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Abstract

This project aims to offer a theoretically principled method for approaching the task of
balancing exploration and exploitation in the setting of correlated multi-arm bandits, and
to extend this application to encompass Bayesian optimisation. Our method is an attempt
to generalise the Gittins index algorithm for multi-arm bandits to settings where bandit
reward distributions can be correlated and, following that, settings with a continuum of
bandits, leading to Bayesian optimisation. Our algorithm has no hyperparameters to set and
is theoretically principled in the sense that it is motivated by consideration of the optimality of
the Gittins index for independent bandits. We also derive an efficient algorithm for computing
the Gittins index based on Gaussian process approximations to the value function using cubic
spline covariance functions. Our Gittins based algorithm is demonstrated to outperform many
standard approaches to multi-arm bandits when the bandits are correlated and is competitive
with standard algorithms for Bayesian optimisation, especially outperforming those without
free hyperparameters.
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Chapter 1

Introduction

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

— Robert Frost, The Road Not Taken

1.1 Motivation

The conflict between exploration and exploitation can be found within almost all decision
making processes, human or machine. Wherever uncertainty exists, we must choose between
actions about which we are the most confident of the consequences or to take the road less
traveled by, taking on greater risk for the chance of greater reward. Exploration can uncover
valuable information, and provide increased certainty about the options available to us which
we may be able to exploit in the future.

This conflict is made explicit in the context of reinforcement learning. When we wish to
design an agent which will make effective decisions in an uncertain environment, a funda-
mental consideration must be determining an appropriate level of exploration. This aspect
is condensed in essential form in the class of problems called multi-arm bandits. Studying
these problems can give us insight into the nature of the exploration and exploitation and
how they can be managed.

In a meaningful sense, the classic multi-arm bandit problem is solved; the Gittins index algo-
rithm provides an optimal method, under fairly general conditions. However, we wish to peel
back some of these conditions to understand just how essential they are to the performance of
this algorithm. We will allow bandits to have correlated rewards and adapt the algorithm in a
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way which provides a principled approach to the problem, grounded in the theory established
by Gittins and many others. This is in contrast to many existing algorithms which, while
empirically effective, often lack an objective justification as to why they should be expected
to be the best approach. We then go further and allow bandits to exist on a continuum,
rather than in a discrete, finite set. This is a change which allows the problem to encom-
pass Bayesian optimisation, taking the Gittins index even further away from its natural habitat.

A drawback to the Gittins index is that it is often ignored as a practical solution to the
multi-arm bandit problem because of its perceived difficulty to calculate and implement. We
hope to help in alleviating this perception by adding to the literature a method of comput-
ing the index which is accurate and computationally efficient. We will use this method to
compute the index for ourselves which will enable us to implement our approaches to the
aforementioned generalised multi-arm bandit problems.

In relaxing some of the assumptions which make the Gittins index an optimal algorithm we
lose the theoretical guarantees which have been proved for it in its native form. Because
of this, we cannot know for sure whether it will continue to be quite so effective when we
exploit it in a context for which it was not specifically designed. However, by exploring these
uncertain edges of the theory we hope to find that we can establish a principled and powerful
method for these broader classes of problems.

1.2 Outline

Here we briefly outline the contents of each of the coming chapters and their place within the
overall structure of the project.

This project brings together ideas from a number of different but related areas of machine
learning and statistics. Chapter 2 aims to prime the reader with the necessary basics to be able
to follow the subsequent chapters and to define a notation and terminology for the concepts
discussed which will be carried through the rest of the work. We also offer references to
related work for each of the subjects covered in the chapter, including works with demonstrate
or prove useful results or apply the subjects to a diverse range of problems. The subjects
covered in Chapter 2 are as follows:

• Balancing exploration and exploitation in reinforcement learning. We give a
broad description of the aims of reinforcement learning and define some useful notation
for Markov decision processes which lay the groundwork for discussing multi-arm
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bandits. We discuss the idea of exploration and exploitation and the value of balancing
these concepts and we refer to some related works on the subject.

• Multi-arm bandits. We restrict our discussion of reinforcement learning to this spe-
cific class of problems. We define some further terminology and discuss the general
idea of selecting policies to balance exploration and exploitation in this context. Multi-
arm bandits are the framework within which the problems this project aims to address
can be defined.

• The Gittins index. We discuss this particular algorithm for selecting bandits in multi-
arm bandits problems, which is provably optimal. We provide an alternative viewpoint
on multi-arm bandits in terms of information states in order to reach a formulation of
the Gittins index by intuitive arguments. We then offer a proof that the formulation we
have arrived at is in fact the optimal algorithm. The Gittins index algorithm will form
the basis for the algorithms we will go on to develop and we take its optimality in its
own domain as justification for our approach.

• Gaussian processes. These form the backbone of the algorithms developed in this
project. We heavily depend on Gaussian processes in both our method for comput-
ing the Gittins index and for our Gittins based algorithms for correlated bandits and
Bayesian optimisation. We define some notation and terminology and describe the
most central results needed to follow the algorithms to which they are applied.

