than variances. From equation (2.6), obtaining αBALD requires computing
H [y∗ | x∗,Dtrain], the entropy of the model prediction, and Eθ∼p(θ |Dtrain)[H[y∗ | x∗,θ]], the
expectation of the predictive entropy over the posterior of the model parameters. We generate
M MC samples f (x∗,θ (i)) and compute p(y∗ | x∗,Dtrain) as in equation (2.25), from which
the model entropy can be calculated as

H [y∗ | x∗,Dtrain] =
K

∑
k=1

p(y∗ = ck | x∗,Dtrain) log p(y∗ = ck | x∗,Dtrain) . (2.29)

To obtain the expectation of entropies, we compute the entropy of each of the MC samples
and average them.

2.2.2 Monte Carlo dropout

An alternative approximate inference technique is that proposed by Gal and Ghahramani
(2016), who re-interpret dropout as approximate variational inference in deep Gaussian
processes. Under this method, uncertainty estimates can be obtained in a more computation-
ally efficient manner than with variational inference. Dropout is a stochastic regularisation
technique in which an ensemble of subnetworks is trained by randomly setting the non-output
nodes of a base network to zero with probability pdrop with each training example (Hinton
et al., 2012; Srivastava et al., 2014). It has been shown to be effective in preventing overfitting
and co-adaptation between weights. Gal and Ghahramani (2016) propose applying dropout
also at prediction time, yielding the Monte Carlo dropout (MCDO) estimator. They recast
this process as an approximate Bayesian inference method by showing that it effectively
minimises the KL divergence between an approximating distribution and a deep Gaussian
process (marginalised over its covariance function parameters).

Obtaining measures of predictive uncertainty with the MCDO estimator involves performing
T stochastic forward passes for the input location x∗, with each prediction y∗(x∗,θ (t)) being
generated using a different set of network weights θ (t) selected by applying dropout as
described above. Each weight configuration can be viewed as a MC sample from the
approximate posterior distribution of weights, q(θ | Dtrain), and each prediction y∗(x∗,θ (t))

2.2 Bayesian deep learning 19

as a MC sample from the approximate predictive distribution,

q(y∗ | x∗) =
∫

p(y∗ | x∗,θ)q(θ | Dtrain) dθ . (2.30)

The MCDO estimate of the prediction can be recovered using MC integration:

Eq(y∗|x∗) [y∗]≈
1
T

T

∑
t=1

y∗
(

x∗,θ (t)
)
. (2.31)

Model uncertainty, as measured by the predictive variance, is given by

Varqφ [y∗|x∗] (y∗)≈ τ
−1 +

1
T

T

∑
t=1

y∗
(

x∗,θ (t)
)2

−
(
Eq(y∗|x∗) [y∗]

)2
, (2.32)

the sample variance of the T forward passes through the network with dropout applied,
plus the inverse model precision τ of the deep Gaussian process model (full details of the
derivation are given in Gal and Ghahramani (2016)).

An advantage of MCDO is that obtaining uncertainty estimates can be approached as training
a standard neural network, requiring adjustments only to the prediction procedure in order to
generate T forward passes with dropout for each test point. Relative to MFVI, which requires
the estimation of twice as many network parameters, as well as several samples to be drawn
per training example to estimate the ELBO, MCDO is computationally more efficient. The
method does, however, pose several important drawbacks. MCDO uncertainty estimates are
known to not be well-calibrated by default, with the quality of the estimates depending on the
dropout rate pdrop (Gal, 2016). It has also been shown that the epistemic uncertainty estimate
produced by the MCDO estimator is independent of the amount of training data and their
variance, meaning that parameter choices such as pdrop must be calibrated to the expected
level of uncertainty (Osband, 2016; Verdoja and Kyrki, 2020). This may be particularly
problematic for active learning, since the BALD acquisition function is predicated on the
epistemic uncertainty estimates being well-calibrated in order to make sensible selections for
labelling.

Computing MCDO uncertainties

Computing the quantities αEntropy and αBALD for MCDO can be approached in a similar way
to the methods described in section 2.2.1 for MFVI. In framing MCDO as an approximate
variational inference technique, Gal and Ghahramani (2016) define the variational posterior

20 Background

q(θ | φ) as a distribution over matrices Wi for each layer i in the network, whose columns
are randomly set to zero:

Wi = Mi ·diag
([

zi, j
]Ki

j=1

)
zi, j ∼ Bernoulli

(
1− pdropi

)
for i = 1, . . . ,L, j = 1, . . . ,Ki−1,

(2.33)

where Ki is the number of hidden units in layer i and L the number of layers in the network.
The matrices Mi and probabilities pdropi

are the variational parameters. Sampling from
this variational posterior corresponds to sampling zi, j for each hidden unit and computing
the network output with the resulting stochastic weight matrices Wi (i.e., performing a
forward pass with dropout applied). Having defined q(θ | φ) and how to sample from it,
calculating αEntropy and αBALD for both regression and classification models proceeds exactly
as described in section 2.2.1 for the MFVI estimator.

2.2.3 Depth uncertainty networks

BNNs translate uncertainty in weight-space into predictive uncertainty by marginalising
out the posterior over weights (equation (2.13)). The intractability of this posterior necessi-
tates the use of approximate inference methods such as MFVI (section 2.2.1) and MCDO
(section 2.2.2). DUNs, in contrast, leverage uncertainty about the appropriate depth of the
network in order to obtain predictive uncertainty estimates. There are two primary advantages
of this approach: 1) the posterior over depth is tractable, mitigating the need for limiting
approximations, such as those used in MFVI; and 2) due to the sequential structure of
feed-forward neural networks, both inference and prediction can be performed with a single
forward pass, making DUNs suitable for deployment in low-resource environments (Antorán
et al., 2020). Targeting depth as a source of uncertainty does, however, have a drawback in
that the prior over depth has a limited influence over the posterior. Thus, although meaningful
priors can in theory be placed over depth, in practice the impact of these priors is minimal.
This limitation is discussed in more detail in section 4.4.4.

DUNs are composed of subnetworks of increasing depth, with each subnetwork contributing
one prediction to the final model—this is comparable to each sampled weight configuration in
BNNs contributing a single prediction to the MC estimator of the predictive distribution given
in equation (2.25). The computational model for DUNs is shown in figure 2.2. Inputs are
passed through an input block, f0(·), and then sequentially through each of D intermediate
blocks { fi(·)}D

i=1, with the activations of the previous layer acting as the inputs of the
current layer. The activations of each of the D+ 1 layers are passed through the output

2.2 Bayesian deep learning 21

f0

f1

f2

f3

f4

fD

x

fD+1 ŷi

Figure 2.2: DUN computational model (Antorán et al., 2020). Each layer’s activations are
passed through the output block, producing per-depth predictions.

block fD+1(·) to generate per-depth predictions. These are combined via marginalisation
over the depth posterior, equivalent to forming an ensemble with networks of increasing
depth. Variation between the predictions from each depth can be used to obtain predictive
uncertainty estimates, in much the same way that variance in the predictions of different
sampled weight configurations yield predictive uncertainties in BNNs.

Uncertainty over depth

Figure 2.3 compares the graphical model representations of a BNN and a DUN. In BNNs,
the weights θ are treated as random variables drawn from a distribution pγ(θ) with hyper-
parameters γ . In DUNs, the depth of the network d is assumed to be stochastic, while the
weights are learned as hyperparameters. A categorical prior distribution is assumed for d,
with hyperparameters β : pβ (d) = Cat(d | {βi}D

i=0). The model’s marginal log likelihood
(MLL) is given by

log p(Dtrain;θ) = log
D

∑
i=0

(
pβ (d = i)

N

∏
n=1

p(yn | xn,d = i;θ)

)
, (2.34)

where the likelihood for each depth is parameterised by the corresponding subnetwork’s
output: p(y | x,d = i;θ) = p(y | fD+1 (ai;θ)), where ai = fi(ai−1).

The posterior,

p(d | Dtrain;θ) =
p(Dtrain | d;θ)pβ (d)

p(Dtrain;θ)
, (2.35)

is also a categorical distribution, whose probabilities reflect how well each depth subnetwork
explains the data. DUNs leverage two properties of modern neural networks: first, that
successive layers have been shown to extract features at increasing levels of abstraction
(Zeiler and Fergus, 2014); and second, that networks are typically underspecified, meaning

22 Background

x(n)

y(n) θ

γ

d

N

x(n)

y(n)θ d

β

N

Figure 2.3: Left: graphical model of a BNN. Right: graphical model of a DUN.

that several different models may explain the data well (D’Amour et al., 2020). The first
property implies that initial layers in a network specialise on low-level feature extraction,
yielding poor predictions from the shallower subnetworks in a DUN. This is handled by the
depth posterior assigning low probabilities to earlier layers, in preference for later layers that
specialise on prediction. The second property suggests that subnetworks at several depths
are able to explain the data simultaneously and thus have non-zero posterior probabilities,
yielding the diversity in predictions required to obtain useful estimates of model uncertainty.

Inference in DUNs

Antorán et al. (2020) find that directly optimising the MLL equation (2.34) with respect
to θ results in convergence to a local optimum in which all but one layer is attributed a
posterior probability of zero. That is, direct optimisation returns a deterministic network of
arbitrary depth. The authors instead propose a stochastic gradient VI approach, as described
in section 2.2.1 for BNNs, with the aim of separating optimisation of the weights θ from the
posterior. A surrogate categorical distribution qφ (d) is introduced as the variational posterior.
The following ELBO can be derived:

L(φ ,θ) =
Ntrain

∑
n=1

Eqφ (d) [log p(yn | xn,d;θ)]−KL
(
qφ (d)∥pβ (d)

)
, (2.36)

allowing θ and the variational parameters φ to be optimised simultaneously. Antorán et al.
(2020) show that under the VI approach, the variational parameters converge more slowly
than the weights, enabling the weights to reach a setting at which a positive posterior proba-
bility is learnt for several depths.

It is important to note that equation (2.36) can be computed exactly, and that optimising
L(φ ,θ) is equivalent to exact inference of the true posterior p(d | Dtrain;θ) in the limit:
since both q and p are categorical, equation (2.36) is convex and tight at the optimum (i.e.,
qφ (d) = p(d | Dtrain;θ)). Since the expectation term can be computed exactly using the

2.3 Bias in active learning 23

activations at each layer (recall p(y | x,d = i;θ) = p(y | fD+1 (ai;θ))), the ELBO can be
evaluated exactly without MC sampling.

Computing DUN uncertainties

The predictive posterior is obtained by marginalising out the variational distribution over
depth:

p(y∗ | x∗,Dtrain;θ) =
D

∑
i=0

p(y∗ | x∗,d = i;θ)qφ (d = i). (2.37)

As in the case of inference, equation (2.37) can be evaluated exactly. As a result, the
uncertainty quantities computed in αEntropy and αBALD are not based on approximations,
as required with MFVI and MCDO. For classification problems, αEntropy is obtained by
computing the entropy of the predicted probability vector. αBALD is estimated in the same
way as for MFVI and MCDO (section 2.2.1), except that the expectation of the predictive
entropy term, Eθ∼p(θ |Dtrain)[H[y∗ | x∗,θ]], is computed exactly by marginalising over the
variational depth posterior. In the case of regression models, αBALD can be computed exactly
for DUNs, using the epistemic uncertainty component of the total variance:

σ
2
a =

D

∑
i=0

q(d = i) f (x∗,d = i)2 −µ
2
a +σ

2, (2.38)

where µa = ∑
D
i=0 f (x∗,d = i)q(d = i). αEntropy is approximated as described in section 2.2.1

by artificially binning repeated samples from the predictive posterior into a histogram, but
with DUNs the samples are selected from the set of per-layer predictions, with sampling
weights equal to the posterior probabilities over depth.

2.3 Bias in active learning

To conclude this chapter, we address an acknowledged but relatively poorly understood
problem in active learning: that actively selecting informative training points introduces
bias to the inferences, as the training data no longer follow the population distribution
(Dasgupta and Hsu, 2008; MacKay, 1992a). Given that many statistical results rely on data
points being identically and independently distributed (i.i.d.) samples from the population
distribution, applying standard estimators to actively sampled datasets results in optimising
for the wrong objective (Farquhar et al., 2021). In an informal literature survey, Farquhar et al.
(2021) find that, of 15 recent papers in active learning, only two acknowledge the presence
of this sampling bias, and none implement measures to correct for it. Earlier proposed

24 Background

solutions—e.g., those by Beygelzimer et al. (2009); Chu et al. (2011); Cortes et al. (2019);
Ganti and Gray (2012)—are limited to specific modelling setups (for example, online rather
than pool-based active learning) and are not generally applicable.

