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Abstract

Gaussian process models are flexible, robust to overfitting and give good estimates of
predictive uncertainty. However, they are computationally expensive and approximations
must be made in order to apply them to large datasets.

This project focuses on the pseudo-point approximation developed by Hensman et al.
(2013), based on the foundations laid by Titsias (2009). Hensman’s pseudo-point approxima-
tion is a powerful and efficient sparse variational inference method for Gaussian Processes
with a stochastic optimization. This method is particularly beneficial when many obser-
vations have been made. Our aim is to improve this, first, by introducing an alternative
parameterisation to the approximate posterior (prior + diagonal instead of dense matrix),
whilst also utilising a natural gradient descent algorithm (Amari, 1998) (natural instead of
standard gradients).

More precisely, at the pseudo-points, the precision matrix of the approximate posterior,
originally parameterised as a dense matrix, is represented as the sum of prior precision and a
positive-definite diagonal matrix. This is motivated by this parameterisation being optimal
when not utilising pseudo-points (Opper and Archambeau, 2009). In addition, we extend the
method by replacing a standard gradient descent algorithm with a natural gradient descent to
optimise the variational parameters of the approximation.

We show the practical applicability and performance of these features on both synthetic
and real datasets. This work additionally investigates the performance of the natural gra-
dient descent algorithm in different settings (e.g. number of inducing inputs, number of
training points, minibatch size, and noise variance), compared with a standard gradient
descent algorithm, Adam (Kingma and Ba, 2014). These results give theoretical insight
into the convergence of the natural gradients as well as the alternative paramterisation, and
demonstrate the efficiency of the natural gradient algorithm.
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Chapter 1

Introduction

1.1 Introduction and motivation

Gaussian Processes (GPs) (Rasmussen, 2003) are a powerful approach for inference on
functions. By defining a distribution over functions, they provide a data-efficient and
flexible inference method with reliable uncertainty estimates. However, the computational
requirement of an exact implementation scales as O(N3) time, and as O(N2) memory, where
N is the number of training points, resulting in computational intractability in many practical
problems.

Fortunately, to address this, many approximation methods, so-called sparse GP approx-
imation methods, have been developed in recent years (Bui et al., 2017; Csató and Opper,
2002; Hensman et al., 2013; Lawrence et al., 2003; Quinonero-Candela and Rasmussen,
2005; Seeger et al., 2003; Snelson and Ghahramani, 2006; Titsias, 2009). The key idea of
those methods is to summarise the full GP via M inducing inputs (also known as pseudo-
points or pseudo-inputs) where typically M << N. This allows us to retain the favourable
properties of GPs but at a lower computational cost O(NM2) and memory storage O(NM).

The main sparse GP approximation methods follow one of two frameworks (Bui et al.,
2017): approximate generative models and approximate inference. The former can be
interpreted as performing exact inference under an approximate GP prior (Quinonero-Candela
and Rasmussen, 2005). While the latter can be seen as performing approximate (variational)
inference under an exact GP prior. This project focuses on the latter framework, namely the
sparse variational GP framework.

The variational free energy (VFE) method introduced by Titsias (2009) is perhaps the
most well known approach in the sparse variational GP framework. By minimizing a
Kullback-Leibler divergence (KL divergence) (Kullback and Leibler, 1951) between the
approximating and posterior processes, it performs variational inference to optimize the
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approximate posterior distribution. The main advantage of this method is that the inducing
locations are variational parameters rather than model parameters, so they are protected from
overfitting.

Based on the foundations laid in Titsias’s VFE method, Hensman proposed a sparse
variational GPs method for big data (Hensman et al., 2013). This uses exactly the same
posterior approximation as that of Titsia, but finds the optimal variational parameters using a
stochastic gradient descent algorithm. This allows us to reduce the computational complexity
from O(NM2) to O(M3), meaning that we are free to increase the number of observations N.

This project develops Hensman’s prior work, first, by introducing an alternative param-
terisation, namely efficient O(M) parameterisation, to the approximate posterior (prior +
diagonal instead of dense matrix). In the prior work, the approximate posterior is param-
eterised by a mean vector m and a dense covariance matrix S, earning M +M(M + 1)/2
variational paramters.

Original parameterisation: q(u) :=N (u;m,S)

Instead, we parameterise the precision matrix of the approximate posterior as the sum of
prior precision Kmm

−1 and a positive-definite diagonal matrix G and the mean vector as
the multiplication of the prior covariance and the mean in the affine transformation space.
This formulation is motivated by the parameterisation being optimal when not utilising
pseudo-points (Opper and Archambeau, 2009). It sacrifices the possibility of obtaining the
optimal approximate posterior in favour of reducing the number of variational parameters
from M+M(M+1)/2 to just 2M.

Alternative parameterisation: q(u) :=N
(

u;Kmmµ,
[
Kmm

−1 +G
]−1
)

In addition, we extend the prior work by replacing the standard gradients with the natural
gradients in the stochastic optimization of the variational parameters (natural instead of
standard gradients). Since the alternative variational parameters [µ,diag(G)] can be seen
as natural parameters in the affine tranformation space, this alternative parameterisation is
expected to accelerate, stabilise and make more robust the natural gradient descent algorithm.

1.2 Thesis outline and contributions

The remainder of this is thesis is organised as follows. In chapter 2 we present the nec-
essary background for the rest of the thesis. We discuss the sparse variational GPs, the
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natural gradient descent algorithm, and related work. In chapter 3 we propose an alternative
parameterisation for the approximate posterior in sparse variational GPs, and present the
motivation behind it. We demonstrate how natural gradients can be used to optimise the
variational parameters of this approximation. In chapter 4 we describe the experimental
methods and key concepts for the initialisation of parameters. In chapter 5 we first investigate
a natural gradient descent compared to a standard gradient descent (Adam), by testing them
in different settings (e.g. number of inducing inputs, number of training points, minibatch
size, and noise variance). Then, we assess our new natural gradient algorithm with the O(M)

parameterisation, and propose potential improvements. We present results with a number of
important findings:

• The key factors for NGD are M and the batch size

• If M is small enough, NGD is always faster than Adam

• If M is large and we do not use a minibatch, NGD is faster in the beginning, but both
converge after the same number of iterations

• Only, if M is large and minibatch is used, NGD is slower, but it still reaches the same
optimum as Adam

• O(M) parameterisation of the approximate posterior in sparse variational GP methods
can be efficiently combined with NGD using the affine transformation

• O(M) parameterisation can lead to fast convergence of the stochastic natural gradient
optimization

Lastly, conclusions, limitations of the proposed model, and comments over future research
are made in Chapter 6.





Chapter 2

Background and Related Work

2.1 Gaussian Processes

A Gaussian Process (GP) (Rasmussen, 2003) is a stochastic process where each finite
marginal distribution is a multivariate Gaussian distribution. It can be seen as a generalization
of a multivariate Gaussian distribution to infinitely many variables. It is a powerful approach
for inference on functions. By defining a distribution over functions, it allows direct inference
and learning to take place in the function space, with reliable uncertainty estimates.

Consider a training dataset D= (X,y) where X = {xi}N
i=1 ∈ RN×D is the set of training

inputs and y = {yi}N
i=1 ∈ RN is the corresponding target vector. Each entry yi is a possible

noisy and/or non-conjugate observation of the function fi ≡ f (xi) ∈ RN given by:

yi ∼ f (xi)+ εi, εi ∼N
(
0,β−1) (2.1)

We introduce a GP prior over the function of interest f (·). A GP is fully specified by its
mean function m(x) and kernel function k (x,x′) with the latter providing a way to evaluate
the covariance between any two points in the function input space. For the sake of simplicity
and without loss of generality, we will take the mean function m(x) to be the zero function
throughout this thesis.

f ∼ GP
(
0,k
(
x,x′

))
(2.2)

Choosing the right kernel is critical for GPs and typically its form must be specified in
advance as this restricts the property of the model and allows domain knowledge to be
incorporated. Thus, we choose a kernel based on our prior knowledge on the model. In this
project, we employ two common kernels: squared exponential (SE) and Matern 5/2 kernel.
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The SE kernel, also known as the Radial-basis function (RBF) kernel, is a stationary kernel
and appropriate for modelling very smooth functions defined as follows:

k
(
x,x′

)
= σ

2
f exp

(
−1

2
|x−x′|2

ℓ2

)
(2.3)