• Bayesian optimisation. Since Bayesian optimisation is one of the domains we attempt
to develop a Gittins based algorithm for, we use this opportunity to define this class of
problems and to refer the reader to a number of existing methods, some of which will
be used in our experiments.

Having covered the necessary background and pointed the reader towards related work, we
proceed in Chapter 3 to develop the first algorithms of this project. This chapter details an
algorithm for the computation of the Gittins index using Gaussian process approximations.
We first detail a version of the algorithm using squared-exponential covariance functions
and we then derive a version using cubic spline covariances. We finally illustrate how the
computed Gittins index looks using various discount factors.
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Chapter 4 details the algorithms we have designed, based off the Gittins index, to address
the problem of multi-arm bandits with correlated bandits and Bayesian optimisation. Impli-
mentation of these algorithms will require computation of the Gittins index, so this chapter
builds on the work covered in Chapter 3. While these general problem classes were defined
and discussed in Chapter 2, we go into greater detail on existing methods for these problems
which will be used later in our experiments.

Chapter 5 covers our experiments on multi-arm bandits and Bayesian optimisation. We
compare the performance of the Gittins based algorithms covered in Chapter 4 to the other
algorithms which were also discussed in that chapter.

Finally, in Chapter 6 we provide our final discussion of the merits and weaknesses of the
algorithms developed in this project. We discuss their performance in the experiments as
well as their place in the broader landscape of algorithms for multi-arm bandits and Bayesian
optimisation. We suggest a number of avenues for potential future work which could extend,
improve and further investigate the work undertaken in this project.



Chapter 2

Background and Related Work

2.1 Balancing exploration and exploitation in reinforcement
learning

A task in reinforcement learning (Sutton & Barto, 2018) can be summarised as an agent
attempting to make good decisions with respect to some predefined goal, or equivalently
developing a policy which produces good decisions, and it does this by interacting with an
environment and observing the effects of its actions, possibly generating a model of the
environment. These objects: The environment, the agent’s goal, the policy and, if relevant,
the model can be seen as the elements which provide a framework into which mostly any RL
problem can be situated.

This framework contains multiple potential sources of uncertainty for the agent. The environ-
ment may be affected by the agent’s actions in unpredictable ways and the agent must take
into account this uncertainty when evaluating how it wishes to interact with the environment.
On top of this, the state of the environment itself may be uncertain. Sometimes the agent
simply does not have access to all the possible information which it must instead infer from
its observations. Even when this information is provided we may model it has having some
epistemic uncertainty associated with it; if a robot is equipped with a sensor we can not be
sure that its measurements are perfectly accurate, and failing to account for this uncertainty
can lead to failure in the task.

A further difficulty which must be overcome is that an agent’s goal will typically be long-term
in some sense. For example, we may be interested in maximising the accumulated reward
received over a period of time. While the agent may observe the immediate rewards it
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receives as a consequence of its actions, the effect of a given action on the long-term goal
may be unpredictable. A policy which aims for maximal instantaneous reward may fail at the
overall task. This thought motivates the study of the balance of exploration and exploitation
which will be discussed after we establish a formal notation for the problems that have been
described.

At any time t, the environment has a state st ∈S where S is the state space containing all
possible states of the environment. At each time, the agent must select an action at ∈ A

where A is the action space of possible actions. The agent then receives a reward rt ∈R. For
each state of the environment there exists a reward function r : a→ R which determines rt .
Before they are observed these values are all uncertain so we will represent them as random
variables by St , At and Rt for states, actions and rewards respectively which have st , at and rt

as their realisations.

We also define a distribution Pa for each action a which returns the transition probability
between any two states given the action made in the first state, Pa(s,s′) = P[St+1 = s′|St =

s,At = a]. These elements are what we need to construct a Markov decision process (MDP)
which will be the informational structure of the problem. As we have seen, the transition
probabilities are Markov as they have no explicit dependence on states earlier than the current
state St . Furthermore, we will restrict the agent’s policies to be a mapping which takes the
current state and returns a probability distribution over the action space, so the decision
process has no explicit dependence on earlier states. For a policy π the agent selects actions
according to the distribution it defines, π(a|s) = P[At = a|St = s]. In general the policy
is stochastic but in many situations we would use deterministic policies which are a pure
mapping from a state to a single action.

In order to quantify the long-term value of a being in a state define the value function Vπ(s)
for policy π in state s as

Vπ(s) = Eπ [rt+1 + γrt+2 + γ
2rt+3 + . . . |St = s] (2.1)

= Eπ [rt+1 + γVπ(St+1)|St = s] (2.2)

where 0 < γ < 1 is the discount factor. A policy π is optimal if Vπ(s)≥Vπ ′(s) for any state s
and policy π ′.
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To see why γ is important, imagine setting γ = 1 in the above value function. If the length
of time or horizon of the problem is infinite then, unless the problem is set up such that the
expected rewards themselves decay sufficiently rapidly over time, this value will be infinite.
As we will be studying problems with stationary reward distributions, this concern is very
relevant. There is no way to distinguish between the desirability of two states if their values
are both infinite. Intuitively we know that even if two states will both lead to an expected
infinite total reward, we may prefer one to the other because it delivers its rewards sooner.
This is in tidy analogy with the concept from finance that ‘money today is worth more than
money tomorrow’, which is true because money received today can be safely invested and be
worth more tomorrow. In finance, this interest rate informs the discount factor applied to a
cash flow, to represent that future inflows and outflows experience a ‘time cost’ and are worth
less in present value. This is the intuitive reason for using discounting when considering
infinite horizons. Mathematically, they make value functions finite allowing the problem of
selecting a policy to be well-defined.