2.3.1 Unbiased risk estimators

We consider a method proposed in recent work by Farquhar et al. (2021) designed to correct
for the bias induced by active sampling, which is agnostic to the active learning setup, model
type and acquisition function used. Given a loss function L(y, fθ (x)), an aim of inference is
to find θ that minimises the population risk r over all data points belonging to the population
distribution pdata(y,x):

r = Ex,y∼pdata [L(y, fθ (x))] . (2.39)

Since the population risk cannot be computed exactly, it is approximated using a dataset of
size Ntrain sampled from the population distribution. This yields the empirical risk,

R̂ =
1
N

Ntrain

∑
n=1

L(yn, fθ (xn)) , (2.40)

an unbiased estimator of r when the data are drawn i.i.d. from pdata.

In the active learning setting, the risk is instead computed for a subset of M actively sampled
data points:

R̃ =
1
M

M

∑
m=1

L(ym, fθ (xm)) . (2.41)

As explained above, R̃ is not an unbiased estimator of either r or R̂. An unbiased alternative,
R̃PURE (“plain unbiased risk estimator”), can be constructed by enforcing that each term
individually is an unbiased estimator of r, leading to the formulation

R̃PURE ≡ 1
M

M

∑
m=1

am; am ≡ wmLim +
1

Ntrain

m−1

∑
t=1

Lit , (2.42)

where the loss Lim ≡ L(yim , fθ (xim)), weights are defined as wm ≡ 1
Ntrainα(im;i1:m−1,Dpool)

and

im ∼ α
(
im; i1:m−1,Dpool

)
. Intuitively, the estimator works by re-weighting each example’s

contribution to the total loss by the inverse probability of that example having been selected,
such that unusual examples with a particularly high probability of selection contribute propor-
tionally less to the total risk. The proposal distribution α

(
im; i1:m−1,Dpool

)
is comparable

to the acquisition functions discussed in section 2.1.1, except that it defines a probability

2.3 Bias in active learning 25

mass (rather than information scores) over the points in Dpool, representing the probability of
each index being sampled next, given Dtrain contains indices i1:m−1. The only limitation on
α(·) is that it must assign non-zero probability to all indices in Dtrain, a condition required
to guarantee that R̃PURE is unbiased and consistent. The acquisition functions αEntropy and
αBALD can be easily converted to acquisition proposal distributions by passing the scores
through a softmax function.

Farquhar et al. (2021) show that R̃PURE is an unbiased estimator of r, a conclusion following
from the observation that for each term am, E [am] = r. R̃PURE is also proven to be consistent.
The authors note that naïve important sampling, 1

M ∑
M
m=1 wmLim , does not guarantee either of

these properties.

In order to address certain pathologies of R̃PURE—for example, that under uniform sampling,
points sampled earlier are more highly weighted than later ones—a supplementary “levelled
unbiased risk estimator” R̃LURE is introduced:

R̃LURE ≡ 1
M

M

∑
m=1

vmLim ;

vm ≡ 1+
Ntrain −M
Ntrain −m

(
1

(Ntrain −m+1)α
(
im; i1:m−1,Dpool

) −1

)
.

(2.43)

This estimator ensures that E [vm] = 1 ∀ m,M,N,α
(
im; i1:m−1,Dpool

)
; that is, that weights

do not depend on the order in which data points are sampled. The resulting estimator also
has lower variance than R̃PURE (in practice, the experiment results in Farquhar et al. (2021)
indicate that both estimators perform very similarly).

2.3.2 Interaction of biases in active learning

Interestingly, the effect of applying these unbiased risk estimators is found to differ depending
on the class of model used. For overparameterised models such as neural networks, using
R̃PURE or R̃PURE has no impact or is in fact detrimental to predictive performance. In contrast,
underparameterised models such as linear regression benefit from the use of the unbiased
estimators.

Figure 2.4 from Farquhar et al. (2021) illustrates the linear regression case with a toy example.
In active learning, unusual data points are disproportionately sampled, resulting in the line
trained with R̃ being biased. Correcting for this sampling bias with R̃PURE or R̃LURE results

26 Background

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Ideal Fit to ̂R on pool

Unweighted ̃R on train
̃RPURE on train
̃RLURE on train

Pool Point ∈ pool

Acquired Point ∈ train

Figure 2.4: Illustrative linear regression. Active learning deliberately over-samples unusual
points (red x’s), which no longer match the population (black dots). The biased estimator R̃
puts too much emphasis on unusual points, resulting in a suboptimal model fit. The unbiased
estimators R̃PURE and R̃LURE correct this bias, learning a function nearly equal to the ideal
model that would be attained if training on a fully labelled Dpool (Farquhar et al., 2021).

in a fit that is much closer to that obtained when training on all of Dpool. Bias-correcting
estimators are useful for inflexible models like linear regression because each data point
affects the model globally, such that the input data distribution and exactness of the loss
function are critical in distinguishing between potential model fits.

To explain the observation that correcting for sampling bias has a negative or negligible effect
on performance for neural networks, note that differences between training and testing data
typically result in some degree of overfitting in overparameterised models. Farquhar et al.
(2021) observe that the overfitting bias tends to have an opposite sign to the active learning-
induced bias—active learning encourages the selection of “difficult” to predict data points,
increasing the overall risk, whereas overfitting results in the total risk being underestimated.
The active learning and overfitting biases thus offset each other to a certain extent, and
consequently, correcting for active learning bias does not improve model performance.
Farquhar et al. (2021) claim that, in this sense, active learning can be considered as a form of
regularisation for this class of model.

3

Hypotheses: addressing biases in active
learning with DUNs

Sometimes a simple model will outperform a more complex model . . . Nevertheless,
I believe that deliberately limiting the complexity of the model is not fruitful
when the problem is evidently complex. Instead, if a simple model is found that
outperforms some particular complex model, the appropriate response is to define
a different complex model that captures whatever aspect of the problem led to the
simple model performing well.

– Radford Neal, Bayesian Learning for Neural Networks

Defining a model of appropriate complexity for a given problem is a challenging task,
particularly in the context of active learning. If the underlying dataset is inherently complex,
a well-performing model should typically reflect this complexity. Active learning, on the
other hand, implies working with limited amounts of labelled data, on which complex models
are prone to overfitting and poor generalisation. This chapter introduces the empirical
approaches used in this thesis to explore the question of whether such a trade-off can be
avoided or ameliorated through the use of DUNs in active learning. We motivate the use of
these methods by a series of hypotheses about how they may help to address the issues of
model complexity, overfitting bias, and other challenges in active learning.

28 Hypotheses: addressing biases in active learning with DUNs

3.1 DUNs for active learning

A primary objective of this thesis is to explore the application of DUNs to active learning
and to compare their performance to that of BNNs trained with MFVI and MCDO. We
posit that the ability to learn posterior probabilities over depth enables DUNs to adapt the
model’s complexity to the changing dataset size during active learning, and thus to potentially
outperform MFVI and MCDO, a hypothesis that is tested in section 4.3. It might be expected
that simple, inflexible models will overfit to a lesser extent and achieve better generalisation
performance at the start of active learning when the training set contains only a few data
points. As the training set becomes larger and more interesting, the model may need to
become deeper and more complex in order to explain the data. In a DUN this could easily be
achieved by inferring networks of different depths according to the size of the dataset. For
BNNs in weight-space, in contrast, the network depth is fixed, with the only recourse for
influencing model complexity being through the learned weight posterior parameters. In this
case, it is not clear how (or if) this mechanism would work.

Hypothesis 1
The ability to infer the depth of the network is a useful property for active learning
that enables DUNs to minimise overfitting bias in the early stages of active learning,
whilst still allowing the flexibility to learn more complex models as the volume of
training data increases.

As noted by Antorán et al. (2020), the types of functions learnt by the DUN can also be
influenced by manipulating the prior probabilities βi. Selecting larger values of βi for smaller
depths encourages the DUN to behave like a simpler, less flexible model, which may be ad-
vantageous at the beginning of active learning to avoid overfitting. As the dataset increases in
size, the likelihood component of p(d | Dtrain;θ) in equation (2.35) becomes more influential
relative to the prior, allowing deeper and more complex networks to be learnt in accordance
with complexity of the training set. This hypothesis is evaluated in section 4.4.4.

Hypothesis 2
The prior over depth can be leveraged as a regularisation mechanism to further reduce
overfitting when training sets are small.

3.2 Addressing misspecification bias 29

3.2 Addressing misspecification bias

Related to the idea of model complexity is that of model misspecification. Complex models
such as deep neural networks tend to be underspecified, meaning that it is possible to find
several predictors that perform equivalently well on held-out data. In other words, complex
models are capable of making a greater variety of predictions (MacKay, 2003), implying
that model uncertainty estimates will explode outside the convex hull of the data. This
has been shown to be particularly true for ensemble models like DUNs (see, for example,
figure 4.10) (Antorán et al., 2020). This behaviour is undesirable in active learning, as
it means that examples are acquired from the extremities of the observed data range (see
figure 4.3 for an example). Repeated acquisition at the extremities is often suboptimal, since
what happens in these regions is typically less interesting that what happens in regions where
data are more frequently observed (MacKay, 1992a). In addition, in batch-mode acquisition,
this behaviour results in batches of correlated examples being acquired from clusters of
exceptionally high-variance points.

We introduce a modification to the standard BALD acquisition strategy that aims to mitigate
model misspecification bias. It applies to regression problems for which the output is stan-
dardised, such that the output has unit variance. As argued in section 2.1.1, maximising the
mutual information is equivalent to maximising the model variance for regression problems.
Given our knowledge that the data are standardised, predictive variances much larger than
one can be attributed to model misspecification. We can thus correct for the bias by truncating
the variances to a maximum value of one before using the values for acquisition:

αBALDtrunc (x;θ ,Dtrain) =

1 if αBALD > 1

αBALD otherwise .
(3.1)

Where there are more candidates with model variance greater than one than the desired batch
size, the batch members are sampled at random from this group. The effectiveness of this
approach is evaluated in section 4.2.2.

Hypothesis 3
Truncating BALD scores to the value of the maximum expected predictive variance
helps to counteract the effects of model misspecification bias.

30 Hypotheses: addressing biases in active learning with DUNs

3.2.1 Correlation in batch acquisition

Although one expected outcome of addressing misspecification bias is that correlated acquisi-
tions at the extremities are avoided, we also wish to address the issue of correlation in batch
queries more generally. In some cases, correlation causes information-based acquisition to
perform worse than random selection in batch-mode settings, as illustrated in section 4.2.1. In
such scenarios, it is difficult to justify the use of active learning as a basis on which to measure
the quality of model uncertainty estimates. We thus propose a simple stochastic relaxation of
deterministic BALD acquisition, which aims to improve the diversity of the acquired batch
(and ultimately the performance of the model) whilst being simpler to implement and more
computationally efficient than the fully batch-aware methods presented in section 2.1.1.

Instead of taking the argmax of the scores given by αBALD(·), the scores are passed through
the softmax function and candidate points are sampled with probability proportional to the
softmax probabilities. The probabilities are tempered by multiplying the αBALD(·) scores
by a constant T before applying softmax. The magnitude of the temperature T controls how
deterministic the resulting sampling is—a larger T corresponds to more certainly selecting
the point with the highest BALD score, while a smaller αBALD(·) implies closer to uniform
sampling. This approach seeks to combine the informed acquisition of points, as measured by
αBALD(·), with the diversity induced by random sampling, where the balance of diversity and
informativeness is controlled by the temperature. This method is investigated in section 4.2.3.

Hypothesis 4
Introducing stochasticity to information-based selection improves the diversity of the
acquired examples and helps to address loss of information due to correlation.

3.3 Investigating active learning bias

As part of the investigation into how DUNs operate in active learning settings, we examine
the role of bias in further detail. Given our proposal that DUNs handle overfitting differently
to other BNN methods, the experiments conducted by Farquhar et al. (2021) are relevant to
this analysis, as they find that the effectiveness of eliminating bias induced by active selec-
tion is dependent on the magnitude of overfitting bias. We replicate the experiments from
Farquhar et al. (2021) to quantify both active learning bias and overfitting bias (experimental
implementation details are provided in section 4.4). We also apply the corrective weights

3.3 Investigating active learning bias 31

proposed in that paper and described in section 2.3.1 that aim to eliminate active learning
bias from the loss function.