It is parameterised by its length scale ℓ > 0 and variance σ f . The former describes how
smooth the function of interest is, and the latter determines variation of function values. The
Matern kernel can be seen as a generalization of the SE kernel with an additional parameter
ν :

k
(
x,x′

)
=

1
Γ(ν)2ν−1

(√
2ν

ℓ

∣∣x−x′
∣∣)ν

Kν

(√
2ν

ℓ

∣∣x−x′
∣∣) (2.4)

where Kν(·) is a modified Bessel function and Γ(·) is the gamma function. We use ν = 2
5

(i.e. Matern 5/2 kernel) since it becomes a twice differentiable function.
Now we consider the distribution over the function values at the training points X:

p(f) =N (f | 0,Knn) (2.5)

where f is a vector and [Knn]i j = k
(
xi,x j

)
is the covariance matrix. The conditional likelihood

is also Gaussian:

p(y | f) =
N

∏
i=1

p(yi | fi) =
N

∏
i=1

N
(
yi | fi,β

−1) (2.6)

Thus, following the definition, the marginal likelihood is given by:

p(y) =
∫

p(y | f)p(f)df =N
(
y | 0,K′nn

)
(2.7)

where K′nn = Knn +β−1I. The predictive posterior distribution at test point X∗ is given by:

p(f∗ | X∗,D) =
∫

p(f∗ | X∗, f)p(f |D)df

=N
(

f∗ |K∗n
(
K′nn
)−1 y,K∗∗−K∗n

(
K′nn
)−1 K⊤∗n

)
(2.8)

Despite simple closed Gaussian form, the computation of both the marginal likelihood and
the predictive posterior require a matrix inversion operation to be performed, meaning that
the computational cost scales as O(N3) time and O(N2) storage. Thus, good approximations
are essential for practical inference in GPs.
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2.2 Sparse variational Gaussian Processes

2.2.1 Variational Inference in sparse Gaussian Processes

Sparse GP approximations have been developed to address the computational cost issue of
the original GPs. In sparse GP methods, a low rank approximation is built to the covariance
matrix based around M inducing points (also known as pseudo-points) where the number of
inducing points M is a user selected parameter and typically M << N. This approximation
allows us to avoid the potential redundancy of the data - commonly more data is observed
than is actually necessary to represent the posterior distribution - leading a computational
cost of O(NM2) and memory of O(NM).

Combining the idea of Variational Inference (VI) together with sparse GP approximation,
sparse variational GP methods are introduced. In general, VI methods aim to estimate
an intractable distribution. They define a parameterised tractable distribution, namely a
variational distribution q(f), and try to minimize the distance between the approximation
and the true distribution (Jordan et al., 1999). In the context of sparse GP approximation,
q(f) is used to approximate a true posterior distribution over M inducing points. This
approximation is made as close as possible to the true posterior by minimizing the Kullback-
Leibler divergence (Kullback and Leibler, 1951)).

q∗(f) = argmin
q

KL(q(f)||p(f | y,θ))

where θ is the hyperparameters. The KL term can be re-written using the predictive likelihood
and the Evidence Lower Bound (ELBO):

KL(q(f)||p(f | y,θ)) :=
∫

q(f) log
q(f)

p(f | y,θ)
d f

= Eq(f) [logq(f)]−Eq(f)

[
log

p(y, f | θ)
p(y | θ)

]
= Eq(f) [logq(z)]−Eq(f) [log p(y,z | θ)]+Eq(f) [log p(y | θ)]

= log p(y | θ)︸ ︷︷ ︸
Predictive Likelihood

−Eq(f)

[
log

p(y, f | θ)
q(f)

]
︸ ︷︷ ︸

ELBO
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Re-arranging, this expression yields:

Eqλ (f)

[
log

p(y, f | θ)
qλ (f)

]
︸ ︷︷ ︸

ELBO

= log p(y | θ)︸ ︷︷ ︸
Predictive Likelihood

−KL(qλ (f)||p(f | y,θ)) (2.9)

Thus, minimizing the KL divergence is equivalent to maximizing the ELBO. In the context
of sparse GP approximation, the log-predictive distribution itself is intractable. Thus, using
the ELBO as a loss function can be a useful alternative.

Fig. 2.1 The prediction samples before training and after training in the case of N = 100,M =
15, and the observation noise variance 0.01. The dataset is created from a simple sinusoidal
function.

Figure 2.1 show sample outputs from a sparse variational GP model before and after
training with 100 training inputs and 15 inducing inputs. We can see that it effectively learns
the underlying function using a small number of inducing inputs while estimating the reliable
uncertainty.

2.2.2 Variational Free Energy (VFE)

The variational free energy (VFE) method introduced by Titsias (2009) is perhaps one of
the most well known approaches in the sparse variational GP framework. By minimizing a
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KL divergence between the approximating and posterior processes, it performs variational
inference to optimize the approximate posterior distribution.

The key idea of the sparse variational GP is augmentation. Let us assume the same
setting as in the previous sections. VFE augments the initial joint distribution p(y, f) with
an additional latent vector u ∈ RN which contains values of the function f at the inducing
locations Z ∈ RM×D. Thus, the augmented joint distribution becomes:

p(y, f) = p(y | f)p(f | u)p(u). (2.10)

where p(u) is the marginal GP prior over u, and p(f | u) is the conditional GP prior. Each
terms on the right hand side of the above equation can be expressed as a Gaussian distribution
as follows:

p(u) =N (u | 0,Kmm) (2.11)

p(f | u) =N
(
f |KnmK−1

mmu, K̃
)

(2.12)

p(y | f) =N
(
y | f,β−1I

)
(2.13)

where Kmm is a M×M prior covariance matrix obtained by evaluating the kernel function
at Z, where Kmn and Knm = K⊤mn are cross covariance matrices obtained by evaluating the
kernel function between Z and X, and where K̃ = Knn−KnmK−1

mmKmn.
Note that the inducing inputs Z, which lie in the same space as the training inputs X, play

the role of variational parameters rather than model parameters. This means that they can be
optimized to improve the approximation, and also they are protected from overfitting.

By applying Jensen’s inequality, we obtain a lower bound to the exact log-marginal
likelihood of the model:

log p(y | θ) = log
∫

p(y, f | θ)df

≥
∫

q(f) log
p(y, f | θ)

q(f)
df

= Eq(f) log
p(y, f | θ)

q(f)
= LV FE (2.14)

where θ represents the hyperparameters. The difference between the lower bound LV FE

and the exact log-marginal likelihood can be expressed by the KL divergence between the
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variational distribution and the true posterior:

log p(y | θ)−LV FE = KL[q(f)∥p(f | y,θ)] (2.15)

Therefore, variational inference is performed by explicitly minimizing the distance between a
variational distribution and the true posterior distribution which is equivalent to maximizing
the lower bound LV FE . Note that this result agrees with the VI equation 2.9. Also note
that the exact marginal likelihood is recovered only when q(f) = p(f | y,θ). The variational
distribution is chosen to be the form:

q(f) = q(f̸=u, f | θ) = p(f̸=u | u,θ)q(u) (2.16)

where f̸=u is all of the elements of f not in u, p(f | u) is the conditional GP prior that
appears also in the joint equation 2.12, and q(u) is a variational distribution over the inducing
variables. This, with some linear algebraic manipulation, leads to

LV FE = logN
(
y | 0,KnmK−1

mmKmn +β
−1I
)
− 1

2
β tr(K̃) (2.17)

with the implicit approximating distribution q(u) having precision

Λ = βK−1
mmKmnKnmK−1

mm +K−1
mm (2.18)

and mean

û = βΛ
−1K−1

mmKmny. (2.19)

2.2.3 Sparse variational Gaussian Processes for big data

Based on the foundations laid in Titsias’s VFE method, Hensman proposed a sparse varia-
tional GPs method for big data (Hensman et al., 2013). It uses exactly the same posterior
approximation as that of Titsia, but finds the optimal variational parameters using a stochastic
variational inference (SVI) algorithm so that the complexity per optimization step is reduced
from O

(
NM2) to O

(
M3). This reduction in computational costs allows us to increase the

number of observations N.
We start with the same setting as VFE. By defining a latent vector u ∈RN which contains

values of the function f at the inducing locations Z ∈ RM×D, equations 2.10 to 2.13 remain
the same as before. Then, by applying Jensen’s inequality, we obtain a lower bound to the
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conditional probability:

log p(y | u) = log
∫

p(y, f | u)df

= log
∫

p(f | u)p(y | f)df

≥
∫

p(f | u) log p(y | f)df

= Ep(f|u) log p(y | f)
≜ L1 (2.20)

This lower bound can be calculated with computational cost of O(M3). Using factorisation
across the data p(y | f) = ∏

n
i=1 p(yi | fi) and equations 2.12 and 2.13, we can rewrite this

lower bound as follows:

exp(L1) =
n

∏
i=1

N
(
yi | µi,β

−1)exp
(
−1

2
β k̃i,i

)
(2.21)

where µ = KnmK−1
mmu and k̃i,i is the ith diagonal element of K̃. As a comparison to equa-

tion 2.15, the difference between this lower bound L1 and the true log conditional likelihood
is derived from the KL divergence between the posterior given both the inducing inputs and
training data p(f | u,y) and the posterior given only inducing inputs p(f | u):

log p(y | u)−L1 = KL[p(f | u)∥p(f | u,y)] (2.22)

This formula means that, if M = N and the inducing inputs are located at the same place
as the training inputs, u = f , Kmm = Knm = Knn, and K̃ = 0 are held and we can recover
the true conditional likelihood exp(L1) = p(u | f). Therefore, maximizing the lower bound
with respect to variational parameters Z is equivalent to maximizing this KL divergence and
ensures that Z are distributed amongst the training data X.