A key way in which RL differs from supervised learning is that the reward received by an
agent after taking an action gives a very uninformative numerical evaluation of the decision.
In supervised learning, the loss function takes into account not only the strength of the
model’s prediction but also how it could have done better and the reward (the negative loss)
is scaled according to how close the prediction was to optimal. In RL the agent does not
receive this rich of information; if a policy results in a reward of, say, 10, that does very
little to help the agent know if this was a good series of decisions or how the policy can
be improved. It needs to learn for itself what rewards it could have received had it made
different decisions. It is possible that there may be much better policies hidden somewhere
in the very high dimensional policy space which the agent can only locate by trying many
different things. If the agent only takes actions which it believes are the best out of what it
has tried so far, it will never learn what other, possibly greater, options exist. This makes
exploration, or trying actions which the agent knows little or nothing about the effects of,
essential for finding good policies. Only when enough exploration has been performed that it
is unlikely to result in much more long-term gain does exploitation of the learned information
become the most profitable way forward. Exploiting actions which are known to be relatively
rewarding may gain us some information about the reward distribution associated with that
action and the local dynamics of the environment, but fundamentally it does little to help
us learn about the breadth of options that exist in policy space. In other words, we cannot
simultaneously explore and exploit- they must be traded off and balanced. To explore, in
general, comes at a cost of immediate rewards and (considering discounting) defers ex-
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ploitation to later times when its rewards are worth less. There must come a point where
exploration is too expensive to justify its costs but finding that point is a complex and subtle
challenge. Furthermore, it is not enough to simply instruct an agent to explore. We must de-
cide where to explore; in what regions of policy space is exploration most likely to yield fruit?

MDPs were first studied by Wald (1949) and Bellman (1957). A review of this area can be
found in Teugels (1976) and a more modern treatment is given by Puterman (2014). Blackwell
(1965) proved important results about MDPs including the existence and uniqueness of a
solution to the dynamic programming form of the problem and that the optimal policy is
deterministic, stationary and Markov. The problem of balancing exploration and exploitation
was discussed in the context of control theory by Feldbaum (1965) as the dual control
problem and Witten (1976), referring to the balance between identification and control which
are essentially the same concepts as exploration and exploitation. The concept is not usually
studied in and of itself, but rather in the context of particular algorithms or particular RL
problems such as multi-arm bandits, which are discussed in the following section.

2.2 Multi-arm bandits

The basic form of the multi-arm bandit (MAB) problem is as follows: There exists an action
space A containing k actions which remain the same at all times. Each action is associated
with a stationary probability distribution. At each time step, the agent must select one action
and it receives a reward drawn from the distribution associated with the chosen action. The
name derives from the concept of a one-armed bandit, a gambling machine in which the user
pulls a single lever (an arm) and receives a random reward each time. We imagine our agent
being faced with many machines or equivalently one machine with many arms, all of which
generate different distributions of rewards. In some literature the choice of action is referred
to as an arm, in others it is slightly counter intuitively called a bandit. We will opt to use the
latter.

MABs were first introduced in the context of statistics by Thompson (1933, 1934) and by
Robbins (1952) and were further developed by Bellman (1956). They have also been studied
from an engineering context by Narendra and Thathachar (1989). Despite how old this field
of study is, this class of problem continues to have a number of applications to this day,
typically involving the efficient allocation of limited resources (Bouneffouf & Rish, 2019).
Modern applications include the exploration of promising treatments in clinical trials (Durand
et al., 2018), modeling psychological behaviour (Beneffouf et al., 2017), portfolio selection
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in finance (Shen et al., 2015), recommender systems (Zhou et al., 2017) and information
retrieval (Losada et al., 2017).

MABs might be considered the simplest setting of RL. The environment is stateless, or more
precisely, the state space contains exactly one state which occurs at every time step. This fact
means we do not need to consider the dynamics of the environment in terms of transition
probabilities. This also entails the stationarity of the reward distributions, a convenient
property which allows us to quite simply build a model of the distributions from the observed
data. Furthermore, it is usually assumed in the literature that the distributions associated with
the different bandits are independent, however this is often not explicitly stated but taken
for granted. We explicitly mention this point here because independence of the bandits is an
assumption which we will attempt to relax in this work.