As discussed in section 2.3, Farquhar et al. (2021) find that correcting for statistical bias
harms the performance of overparameterised models such as neural networks, as the sta-
tistical bias tends to offset the overfitting bias common to such models. We hypothesise
that DUNs are a special case of neural network that may, in fact, benefit from the use of
such corrective weights. In section 3.1 we argue that DUNs should naturally be able to
handle smaller training set sizes at the beginning of active learning by inferring shallower
networks, which are expected to overfit to a lesser extent than deeper, fixed-depth networks.
In addition, we suggest that the the prior probabilities over depth can be chosen so as to have
a regularising effect on the complexity of the model. The work of Farquhar et al. (2021) on
unbiased risk estimators is therefore potentially useful for active learning with DUNs, given
that they find a positive effect of their corrective weights for inflexible models that overfit to
a limited extent. This theory is explored in section 4.4.

Hypothesis 5
The overfitting bias that typically offsets sampling bias in neural networks is small
or non-existent in DUNs with well-chosen prior probabilities over depth. As a re-
sult, removing the bias induced by active sampling positively impacts downstream
performance for DUNs.

4

Results

This chapter is concerned with the empirical evaluation of the methods described thus
far, and in particular of the hypotheses presented in chapter 3. We begin by detailing the
experimental setup and describing the relevant datasets in section 4.1. The following section
investigates the impact of the active learning strategies introduced in section 2.1.1 on the
performance of DUNs. In particular, we explore the problems of model misspecification
bias and correlated batch queries and assess the effectiveness of the corrective modifications
proposed in section 3.2. Section 4.3 compares the performance of DUNs to that of the
baseline methods MCDO and MFVI. The final part of this chapter investigates bias in active
learning, applying the methods described in section 2.3 to quantify types of bias and assess
their impact on DUNs.

4.1 Experimental setup

4.1.1 Data

We conduct experiments on three groups of datasets: toy regression datasets, the UCI regres-
sion datasets (Hernández-Lobato and Adams, 2015), and the MNIST image classification
dataset (LeCun et al., 1998). Following Antorán et al. (2020), we use five synthetic, one-
dimensional toy regression datasets as baselines. The first and second datasets, introduced in
Antorán et al. (2020) and Izmailov et al. (2020), respectively, are each composed of three
disjoint clusters of data with different arrangements. The third dataset is used in Foong et al.
(2019) to assess the quality of uncertainty estimates produced by approximate inference
methods in between clusters of data. The “Matern” dataset is generated by sampling a
function from a Gaussian process with Matern kernel with additive Gaussian noise, while
“Wiggle” is formed of samples from the function y = sin(πx)+0.2cos(4πx)−0.3x+ε with

34 Results

Simple 1d Izmailov et al. (2019) Foong et al. (2019b)

Matern Wiggle

Figure 4.1: Data for toy datasets with example train-test split. Training data are indicated by
blue points, test data by red points.

ε ∼ N (0,0.25) and x ∼ N (5,2.5) (Antorán et al., 2020). The training data for these toy
datasets are shown in figure 4.1. All methods are also evaluated on the UCI regression
datasets, which have multi-dimensional inputs and are more reflective of realistic regression
problems. A limited number of experiments are also carried out on the MNIST dataset in
order to verify our conclusions on a larger scale classification problem.

As explained in section 2.1.1, we implement batch-based active learning, with batches of
10 (for MNIST and most toy datasets) or 20 (for most UCI datasets) data points acquired
in each query, depending on the size of the dataset.1 An initial training set representing a
small proportion of the full data is selected uniformly at random in the first query. For all
regression datasets, 80% of the data are used for training, 10% for validation and 10% for
testing. The standard train-test split is used for MNIST. Details about dataset sizes, input
dimensionality, and active learning specifications for each dataset are provided in table 4.1.

1All toy datasets have a query size of 10, except for Foong et al. (2019) with a query size of 5 as it is a
smaller dataset. Likewise, all UCI regression datasets have a query size of 20, with the exception of Yacht with
a query size of 10 as it is smaller. MNIST has a query size of 10, following Gal et al. (2017).

4.1 Experimental setup 35

Table 4.1 Summary of datasets and active learning specifications. For the toy and UCI
datasets, 80% of the data are used for training, 10% for validation and 10% for testing. For
MNIST, the test and train set sizes are shown in parentheses, i.e., (train & test).

NAME SIZE INPUT DIM. INIT. TRAIN SIZE NO. QUERIES QUERY SIZE

Simple 1d 501 1 10 30 10
Izmailov et al. (2020) 400 1 10 30 10
Foong et al. (2019) 100 1 10 15 5
Matern 400 1 10 30 10
Wiggle 300 1 10 20 10

Boston Housing 506 13 20 17 20
Concrete Strength 1,030 8 50 30 20
Energy Efficiency 768 8 50 30 20
Kin8nm 8,192 8 50 30 20
Naval Propulsion 11,934 16 50 30 20
Power Plant 9,568 4 50 30 20
Protein Structure 45,730 9 50 30 20
Wine Quality Red 1,599 11 50 30 20
Yacht Hydrodynamics 308 6 20 20 10

MNIST 70,000 (60,000 & 10,000) 784 (28 × 28) 10 10 10

4.1.2 Model specifications

For the regression problems, we implement a fully-connected network with residual connec-
tions, with 100 hidden nodes per layer. The networks contain 10 hidden layers for DUNs,
or three hidden layers for MCDO and MFVI.2 We use ReLU activations, and for DUNs
batch normalisation is applied after every layer (Ioffe and Szegedy, 2015). Optimisation is
performed over 1,000 iterations with full-batch gradient descent, with momentum of 0.9 and
a learning rate of 10−4. A weight decay value of 10−5 is also used. We do not implement
early stopping, but the best model based on evaluation of the ELBO on the validation set is
used for reporting final results. MFVI models are trained using five MC samples and the
local reparameterisation trick explained in section 2.2.1, and prediction for both MCDO and
MFVI is based on 10 MC samples. For MCDO models a fixed dropout probability of 0.1 is
used. Unless otherwise specified, DUNs use a uniform categorical prior over depth, while
MFVI networks use a N (0, I) prior over weights. These hyperparameter settings largely
follow those used in Antorán et al. (2020) for the toy regression problems; a comprehensive
hyperparameter search was not undertaken due to time and computational constraints, with
the exception of the attempts outlined in section 4.3 to obtain a better fit for MFVI.

2Other depths were tested for the baseline methods, including single-layer networks, as well as the depth
found to be optimal according to the DUN depth posterior, with similar results to the chosen depth of three
layers. The results of these experiments are given in appendix A.4.

36 Results

For image classification experiments we use the convolutional network architecture described
in Antorán et al. (2020). The input block consists of a convolutional layer with 5×5 kernel
and a 2×2 average pooling layer. The output block is comprised of a global average pooling
layer, a linear layer followed by ReLU activation and batch normalisation, and a final linear
layer. Predictions are made by passing the output of the linear layer through the softmax
function. The intermediate blocks are bottleneck convolutional blocks described in He et al.
(2016), with the outer number of channels chosen to be 64 and bottleneck channels set to
32. DUNs contain 10 intermediate blocks, while MCDO and MFVI networks contain three.
Following PyTorch defaults for MNIST, optimisation is performed over 90 epochs, with the
learning rate reduced by a factor of 10 at epochs 40 and 70. The initial learning rate is 0.1.
We do not use a validation set to find the best model, instead reporting results on the final
model. All other hyperparameters are as for the regression case.

All experiments are repeated 40 times with different weight initialisations and train-test splits
for the toy and UCI regression datasets.3 The standard MNIST train-test split is used for
all image classification experiments. Unless otherwise specified, we report the mean and
standard deviation of the relevant metric over the 40 experiment runs. All experiments are
implemented in PyTorch (Paszke et al., 2019).4

4.2 Acquisition functions

This section examines the effectiveness of active learning with DUNs. We compare DUNs’
performance on active learning problems with the maximum entropy αEntropy and BALD
αBALD acquisition functions, described in section 2.1.1 and section 2.1.1 respectively, against
a random acquisition baseline. Ideally, by taking into account model uncertainty, the active
learning strategies should achieve optimal performance with significantly fewer labelled
points than with random selection. Performance is evaluated in terms of test negative log-
likelihood (NLL) and root mean-squared error (RMSE). For brevity, we report only NLL
results for the regression problems in this section; similar conclusions can be drawn from the
RMSE results, which can be found in appendix A.

3An exception is experiments on the Protein dataset, which are repeated only 30 times due to the cost of
evaluation on the larger test set.

4Code is available at https://github.com/chelsealuisa/DUN/tree/active_learning.

https://github.com/chelsealuisa/DUN/tree/active_learning

4.2 Acquisition functions 37

4.2.1 Toy regression with naïve batch acquisition

As an initial approach, we apply a simple extension of the active learning strategies to the
batch acquisition case, by selecting the b-best exampled ranked by αEntropy or αBALD. As
shown in figure 4.2, this approach yields no improvement in learning efficiency over random
acquisition, and in some cases performs worse than random selection. Potential causes for
this finding include misspecification bias and correlation in batch acquisition, as discussed in
section 3.2 and section 2.1.1, respectively. We now consider the techniques introduced in
section 3.2 to mitigate these effects.5

0 100 200 300
−0.50

−0.25

0.00

0.25

0.50

0.75

Te
st

N
L

L

Simple 1d

0 100 200 300

−0.5

0.0

0.5

1.0

Izmailov et al. (2019)

20 40 60

0.2

0.4

0.6

0.8

1.0

1.2

Foong et al. (2019b)

0 100 200 300
Train set size

0.00

0.25

0.50

0.75

1.00

1.25

Te
st

N
L

L

Matern

50 100 150 200
Train set size

0.25

0.50

0.75

1.00

1.25

1.50
Wiggle

Figure 4.2: Test NLL vs. number of training points for DUNs evaluated on toy datasets.
Maximum entropy and BALD acquisition functions are compared to a random acquisition
baseline.

4.2.2 Truncated BALD

The first of these methods is truncated BALD, which caps the BALD scores at a maximum of
one before computing the argmax of the scores. The objective is to counteract the effect of
misspecification bias, which causes uncertainty estimates to explode in regions of the input

5Note that maximum entropy attains similar mean performance to BALD, but with much higher variance on
the first three datasets. This is potentially due to the histogram approximation used to compute the predictive
entropy for regression problems, which is dependent on hyperparameters such as the number of samples and
number of bins used in the approximation, as discussed in section 2.1.1.

38 Results

space beyond the most extreme points where data have been gathered (MacKay, 1992a). As
illustrated in figure 4.3 for the Wiggle and Matern datasets, truncated BALD is effective in
addressing this problem: in the right-hand column, the points selected under standard BALD
acquisition (orange points) are exactly those with the most extreme x-values of the available
unlabelled points. In the right-hand column, in contrast, using truncated BALD means that
all candidate points with variance larger than one have an equal chance of being selected,
resulting in the chosen points being better distributed across the high variance region (see in
particular the positive end of the input range for Wiggle and the negative end for Matern).6

Unfortunately, truncated BALD has a negligible effect on overall performance, as shown in
figure A.1 for the toy datasets and in figure 4.6 for the UCI regression datasets. To understand
why truncation does not improve performance, we examine the initial steps of the querying
process with truncated BALD acquisition in figure 4.4. As anticipated, the model variance
exceeds unity only at the extremities of the input space, meaning that the batches acquired
in the initial two steps (especially step two, figure 4.4b) are still chosen from the edges and
thus remain somewhat correlated. By the third acquisition round, none of the BALD scores
exceed one, such that this method is equivalent to standard BALD. As expected, standard
BALD acquires clusters of correlated points (figure 4.4c and figure 4.4d), meaning that a lot
of information about a localised region is added to the train set at the expense of acquiring
information about other data-sparse regions. This explains why we observe that truncated
BALD does not outperform standard BALD, and by extension random acquisition.7

6Note that on the left-hand side of the two Wiggle dataset plots, the model variance (blue shaded region)
appears to be zero. Model variance is in fact very large in these regions, as shown in the acquisition function
subplots; it does not appear in the upper plots because the mean function increases to infinity at too rapid a rate
for the model variance to be visible. This is also true for figure 4.4 and figure 4.10.

7It should be noted that Gal et al. (2017) use batch acquisition on MNIST and find a significant performance
improvement with BALD relative to random acquisition. They do not address the issue of correlated acquisitions,
and it is not clear why their results appear to be unaffected by this phenomenon. Several other works also find a
significant benefit for active learning (whether with BALD or other active acquisition strategies), however these
implement serial acquisition (Hernández-Lobato and Adams, 2015; Houlsby et al., 2011; Kirsch et al., 2019).