Note that substituting the standard expression of this lower bound exp(L1) for the
conditional likelihood p(y | u) gives a tractable bound on the marginal likelihood which is
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exactly the same as that of the VFE method (see equation 2.14):

log p(y) = log
∫

p(y,u)du

= log
∫

p(y | u)p(u)du

≥ log
∫

exp(L1)p(u)du

= LV FE (2.23)

Stochastic variational inference (SVI)

Given the expression for the lower bound L1, the fundamental problem for inference is to
maximize the lower bound. To tackle this issue, an approach, called stochastic variational
inference (SVI), is used. It allows variational inference for very large datasets. Although SVI
is a powerful approach, in order to use it in a sparse GP model, some modification on the
lower bound is required. In the following, we derive a new lower bound L2 which includes
an explicit variational distribution q(u), enabling SVI.

log p(y | X)≥ LV FE

= log
∫

exp(L1)p(u)du

= log
∫

exp(L1)p(u)
q(u)
q(u)

du

≥
∫

(L1 + log p(u)− logq(u))q(u)du

= Eq(u) (L1 + log p(u)− logq(u))

≜ L2 (2.24)

From the above we know that the optimal distribution is Gaussian, so we parameterise it as
q(u) = N(u |m,S). The bound L2 becomes:

L2 =
N

∑
i=1

{
logN

(
yi | k⊤i K−1

mmm,β−1
)
− 1

2
β k̃i,i−

1
2

tr(SΛΛΛi)

}
−KL(q(u)||p(u)) (2.25)
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where ki is a vector of the ith column of Kmn and ΛΛΛi = βK−1
mmkik⊤i K−1

mm. The gradients of
L2 with respect to the parameters of q(u) are computed as:

∂L2

∂m
= βK−1

mmKmny−ΛΛΛm (2.26)

∂L2

∂S
=

1
2

S−1− 1
2

ΛΛΛ (2.27)

Setting the derivatives to zero recovers the optimal solution ΛΛΛ
−1 = S, û = m. The equality

in LV FE ≥ L2 holds only at this unique maximum. Now, the simplest approach would
be stochastic gradient ascent which takes steps in the direction given by the gradient with
respect to both the mean and covariance of the approximate posterior m,S. However, this
approach would not guarantee the symmetry or positive definiteness of the covariance matrix
S, meaning that it requires further constraints. To address this issue, a scalable algorithm
for approximating posterior distributions is suggested by Hoffman et al. (2013). Instead of
the standard gradient, it uses the natural gradient (Amari, 1998) which ensures the positive
definiteness of the covariance matrix while reducing the computational cost.

Here we briefly introduce the stochastic natural gradient algorithm used in (Hensman
et al., 2013). See section 2.3 for detailed explanation on the natural gradient descent. The
approximate natural gradient is the usual gradient re-scaled by the inverse Fisher information:
∇̃θL= (∇θL)F−1

θ
. To work with the natural gradients of the distribution q(u), we first recall

the natural parameters θ and expectation parameters η :

θ1 = S−1m, θ2 =−
1
2

S−1

η1 = m, η2 = mm⊤+S

In the exponential family, the Fisher information takes a particularly simple form in the
natural parameters (Hensman et al., 2012). Using this simple form, the natural gradient can
be written as the standard gradient with respect to the expectation parameters:

∇̃θL= (∇θL)F−1
θ

=
∂L

∂θ
(

∂θ

∂η
)−1 =

∂L

∂η
.
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Using θ(t+1) = θ(t)+ γ∇̃θL where γ is the step size, the natural gradient update can be
expressed as:

θ2(t+1) =−
1
2

S−1
(t+1)

=−1
2

S−1
(t) + ℓ

(
−1

2
ΛΛΛ+

1
2

S−1
(t)

)
,

θ1(t+1) = S−1
(t+1)m(t+1)

= S−1
(t) m(t)+ ℓ

(
βK−1

mmKmny−S−1
(t) m(t)

)
and taking a step of unit length then recovers the same solution as described above in equa-
tion 2.26. This confirms the result discussed by Hensman et al. (2012) that taking this unit
step is the same as performing a VB update. We can now obtain stochastic approximations to
the natural gradient by considering the data either individually or in minibatches. We note the
convenient result that the natural gradient for θ2 is positive definite (i.e. ΛΛΛ = K−1

mm +∑i Λi
)
.

This means that taking a step in the natural gradient direction always leads to a positive
definite matrix, and our implementation need not parameterise S in any way to ensure positive
definiteness, c f . standard gradient approaches on covariance matrices.

Note that sparse variational approximate inference in non-conjugate settings has been
addressed in (Hensman et al., 2015).
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2.3 Natural Gradient Descent

Natural gradient was used for variational inference for the first time by Sato (2001), where
it was shown that for an exponential family conditionally conjugate model, the Natural
Gradient Descent (NGD) corresponds exactly to the fixed point variational update as long
as the step size is set to 1. In conjugate cases, the simplification of the update steps of the
natural gradient is investigated by Hensman et al. (2012); Hoffman et al. (2013) achieving fast
convergence. Recent works extended the use of NGD to the non-conjugate cases achieving
improved speed of convergence when compared to the standard gradient approach (Khan
and Nielsen, 2018; Salimbeni et al., 2018). The three most important advantages of natural
gradients are,

1. Paths following the natural gradient are invariant to reparameterisation (Martens, 2014),

2. The natural gradient direction is given by the ordinal gradient rescaled by the inverse
Fisher information matrix ∇̃ξL= (∇ξL)F−1

ξ
(Amari, 1998),

3. NGD can solve problems in ill-conditioned settings where standard gradient methods
fail (Salimbeni et al., 2018).

Let ξ be the parameters of a distribution pξ , and F(ξ ) the corresponding Fisher in-
formation matrix. Amari (1998) proposed Natural Gradient Ascent, which is a form of
pre-conditioned Gradient Ascent in a function f of ξ :

ξ
(t+1) = ξ

(t)+ l(t+1)F
(

ξ
(t)
)−1 d f

dξ

∣∣∣∣
ξ :=ξ (t)

for step sizes l(t+1) > 0. Note the difference between Gradient Ascent and Gradient Descent.
Essentially they are the same method to calculate the slope of objective function, but Gradient
Ascent aims at maximizing the objective function as above, while Gradient Descent aims at
minimizing some objective function. Thus, NGD updates can be expressed as:

ξ
(t+1) = ξ

(t)− l(t+1)F
(

ξ
(t)
)−1 d f

dξ

∣∣∣∣
ξ :=ξ (t)

In other words, if the objective function is convex we use Gradient Descent and if it is
concave we use we use Gradient Ascent. In practice we can easily switch between the two
by setting the loss function negative −L.
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2.3.1 Conjugacy in Exponential Families

Consider an exponential family prior distribution. Following the definition of the exponential
family, it can be written as:

p(u) := h(u)exp(⟨θ0,φ(u)⟩−A(θ0)) (2.28)

where ⟨·, ·⟩ denotes the inner product, θ0 ∈ RD is the natural parameters, h : RP→ R is the
base measure, φ : RP→ RD is the sufficient statistic function, and A : RD→ R is the log
partition function. For example, the natural parameters of a Gaussian with mean m ∈ RD

and covariance matrix S ∈ RD×D are given by stacking S−1m and vec
(
−1

2S−1) into a single
vector, where vec(·) transforms a matrix into a vector by stacking its columns on top of one
another.

natural parameters: θ = [θ1,θ2] =

[
S−1m,vec

(
−1

2
S−1
)]

This prior has a special relationship to the likelihood:

p(y | u) := Sexp(⟨θ̃ ,φ(u)⟩) (2.29)

Furthermore, the corresponding posterior has the same form as the prior:

p(u | y) = h(u)exp(⟨θ1,φ(u)⟩−A(θ1)) , θ1 := θ0 + θ̃ . (2.30)

This is known as a con jugacy relationship between the prior and likelihood, and we say that
thelikelihoodiscon jugatetotheprior.