The precise goal of the agent depends on the specific setup of the problem. If we consider a
finite horizon, i.e. the agent has a number T ∈ N of steps to perform its actions then it may
be reasonable to aim to optimise the total reward received. If, however, the horizon is infinite
then, as discussed above, we must apply discounting to the rewards. We will be focusing on
this case so at any time t we attempt to maximise the objective Gt known as the payoff where

Gt =
∞

∑
k=0

γ
kRt+k+1. (2.3)

Since the agent begins with no knowledge of the reward distributions, we must construct a
model based on the observations it has seen so far at any moment. For this work we will
restrict our problems to a narrow class of reward of distributions. We assume that for any
action a and time t,

Rt ∼N (q∗(a),1) (2.4)

where q∗(a) = E[Rt ], an unknown value, and N (µ,σ2) is the Gaussian distribution with
mean µ and variance σ2. There are two simple ways of tracking our current estimate Qt(a)
for q∗(a). The first is to simply track the total reward received so far Σt(a) and divide it by
nt(a), the number of times the bandit has produced a reward. The other approach which is
also useful for non-stationary distributions is to make the update

Qt(a)← Qt−1(a)+
rt−Qt−1(a)

nt(a)
. (2.5)
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Since a was the bandit chosen at time t we have nt−1(a) = nt(a)−1, so we can rearrange
this expression to see that it is equivalent to

Qt(a)←
Qt−1(a)nt−1(a)+ rt

nt(a)
. (2.6)

With Q0(a) = 0 we can see by induction that this update must produce the running mean of
the rewards for t ≥ 1.

As with any RL problem, the MAB problem requires a balance of exploration and exploitation.
At any time it is possible for the agent to select the greedy option which is to select

at = argmax
a

Qt(a) (2.7)

however, using this approach too much and too early will lead to poor results for the
reasons discussed in the earlier section. Many strategies have been designed to tackle this
problem, a number of which will be explained in chapter 4. These include upper confidence
bound (Lai & Robbins, 1985), (Kaelbing, 1993), (Agrawal, 1995), (Auer et al., 2002) and
Thompson sampling (Thompson, 1933), (Wyatt, 1998). Most of these algorithms attempt
to associate the level of exploration with the degree of uncertainty about the bandits. This
seems to be the correct approach, however the precise relationship between uncertainty
and exploration is quite subtle and isn’t entirely captured by those algorithms, leading to
suboptimal performance. However, one algorithm, which will be the basis for this work,
strikes this balance in the precisely optimal way and that is the Gittins index algorithm.

2.3 The Gittins index

The Gittins index (GI) was originally introduced as the dynamic allocation index (Gittins,
1974) however it was not widely known or recognised as the solution to the multi-arm bandit
problem for a number of years, after which point it gained its current name. In the meantime
a number of proofs of the GI’s optimality have emerged, one of which we will outline in this
chapter. First we must fully define the problem which the algorithm claims to solve. The
following explanation paraphrases Gittins et al. (2011) but with simplified notation and with
some of the more generalised aspects which are not relevant to this particular work elided.

A discrete time bandit process is a particular Markov decision process. Controls must be
applied to the process at a succession of decision times, the first of which being t = 0. The
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interval between decision times is a random variable (however, we will soon restrict our
attention to bandit processes with constant intervals). The control which must be applied
at each decision time must come from the set {0,1} which are referred to as freezing and
continuation respectively. If ever the freezing control is applied then every subsequent time
step is considered a decision time until the continuation control is applied and the state of the
system does not change until then. If, on the other hand, the continuation control is applied at
time t then a reward of γ tr(St) is generated and the state changes. The next decision time is at
a random point in the future. Note that we have reintroduced the notion of a state St despite
earlier claiming that MAB problems do not have states. This represents a shift in point of
view; while the state of the bandit is in some ‘objective’ sense constant, our knowledge
of the bandit changes whenever it produces a reward. Hence, from the Bayesian point of
view we can consider the posterior distribution of the rewards to have experienced an update
and to have changed state. We will call these states information states to reflect the fact
that in reality the bandit does not change, only our state of knowledge about it. We will
parameterise the information state St = (Σt ,nt) by Σt , the total reward received up to time t
and nt , the number of times the bandit has been activated up to time t. Under the assumptions
we will impose on the reward distributions, these statistics are sufficient to make the Bayesian
updates. The dynamics are very simple: when the bandit is continued and produces reward rt

then with probability 1, we have St+1 = (Σt + rt ,nt +1). The GI is not limited to processes in
which the state is purely informational, in fact there is really no distinction for our purposes
between a stationary system described by Bayesian information states and a system whose
reward distributions genuinely change in perfect lock-step with those information states.

In a Markov bandit process the interval between decision times when the continuation control
is applied is a constant, which we will set to 1 without loss of generality. A policy in this
setting is a (possibly stochastic) mapping from states to the control set {0,1}. With this
notion in mind we define a simple family of alternative bandit processes (SFABP) which
is a collection of k Markov bandits processes, all of which are available to be continued at
each time step, with the additional restriction that at any given time only one process can
take the continuation control and all the rest must be frozen. Given this, we can redefine the
control set for the SFABP as {1, . . . ,k} where applying control i corresponds to applying
continuation to bandit i and freezing all the rest. We will refer to the control applied at time t
as it (this is also the identifier of the bandit with the continuation control) and the state of
bandit it at this time as Sit

t ∈S and the state of the entire SFABP as St ∈S k. Furthermore
we define the reward function as a function of the state so we will receive rewards from rit (S

it
t )
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We are interested in determining a past-measurable policy π which optimises the payoff of
this MDP i.e. we wish to find a policy which attains the value function