4.2 Acquisition functions 39

Figure 4.3: Illustration of the second acquisition step with standard BALD (left column)
and truncated BALD (right column) acquisition functions, for Wiggle (top row) and Matern
(bottom row) datasets. Black points denote the current labelled dataset, orange points the
set of next acquired data points, and transparent green points the remainder of the pool set.
Standard BALD acquires clusters of points at the extremities of the observed data range,
while truncated BALD results in the acquired set being more spread-out across input space.

4.2.3 Stochastic BALD

Given the observation that truncated BALD is affected by correlation in the acquired batch,
we next consider stochastic BALD,

αBALDstoch(x;θ ,Dtrain) = softmax(T αBALD(x;θ ,Dtrain)) , (4.1)

where candidates are sampled with probability equal to the resulting softmax probabilities.
The temperature T controls how stochastic the selection is, as explained in section 3.2.1.

We evaluate the performance of αBALDstoch for several values of T on the UCI datasets in
figure 4.5. We find that first truncating the BALD scores before applying softmax, i.e.,

40 Results

(a) Labelled points: 10 (b) Labelled points: 20

−3

−2

−1

0

1

2

3
Wiggle

−2 −1 0 1 2

10−1

Acquisition function

(c) Labelled points: 30

−3

−2

−1

0

1

2

3
Wiggle

−2 −1 0 1 2

10−1

Acquisition function

(d) Labelled points: 40

Figure 4.4: Illustration of the first four acquisition steps with truncated BALD acquisition
for Wiggle dataset. Black points denote the current labelled dataset, orange points the set of
next acquired data points, and transparent green points the remainder of the pool set. The
acquisition function is plotted underneath the model fit (log scale), with the black dashed
line representing BALD values and the red solid line truncated BALD.

αBALDstoch(x;θ ,Dtrain) = softmax(T αBALDtrunc(x;θ ,Dtrain)), is important to avoid a “win-
ner takes all” scenario—in which a single, very large BALD score dominates the softmax
probabilities—in the initial acquisition steps, however has minimal impact on overall perfor-
mance, as shown in figure A.2. For Boston, Kin8nm, Naval, Power, and Protein, T = 1 and
T = 10 are found to be the best settings; for the other datasets, performance is similar for all
or most values of T . Since T = 1 underperforms slightly on Concrete, Energy, and Yacht, we
proceed with T = 10 as the optimal temperature.

Unlike truncated BALD, stochastic BALD with T = 10 provides some improvement in
performance for a number of the UCI datasets (namely, Kin8nm, Naval, Power and Protein),

4.2 Acquisition functions 41

100 200 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

N
L

L

Boston

T = 1
T = 10
T = 100
T = 1,000
T = 10,000

200 400 600

0.2

0.4

0.6

0.8

1.0
Concrete

200 400 600
−0.6

−0.4

−0.2

0.0

0.2

Energy

200 400 600

0.8

0.9

1.0

1.1

1.2

Te
st

N
L

L

Kin8nm

200 400 600

−0.1

0.0

0.1

Naval

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
Train set size

1.20

1.25

1.30

1.35

Wine

50 100 150 200
Train set size

−0.50

−0.25

0.00

0.25

0.50

0.75

Yacht

Figure 4.5: Test NLL of DUNs using a stochastic relaxation of BALD evaluated on UCI
datasets. Different temperatures of the proposal distribution are compared. Means of 40 runs
of the experiments are shown; standard deviations are not plotted for clarity.

as illustrated in figure 4.6 . In these cases, stochastic BALD effectively combines diversity
of the acquired batch through sampling with informativeness of the individual points by
leveraging the BALD scores. Figure 4.7 compares stochastic BALD to random and maximum
entropy acquisition and confirms that stochastic BALD performs at least as well as, and for
some datasets marginally better than, random selection (with the exception of Naval, for
which random outperforms stochastic BALD).

Image classification with stochastic BALD

To conclude the analysis of acquisition strategies, we compare their performance on a classi-
fication problem. Figure 4.8 displays the test accuracy and NLL when applying stochastic

42 Results

100 200 300

0.0

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston

BALD
BALD (truncated)
BALD (stochastic)

200 400 600

0.2

0.4

0.6

0.8

1.0

Concrete

200 400 600

−0.6

−0.4

−0.2

0.0

0.2

0.4

Energy

200 400 600

0.8

1.0

1.2

Te
st

N
L

L

Kin8nm

200 400 600

−0.2

−0.1

0.0

0.1

0.2

0.3

Naval

200 400 600

0.1

0.2

0.3

0.4

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
Train set size

1.15

1.20

1.25

1.30

1.35

1.40

Wine

50 100 150 200
Train set size

−0.5

0.0

0.5

1.0
Yacht

Figure 4.6: Test NLL vs. number of training points for DUNs evaluated on UCI datasets.
Truncated and stochastic BALD acquisition functions are compared to standard BALD.

BALD, standard BALD, maximum entropy and random selection to the MNIST image
classification dataset. As for the regression problems, stochastic BALD is approximately
as effective as random selection. The benefit of the stochastic variant of BALD is clear
when comparing to standard BALD, which is the poorest performing of the four methods.
Interestingly, maximum entropy underperforms the BALD and random selection to a greater
extent on the classification problem than in the regression setting, despite the fact that the
entropy does not need to be approximated in the classification case.

4.3 DUN and baseline performance 43

100 200 300

0.0

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston

Random
Max entropy
BALD (stochastic)

200 400 600

0.2

0.4

0.6

0.8

1.0

Concrete

200 400 600

−0.6

−0.4

−0.2

0.0

0.2

0.4

Energy

200 400 600

0.8

1.0

1.2

Te
st

N
L

L

Kin8nm

200 400 600

−0.2

−0.1

0.0

0.1

0.2

0.3
Naval

200 400 600

0.1

0.2

0.3

0.4

Power

200 400 600
Train set size

1.20

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
Train set size

1.15

1.20

1.25

1.30

1.35

1.40

Wine

50 100 150 200
Train set size

−0.5

0.0

0.5

1.0
Yacht

Figure 4.7: Test NLL vs. number of training points for DUNs evaluated on UCI datasets.
Maximum entropy and stochastic BALD acquisition functions are compared to a random
acquisition baseline.

4.3 DUN and baseline performance

This section compares the performance of DUNs to the baseline methods MCDO and MFVI.
We again report only NLL results, but equivalent RMSE results are provided in appendix A.2.
All results presented in this section are based on the stochastic BALD acquisition function,
with truncation of αBALD prior to applying softmax, using temperature T = 10.

4.3.1 Toy datasets

Test NLL evaluated on the toy datasets is shown in figure 4.9. Performance for DUNs
improves as the training set grows in size, as expected. This is not, however, always true for

44 Results

20 40 60 80 100
Train set size

0.2

0.4

0.6

0.8
Te

st
ac

cu
ra

cy

MNIST

20 40 60 80 100
Train set size

0.5

1.0

1.5

2.0

2.5

Te
st

N
L

L

MNIST

Random
Max entropy

BALD
BALD (stochastic)

Figure 4.8: Test classification accuracy (left) and NLL (right) vs. number of training points
for DUNs evaluated on MNIST. Maximum entropy, standard BALD, and stochastic BALD
acquisition functions are compared to a random acquisition baseline.

MCDO and MFVI. MFVI performs poorly on all datasets independent of the training set size,
suggesting that the models have underfit (this is also true for MCDO on the Matern and Wig-
gle datasets). Examining the fit of each of the methods on Matern and Wiggle in figure 4.10
(using the largest training set size from the final acquisition step) shows that this is the case—
MFVI and MCDO severely underfit on both datasets, failing to capture nearly any variation
in the data beyond a linear trend. DUNs, on the other hand, are able to fit the data well
in the regions of observed data, and learn sensible uncertainty estimates outside these regions.

In an effort to improve the fit of the MFVI models, we repeat the experiments using twice as
many optimisation steps for all three models, with the results shown in figure 4.11. The per-
formance of MFVI does not change noticeably and and remains substantially worse than that
of both DUNs and MCDO. This may be attributable to variational over-pruning, as discussed
in Trippe and Turner (2018).8 The performance of MCDO improves on Matern, although is
still significantly worse than the DUN, and remains poor on Wiggle. This is consistent with
the results of Antorán et al. (2020), who find that MCDO underfits faster-varying functions,
such as those required to fit the Matern and Wiggle datasets.

8We additionally repeat the experiments for MFVI with much smaller variance initialisations for the
variational approximation, in an attempt to encourage a better fit to the data. This approach initialises
training with variational distributions that approach delta functions around the mean, effectively yielding MAP
estimation. This encourages a close fit to the data in the initial stages of training, which is later regularised by
the KL term as training progresses. This should counteract the tendency of VI to optimise only for the KL term
and explain variation in the data through noise. Unfortunately this approach yields poorer results than larger
variance initialisations, so we do not present the results here.

4.3 DUN and baseline performance 45

0 100 200 300

0.0

0.5

1.0

1.5

Te
st

N
L

L

Simple 1d

0 100 200 300

−0.5

0.0

0.5

1.0

Izmailov et al. (2019)

20 40 60

0.25

0.50

0.75

1.00

1.25

1.50

Foong et al. (2019b)

0 100 200 300
Train set size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Te
st

N
L

L

Matern

50 100 150 200
Train set size

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wiggle

Figure 4.9: Test NLL vs. number of training points using stochastic BALD acquisition
evaluated on toy datasets. The performance of DUNs, MCDO and MFVI is compared.

Hypothesis 1, proposed in section 3.1, is that DUNs are expected to adapt their inferred
depth to the complexity of the dataset, learning shallower networks at the beginning of active
learning and increasingly deep networks as more labelled data are acquired. Figure 4.12
compares the posterior probabilities over depth for DUNs trained on datasets from the first
and final steps of active learning, and illustrates that this does occur in practice. Whether this
feature of DUNs translates to meaningful performance advantages is difficult to conclude
based on the toy dataset results, given that MFVI and MCDO suffer from underfitting. This
question is explored further in section 4.3.2 in the context of the UCI datasets.

4.3.2 Tabular regression

We next compare the performance of DUNs, MCDO and MFVI on the UCI datasets. On
these higher-dimensional datasets, the superiority of DUNs is not as clear as in the case of
the toy datasets. In terms of both NLL (figure 4.13) and RMSE (figure A.7), DUNs clearly
outperform the baselines on Concrete, Energy, Kin8nm, Naval and Protein, but achieve
comparable performance to MCDO on Boston, Power, Wine and Yacht. MFVI exhibits the
poorest performance on all of the datasets.

46 Results

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
MCDO

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
MFVI

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
DUN

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
MCDO

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
MFVI

Figure 4.10: Model fit of a DUN, MCDO and MFVI on the Matern (top row) and Wiggle
(bottom row) datasets.

0 100 200 300

0.0

0.5

1.0

1.5

Te
st

N
L

L

Simple 1d

0 100 200 300

−0.5

0.0

0.5

1.0

Izmailov et al. (2019)

20 40 60
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Foong et al. (2019b)

0 100 200 300
Train set size

0.0

0.5

1.0

1.5

Te
st

N
L

L

Matern

50 100 150 200
Train set size

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Wiggle

Figure 4.11: Test NLL vs. number of training points evaluated on toy datasets. DUNs,
MCDO and MFVI models are trained using 2,000 epochs.

The observation that DUNs adapt the posterior probabilities over depth to the size of the
training set is more evident with the UCI datasets than the toy datasets, as shown in figure 4.14.
For Kin8nm, for example, layers two and three are assigned the highest posterior probabilities

4.3 DUN and baseline performance 47

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Izmailov et al. (2019)

Train size: 10
Train size: 300

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

Foong et al. (2019b)

Train size: 10
Train size: 75

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Wiggle

Train size: 10
Train size: 200

Figure 4.12: Posterior probabilities over depth for DUNs trained on toy datasets, for the
smallest (blue bars) and largest (orange bars) labelled datasets used in active learning.

for a training set size of 50, with the probabilities declining as the depth increases. For a
training set containing 630 points, in contrast, the posterior probabilities are largest for layers
eight and above. Given the results from figure 4.13, it is plausible to conclude that DUNs’
flexibility over depth is useful in active learning settings (although this property does not
result in DUNs consistently outperforming MCDO in all cases). DUNs’ performance may
also be attributable to better quality uncertainty estimates, or to the fact that αBALD can be
computed exactly for DUNs.