Letting pθ be some exponential family, written in terms of its natural parameters θ . We
can equivalently represent it through its expectation parameters, which are defined as:

η(θ) := Epθ
[φ(u)] (2.31)

For example, for a Gaussian, these are given by stacking m and vec
(
mm⊤+C

)
into a single

vector.

expectation parameters: η = [η1,η2] =
[
m,mm⊤+S

]
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The expectation parameters have two important properties. Firstly, they are equal to the
gradient of the log partition function with respect to the natural parameters:

η =
dA
dθ

(2.32)

Thus, manipulating equation 2.31 and 2.32 yields:

η(θ) = Epθ
[φ(u)] =

dA
dθ

∣∣∣∣
θ :=θt

(2.33)

Secondly, the Fisher information matrix for an exponential family distribution pθ is

Fθ =
dµ

dη
(2.34)

2.3.2 Natural gradients in variational models

Given the expression for the lower bound L, the fundamental problem is to minimize the KL
divergence between the approximate variational distribution and the true distribution. The
simplest approach would be to optimize the objective using gradient descent which takes
steps in the direction given by the standard gradient. However, for probability distribution, the
standard gradient may derive an unnatural direction since it is based on Euclidean distances.
Consider the two pairs of Gaussians N(0,0.1),N(1,0.1) and N(0,1000.1),N(1,1000.1).
Whilst the former pair are different, and the latter pair almost identical, the Euclidean
distance is the same. To address this issue, recent works use a NGD method which takes steps
in the direction given by the natural gradients instead of the ordinal gradients (Hensman
et al., 2012; Hoffman et al., 2013).

Consider performing variational inference in a model whose prior has the form of
equation 2.28, but whose likelihood is arbitrary. We will constrain our approximate variational
posterior be of the same form as the prior:

qθq(u) := h(u)exp
(〈

θq,φ(u)
〉
−A

(
θq
))

(2.35)

Then, a natural gradient step is:

θ
(t+1)
q = θ

(t)+ l(t+1)
[
F(t)
]−1 dL

dθq

∣∣∣∣
θq=θ

(t)
q

(2.36)

where L is the ELBO, which for the time being we will treat as being just a function of θq,

and where F(t) := F
(

θ
(t)
q

)
. It turns out that the consequence of the assumptions that we
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have made about the prior and approximate posterior simplify L substantially. To see this,
first write out L using the expressions for the prior and qθq:

L
(
θq
)
= Eqθq

[
log

p(y | u)p(u)
qθq(u)

]
= Eqθq

[log p(y | u)]+Eqθq

[(
θ0−θq

)⊤
φ(u)+A

(
θq
)
−A(θ0)

]
= r
(
θq
)
+
(
θ0−θq

)⊤
η
(
θq
)
+A

(
θq
)
−A(θ0) , (2.37)

where r
(
θq
)

:= Eqθq
[log p(y | u)] is the so-called reconstructionterm. From this it is clear

that the derivative of L w.r.t. the variational parameters is

dL
dθq

=
dr

dθq
−η

(
θq
)
+

dµ

dθq

(
θ0−θq

)
+

dA
dθq

=
dr

dθq
−η

(
θq
)
+F

(
θq
)(

θ0−θq
)
+η

(
θq
)

=
dr

dθq
+F

(
θq
)(

θ0−θq
)
. (2.38)

Substituting this result into the natural gradient step (equation 2.36) yields

θ
(t+1)
q = θ

(t)
q + l(t+1)

[
F(t)
]−1

[
F(t)

(
θ0−θ

(t)
q

)
+

dr
dθq

∣∣∣∣
θ
(t)
q

]

= θ
(t)
q + l(t+1)

[[
F(t)
]−1

F(t)
(

θ0−θ
(t)
q

)
+
[
F(t)
]−1 dr

dθq

∣∣∣∣
θ
(t)
q

]

= θ
(t)
q + l(t+1)

(θ0−θ
(t)
q

)
+

dθq

dη

∣∣∣∣
ηt

dr
dθq

∣∣∣∣∣
θ
(t)
q


=
[
1− l(t+1)

]
θ
(t)
q + l(t+1)

[
θ0 +

dr
dη

∣∣∣∣
ηt

]
(2.39)

where ηt := η

(
θ
(t)
q

)
.



Chapter 3

Efficiently parameterised inducing point
VI for GPs using stochastic natural
gradients

3.1 Efficient O(M) parameterisation of the approximate
posterior

This project develops the prior works on sparse variational GP models (Hensman et al.,
2013; Titsias, 2009), first, by introducing an alternative paramterisation to the approximate
posterior. In the prior work, the approximate posterior is parameterised in terms of a mean
vector m and a dense covariance matrix S, earning M+M(M+1)/2 variational paramters
(i.e. M parameters in m and M(M + 1)/2 parameters in S since S has a unique Cholesky
decomposition: S = LL⊤).

Original parameterisation: q(u) :=N (u;m,S)

As an alternative, we can parameterise the precision matrix of the approximate posterior
S−1 as the sum of prior precision K−1

mm and a positive-definite diagonal matrix G and the
mean vector m as the multiplication of the prior covariance matrix Kmm and a mean vector in
the affine transformation space µ . This parameterisation allows us to reduce the number of
variational parameters from M+M(M+1)/2 to just 2M (i.e. M in µ and M in diag(G)). In
this paper we refer to this alternative parameterisation as the efficient O(M) parameterisation
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of the approximate posterior.

Alternative parameterisation: q(u) :=N
(

u;Kmmµ,
[
K−1

mm +G
]−1
)

Futhermore, we combine this variational method with the stochastic natural gradient
descent algorithm (Amari, 1998). In this paper, we refer to our sparse variational GP model
with efficiently parameterised approximate posterior combined with NGD as our (NGD)
method.

In return for reducing the number of variational parameters from M+M(M+1)/2 to just
2M, the likelihood of obtaining the optimal approximate posterior is expected to decline. We
consider that the loss in accuracy may be small, and that we should benefit from improved
numerical stability during training and faster convergence.

As far as we know, the only other work on this efficient O(M) parameterisation was
conducted by Panos et al. (2018). In this prior work, the experiments presented did not
use natural gradients, and leave open questions around the overall performance of such
parameterisation.

3.1.1 Motivation

The motivation behind our efficient O(M) parameterisation is basically the computational cost.
Panos et al. (2018) mentioned that all previous work on sparse variational GPs, including the
two methods introduced in the previous section (Hensman et al., 2013; Titsias, 2009), do not
take into account the dimensionality of the input space D when expressing time complexities
and somehow D is assumed to be small or of the order of M. Since D appears in the lower
bound only through the computation of the covariance matrix Kmm and the cross covariance
matrix Kn′m, where n′ is the size of minibatch which scales as O(M), the time complexity
with respect to D is clearly O

(
DM2) since evaluating any standard kernel function on each

pair of instances scales as O(D). Thus, each optimization step of the lower bound actually
scales overall as O

(
DM2 +M3) and when D is larger than M the term O

(
DM2) dominates.

For instance, in a dataset as MNIST where D = 784 and M = 500 the optimization of the
bound will roughly be of order O

(
M3), while in other datasets with even slightly larger

D, such as the CIFAR-10 dataset where D = 3072, the term O
(
DM2) dominates and thus

results in slower training. Thus, we need more computationally economical parameterisation
for the approximate posterior q(u).

According to Opper and Archambeau (2009), when not utilising pseudo-points (i.e.
non-sparse variational GP models), the optimal GP variational approximation to the posterior
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is given as follows:

q( f ) = q(f)p( f ̸=f|f) q(f) :=N
(

f;m,
[
K−1

nn + Ĝ
]−1
)

(3.1)

where m is a vector, K−1
nn is a prior precision matrix, and G is a positive-definite diagonal

matrix. This approximate posterior is equivalent to the exact posterior obtained under
a Gaussian likelihood whose observations and variance are a function of m and G. This
approximation requires 2N variational parameters causing the GP scaling problem. To address
this issue, we combine this parameterisation with a pseudo-point approximation (Hensman
et al., 2013). Let us partition f into two different groups of variables: an M dimensional
vector u (relevant to inducing inputs) where M < N, and the others in f ̸=u.

q( f ) = q(u)p
(

f ̸=u | u
)
, q(u) :=N

(
u;Kmmm,

[
K−1

mm +G
]−1
)

(3.2)

where m is replaced by Kmmm so that it will be in the same affine transformation space as the
vecG (see section 3.2 for detailed explanation). We consider that we can still benefit from this
computationally economical parameterisation with the use of pseudo-point approximations.