V (s) = sup
π

Eπ

[
∞

∑
t=0

γ
trit (S

it
t )

∣∣∣∣∣S0 = s

]
. (2.8)

By past-measurable, we simply mean the intuitive property that the decision made by the
policy at time t is determined by the events up to time t. This value function can be expressed
as a dynamic programming (DP) equation

V (s) = max
i∈1,...,k

{
ri(si)+ γ ∑

y∈S
Pi(y|si)V (s1, . . . ,si−1,y,si+1, . . . ,sk)

}
(2.9)

where s = (s1, . . . ,sk) and Pi(y|si) is the transition probability from state si to state y for
bandit i. If the states are continuous then this sum becomes an integral. The theory of MDPs
tells us that there is at least one deterministic, stationary, Markov policy which is optimal
and any optimal policy must optimise (2.9) for each state s.

However, the DP form of the problem is usually not useful for solving for the policy as
the size of the problem grows exponentially with k, the number of bandits. This is without
even considering the implications of the fact that the state space is continuous, owing to the
continuous distribution we have assumed for the rewards in (2.4). If we were to use a discrete
reward distribution e.g. Bernoulli, or if we were to discretise and truncate the rewards from a
Gaussian distribution then the full state space would be of size |S k|= |S |k =N > 2k and the
number of stationary, deterministic policies is kN . In a linear programming formulation, we
would need a number of variables of order O(2n) so the algorithm would be computationally
intractable (Gittins et al., 2011).

The remarkable insight of Gittins is that the problem does not need to be solved by consider-
ing the DP equation for the whole SFABP, but rather the optimal policy can be found as an
index policy. This means that for each bandit process Bi in the SFABP there exists an index
ν(Bi,Si) ∈ R which can be computed independently for each bandit such that continuing
the bandit with the greatest index yields an optimal strategy. The space of index policies is
considerably smaller than the entire space of policies, as we are placing a strong restriction on
the form the policy can take. For an index policy we can take each bandit individually, ignore
all information from all other bandits and calculate the index, only mixing the information
from the different bandits at the end when we compare the size of the indexes. Any policy
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which cannot be computed in this way does not fall into the class of index policies. Hence,
this restricting of the space of potentially optimal policies down to just the space of index
policies makes hypothesising and proving an optimal policy a manageable task, as we will see.

Assuming this claim to be true, we can derive what that index must be. To do this, we imagine
a SFABP containing only two bandits. One of these bandits is constructed as a standard
bandit process meaning it always pays a reward λ when the continuation control is applied
and its state never changes. We will call the other bandit Bi. An important observation is
that, since continuing the standard bandit does not alter the state of the SFABP, if this action
is optimal at any time it must also be optimal at all future times. The payoff for using the
standard bandit in this way is

λ (1+ γ + γ
2 + . . .) =

λ

1− γ
. (2.10)

The maximal payoff must be

sup
τ>0

E

[
τ−1

∑
t=0

γ
tri(Si

t)+ γ
τ λ

1− γ

∣∣∣∣∣Si
0 = si

]
(2.11)

where τ is a past-measurable stopping time whose value must be some decision time. This
simply says that we receive rewards from the bandits Bi up to time τ , after which we start
using the standard bandit for the rest of time, and the rewards for that are discounted by the
factor γτ .

The difference between the payoff in (2.11) and the quantity generated by the standard bandit
in (2.10) is how much better it is to continue the non-standard bandit than the standard bandit.
Subtracting these and setting equal to 0 gives an equation satisfied by the value of λ such
that we would be indifferent between continuing either of the processes.

0 = sup
τ>0

E

[
τ−1

∑
t=0

γ
tri(Si

t)− (1− γ
τ)

λ

1− γ

∣∣∣∣∣Si
0 = si

]
. (2.12)
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This expression is convex and decreasing in λ so it has a unique root λ̄ such that

λ̄ =sup

{
λ :

λ

1− γ
≤ sup

τ>0
E

[
τ−1

∑
t=0

γ
tri(Si

t)+ γ
τ λ

1− γ

∣∣∣∣∣Si
0 = si

]}
(2.13)

=sup

{
λ : sup

τ>0
E

[
τ−1

∑
t=0

γ
t(ri(Si

t)−λ )

∣∣∣∣∣Si
0 = si

]
≥ 0

}
. (2.14)

From this expression we claim that this crucial value of λ is in fact exactly the index ν(Bi,si)

for bandit Bi in state si as it can be interpreted as the maximum ‘rent’ one would be willing
to pay per time step for ownership of the rewards the bandit will produce.

Rearranging the expression we see that

ν(Bi,si) = sup
τ>0

E
[
∑

τ−1
t=0 γ tri(Si

t)
∣∣Si

0 = si]
E
[
∑

τ−1
t=0 γ t

∣∣Si
0 = si

] (2.15)

which can be seem as maximising the expected total discounted reward over τ steps divided
by the total discounted time over the same number of steps. This formulation hopefully gives
an intuitive idea of why this particular index yields the optimal strategy. Another way to
express the index, which we will use when applying it later in the project is

ν(Σ,n,γ) =
Σ

n
+ν(0,n,γ). (2.16)

Here we have reparametrised the arguments so that the state si is represented by Σ and n and
the reference to the bandit Bi itself is replaced with just an input for the discount factor γ . We
introduce this notation here because it is the way we will formulate the index going forward.
This decomposition can be viewed as an expected immediate reward Σ/n and a term which
is independent of Σ which we might call the exploration bonus. This number depends on n
so, in effect, it is a function of the uncertainty in the estimate of q∗.