4.3.3 Image classification

Finally, we verify the conclusions drawn in this section on the MNIST classification problem.
We focus on comparing DUNs to MCDO, as MFVI was shown to be less competitive on all
of the regression problems. Figure 4.15a and figure 4.15b plot the accuracy and NLL for
a DUN and MCDO network, with the DUN attaining marginally better performance than
MCDO on both metrics (although not exceeding one standard deviation’s difference), which
is consistent with the regression results. Also consistent with the regression setting is the
fact that the posterior assigns more weight to deeper subnetworks as the training set grows in
size, as shown in figure 4.15c.

48 Results

100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

N
L

L

Boston

DUN
MCDO
MFVI

200 400 600

0.2

0.4

0.6

0.8

1.0

1.2

Concrete

200 400 600
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
Energy

200 400 600

0.8

1.0

1.2

1.4

Te
st

N
L

L

Kin8nm

200 400 600

0.0

0.5

1.0

1.5
Naval

200 400 600

0.2

0.4

0.6

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

1.45

Te
st

N
L

L

Protein

200 400 600
Train set size

1.15

1.20

1.25

1.30

1.35

1.40

Wine

50 100 150 200
Train set size

−1.0

−0.5

0.0

0.5

1.0

Yacht

Figure 4.13: Test NLL vs. number of training points using stochastic BALD acquisition
function evaluated on UCI datasets. DUNs, MCDO and MFVI are compared.

4.4 Bias in active learning

To conclude the chapter on empirical results, we explore the impact of bias and the interaction
of different types of biases in active learning with DUNs. Section 2.3 introduces the concept
of active learning bias, induced when active selection of points results in a training dataset
that is not drawn from the population distribution. This is opposed to overfitting bias, which
arises when evaluation of the model loss on the training data gives rise to dependency
between the data and parameters θ . The following analyses replicate the methods presented
in Farquhar et al. (2021) to quantify active learning bias and overfitting bias in DUNs and
MCDO models, and examine how their proposed corrective weights for active learning
bias impact downstream performance. The section concludes by evaluating hypothesis 2

4.4 Bias in active learning 49

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Concrete

Train size: 50
Train size: 630

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Energy

Train size: 50
Train size: 630

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

Naval

Train size: 50
Train size: 630

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Power

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Wine

Train size: 50
Train size: 630

0 2 4 6 8 10
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Yacht

Train size: 20
Train size: 210

Figure 4.14: Posterior probabilities over depth for DUNs trained on UCI regression datasets,
for the smallest (blue bars) and largest (orange bars) labelled datasets used in active learning.

(section 3.1), that the depth prior in DUNs can be used to influence model complexity and
the subsequent degree of overfitting bias.

4.4.1 Quantifying active learning bias

As a first exercise, we estimate the extent of active learning bias when using the standard
risk estimator R̃ (equation (2.40)), and verify that the unbiased risk estimator R̃LURE , defined
in equation (2.43), eliminates this bias. The experimental setup is as follows: a model is
trained on 1,000 randomly selected data points from Dpool using the standard NLL loss.
Given fixed model parameters, evaluation points are actively sampled from a test set Dtest,
using stochastic BALD acquisition with T = 10. After each evaluation point is acquired, the

50 Results

20 40 60 80 100
Train set size

0.2

0.4

0.6

0.8

Te
st

ac
cu

ra
cy

MNIST

DUN
MCDO

(a) Accuracy

20 40 60 80 100
Train set size

0.5

1.0

1.5

2.0

2.5

Te
st

N
L

L

MNIST

(b) NLL (c) DUN depth posterior

Figure 4.15: Test accuracy (left) and NLL (middle) vs. number of training points using
stochastic BALD acquisition function evaluated on MNIST. The performance of DUNs and
MCDO is compared. Right: DUN posterior probabilities over depth, for the smallest (blue
bars) and largest (orange bars) labelled datasets used in active learning.

biased risk R̃ and unbiased risk R̃LURE are evaluated on the M actively sampled evaluation
points. The active learning bias BALB is then estimated by subtracting R̃ or R̃LURE from the
population risk r, which is approximated by evaluating the risk on the full Dtest:

BALB
(
R̃(.)

)
= r−E

[
R̃(.)

]
. (4.2)

By computing both components of BALB using fixed model parameters θ that are independent
of Dtrain, we abstract from any overfitting bias, enabling the bias induced by actively sampling
the evaluation points to be isolated.

Figure 4.16 shows BALB
(
R̃
)

and BALB
(
R̃LURE

)
for DUNs applied to the UCI datasets.

BALB
(
R̃LURE

)
remains constant at nearly zero for all M, showing that the unbiased esti-

mator R̃LURE is effective in removing this source of bias. For the unweighted estimator R̃, in
contrast, active learning bias is present whenever M < N. The bias is negative, since active
learning tends to over-sample unusual or difficult to predict points, resulting in a higher
estimated risk than the true risk.

We next compare active learning bias in DUNs to MCDO in figure 4.17. We present only the
means over the 40 experiment runs without standard deviations for clarity. For MCDO R̃LURE

is also effective in removing active learning bias. The magnitude of the active learning bias
with R̃ is generally substantially smaller for MCDO than for DUNs (with the exception of the
Yacht data). This implies that the points selected for labelling by DUNs tend to overrepresent
unusual parts of the population distribution to a greater extent than those selected by MCDO.

4.4 Bias in active learning 51

0 10 20 30 40 50
−40

−30

−20

−10

0

10

B
ia

s:
R̂
−

E
[.
]

Boston

r−E[R̃]

r−E[R̃LURE]

0 20 40 60 80 100

−40

−30

−20

−10

0

10

Concrete

0 20 40 60

−1.0

−0.5

0.0

0.5

Energy

0 20 40 60 80 100
−15

−10

−5

0

5

B
ia

s:
R̂
−

E
[.

]

Kin8nm

0 20 40 60 80 100

−0.8

−0.6

−0.4

−0.2

0.0

0.2
Naval

0 20 40 60 80 100

−20

−10

0

10

Power

0 20 40 60 80 100
M

−4000

−2000

0

2000

B
ia

s:
R̂
−

E
[.
]

Protein

0 20 40 60 80 100
M

−40

−20

0

Wine

0 10 20 30
M

−4

−3

−2

−1

0

1

Yacht

Figure 4.16: Bias introduced by actively sampling points with DUNs, evaluated using R̃ (in
blue) and R̃LURE (in orange). The unbiased risk estimator R̃LURE eliminates active learning
bias, while the standard estimator R̃ tends to overestimate risk.

4.4.2 Training with unbiased risk estimators

Having confirmed that R̃LURE eliminates active learning bias, we next seek to determine
whether using the unbiased estimator during training improves downstream performance.
This is achieved by using R̃ and R̃LURE as the training objectives in an active learning problem,
and evaluating the NLL and RMSE for the resulting model on Dtrain. In an effort to mirror
the experimental approach of Farquhar et al. (2021) as closely as possible, we use serial
rather than batch acquisition for the experiments presented in this section.

Intuitively, removing active learning bias by training with the weighted estimator should
improve performance on the downstream task. Figure 4.18 shows, however, that using

52 Results

0 10 20 30 40 50

−12

−10

−8

−6

−4

−2

0

2

B
ia

s:
R̂
−

E
[.
]

Boston

r−E[R̃]

r−E[R̃LURE]

DUN
MCDO

0 20 40 60 80 100

−12

−10

−8

−6

−4

−2

0

Concrete

0 20 40 60
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Energy

0 20 40 60 80 100

−5

−4

−3

−2

−1

0

B
ia

s:
R̂
−

E
[.

]

Kin8nm

0 20 40 60 80 100

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Naval

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0

Power

0 20 40 60 80 100
M

−700

−600

−500

−400

−300

−200

−100

0

100

B
ia

s:
R̂
−

E
[.

]

Protein

0 20 40 60 80 100
M

−20

−15

−10

−5

0

Wine

0 10 20 30
M

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Yacht

Figure 4.17: Active learning bias for DUNs (solid lines) and MCDO (dashed lines), evaluated
using R̃ (in blue) and R̃LURE (in orange).

4.4 Bias in active learning 53

R̃LURE either does not affect or is to the detriment of NLL performance (equivalent RMSE
results are provided in appendix A.3). Before moving to potential explanations for this
result, we also consider the impact of R̃LURE on MCDO in figure 4.19. Instead of plotting
the NLL for models trained with R̃ and R̃LURE separately as in figure 4.18, we plot the
difference NLLR̃ −NLLR̃LURE

, where NLLR̃ is the NLL evaluated on a model trained with
R̃ and NLLR̃LURE

is the equivalent for R̃LURE . The difference is positive when the weighted
estimator improves downstream performance and negative when it harms performance.
As with DUNs, removing active learning bias has a negligible impact on downstream
performance of MCDO for most datasets. Exceptions are Yacht, for which debiasing
the estimator improves performance, and Protein, which has poorer performance with the
unbiased estimator.

20 30 40 50 60 70

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston

Trained with R̃
Trained with R̃LURE

50 60 70 80 90 100
0.6

0.7

0.8

0.9

1.0

Concrete

50 60 70 80 90 100
−0.1

0.0

0.1

0.2

0.3

0.4

Energy

50 60 70 80 90 100
1.05

1.10

1.15

1.20

1.25

1.30

Te
st

N
L

L

Kin8nm

50 60 70 80 90 100

−0.2

−0.1

0.0

0.1

0.2

0.3
Naval

50 60 70 80 90 100
0.15

0.20

0.25

0.30

0.35

0.40

Power

50 60 70 80 90 100
M

1.30

1.32

1.34

1.36

1.38

1.40

1.42

Te
st

N
L

L

Protein

50 60 70 80 90 100
M

1.25

1.30

1.35

1.40

Wine

20 30 40 50 60 70
M

−0.5

0.0

0.5

1.0

Yacht

Figure 4.18: Test NLL for DUNs trained with R̃ (in blue) and R̃LURE (in orange) evaluated
on UCI datasets. A larger value of the orange line indicates that training with R̃LURE harms
performance, despite removing active learning bias.

54 Results

20 30 40 50 60 70

−0.10

−0.05

0.00

0.05

0.10

N
LL

R̃
−

N
LL

R̃
LU

R
E

Boston

50 60 70 80 90 100
−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
Concrete

50 60 70 80 90 100
−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Energy

50 60 70 80 90 100

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

N
LL

R̃
−

N
LL

R̃
LU

R
E

Kin8nm

50 60 70 80 90 100

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
Naval

50 60 70 80 90 100

−0.02

−0.01

0.00

0.01

0.02

Power

50 60 70 80 90 100
M

−0.03

−0.02

−0.01

0.00

0.01

N
LL

R̃
−

N
LL

R̃
LU

R
E

Protein

50 60 70 80 90 100
M

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005
Wine

20 30 40 50 60 70
M

−0.1

0.0

0.1

0.2

0.3
Yacht

DUN MCDO

Figure 4.19: Difference in NLL for DUNs (solid lines) and MCDO (dashed lines) trained
with R̃ and trained with R̃LURE , evaluated on UCI datasets. A positive value indicates that
the weighted estimator R̃LURE improves downstream performance, while a negative value
indicates that it harms performance.

4.4 Bias in active learning 55

4.4.3 Overfitting bias

The finding that removing active learning bias does not improve downstream performance is
consistent with that of Farquhar et al. (2021). They explain this result by considering active
learning bias in the context of overall bias, including overfitting bias, which is typically
present to varying degrees in overparameterised models whether active learning is used or
not. We attempt to isolate the overfitting bias in order to understand how it may interact
with active learning bias and influence the results of section 4.4.2. By noting firstly that the
parameters θ ∗ optimised for R̂ are generally overfit, and secondly that R̃LURE removes active
learning bias, we observe that the quantity R̃LURE (θ

∗) encompasses only the overfitting bias
and the true population risk r. It is then possible to recover the overfitting bias of a model
optimised with either of the discussed risk estimators by subtracting R̃LURE(θ

∗) from the
true population risk r:

BOFB
(
R̃(.)

)
= r− R̃LURE(θ

∗) (4.3)

where θ ∗ = argmin
θ

(
R̃(.)

)
and R̃(.) is R̃ or R̃LURE . The population risk r is, as before, approx-

imated by the risk evaluated on the test set Dtest.

In figure 4.20 we plot the quantities BOFB
(
R̃
)

and BOFB
(
R̃LURE

)
for increasing sizes M

of the labelled training set, for both DUNs and MCDO models. The overfitting bias, in
contrast to active learning bias, is positive—overfitting causes the risk as evaluated on the
training set to be underestimated, such that the difference between actual and estimated risk is
positive. The two sources of bias thus offset each other to a certain extent when considering
downstream performance on active learning problems. Comparing the magnitudes of the
biases for MCDO in figure 4.17 and figure 4.20, we note that the overfitting bias substantially
outweighs the active learning bias, thus explaining why eliminating active learning bias has
little observable impact on the final model performance metrics.