We now present the motivation behind the use of the natural gradient combined with
the alternative parameterisation. NGD is invariant to the parameterisation of the target
distribution. Further, its applicability to a sparse variational GP model in the conjugate case
is shown by Hensman et al. (2013) and is explored in the non-conjugate stochastic settings
by Salimbeni et al. (2018). Thus, we consider that, with our alternative parameterisation,
we can still benefit from the stability and fast convergence of NGD, and possibly we can
further accelerate, stabilise, and make more robust NGD. However, in practice, we cannot
use the natural gradient directly for the hyperparameter optimization because we do not have
a probability distribution for the hyperparameters. Following the suggestion by Salimbeni
et al. (2018), instead of direct use of natural gradients, we use a sequential scheme where
we perform a step of Adam on the hyperparameters, followed by a step of NGD on the
variational parameters. See section 4.1.1 for a detailed explanation of the implementation.

3.1.2 Theoretical understanding

In variational inference, the most commonly used parameterisation is in terms of the mean
and covariance m,S, where S is further parameterised based on the Cholesky decomposition
S = LL⊤ to maintain positivity of the covariance. However, this parameterisation can lead to
slow convergence due to the strong dependence of m,S with the kernel matrix Kmm from the
prior p(u) =N (u | 0,Kmm). To highlight this dependence, we first rewrite the lower bound
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L2 in Hensman et al. (2013) as follows (see equation 2.24 and 2.20 for the definition of L2

and L1 respectively):

log p(y | X)≥ L2

= Eq(u) (L1 + log p(u)− logq(u))

=
∫

(L1 + log p(u)− logq(u))q(u)du

=
∫

L1q(u)du−
∫

q(u) log
q(u)
p(u)

du

=
∫ ∫

(log p(y | f)) p(f | u)q(u)dfdu−KL(q(u)||p(u))

= Eq(f) [log p(y | f)]−KL(q(u)||p(u))

=
N

∑
i=1

Eq(u) [log p(yi | fi)]−KL(q(u)||p(u)) (3.3)

where q( fi) =
∫

p( fi | u)q(u)du.
We can further rewrite this lower bound by marginalizing out f instead of marginalizing

out u as follows:

log p(y | X)≥
N

∑
i=1

Eq( fi) [logF (yi,u)]−KL(q(u)||p(u)) (3.4)

where logF (yi,u) = Eq( fi|u) [log p(yi,u)].
A straightforward derivation similar to the proof in Opper and Archambeau (2009) can

reveal that at maximum it holds m = Kmmµ and S =
(
K−1

mm +Λ−1)−1 for some vector µ and
some full (non-diagonal) positive definite matrix Λ associated with the second derivatives of
the first data term in the above bound. Given this, we parameterise q(u) in terms of (µ,Λ)
so that we only need to compute the prior covariance matrix Kmm once at the beginning of
the process. However, this can still lead to a slow optimization because there are O

(
M2)

variational parameters to be optimized in the full Λ matrix. Therefore, we propose to simplify
this parameterisation by replacing Λ with a diagonal covariance matrix G leading to our
efficient O(M) parameterisation shown in

m = Kmmµ, S =
(
K−1

mm +G
)−1

= Kmm−Kmm
(
Kmm +G−1)−1 Kmm (3.5)

where µ ∈ RM is a real-valued vector of variational parameters and G is a positive diagonal
matrix (i.e. each diagonal element is constrained to be positive) parameterised by M varia-
tional parameters. Thus, overall q(u) is parameterised by 2M variational parameters while
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all the remaining structure comes from a careful preconditioning with the prior covariance
matrix Kmm.

Note that we can recover the expression of q(f) = N
(
f |m f ,S f

)
using the efficient

parameterisation of q(u) as:

m f = Knnµ, S f = Knn−Knm
(
Kmm +G−1)−1 Kmn (3.6)

which can recover the optimal q∗(f) when M = N inducing inputs are placed at the location
of the training inputs (i.e. Z = X). In other cases, the restricted covariance in q(f) will not be
able to match exactly the optimal q∗(f), but in practice it tends to be very flexible especially
when we optimize over the inducing inputs Z so that a posteriori f is well reconstructed by u.

Furthermore, the above parameterisation of q(u) leads to a numerically stable and
simplified form of the lower bound. Specifically, the KL divergence term in 3.3 reduces to

KL[q(u)∥p(u)] =
1
2

µ
⊤Kmmµ− 1

2
tr
((

Kmm +G−1)−1 Kmm

)
+

1
2

log
∣∣Kmm +G−1∣∣− 1

2
log |G−1|

(3.7)

while each marginal q( fi) in the expectations of the first data term in 3.3 becomes q( fi) =

N ( fi | mi,si) where mi and si are the i -th elements of the vectors m f and S f in 3.6. Therefore,
the overall bound in 3.3 obtains a simplified and numerically stable form because of the
cancellation of all inverses and determinants of Kmm. At each optimization the only matrix
we need to decompose using Cholesky decomposition is Kmm +G−1, which is in an already
numerically stable form due to the inflation of the diagonal of Kmm with G−1. In practice
we add a small jitter to the variational parameters diag(G) to ensure numerical stability
throughout optimization (in our experiments the jitter level is set to 10−10 ).

3.2 Affine transformation and the natural parameters

This section explains how we perform NGD on our efficient O(M) parameterisation. To
perform NGD, the natural parameters are required. Thus, in the original parameterisation
q(u) =N (u;m,S), we compute the natural parameters from the mean and covariance matrix
as explained in the section 2.2.3 and 2.3.1. Instead, in our alternative parameterisation
q(u) := N

(
u;Kmmµ,

[
K−1

mm +G
]−1
)

, NGD is performed directly on the new variational
parameters µ and diag(G) by constructing a new exponential family for which µ and diag(G)

are the natural parameters.
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First, let us consider a general case of parameterising the natural parameter θ in terms of
some other parameter β . Specifically, consider

θ(β ) :=Cβ + c (3.8)

for some linear transformation C (e.g. a matrix) and vector c. The corresponding exponential
family density can be expressed in terms of β :

p(u) = h(u)exp(⟨θ(β ),φ(u)⟩−A(θ(β )))

= h(u)exp(⟨Cβ + c,φ(u)⟩−A(Cβ + c))

= h(u)exp(⟨c,φ(u)⟩+ ⟨β ,C∗φ(u)⟩−A(Cβ + c)) (3.9)

where ⟨·, ·⟩ denotes the inner product, h : RP→ R is the base measure, φ : RP→ RD is the
sufficient statistic function, A : RD→ R is the log partition function, and C∗ is the adjoint of
C, which is equivalent to C⊤ if C is a real-valued matrix. Now let

hβ (u) := h(u)exp(⟨c,φ(u)⟩) (3.10)

φβ (u) :=C⊤φ(u) (3.11)

Aβ (β ) := A(Cβ + c) (3.12)

Expressing equation 3.9 in terms of these quantities yields another exponential family density:

pβ (u) := hβ (u)exp
(〈

β ,φβ (u)
〉
−Aβ (β )

)
(3.13)

where β is the natural parameter.
Now, let us consider a specific case of our parameterisation. The natural parameter of the

approximate posterior can be parameterised as the precision matrix S−1 as follows:

θ = [θ1,θ2] =

[
S−1m,vec

(
−1

2
S−1
)]

(3.14)

Let c ∈ RD2
and C ∈ RD2×D be the matrix such that

c := vec(K−1
mm) (3.15)

vec(G) =C diag(G) (3.16)
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Then, using the definition of G, the precision component of the natural parameter in equa-
tion 3.14 can be written as:

vec
(
S−1)= c+Cg (3.17)

Thus, our new parameter diag(G) is the natural parameter in an affine subspace and can be
used for NGD performed in this affine subspace. Similarly, we can use our new parameter µ

as the natural parameter in this affine subspace.
To perform NGD efficiently, we need the expectation parameter in the affine transforma-

tion space as discussed in section 2.3. Using the definition for the expectation parameters in
equation 2.32, it can be derived using the expectation parameter in the original space:

ηa f f ine
⊤ =

∂Aa f f ine

∂θa f f ine

=
∂A
∂θ

∂θ

∂θa f f ine

= η
⊤ ∂θ

∂θa f f ine
(3.18)

This means that the relationship of the expectation parameters η ,ηa f f ine can be represented
by the mapping between the natural parameters in the affine transformation space and the
original space. Thus, the gradient with respect to the expectation parameters is given as
follows:

∂η

∂ηa f f ine
=

(
∂θa f f ine

∂θ

)⊤
(3.19)

Thus, using the above equation, the natural gradient can be calculated as follows:

∇̃θθθ a f f ineL=
∂L

∂ηa f f ine

=
∂L

∂η

∂η

∂ηa f f ine

=
∂L

∂η

(
∂θa f f ine

∂θ

)⊤
(3.20)





Chapter 4

Experiments and discussion

In this chapter we investigate the efficiency of the natural gradient method in a sparse varia-
tonal GP model, and explore the practical applicability of our efficient O(M) parameterisation
for the approximate variational posterior. We start by explaining the implementation of the
methods and the crucial step of parameter initialisation. We then evaluate the performance
of the models, firstly on several one-dimensional synthetic datasets, and secondly on a real
dataset.