The index theorem for SFABPs (using the original notation) can simply be stated as:

Theorem 1. A policy for a simple family of alternative bandits is optimal if it is an index
policy with respect to ν(B1, ·),ν(B2, ·), . . . ,ν(Bk, ·).
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2.3.1 Proof of the Gittins index theorem

Many proofs of this theorem have been presented over the years including the original proof
by interchanging bandit portions (Gittins, 1974) and others (El Karoui & Karatzas, 1993,
1994), (Ishikida & Varaiya, 1994), (Tsitsiklis, 1994). The one that perhaps provides the most
intuition about the index, the proof by prevailing charges argument, is due to Weber (1992)
and is outlined here.

We imagine a setting with a single bandit process Bi which can be continued or frozen at
each time step and we return to the analogy mentioned above of paying a ‘rent’ each time the
bandit is used for the rewards produced by the bandit. Taking into account the current state
of the bandit si, we set up a sort of game which produces a stochastic process. This process
will not ever actually be realised but by considering its expected behaviour we can prove the
required result about the optimal decision at the start. The game works as follows:

We refer to the rent as the prevailing charge, λ ∗i (S
i
t). If the prevailing charge is too large then

we will freeze the bandit but if the charge is small enough then we will continue the bandit
and make an expected profit. The fair charge λi(Si

t) is the level of rent at which we would be
indifferent between freezing the bandit and continuing it for at least one more step (with the
knowledge that we can optionally stop the bandit at some time later). The value of λi(Si

t) is
the same as λ̄ in (2.14) by definition.

The prevailing charge is initially set equal to the fair charge and if at any point the fair charge
falls below the prevailing charge, making it optimal to stop playing the game, the prevailing
charge is dropped to equal the current fair charge. This means that throughout the game
λ ∗i (S

i
t) = mint ′≤t λi(Si

t ′). The prevailing charge is non-increasing in time. Under the rules of
this game, the expected profit at the outset is 0. Due to this, the total expected discounted
reward must be equal to the total expected discounted prevailing charge.

We can now consider a SFABP of k bandits whose behaviours all follow the above description.
By always choosing to continue the bandit with the greatest prevailing charge we can receive
an expected profit of 0. This is because any policy corresponds to an interleaving of the
k sequences of prevailing charges into a single sequence. Selecting the greatest prevailing
charge at each moment interleaves them such that the discounted total is maximised. Since
prevailing charges are never set below fair charges, the expected profit for playing each
bandit is never positive, so there is no policy which receives a positive profit in expectation.
Therefore this policy attains the maximum so it is optimal. At any moment when selecting
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from multiple bandits we can imagine setting up this game using the current state of the
bandits. The above argument tells us that we should pick the bandit with the greatest
prevailing charge which is exactly equal, by construction, to the fair charge: the Gittins index.

2.4 Gaussian processes

Having hopefully established what the GI is and argued why it must produce an optimal
policy, we need to consider how to calculate it. We will present an approach in chapter 3
to approximately calculate the GI which is based around Gaussian processes (GP). As well
as calculating the GI, GPs will be central in our approach to utilising it in the context of
correlated bandits and Bayesian optimisation in chapter 4. So we take some time here to
define the GP and lay out some of the central facts which will be useful in the rest of this
work. A key reference for all of the information relating to GPs is Rasmussen & Williams
(2006).

A Gaussian process is a generalisation of the multivariate Gaussian distribution. While a
Gaussian distribution describes the probabilistic behaviour of a random vector (a vector of
random variables), a Gaussian process describes the behaviour of a function. One intuitive
way to understand this difference is to consider a random vector vvv ∈ Rd which follows a
d-dimensional multivariate Gaussian distribution vvv∼N (µµµ,Σ) where µµµ ∈Rd and Σ ∈Rd×d

is symmetric and positive semi-definite. To select a single component from this vector we
use an index i from the set I = {1, . . . ,d} and take the component (vvv)i = vi. A Gaussian
process can be thought of in much the same way except for the fact that the set containing the
possible indices becomes uncountably infinite, in particular I = R. This replaces the vector vvv
with a function f (x) indexed by x ∈ R.

Making this change requires us to alter the objects which serve to describe the mean and
covariance of the components. Instead of a mean vector µµµ we require a mean function µ(·).
Instead of a covariance matrix Σ, we require a covariance function, or kernel, k(·, ·). A
crucial fact about GPs is that the marginal distribution of f evaluated at any finite set of input
points is always multivariate Gaussian. To be precise

fff (xxx)∼N (µµµ(xxx),K) (2.17)

where (µµµ(xxx))i = µ(xi) and Ki j = k(xi,x j) = cov( f (xi), f (x j)) for any vector of inputs xxx.
This allows us to work with the GP, despite the uncountability which is built into it, by only
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ever asking questions about the distribution on finite sets of points.