The relative magnitudes of active learning bias and overfitting bias are not as consistent
for DUNs, with active learning bias in fact exceeding overfitting bias for some datasets
(e.g., Boston, Concrete and Power). According to the reasoning presented in Farquhar et al.
(2021), removing the active learning bias in cases where BALB > BOLB should positively affect
performance. It is unclear why this effect is not observed in practice for DUNs. It is possible
that the experimental design used by Farquhar et al. (2021) is not directly applicable to the
datasets and other specifications used in this work. In particular, we note that the temperature
of the proposal distribution used in that work is T = 10,000, much larger than that used in
our experiments (T = 10). Since higher temperatures approach a deterministic proposal,

56 Results

50 60 70 80 90 100

2

4

6

8

10

Concrete

50 60 70 80 90 100

0

1

2

3

4

5

Energy

50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

3.0

Naval

50 60 70 80 90 100

0

2

4

6

8

10

12

Power

50 60 70 80 90 100
M

5

10

15

20

25

30

35

40

45
Wine

20 30 40 50 60 70
M

100

102

104

106

108

1010

1012

Yacht

Figure 4.20: Overfitting bias for DUNs (solid lines) and MCDO (dashed lines) trained with
R̃ (in blue) and R̃LURE (in orange), evaluated on UCI datasets. Overfitting bias is generally
larger in DUNs than for MCDO. NLL for Protein and Yacht is displayed in log scale.

4.4 Bias in active learning 57

it is possible that this temperature setting interferes with the assumption that α(·) assigns
non-zero probability to all members of Dtrain, and that this in turn affects the generalisability
of their findings. We also execute the experiments in this section using T = 10,000, but find
that the results are even less consistent with those of Farquhar et al. (2021) than when using
our preferred temperature. Another potential explanation is that there are other interfering
sources of bias at play in DUNs that we do not take into account.

Hypothesis 5, outlined in section 3.3, is that DUNs’ flexibility over depth could enable
them to avoid or reduce overfitting in low data regimes. The active learning bias correction
R̃LURE could therefore be beneficial for DUNs, much as it is for inflexible models such as
linear regression (as explained in section 2.3). Given the results previously discussed from
figure 4.18, it does not appear that the unbiased risk estimator is more useful for DUNs than
for other types of neural network. In figure 4.20 we do observe, however, that the magnitude
of overfitting bias for DUNs is generally much smaller than that for MCDO (other than the
in Protein and Wine datasets). It is thus plausible to conclude that DUNs can, in some cases,
be more effective than other forms of BNN in regularising overfitting on small datasets.

4.4.4 Impact of the depth prior

The experiments presented thus far use an uninformative prior for DUNs that assigns uni-
form probabilities to each subnetwork depth. One of the advantages of DUNs, however,
is that it is possible to place informative priors over depth that reflect expectations about
the complexity of the model. We propose in hypothesis 2 (section 3.3) that the depth prior
in DUNs can be chosen so as to encourage shallower learned networks, which may help
to avoid overfitting at the beginning of active learning. With smaller overfitting bias, it
might be expected that correcting for active learning bias using R̃LURE should yield greater
improvements in downstream performance for the informative prior than for the uniform prior.

We evaluate this theory by placing an exponentially decaying prior over depth,

βi =
(1− γ)i

∑
D
i=0 (1− γ)i

(4.4)

with γ = 0.95, and repeating the experiments discussed in section 4.4.2 and section 4.4.3.
Figure 4.21 plots the difference in NLL for models trained using R̃ and R̃LURE when a uniform
and an exponentially decaying prior are used. The difference is not noticeably different for
DUNs with a uniform prior as opposed to a decaying prior. In addition, the difference is close

58 Results

20 30 40 50 60 70
−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

N
LL

R̃
−

N
LL

R̃
LU

R
E

Boston

50 60 70 80 90 100

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Concrete

50 60 70 80 90 100

−0.02

0.00

0.02

0.04

0.06

0.08

Energy

50 60 70 80 90 100

−0.06

−0.04

−0.02

0.00

N
LL

R̃
−

N
LL

R̃
LU

R
E

Kin8nm

50 60 70 80 90 100

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
Naval

50 60 70 80 90 100

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Power

50 60 70 80 90 100
M

−0.03

−0.02

−0.01

0.00

0.01

N
LL

R̃
−

N
LL

R̃
LU

R
E

Protein

50 60 70 80 90 100
M

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005
Wine

20 30 40 50 60 70
M

−0.10

−0.05

0.00

0.05

0.10

Yacht

Uniform prior Decaying prior

Figure 4.21: Difference in NLL for DUNs with a uniform prior (solid lines) and decaying
prior (dotted lines) trained with R̃ and trained with R̃LURE , evaluated on UCI datasets. A pos-
itive value indicates that the weighted estimator R̃LURE improves downstream performance,
while a negative value indicates that it harms performance.

4.4 Bias in active learning 59

to zero for the majority of the datasets and in some cases slightly negative, indicating that
the unbiased estimator harms performance. The hypothesis that the unbiased risk estimator
should benefit DUNs with a decreasing prior appears, therefore, not to hold.

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150
Concrete

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Energy

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Naval

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Power

0 2 4 6 8 10
d

0.000

0.025

0.050

0.075

0.100

0.125

Wine

0 2 4 6 8 10
d

0.00

0.05

0.10

0.15

0.20

0.25
Yacht

Figure 4.22: Posterior probabilities over depth for DUNs after the first acquisition step, using
a uniform prior over depth (grey bars) and an exponentially decaying prior (red bars).

To investigate why this may be the case, we first confirm that the decreasing prior does
influence the depth posterior as expected. As shown in figure 4.22 for the initial dataset used
in active learning, when the prior probabilities decrease with depth, the resulting posterior
places more mass on shallower layers than the posterior with uniform prior. The difference
in posterior mass does not, however, appear to have a strong enough regularising effect on
the learned function to influence overall performance—in figure 4.23, the NLL for DUNs
with uniform and decaying priors is almost identical. It is possible that as the train set grows

60 Results

in size during active learning, the influence of the prior observed in figure 4.22 quickly
becomes negligible. Alternatively, given that the magnitude of overfitting bias is already
small in DUNs with a uniform prior (as shown in figure 4.20, relative to MCDO), it is possi-
ble that attempting to further reduce this source of bias is both difficult and has limited impact.

20 30 40 50 60 70

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston

Uniform prior
Decaying prior

50 60 70 80 90 100

0.6

0.7

0.8

0.9

1.0

1.1
Concrete

50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

Energy

50 60 70 80 90 100
1.05

1.10

1.15

1.20

1.25

1.30

1.35

Te
st

N
L

L

Kin8nm

50 60 70 80 90 100

−0.2

−0.1

0.0

0.1

0.2

0.3
Naval

50 60 70 80 90 100

0.15

0.20

0.25

0.30

0.35

0.40

Power

50 60 70 80 90 100
M

1.300

1.325

1.350

1.375

1.400

1.425

Te
st

N
L

L

Protein

50 60 70 80 90 100
M

1.25

1.30

1.35

1.40

Wine

20 30 40 50 60 70
M

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Yacht

Figure 4.23: Test NLL vs. number of training points for DUNs evaluated on UCI datasets. A
uniform depth prior is compared to a decaying prior.

Quantifying the overfitting bias confirms that the decaying prior does little to reduce this
source of bias. Figure 4.24 replicates figure 4.20 but for DUNs with a uniform and a decaying
prior, and shows that the magnitude of overfitting bias is similar for both priors. That the
decaying prior is ineffective in moderating the overfitting bias and improving downstream
model performance explains why we do not observe any benefit from combining the unbiased
risk estimator R̃LURE with a decaying prior. These findings support the claim in section 2.2.3

4.4 Bias in active learning 61

that a disadvantage of DUNs is that the prior has limited impact on the loss function and the
posterior. Since with DUNs the KL term in equation (2.36) is computed between distributions
over depth, which have far fewer parameters than distributions over the network weights, the
scale of the KL term is comparatively smaller in the DUN loss function than it would be in
the BNN loss function. The prior over depth thus has a more limited regularising effect than
a prior over weights.

62 Results

50 60 70 80 90 100

2

4

6

8

10

12

14

Concrete

50 60 70 80 90 100
−7

−6

−5

−4

−3

−2

−1

0

1

Energy

50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

3.0

Naval

50 60 70 80 90 100

0

2

4

6

8

10

12

Power

50 60 70 80 90 100
M

10

15

20

25

30

35

40

45
Wine

20 30 40 50 60 70
M

10−1

101

103

105

107

109

1011

1013

Yacht

Figure 4.24: Overfitting bias for DUNs with a uniform prior (solid lines) and decaying prior
(dotted lines) trained with R̃ (in blue) and R̃LURE (in orange), evaluated on UCI datasets.
Overfitting bias is similar in magnitude for the uniform prior and decaying prior. NLL for
Protein and Yacht is displayed in log scale.

5

Conclusion

This final chapter is dedicated to discussing the results obtained in this thesis and promising
avenues for future work.

5.1 Summary of findings

The objective of this thesis is to explore the application of a recently proposed BNN variant,
depth uncertainty networks, to active learning problems. The overarching motivation for
this investigation is that particular properties of DUNs—namely, flexibility over network
depth and the resulting adaptability of network complexity to the given dataset, along with
the ability to exactly compute model uncertainty estimates—are expected to be advantageous
in addressing certain challenges of active learning. We propose and empirically test the
following hypotheses:

1. The ability to infer depth is a useful property for active learning that enables DUNs
to adapt the complexity of the model to the size of the training dataset.
In section 4.3 we show that this hypothesis holds, by demonstrating that the optimal
depth inferred by DUNs increases as more labelled data are acquired. Additionally, we
show that DUNs outperform MCDO and MFVI in most of the cases tested; however, this
finding could also be attributed to other strengths of DUNs, such as the quality of their
uncertainty estimates, or the fact that approximations are not required to compute αBALD.

2. The prior over depth can be leveraged as a regularisation mechanism to further
reduce overfitting when training sets are small.
By comparing the performance of DUNs with a uniform prior and exponentially decaying
prior in section 4.4.4, we show that the prior has limited influence on the posterior and the
extent of overfitting. This is identified as a limitation of DUNs.

64 Conclusion

3. Truncating BALD scores to the value of the maximum expected predictive variance
helps to counteract the effects of model misspecification bias.
An illustrative example provided in section 4.2.2 shows that truncation successfully
minimises clustering in high-variance regions of the input space. This method appears
only to be relevant in the initial stages of acquisition and does not materially impact
overall performance.

4. Introducing stochasticity to information-based selection improves the diversity of
acquired examples and helps to address loss of information due to correlation.
The stochastic modification of the BALD acquisition function is shown in section 4.2.3 to
recover some of the performance loss caused by acquiring correlated batches, however
significant gains over random acquisition are not achieved.

5. Overfitting bias is small or non-existent in DUNs with well-chosen priors over depth.
As a result, removing active learning bias improves downstream performance.
By applying the approach of Farquhar et al. (2021) to quantifying biases in active learning,
we confirm that overfitting bias is smaller for DUNs than for MCDO, in section 4.4.
Despite active learning bias being larger in magnitude than overfitting bias in several
cases for DUNs, however, correcting for active learning bias does not impact downstream
performance, a finding that is inconsistent with the results of Farquhar et al. (2021).

5.2 Limitations and future work

Bias results verification

The finding that correcting for active learning bias in DUNs does not lead to performance
improvements, despite the fact that this source of bias outweighs overfitting bias for several
of the datasets, is unexpected and dissatisfying, particularly given that the magnitude of
overfitting is smaller for DUNs than for other BNN inference methods. Further work
could seek to find theoretically grounded explanations for this result. An initial avenue of
investigation could be to verify the results found in this work on the unbalanced MNIST
dataset and FashionMNIST dataset used in Farquhar et al. (2021).

Complex data

The experiments conducted in this thesis are limited to simple, low-dimensional datasets.
Active learning, in contrast, is designed for situations in which label generation is expensive,
a setting that one might expect to be associated with complex and high-dimensional data such

5.2 Limitations and future work 65

as medical images. It is also plausible to assume that active learning should deliver more
value relative to passive learning for complex datasets with larger input spaces, or for “messy”
data that contain greater diversity in the informativeness of individual examples (e.g., if the
dataset contains duplicate or ambiguous examples). A straightforward extension of this work
is to apply the experiments to more complex datasets, for which more meaningful differences
in performance between active and passive acquisition, and between the inference methods
tested, may be observed.