4.1 Experimental methods

4.1.1 Natural Gradient Descent

The attractive features of natural gradients are well understood. However, as far as we know,
the conditions where natural gradients outperform ordinal gradients was, to date, unexplored.
Thus, this project seeks to substantiate the advantages of natural gradients under a number of
settings as well as confirming the superiority of natural gradients.

However, in practice, there is an issue in hyperparameter optimization using natural
gradients. As we do not have a probability distribution for the hyperparameters, we cannot
use natural gradients directly for the hyperparameter optimization. Thus, following the
suggestion by Salimbeni et al. (2018), we perform a full stochastic optimization using natural
gradients in the following way: a first step using Adam to optimize the hyperparameters
(with step size γadam, followed by a second step using NGD to optimize the variational
parameters m,S (with step size γ). In this project, this sequential two step scheme is referred
as NGD optimization. For a comparison, we will use Adam to simultaneously optimize both
variational parameters and hyperparameters in a single step, referred to as Adam optimization.
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4.1.2 Efficient O(M) parameterisation of the approximate posterior

Following the investigation on the natural gradients, we test our method, a pseudo-point ap-
proximation with the efficient O(M) parameterisation of the approximate posterior combined
with NGD. As discussed in the previous chapter, we parameterise the Gaussian variational
posterior using our alternative variational parameters µ and diag(G), and perform NGD on
them considering they are the natural parameters in an affine transformation space.

Again, a stochastic variational inference is performed sequentially: a first step using
Adam to optimize the hyperparameters, followed by a second step using NGD to optimize
the variational parameters which is now µ and operatornamediag(G) instead of m and S.

4.1.3 Datasets and parameter initialisation

For the experiments, we need a training dataset D= (X,y), where X= {xi}N
i=1 ∈RN×D is the

set of training inputs, and y = {yi}N
i=1 ∈ RN is the corresponding target vector. This section

presents three different datasets which we will repeatedly use throughout the experiments (a
synthetic sinusoidal, a synthetic GP, and the NAVAL dataset). Furthermore, we show how
parameters are initialised. Regardless of the datasets, we use a small jitter level of 10−10,
and a Gaussian likelihood where the likelihood variance is initialised to 0.1 based on our
empirical research. The step size of Adam is set to 10−2 if not otherwise notated.

Synthetic sinusoidal dataset

The function below is used to produce the synthetic sinusoidal dataset:

f (x) = sin(3xπ)+0.3cos(9xπ)+0.5sin(7xπ)

The training inputs N = 100 are drawn from a uniform distribution on [−1,1]. The observa-
tion is drawn from the function above and the observation noise with variance β−1 = 10−2 is
added. The inducing inputs M = 10 are initialised with k-mean. We use an SE kernel (see
equation 2.3) with kernel length scale and kernel variance initialised based on the scheme
in Ulapane et al. (2020).

Synthetic GP dataset

As another simple toy dataset we use a synthetic GP dataset. The training inputs N = 100
are drawn from a uniform distribution on [−1,1]. The observation is drawn jointly from a
single GP whose kernel is an SE kernel with kernel length scale ℓ= 0.1 and kernel variance
σSE = 0.5. The observation noise with variance β−1 = 10−2 is added. The inducing inputs



4.1 Experimental methods 29

M = 10 are initialised with k-mean. We use an SE kernel with kernel length scale and kernel
variance initialised based on the scheme in Ulapane et al. (2020).

Real dataset: NAVAL

To show the stability of natural gradients in ill-conditioned settings, we employ the NAVAL
dataset (Crisher and Souva, 2013) as our real dataset. In ill-conditioned settings ordinary
gradients suffer from instability (Sun et al., 2009) and slow convergence. As the natural
gradient is invariant to parameterisation, NGD should not be adversely affected by issues
of conditioning. The NAVAL dataset contains N = 11000 training inputs with D = 16
dimensions, and target values uniformly distributed in 51 increments between 0.95 and 1.
Following the settings in Salimbeni et al. (2018), we use a minibatch size of 256, the inducing
inputs of M = 100, and a Matern 5/2 kernel (see equation 2.4) with the length scale initialised
to the square root of the data dimension ℓ =

√
D = 4 and the kernel variances initialised

to σMatern = 2. We use a Gaussian likelihood with the likelihood variance initialised to
σlikelihood = 0.1. The step size of NGD is scheduled to begin with γinitial = 10−4 and be
increased through 40 iterations to γfinal = 10−1. For the NAVAL dataset, we apply data
normalization explained in detail below.

Data normalisation

A common data normalisation scheme is to scale the training dataset D= (X ∈ RN×D,y ∈
RN) to have zero mean and unit covariance. Suppose µx =

[
µ1,µ2, . . . ,µ j, . . . ,µD

]
is

a row vector where µ j, j = 1,2, . . . ,D is the mean of the jth column of X, and σx =[
σ1,σ2, . . . ,σ j, . . . ,σD

]
is a row vector where σ j, j = 1,2, . . . ,N is the standard deviation of

the jth column of X. Now normalization is done for all j as follows.

(X)∗, j←
(X)∗, j−µ j

σ j
(4.1)

Similarly, suppose µy and σy are the mean and standard deviation respectively, of the target
vector y = {yi}D

i=1. Now, normalization of y is done by performing

yi←
yi−µy

σy
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Kernel initialisation scheme

Initialisation of kernels is important because, if variance of kernels over outputs is much
smaller than that of kernels over inputs, the model could have difficulties in finding the
expected correlations between outputs. This project uses the initialisation scheme introduced
in Ulapane et al. (2020) for SE kernels.

The set of hyperparameter initial values for the kernel length scale and kernel variance is
denoted as {σSE , ℓSE}.

To start with, constructing sets S1,S2, . . . ,SD is proposed where S j =
{

y,X∗, j
}

for j =
1,2, . . . ,D. X∗, j is the jth column of X. All S j, j = 1,2, . . . ,D are to be rearranged such that
X∗, j will be sorted to be in ascending order, and y will be sorted correspondingly. From
this point onward, X̃∗, j would represent the sorted jth column of X, and ỹ j would represent
correspondingly sorted y, and S j would represent a sorted set. Next, constructing the set
dx =

[
dx1,dx2, . . . ,dx j, . . . ,dxD

]
is proposed where dx j for j = 1,2, . . . ,D is given by

dx j =
1

kx j

N−1

∑
i=1

∣∣∣X̃i, j− X̃i+1, j

∣∣∣
where kx j is the number of instances that X̃i, j ̸= X̃i+1, j for i = 1,2, . . . ,N−1. Then, ℓSE is
set to be the mean of dx and naturally ℓSE > 0 condition would hold.

To determine σSE , constructing the set dy =
[
dy1,dy2, . . . ,dy j, . . . ,dyD

]
is proposed where

dy j for j = 1,2, . . . ,D is given by

dy j =
1

ky j

m−1

∑
i=1

∣∣∣(ỹ j
)

i−
(
ỹ j
)

i+1

∣∣∣
where

(
ỹ j
)

i is the ith element of ỹ j and ky j is the number of instances where
(
ỹ j
)

i ̸=
(
ỹ j
)

i+1
for i = 1,2, . . . ,N− 1. Then σSE is set to be the mean of dy. There lies a possibility of
σSE = 0 occurring, and if σSE becomes zero, the covariance function values would become
zero. Therefore, σSE ̸= 0 should hold for the covariance function to produce meaningful
values. This imposes that an exception handling routine should come into effect in the rare
event of σSE = 0 occurring, to indicate that the available training data set is unsuitable to
proceed with GP regression, and that more training points are required to make sure σSE ̸= 0
results.
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4.2 Experimental results

4.2.1 Overview

All experiments described in this chapter utilize the library GPflow (Matthews et al., 2017),
which takes advantage of the benefits of TensorFlow 2.0. The performance is evaluated
in terms of the progress in the ELBO and hyperparameter values, as well as the output
prediction samples in the cases of synthetic datasets.