The choice of µ and k are very important and can be seen as describing the prior distribution
over functions. The choice of k informs how the distributions of nearby points depend on
each other. Finiteness of k ensures that the functions are almost surely continuous but the
particular way in which they can vary over any given length scale depends on the form of the
covariance function and the setting of its parameters.

An important covariance function is the squared-exponential (SE) covariance function (also
known as radial basis function (RBF) or Gaussian kernel). This can be expressed as

k(xi,x j) = v2 exp
(
−|xi− x j|2

2l2

)
(2.18)

where are v and l are (hyper)parameters which need to be set. We can see that the covari-
ance approaches the constant v2 as |xi− x j| approaches 0 so this number can be seen of the
marginal variance at this point. The magnitude of the covariance decays exponentially as
the distance between the two points increases. The rate of this decay depends on the length
scale l. The larger l is then the greater the distance can be between two points to still have a
given level of positive covariance. As well as the squared-exponential, a less commonly seen
covariance function, the cubic spline, is applied in our method for calculating the Gittins
index and is described in chapter 3.

2.4.1 GP prediction

A useful property of GPs is that we can calculate the posterior distribution in closed form
given a dataset of input points and function evaluations. We will assume that measurements
are made with some level of noise so we would like the posterior GP to produce function
which pass through, or close to, the observed points. We would also expect the uncertainty in
the distribution to be low near those points and larger at points far away from the datapoints.
We observe this exact behaviour when we make the Bayesian update and compute the
posterior GP. If we observe a dataset X ,yyy and wish to find the predictive distribution at a set



18 Background and Related Work

of test points X∗ then we have

fff ∗|X ,yyy,X∗ ∼N ( f̄ff ∗,cov( fff ∗))

f̄ff ∗ = K(X∗,X)(K(X ,X)+σ
2
n I)−1yyy (2.19)

cov( fff ∗) = K(X∗,X∗)−K(X∗,X)(K(X ,X)+σ
2
n I)−1K(X ,X∗) (2.20)

a result which we will use extensively. Here σ2
n is the noise level added to the diagonal of

the covariance matrix of the training data to represent the measurement noise. It can be
important to ensure the numerical stability of the matrix inversion by keeping the eigenvalues
of the matrix away from 0. This computation can become expensive due to the need to invert
a matrix of dimension equal to the number of datapoints. Scalability can be improved with a
technique such as sparse Gaussian processes (Titsias, 2009).

This allows us to perform regression in a Bayesian way as we can fit a GP to a set of data-
points and make predictions about the function values at points in between the datapoints.
We will especially make use of this in this project to interpolate functions for which we only
have computed values at a discrete grid of points.

2.4.2 Hyperparemeter adaptation

Given a choice of covariance function, we will in general have some number of hyperpa-
rameters to determine. For example, the length scale of the squared-exponential covariance
controls how rapidly nearby function values are able to fluctuate. If the length scale is short
then the functions can vary rapidly and points beyond a short distance apart are effectively
uncorrelated, whereas with a long length scale the functions can only fluctuate much more
slowly with high probability. This entails a trade-off between the simplicity of the functions
prioritised by the distribution and the ability of those functions to explain the observed data.
The way of evaluating the strength of a choice of hyperparameters is the marginal likelihood,
the integral of the prior multiplied by the likelihood

p(yyy|X) =
∫

p(yyy| fff ,X)p( fff |X)d fff (2.21)

which will be a function of the hyperparameters.
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Performing the calculations it can be shown that for a GP

log p(yyy|X) =−1
2

yyyT (K +σ
2
n I)−1yyy− 1

2
log |K +σ

2
n I|− n

2
log2π. (2.22)

where n is the number of datapoints. This is the function which should be optimised to find
the best hyperparameters. Any optimisation method can be used for this task depending on
the specific circumstances, e.g. whether the gradient with respect to the hyperparameters θ ,
∇θ log p(yyy|X) is available.

2.5 Bayesian optimisation

One of the goals of this project is to attempt to apply a Gittins index based algorithm to the
problem of Bayesian optimisation (BO). Here we will briefly define BO and the general
framework of its methods.

Bayesian optimisation is the problem of globally optimising a continuous black-box objec-
tive function which is expensive to evaluate (Kushner, 1964), (Jones at al., 1998), (Frazier,
2018). By this we mean that we do not have access to information about the derivatives
of the function nor does the function have easily exploitable properties such as linearity or
convexity. The expensiveness of evaluating the function places a premium on the number
of function evaluations involved in the optimisation algorithm, perhaps in terms of time or
cloud computing fees. To achieve this aim we must intelligently select where to sample the
objective function based on the observations we have made so far.

A central application of BO is the tuning of hyperparameters in machine learning models,
especially neural networks which can involve very compute intensive training (Snoek at al.,
2012). The objective function in this case could be the test loss of a trained network as a
function of the hyperparemeters e.g. learning rate or layer width. This function then includes
the entire process of training a neural network- a highly expensive process which does not
have readily available derivatives.