Improved DUNs

Motivated by the finding that an exponentially decaying prior has limited impact on down-
stream performance, an avenue for further research is the development of improved DUNs
in which the prior over depth plays a larger role in controlling model complexity. One
approach is to use the prior for each depth as a hyperprior for the prior precision of the
corresponding layer in the neural network. Estimates of the depth hyperparameters then
directly affect the model weights. The hyperprior over depth is expected to have a stronger
influence on the model complexity because the KL divergence between the weight-space
prior and approximate posterior will be larger than the KL divergence between the depth
prior and approximate posterior, due to the large size of the weight space.

Batch acquisition

We employ batch acquisition, but do not implement fully batch-aware acquisition strategies
such as BatchBALD. This decision is made in the interests of computational efficiency and
because the primary focus of this work is the study of biases and the performance of DUNs
in active learning, not the analysis of acquisition functions. Further work could seek to verify
that our conclusions also hold for more sophisticated batch-aware acquisition functions and
for the serial acquisition case.

References

Antorán, J. (2019). Understanding uncertainty in Bayesian neural networks. MPhil thesis,
University of Cambridge.

Antorán, J., Allingham, J., and Hernández-Lobato, J. M. (2020). Depth uncertainty in neural
networks. Advances in Neural Information Processing Systems, 33.

Antorán, J., Allingham, J. U., and Hernández-Lobato, J. M. (2020). Variational depth search
in ResNets. CoRR, abs/2002.02797.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. (2020). Deep batch
active learning by diverse, uncertain gradient lower bounds. In International Conference
on Learning Representations.

Beirlant, J., Dudewicz, E. J., Györfi, L., Van der Meulen, E. C., et al. (1997). Nonparametric
entropy estimation: An overview. International Journal of Mathematical and Statistical
Sciences, 6(1):17–39.

Beygelzimer, A., Dasgupta, S., and Langford, J. (2009). Importance weighted active learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages
49–56.

Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri, P., Fogliato, R., Melançon, G.,
Krishnan, R., Stanley, J., Tickoo, O., et al. (2021). Uncertainty as a form of transparency:
Measuring, communicating, and using uncertainty. In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, pages 401–413.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning, 5th Edition. Information
science and statistics. Springer.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in
neural networks. In International Conference on Machine Learning, pages 1613–1622.
PMLR.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In

68 References

Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc.

Chu, W., Zinkevich, M., Li, L., Thomas, A., and Tseng, B. (2011). Unbiased online
active learning in data streams. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, page 195–203. Association for
Computing Machinery.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1995). Active learning with statistical models.
Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB.

Cortes, C., DeSalvo, G., Mohri, M., Zhang, N., and Gentile, C. (2019). Active learning with
disagreement graphs. In International Conference on Machine Learning, pages 1379–1387.
PMLR.

Dasgupta, S. and Hsu, D. (2008). Hierarchical sampling for active learning. In Proceedings
of the 25th International Conference on Machine Learning, pages 208–215.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F., and Udluft, S. (2018). Decomposi-
tion of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In
International Conference on Machine Learning, pages 1184–1193. PMLR.

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen,
C., Deaton, J., Eisenstein, J., Hoffman, M., et al. (2020). Underspecification presents
challenges for credibility in modern machine learning. arxiv 2020. arXiv preprint
arXiv:2011.03395.

Farquhar, S., Gal, Y., and Rainforth, T. (2021). On statistical bias in active learning: How
and when to fix it. International Conference on Learning Representations.

Foong, A., Burt, D., Li, Y., and Turner, R. (2020). On the expressiveness of approximate
inference in bayesian neural networks. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 15897–15908. Curran Associates, Inc.

Foong, A. Y. K., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. (2019). ‘In-between’
uncertainty in Bayesian neural networks. CoRR, abs/1906.11537.

Gal, Y. (2016). Uncertainty in deep learning. PhD thesis, University of Cambridge.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050–1059. PMLR.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep Bayesian active learning with image
data. In International Conference on Machine Learning, pages 1183–1192. PMLR.

Ganti, R. and Gray, A. (2012). UPAL: Unbiased pool based active learning. In Lawrence,
N. D. and Girolami, M., editors, Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learning
Research, pages 422–431. PMLR.

References 69

Graves, A. (2011). Practical variational inference for neural networks. In Advances in neural
information processing systems, pages 2348–2356. Citeseer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks.
In European conference on computer vision, pages 630–645. Springer.

Hernández-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In International Conference on Machine Learning,
pages 1861–1869. PMLR.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13.

Houlsby, N., Huszar, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian active learning
for classification and preference learning. CoRR, abs/1112.5745.

Huang, S.-J., Zhao, J.-W., and Liu, Z.-Y. (2018). Cost-effective training of deep cnns
with active model adaptation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1580–1588.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A. G. (2020).
Subspace inference for Bayesian deep learning. In Uncertainty in Artificial Intelligence,
pages 1169–1179. PMLR.

Jing, L. and Tian, Y. (2020). Self-supervised visual feature learning with deep neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence.

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local
reparameterization trick. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of
the 2nd International Conference on Learning Representations.

Kirsch, A., Van Amersfoort, J., and Gal, Y. (2019). BatchBALD: Efficient and diverse batch
acquisition for deep Bayesian active learning. Advances in neural information processing
systems, 32:7026–7037.

Kozachenko, L. and Leonenko, N. N. (1987). Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25:1097–1105.

70 References

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

LeCun, Y., Cortes, C., and Burges, C. (1998). MNIST handwritten digit database, 1998.
URL http://www. research. att. com/˜ yann/ocr/mnist.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classifiers. In
SIGIR’94, pages 3–12. Springer.

MacKay, D. J. (1992a). Information-based objective functions for active data selection.
Neural computation, 4(4):590–604.

MacKay, D. J. (1992b). A practical Bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge
University Press.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte carlo gradient estimation
in machine learning. Journal of Machine Learning Research, 21(132):1–62.

Neal, R. M. (1995). Bayesian Learning for Neural Networks. dissertation, University of
Toronto.

Osband, I. (2016). Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers
of dropout. In NIPS Workshop on Bayesian Deep Learning, volume 192.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32:8026–8037.

Pinsler, R., Gordon, J., Nalisnick, E., and Hernández-Lobato, J. M. (2019). Bayesian batch
active learning as sparse subset approximation. Advances in neural information processing
systems, 32:6359–6370.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, pages 400–407.

Sener, O. and Savarese, S. (2018). Active learning for convolutional neural networks: A
core-set approach. In International Conference on Learning Representations.

Settles, B. (2010). Active learning literature survey. Machine Learning, 15(2):201–221.

Settles, B. (2011). From theories to queries: Active learning in practice. In Active Learning
and Experimental Design workshop In conjunction with AISTATS 2010, pages 1–18. JMLR
Workshop and Conference Proceedings.

References 71

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958.

Tong, S. and Koller, D. (2001). Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research, 2(Nov):45–66.

Trippe, B. and Turner, R. (2018). Overpruning in variational Bayesian neural networks.
CoRR, abs/1801.06230.

Verdoja, F. and Kyrki, V. (2020). Notes on the behavior of MC dropout. arXiv preprint
arXiv:2008.02627.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks.
In Fleet, D. J., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, Computer Vision -
ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I, volume 8689 of Lecture Notes in Computer Science, pages 818–833.
Springer.

Appendix A

Additional results

A.1 Acquisition function comparisons

We provide additional results for the comparison of acquisition strategies, including eval-
uations on the toy datasets and in terms of RMSE for the UCI datasets. Main results are
presented in section 4.2.

0 100 200 300

−0.2

0.0

0.2

0.4

0.6

0.8

Te
st

N
L

L

Simple 1d

0 100 200 300

−0.5

0.0

0.5

1.0

Izmailov et al. (2019)

20 40 60

0.2

0.4

0.6

0.8

1.0

1.2

Foong et al. (2019b)

0 100 200 300
Train set size

0.00

0.25

0.50

0.75

1.00

1.25

Te
st

N
L

L

Matern

50 100 150 200
Train set size

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Wiggle

Figure A.1: NLL vs. number of training points for DUNs evaluated on toy datasets. Truncated
BALD and stochastic BALD acquisition functions are compared to standard BALD.

74 Additional results

100 200 300

0.0

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston
BALD (stochastic, not truncated)
BALD (stochastic, truncated)

200 400 600

0.2

0.4

0.6

0.8

1.0

Concrete

200 400 600

−0.6

−0.4

−0.2

0.0

0.2

0.4

Energy

200 400 600

0.8

1.0

1.2

Te
st

N
L

L

Kin8nm

200 400 600

−0.2

−0.1

0.0

0.1

0.2

0.3
Naval

200 400 600

0.1

0.2

0.3

0.4

Power

200 400 600
Train set size

1.25

1.30

1.35

1.40

Te
st

N
L

L

Protein

200 400 600
Train set size

1.15

1.20

1.25

1.30

1.35

1.40

Wine

50 100 150 200
Train set size

−0.5

0.0

0.5

1.0
Yacht

Figure A.2: NLL vs. number of training points for DUNs evaluated on toy datasets. Stochastic
BALD acquisition with and without prior truncation are compared.

A.1 Acquisition function comparisons 75

0 100 200 300
−0.50

−0.25

0.00

0.25

0.50

0.75

Te
st

N
L

L

Simple 1d

0 100 200 300

−0.5

0.0

0.5

1.0

Izmailov et al. (2019)

20 40 60

0.2

0.4

0.6

0.8

1.0

1.2

Foong et al. (2019b)

0 100 200 300
Train set size

0.00

0.25

0.50

0.75

1.00

1.25

Te
st

N
L

L

Matern

50 100 150 200
Train set size

0.25

0.50

0.75

1.00

1.25

1.50
Wiggle

Figure A.3: NLL vs. number of training points for DUNs evaluated on toy datasets. Maxi-
mum entropy and stochastic BALD are compared to a random acquisition baseline.

0 100 200 300

0.1

0.2

0.3

0.4

0.5

Te
st

R
M

SE

Simple 1d

0 100 200 300

0.0

0.2

0.4

0.6

0.8

Izmailov et al. (2019)

20 40 60

0.2

0.4

0.6

0.8

Foong et al. (2019b)

0 100 200 300
Train set size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

R
M

SE

Matern

50 100 150 200
Train set size

0.2

0.4

0.6

0.8

1.0

Wiggle

Figure A.4: RMSE vs. number of training points for DUNs evaluated on toy datasets.
Maximum entropy and stochastic BALD are compared to a random acquisition baseline.

76 Additional results

100 200 300

0.3

0.4

0.5

0.6

Te
st

R
M

SE

Boston

Random
Max entropy
BALD (stochastic)

200 400 600

0.3

0.4

0.5

0.6

0.7
Concrete

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Energy

200 400 600

0.5

0.6

0.7

0.8

Te
st

R
M

SE

Kin8nm

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35
Naval

200 400 600
0.250

0.275

0.300

0.325

0.350

0.375

0.400
Power

200 400 600
Train set size

0.80

0.85

0.90

0.95

1.00

1.05

Te
st

R
M

SE

Protein

200 400 600
Train set size

0.80

0.85

0.90

0.95

1.00
Wine

50 100 150 200
Train set size

0.1

0.2

0.3

0.4

0.5

0.6

Yacht

Figure A.5: RMSE vs. number of training points for DUNs evaluated on UCI datasets.
Maximum entropy and stochastic BALD acquisition functions are compared to a random
acquisition baseline.

A.2 DUN and baselines comparisons 77

A.2 DUN and baselines comparisons

We provide results for the comparison of DUNs, MCDO and MFVI in terms of RMSE.
Figure A.6 is the equivalent of figure 4.9 in terms of RMSE instead of NLL, while figure A.7
is the equivalent of figure 4.13 in terms of RMSE.

0 100 200 300

0.2

0.4

0.6

0.8

1.0

Te
st

R
M

SE

Simple 1d

0 100 200 300

0.2

0.4

0.6

0.8

Izmailov et al. (2019)

20 40 60
0.2

0.4

0.6

0.8

1.0

Foong et al. (2019b)

0 100 200 300
Train set size

0.2

0.4

0.6

0.8

1.0

Te
st

R
M

SE

Matern

50 100 150 200
Train set size

0.2

0.4

0.6

0.8

1.0
Wiggle

Figure A.6: RMSE vs. number of training points using stochastic BALD acquisition function
evaluated on toy datasets. The performance of DUNs, MCDO and MFVI is compared.