The hyperparameters contain the kernel variance s2
f , the kernel length scale ℓ and the

noise variance σ2
n . For hyperparameter optimization, we use the Adam (Kingma and Ba,

2014) optimizer with default parameter values and a fixed learning rate of 0.01, if not
otherwise notated. In the experiments on NGD in sparse variational models in section 4.2.2,
the variational parameters contain a mean vector m and a covariance matrix which is further
parameterised by its Cholesky decomposition S = LLtop. They are initialised as a zero
mean vector and a unit covariance matrix. Whereas, in the experiments on our alternative
parameterisation in section 4.2.3, the variational parameters contain µ and diag(G). They
are initialised as a zero mean vector and a vector filled with ones so that G will be a unit
matrix.

We use the Gaussian likelihoods for all experiments, with the likelihood variance ini-
tialised to 0.1 if not otherwise notated.

4.2.2 Natural Gradient Descent

This section investigates the performance of a sparse variational GP model with natural
gradient descent, compared with a sparse variational GP with a standard gradient descent
algorithm, Adam.

On a small synthetic sinusoidal data set, we first compare the quality of direction and
the speed of convergence. The models try to optimize the variational parameters m,S while
the hyperparameters are fixed to the optimum values. Secondly, we free the hyperparameter
constraint so that the models conduct full variational inference optimizing both variational
parameters and hyperparameters simultaneously. We compare the performances of NGD and
Adam while ensuring the applicability of NGD to a full variational inference. Thirdly, we
investigate under which conditions natural gradients exhibit superiority in performing the
optimization in different settings (e.g. number of inducing inputs, number of training points,
minibatch size, and noise variance). Finally, using a real dataset (the NAVAL dataset Crisher
and Souva (2013)) we will confirm the applicability of the models and compare their stability
in ill-conditioned settings.
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Synthetic Data Experiments: stochastic optimization with fixed hyperparameters

Firstly, we concentrate on optimization of the variational parameters whilst setting the
hyperparameters to optimum values based on our empirical research. Each hyperparameter
is fixed as follows: the kernel length scale ℓSE = 0.813, kernel variance σSE = 0.112, and
noise variance σnoise = 0.045.

Fig. 4.1 The stochastic optimization of the lower bound for fixed hyperparameters in the case
of N = 300,M = 10, no use of minibatch, noise variance 0.01, and hyperparameters set to
the optimum values. NGD (shown in red) takes only a single iteration to reach the optimum
when the step size is 1, whereas Adam (shown in blue) takes thousands of iterations.

Figure 4.1 shows the results of the sparse variational GP models, one using the NGD
algorithm and another using the Adam optimizer. Agreeing with the prior work (Hensman
et al., 2013), in the case of the Gaussian likelihood, NGD finds the optimum in a single step
when the step size γ = 1, whereas it takes thousands of iterations for the Adam optimizer.
This result confirms the superiority of natural gradients in the stochastic setting of a sparse
variational GP model. This result also implies that natural gradients provide a superior quality
of direction.
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Synthetic Data Experiments: full stochastic optimization

Secondly, letting the hyperparameters be optimized by Adam, we perform full stochastic op-
timization using NGD. As discussed before, we compare the use of Adam to simultaneously
optimize both variational parameters and hyperparameters in a single step, with a sequen-
tial two step optimization, first on hyperparameters using Adam and then on variational
parameters using natural gradients.

Fig. 4.2 Joint optimization of the hyperparameters and the variational distribution in the case
of N = 100,M = 10, no use of minibatch, and noise variance 0.01. NGD (shown in red) and
Adam (shown in blue) take different paths for the optimization process, reaching the same
level of the ELBO.

Figure 4.2 shows the results of full stochastic optimization of the variational distribution
with NGD or Adam. Once again, NGD outperforms the Adam optimizer in terms of speed
of convergence, reaching the optimum in under 1000 iterations (see the ELBO graph). The
graphs illustrating the optimization process of the hyperparameters show that even after the
ELBOs have converged, the values of the hyperparameters change a lot, searching for a
better optimum. This means that the models have stabilised despite ongoing processes for
hyperparameter optimization. We also note that, whilest not affecting the end result of the
ELBO, the two models follow different path for the hyperparameters.
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Synthetic Data Experiments: NGD v.s. Adam in different settings

Now we aim to provide evidence to answer "under what conditions does NGD converge
faster than Adam". We perform expensive grid search on:

• The number of training inputs N = 10/100/1000/10000,

• number of inducing inputs M = 10/100/1000 where M < N,

• minibatch size batchsize = 10/100/1000/10000 where batchsize <= N,

• noise variance noise = 0.1/0.01/0.001.

We present the key results with a number of important findings listed below:

• The key factors are M and the batch size

• If M is small enough, NGD is always faster

• If M is large and we do not use a minibatch, NGD is faster in the beginning, but both
converge after the same number of iterations

• Only, if M is large and minibatch is used, NGD is slower, but it still reaches the same
optimum as Adam

Firstly, we demonstrate the case when M is small. In the synthetic sinusoidal dataset, let
us consider M = 10 as appropriate based on our initial empirical experiments.

Fig. 4.3 Joint optimization of the hyperparameters and the variational distribution in different
settings with M fixed to a small value M = 10. NGD (shown in red) is always faster than
Adam (shown in blue) even when achieving a better result. Comparing the first two graphs,
we see that the noise variance does not affect the relative performance of NGD and Adam.
Similarly, comparing the first and the third, and the first and fourth, we see that neither the
size of N nor the batch size affects the relative performance.
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Fig. 4.4 Joint optimization of the hyperparameters and the variational distribution in different
settings with M fixed to a large value M ≥ 100 and without minibatch (i.e. batchsize = N).
Both NGD and Adam converge after the same number of iterations, reaching the same level
of ELBO. Comparing the first two figures, we see that the noise variance does not affect the
relative performance of NGD and Adam. Similarly, comparing the first and the third, and the
first and fourth, demonstrates that neither further increasing M nor increasing N affects the
relative performance.

Figure 4.3 compares the results of ELBO in different settings with M equals to a small
value 10. We can see that, regardless of N, batch size, or noise variance, NGD is always
faster than Adam, reaching a better or identical level of ELBO.

Figure 4.4 compares the results of ELBO in different settings with M set to a relatively
large value M ≥ 100 and the batch size set to the size of the training data N (i.e. no use of
minibatch). For a relatively large M, it appears that NGD and Adam not only end up at the
same optimum at the same time, but also they follow a similar path in the latter stages of the
optimization process. In all figures, NGD is a faster to begin with, then Adam is faster, then
in the end, they follow the same path to the same level of ELBO.

Fig. 4.5 Joint optimization of the hyperparameters and the variational distribution in different
settings with M fixed to a large value M = 100 together with the use of minibatch. NGD
(shown in red) is slower to converge, yet reaches the same level of ELBO as Adam (shown
in blue). Comparing the first two figures, and the first and the third, we see that neither the
noise variance nor the size of N affects the relative performance of NGD and Adam.
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Figure 4.5 compares the results of ELBO in different settings with M set to a relatively
large value while using a minibatch. Unfortunately, in this case, NGD’s speed of convergence
is slower than that of Adam, but NGD still finds the same optimum value for the ELBO. Note
that it is not the use of minibatch per se, but the combination of the use of minibatch with a
large value of M that results in NGD slower convergence. We can verify this by comparing
the first and fourth figures in Figure 4.3.

To summarise the results of the grid search, NGD is essentially at least as good as Adam
in terms of both the quality of optimization and the speed of convergence in typical practical
settings where M is small and where we can benefit from the sparsity of the model.

Real-data: NAVAL Data Experiments

Fig. 4.6 Joint optimization of the hyperparameters and the variational distribution in the
NAVAL dataset. NGD (shown in red) is faster to converge, whereas Adam (shown in blue)
has not converged after a quite large number of iterations 20k.

Finally, using the NAVAL dataset we will confirm the applicability of the models to a large
real dataset and compare the stability of the models in ill-conditioned settings. Following the
setting in Salimbeni et al. (2018), we use N = 11k, D = 16,M = 100, minibatch size = 256,
and run the optimization process for 20k iterations.
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Figure 4.6 shows the results of stochastic optimization of the ELBO with respect to both
the variational parameters and hyperparameters. Even given a large number of iterations,
Adam cannot achieve the optimum whereas natural gradients converged after 8k epochs.

4.2.3 Efficient O(M) parameterisation of the approximate posterior

This section demonstrates the effectiveness of our efficient O(M) parameterisation of the
approximate posterior q(u) = N(u;Kmmµ,(K−1

mm +G)−1). In this section, we refer to sparse
variational GP models with our parameterisation using NGD as our NGD method. We will
first test the performance of our NGD method on a simple synthetic GP dataset. We will
compare its performance with NGD and Adam using the original approximate posterior
parameterised in terms of mean and covariance. We will then, investigate the applicability
of our NGD method to a real dataset (the NAVAL dataset) as well as the stability of the
optimization process in an ill-conditioned setting.

Synthetic Data Experiments: full stochastic optimization

First, we test the performance of our NGD method using a synthetic GP detaset in terms of
the speed of comvergence and the quality of optimization as well as the output prediction
samples. Here we use a sufficient number of inducing inputs so that we can benefit from the
computational efficiency of our economical O(M) parameterisation. We assume M = 50 is
fairly large and appropriate for the synthetic GP dataset. This means that the models with
the original parameterisation have M+M(M+1)/2 = 1325 variational parameters, and the
models with our alternative parameterisation have 2M = 100 variational parameters, to be
optimized by NGD or Adam.

Figure 4.7 shows the process of optimization in terms of the ELBO and hyperparameter
values. We can see that, given a sufficient number of inducing inputs, our NGD method
benefits from computational efficiency and faster convergence without loss of the accuracy
at the optimum. Given that the true kernel length scale is 0.1, kernel variance is 0.5, the
hyperparameter graphs show that our method finds smaller values for the kernel length scale
and kernel variance (discussed in later this section). As for the likelihood variance, all three
methods find the true value 0.01.

Figure 4.8 shows the output prediction samples after training. Although all three graphs
have similar posterior predictions with almost the same pattern, the top graph of our NGD
method exhibits a less smooth mean function and confidence bound. This observation agrees
with the smaller kernel length scale and kernel variance in Figure 4.7.
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Fig. 4.7 Joint optimization of the hyperparameters and the variational distribution in the
case of N = 1000,M = 50, no use of minibatch, and noise variance 0.01. our NGD method
(shown in pink) is faster to converge than both the original NGD (shown in light blue) and
Adam (shown in grey), reaching the same lower bound.
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Fig. 4.8 The output prediction samples after training of our NGD method (shown in top),
Adam (shown in middle), and NGD (shown in bottom).
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Real-data: NAVAL Data Experiments

We next consider an ill-conditioned setting. Here we use M = 100 inducing inputs so that we
can benefit from the computational efficiency of our parameterisation. This means that we
have M+M(M+1)/2 = 5150 variational parameters for the original model and 2M = 200
variational parameters for our model.

Fig. 4.9 Joint optimization of the hyperparameters and the variational distribution in the
NAVAL dataset. NGD (shown in pink) is faster to converge, although it reaches to a larger
ELBO. NGD (shown in light blue) has converged second, whereas Adam (shown in grey)
cannot converge after quite large number of iterations 20K.

Figure 4.9 shows that our NGD method is not converging to the same optimum that the
original methods find, but converging to a lower ELBO. In terms of the speed of convergence,
our NGD method is the fastest due to the smaller number of parameters and the advantage
of the natural gradients. This result agrees with our expectation that our method sacrifices
accuracy in favour of a much smaller number of variational parameters. However, it is
possible for our NGD method to increase the number of inducing inputs without damaging
the speed of convergence too much as the number of parameters increases linearly, not
quadratically. Note that the computational cost is still O(M2).
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Looking at the hyperparameter optimization process in Figure 4.7 and 4.9, we can see a
potential bias towards underestimating the kernel variance. This is because, where the kernel
variance is small and the likelihood variance is non zero, the covariance of the approximate
posterior S will be very small, and the approximate posterior will essentially be the prior
(i.e. our variational parameter diag(G) will be close to 0). The approximate posterior exactly
captures the true posterior by having the likelihood terms all go to zero. This makes the KL
term small resulting in the bias towards underestimating the kernel variance and potentially
overestimating the likelihood variance.

In the all experiments on our efficient O(M) parameterisation, we use a Gaussian like-
lihood. This ensure the positive definiteness of the matrix G, meaning that we do not
need to place constraints upon it. To ensure the positive definiteness in the cases of non-
Gaussian likelihoods, it is necessary to place constraints, for example, by using the softplus
transformation.

4.3 Discussion

4.3.1 A trade-off in the number of parameters and convexity

In this project and the prior works on the efficient O(M) parameterisation, we seek to have a
smaller number of variational parameters (i.e. 2M instead of M+M(M+1)/2) so that we
can benefit from the computationally economical optimization step in terms of memory and
the faster convergence. However, there is a known trade-off in the number of parameters. If
there are more variables, then the optimisation would be easier in a way because there are a
lot to tune. Furthermore, according to (Khan and Nielsen, 2018), the O(M) parameterisation
destroys the convexity of the original problem. In their work, a dual decomposition approach
is proposed that allows us to reduce the number of parameters while retaining convexity.





Chapter 5

Conclusion

5.1 Summary

This project has investigated the natural gradient method in a sparse variational GP model,
finding that the natural gradient method is particularly beneficial when relatively small
number of inducing inputs are given. It can find a better or equal optimum within a smaller
number of iterations. In practice this is usually the case – the dataset is typically large
and high dimensional and the number of inducing inputs is typically set small M << N to
benefit from the computational efficiency of the sparse approximation. Even if the number
of inducing inputs is relatively large, the natural gradient is at least as good as the Adam
optimizer as long as minibatchs are not utilised.

Furthermore, this project has presented a sparse variational GP method which employs an
efficient O(M) parameterisaiton for the approximate Gaussian variational posterior together
with the natural gradient optimization. As the number of variational parameters is reduced
from M +M(M + 1)/2 to just 2M, the possibility of achieving the optimal approximate
posterior is sacrificed. However, with a fairly large number of inducing inputs, the loss
in accuracy may be considered as small. Note that the computational cost still scales
quadratically O(M2) with O(M) parameterisation.

5.2 Further work

We have presented the performance of our sparse variational GP model with an approximate
posterior parameterised by 2M natural parameters in the affine transformation space. Further
investigation into whether the effects of this alternative parameterisation carry over to a wider
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variety of settings is crucial, and is likely to yield further insights. Also, the stability of the
model in terms of the step size can be investigated.

Our experiments on the natural gradients revealed a number of important effects which
were not stressed in the literature, and are indicative that a better understanding of these
algorithms is required.
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Appendix A

Supplementary material for VFE

Reinterpretation of the proof for VFE

Matthews et al. (2015) gave a mathematically rigorous treatment of the VFE framework. It
generalized the framework, showing that marginal consistency of augmentation is not enough
to guarantee consistency of variational inference with the original model. Here, we briefly
introduce their proof.

Let us assume the input space R is finite and can be partitioned into three disjoint sub-
spaces: a set of inducing inputs Z of size M, the set of input positions for the observed
data X of size N, and the rest of the index set X#, so that R≡ Z∪X∪X#. The function of
interest f maps the index set to sets of function values: fZ, fX and f#. The set of observation
corresponding to the input set X is Y. The variational distribution at those data points is
taken to have the form:

q( f ) = p( f#, fX | fZ)q( fZ) (A.1)

Then, the KL divergence between the approximating and posterior processes (i.e. between
the variational distribution and the full posterior distribution) is given as follows:

KL(q( f ) ||p( f |Y)) = KL(q( fX, fZ, f#) ||p( fX, fZ, f#|Y)) (A.2)

=
∫

q( fX, fZ, f#) log
{

q( fX, fZ, f#)

p( fX, fZ, f# | Y )

}
d f#d fXd fZ (A.3)

=
∫

q( fX, fZ) log
{

q( fX, fZ)

p( fX, fZ | Y )

}
d fXd fZ (A.4)
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where more detailed derivation can be found in section 2 in (Matthews et al., 2015). The last
line does not contain f#, meaning that all the other function values f# marginalize and we
only need to keep track of the distribution over function values fX and fZ.

However, if the input space R is infinite, this is not the case since the infinite-dimensional
integral is required to compute the KL divergence. We will not go into details here, but it
will require an alternative proof for infinite index sets shown in (Matthews et al., 2015). In
practice, we suppose that we are dealing with a GP valued only on a sufficiently large finite
subset of infinite input space R, so that we can benefit from this VFE framework.
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