78 Additional results

100 200 300

0.3

0.4

0.5

Te
st

R
M

SE

Boston

DUN
MCDO
MFVI

200 400 600

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Concrete

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Energy

200 400 600

0.5

0.6

0.7

0.8

0.9

Te
st

R
M

SE

Kin8nm

200 400 600

0.2

0.4

0.6

0.8

1.0

Naval

200 400 600
0.25

0.30

0.35

0.40

0.45

Power

200 400 600
Train set size

0.80

0.85

0.90

0.95

1.00

1.05

Te
st

R
M

SE

Protein

200 400 600
Train set size

0.80

0.85

0.90

0.95

1.00
Wine

50 100 150 200
Train set size

0.2

0.4

0.6

0.8
Yacht

Figure A.7: RMSE vs. number of training points using stochastic BALD acquisition function
evaluated on UCI datasets. The performance of DUNs, MCDO and MFVI is compared.

A.3 Active learning bias experiments 79

A.3 Active learning bias experiments

We provide additional results for the investigation of unbiased risk estimators in section 4.4.2.
Figure A.8 is equivalent to figure 4.18, which compares downstream performance with the
biased and unbiased risk estimators, in terms of RMSE instead of NLL. Figure A.9 also
replicates this comparison, for a DUN with exponentially decaying instead of uniform prior.

20 30 40 50 60 70

0.3

0.4

0.5

0.6

Te
st

R
M

SE

Boston

Trained with R̃
Trained with R̃LURE

50 60 70 80 90 100

0.45

0.50

0.55

0.60

0.65

0.70
Concrete

50 60 70 80 90 100
0.225

0.250

0.275

0.300

0.325

0.350

0.375
Energy

50 60 70 80 90 100

0.70

0.75

0.80

0.85

Te
st

R
M

SE

Kin8nm

50 60 70 80 90 100

0.10

0.15

0.20

0.25

0.30

Naval

50 60 70 80 90 100
0.28

0.30

0.32

0.34

0.36

0.38

0.40
Power

50 60 70 80 90 100
M

0.90

0.95

1.00

1.05

Te
st

R
M

SE

Protein

50 60 70 80 90 100
M

0.85

0.90

0.95

1.00

Wine

20 30 40 50 60 70
M

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Yacht

Figure A.8: RMSE for DUNs trained with R̃ (in blue) and R̃LURE (in orange) evaluated on
UCI datasets. A larger value of the orange line indicates that training with R̃LURE harms
performance, despite removing active learning bias.

80 Additional results

20 30 40 50 60 70

0.2

0.4

0.6

0.8

Te
st

N
L

L

Boston

Trained with R̃
Trained with R̃LURE

50 60 70 80 90 100

0.6

0.7

0.8

0.9

1.0

1.1
Concrete

50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

Energy

50 60 70 80 90 100

1.10

1.15

1.20

1.25

1.30

1.35

Te
st

N
L

L

Kin8nm

50 60 70 80 90 100
−0.2

−0.1

0.0

0.1

0.2

Naval

50 60 70 80 90 100

0.15

0.20

0.25

0.30

0.35

0.40

Power

50 60 70 80 90 100
M

1.300

1.325

1.350

1.375

1.400

1.425

Te
st

N
L

L

Protein

50 60 70 80 90 100
M

1.25

1.30

1.35

1.40

Wine

20 30 40 50 60 70
M

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Yacht

Figure A.9: NLL for DUNs with decaying priors trained with R̃ (in blue) and R̃LURE (in
orange) evaluated on UCI datasets. A larger value of the orange line indicates that training
with R̃LURE harms performance, despite removing active learning bias.

A.4 Alternative depths for baseline methods 81

A.4 Alternative depths for baseline methods

The following plots compare the performance of DUNs to the baseline methods (in addition
to SGD) with different depth networks for the baseline methods. For each dataset and
baseline method, a single hidden layer network and a network with depth equal to the highest
posterior probability depth found by the DUN for that dataset are shown.

82 Additional results

100 200 300

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

N
L

L

Boston

DUN
SGD, depth 1
SGD, depth 4

100 200 300

0.0

0.2

0.4

0.6

0.8

Boston

DUN
MCDO, depth 1
MCDO, depth 4

100 200 300

0.00

0.25

0.50

0.75

1.00

1.25

Boston

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

N
L

L

Concrete

DUN
SGD, depth 1
SGD, depth 4

200 400 600

0.2

0.4

0.6

0.8

1.0

1.2
Concrete

DUN
MCDO, depth 1
MCDO, depth 4

200 400 600

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Concrete

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600
−1.5

−1.0

−0.5

0.0

0.5

Te
st

N
L

L

Energy

DUN
SGD, depth 1
SGD, depth 4

200 400 600
−1.00

−0.75

−0.50

−0.25

0.00

0.25

Energy

DUN
MCDO, depth 1
MCDO, depth 4

200 400 600

−0.50

−0.25

0.00

0.25

0.50

0.75

Energy

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600

0.8

1.0

1.2

1.4

Te
st

N
L

L

Kin8nm

DUN
SGD, depth 1
SGD, depth 5

200 400 600

0.8

1.0

1.2

Kin8nm

DUN
MCDO, depth 1
MCDO, depth 5

200 400 600

0.8

1.0

1.2

1.4

Kin8nm

DUN
MFVI, depth 1
MFVI, depth 5

200 400 600
Train set size

−1.0

−0.5

0.0

0.5

Te
st

N
L

L

Naval

DUN
SGD, depth 1
SGD, depth 7

200 400 600
Train set size

0.0

0.5

1.0

1.5
Naval

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600
Train set size

0.0

0.5

1.0

1.5

Naval

DUN
MFVI, depth 1
MFVI, depth 7

A.4 Alternative depths for baseline methods 83

200 400 600

0.2

0.4

0.6

0.8

Te
st

N
L

L

Power

DUN
SGD, depth 1
SGD, depth 7

200 400 600

0.1

0.2

0.3

0.4

Power

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600

0.2

0.4

0.6

0.8

1.0

1.2
Power

DUN
MFVI, depth 1
MFVI, depth 7

200 400 600
1.20

1.25

1.30

1.35

1.40

1.45

1.50

Te
st

N
L

L

Protein

DUN
SGD, depth 1
SGD, depth 7

200 400 600
1.20

1.25

1.30

1.35

1.40

Protein

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600
1.20

1.25

1.30

1.35

1.40

1.45

1.50

Protein

DUN
MFVI, depth 1
MFVI, depth 7

200 400 600
1.15

1.20

1.25

1.30

1.35

1.40

1.45

Te
st

N
L

L

Wine

DUN
SGD, depth 1
SGD, depth 6

200 400 600
1.15

1.20

1.25

1.30

1.35

1.40

Wine

DUN
MCDO, depth 1
MCDO, depth 6

200 400 600

1.2

1.3

1.4

1.5

Wine

DUN
MFVI, depth 1
MFVI, depth 6

50 100 150 200
Train set size

−1.5

−1.0

−0.5

0.0

0.5

1.0

Te
st

N
L

L

Yacht

DUN
SGD, depth 1
SGD, depth 2

50 100 150 200
Train set size

−1.0

−0.5

0.0

0.5

1.0

Yacht

DUN
MCDO, depth 1
MCDO, depth 2

50 100 150 200
Train set size

−0.5

0.0

0.5

1.0

Yacht

DUN
MFVI, depth 1
MFVI, depth 2

Figure A.10: NLL vs. number of training points evaluated on UCI datasets. The performance
of SGD, MCDO and MFVI models with a single hidden layer and with the optimal number
of layers found by the DUN is compared to the performance of DUNs.

84 Additional results

100 200 300

0.3

0.4

0.5

0.6

0.7

Te
st

R
M

SE

Boston

DUN
SGD, depth 1
SGD, depth 4

100 200 300

0.3

0.4

0.5

0.6
Boston

DUN
MCDO, depth 1
MCDO, depth 4

100 200 300

0.3

0.4

0.5

0.6

Boston

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

R
M

SE

Concrete

DUN
SGD, depth 1
SGD, depth 4

200 400 600
0.3

0.4

0.5

0.6

0.7
Concrete

DUN
MCDO, depth 1
MCDO, depth 4

200 400 600

0.4

0.6

0.8

Concrete

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600

0.1

0.2

0.3

0.4

0.5

Te
st

R
M

SE

Energy

DUN
SGD, depth 1
SGD, depth 4

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Energy

DUN
MCDO, depth 1
MCDO, depth 4

200 400 600

0.10

0.15

0.20

0.25

0.30

0.35

Energy

DUN
MFVI, depth 1
MFVI, depth 4

200 400 600

0.5

0.6

0.7

0.8

0.9

Te
st

R
M

SE

Kin8nm

DUN
SGD, depth 1
SGD, depth 5

200 400 600

0.5

0.6

0.7

0.8

Kin8nm

DUN
MCDO, depth 1
MCDO, depth 5

200 400 600

0.5

0.6

0.7

0.8

0.9

1.0

Kin8nm

DUN
MFVI, depth 1
MFVI, depth 5

200 400 600
Train set size

0.0

0.1

0.2

0.3

0.4

Te
st

R
M

SE

Naval

DUN
SGD, depth 1
SGD, depth 7

200 400 600
Train set size

0.2

0.4

0.6

0.8

1.0

Naval

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600
Train set size

0.2

0.4

0.6

0.8

1.0

Naval

DUN
MFVI, depth 1
MFVI, depth 7

A.4 Alternative depths for baseline methods 85

200 400 600
0.25

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

R
M

SE

Power

DUN
SGD, depth 1
SGD, depth 7

200 400 600

0.275

0.300

0.325

0.350

0.375

Power

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600

0.3

0.4

0.5

0.6

0.7

Power

DUN
MFVI, depth 1
MFVI, depth 7

200 400 600

0.85

0.90

0.95

1.00

1.05

1.10

Te
st

R
M

SE

Protein

DUN
SGD, depth 1
SGD, depth 7

200 400 600

0.85

0.90

0.95

1.00

Protein

DUN
MCDO, depth 1
MCDO, depth 7

200 400 600

0.85

0.90

0.95

1.00

1.05
Protein

DUN
MFVI, depth 1
MFVI, depth 7

200 400 600

0.80

0.85

0.90

0.95

1.00

Te
st

R
M

SE

Wine

DUN
SGD, depth 1
SGD, depth 6

200 400 600

0.80

0.85

0.90

0.95

Wine

DUN
MCDO, depth 1
MCDO, depth 6

200 400 600

0.80

0.85

0.90

0.95

1.00

1.05

Wine

DUN
MFVI, depth 1
MFVI, depth 6

50 100 150 200
Train set size

0.2

0.4

0.6

0.8

Te
st

R
M

SE

Yacht

DUN
SGD, depth 1
SGD, depth 2

50 100 150 200
Train set size

0.1

0.2

0.3

0.4

0.5

0.6

Yacht

DUN
MCDO, depth 1
MCDO, depth 2

50 100 150 200
Train set size

0.2

0.4

0.6

Yacht

DUN
MFVI, depth 1
MFVI, depth 2

Figure A.11: RMSE vs. number of training points evaluated on UCI datasets. The perfor-
mance of SGD, MCDO and MFVI models with a single hidden layer and with the optimal
number of layers found by the DUN is compared to the performance of DUNs.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis outline

	2 Background
	2.1 Active learning
	2.1.1 Acquisition functions

	2.2 Bayesian deep learning
	2.2.1 Variational inference
	2.2.2 Monte Carlo dropout
	2.2.3 Depth uncertainty networks

	2.3 Bias in active learning
	2.3.1 Unbiased risk estimators
	2.3.2 Interaction of biases in active learning

	3 Hypotheses: addressing biases in active learning with DUNs
	3.1 DUNs for active learning
	3.2 Addressing misspecification bias
	3.2.1 Correlation in batch acquisition

	3.3 Investigating active learning bias

	4 Results
	4.1 Experimental setup
	4.1.1 Data
	4.1.2 Model specifications

	4.2 Acquisition functions
	4.2.1 Toy regression with naïve batch acquisition
	4.2.2 Truncated BALD
	4.2.3 Stochastic BALD

	4.3 DUN and baseline performance
	4.3.1 Toy datasets
	4.3.2 Tabular regression
	4.3.3 Image classification

	4.4 Bias in active learning
	4.4.1 Quantifying active learning bias
	4.4.2 Training with unbiased risk estimators
	4.4.3 Overfitting bias
	4.4.4 Impact of the depth prior

	5 Conclusion
	5.1 Summary of findings
	5.2 Limitations and future work

	References
	Appendix A Additional results
	A.1 Acquisition function comparisons
	A.2 DUN and baselines comparisons
	A.3 Active learning bias experiments
	A.4 Alternative depths for baseline methods