BO is also useful when evaluating the objective function involves expensive real-world
actions such as performing an experiment. For this reason it has seen use in drug discovery
(Negoescu et al., 2011), chemical design (Griffiths & Hernández-Lobato, 2020), materials
design (Frazier & Wang, 2016) and designing engineering systems (Forrester et al., 2008).



20 Background and Related Work

Typically BO involves two components, a statistical model of the objective function f and
an acquisition function which informs the decision about where to sample the function next.
The model of the objective function is usually a GP and this is what we will be using. GPs
are useful because they can capture the continuous behaviour we assume about the objective
function and can incorporate observation noise which is relevant to this particular project.
There are a number of choices for acquisition functions which take the posterior distribution
of the objective function model f (x)| f (x1:t), computed in the way described in the earlier
section, and convert it to a score which tells us where to sample the function.

A key question when performing BO is the choice of acquisition function. The application to
BO of this project is the development of a new acquisition function based on principles from
MABs. Some of the most popular choices are expected improvement (discussed in chapter
4) (Močkus, 1975), (Jones, 1998), knowledge gradients (Frazier et al., 2009), entropy search
(Hennig & Schuler, 2012) and predictive entropy search (Hernández-Lobato, 2014). In
chapter 4 we also discuss UCB and Thompson sampling which can be seen as generalisations
of the equivalent techniques from MABs. What unifies the different approaches is that they
give preference to sampling regions of input space where the distribution is highly uncertain.
This can be seen as an example of balancing exploration and exploitation- it is beneficial to
explore these uncertain areas because there is a reasonable chance that they will produce
information which will be useful for the long term goal.



Chapter 3

Approximate Computation of the Gittins
Index

Methods for computing the Gittins index typically revolve around calibration (Edwards,
2019), (Gittins, 2011), (Chakravorty, 2014) which broadly speaking means solving equation
(2.14) for the value of a standard bandit for which we are indifferent between it and another
bandit. This is done by binary search; repeatedly evaluating the value function on a shrinking
range of values of λ to locate its root. These methods can find the GI up to a fixed accuracy,
the level of which effects the optimality of the GI algorithm when applied to MABs. Increas-
ing the accuracy of binary search can rapidly increase the computational cost.

An approximately accurate GI leads to an approximately optimal MAB policy (Katehakisa &
Veinott Jr, 1987) and Glazebroke (1982) provides a bound on the loss of reward due to an im-
precise GI. This means that a level of error is acceptable, which justifies the approximations
we will make in computing the GI, but we would like a method which retains the ability to
control the accuracy of the approximation (as a trade-off with computational expense).

We present here an alternative method which recursively approximates the value function
using Gaussian processes. This particular choice of approximation leads to closed form
calculations of subsequent value functions. This means that accuracy can be improved, rather
than by increasing the depth of a binary search, but by increasing the density of points used to
fit each GP, thus improving the accuracy of the GP approximation. We will first demonstrate
the way that this approach arrives at the GI, then formulate the specific calculations for two
particular choices of GP covariance function, squared-exponential and cubic spline.
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3.1 GI from recursive formulation of the value function

Following an optimal policy, the value function for a bandit in the scenario where we imagine
a second bandit with fixed returns λ is defined recursively as

Ṽ (Σ,n,γ,λ ) = max
{

Σ

n
+ γEY [Ṽ (Σ+Y,n+1,γ,λ )],

λ

1− γ

}
. (3.1)

We have the choice between using the variable bandit which returns an expected reward of
Σ

n or using the fixed bandit. If we choose the former then the expected future rewards are
contained within the same value function but with arguments reflecting the new information
about the bandit, and after discounting the function by γ . If the fixed arm is the optimal
choice then no information is gained so the optimal choice will remain the same forever,
resulting in a reward of λ

1−γ
. Taking the maximum of the rewards from these two options

yields the optimal reward.

A more convenient formulation of the value function is V = Ṽ − λ

1−γ
, the excess reward of

the variable arm compared to the fixed arm under the optimal policy. This can be expressed
as

V (Σ,n,γ,λ ) = max
{

Σ

n
−λ + γEY [V (Σ+Y,n+1,γ,λ )],0

}
(3.2)

and then the Gittins index is

ν(Σ,n,γ) = min{λ : V (Σ,n,γ,λ ) = 0}. (3.3)

The function V is awkward in that is is a non-constant function over part of its domain and
a constant over the rest. We can transform it further to get a single smooth function which
will be even more convenient to work with. In effect we will reverse the order of the max
operation and the ‘step’ operation (moving from n to n−1) of the dynamic programming to
get a function U such that V = max{U,0}. That is to say,

U(Σ,n) =
Σ

n
−λ + γEY [max{U(Σ+Y,n+1),0}] (3.4)

where γ and λ are treated as constants. From here on, this function U will be what is referred
to as the value function. Figure 3.1 shows the function U(Σ,1) for a particular horizon,
the zero-intercept on the Σ axis β is marked as this will be an important feature of our
calculations.
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Fig. 3.1 Value function U(Σ,1) for h = 20, N = 40 and γ = 0.95. The zero-intercept can be
observed as β ≈−1.

The expectation in (3.4) is taken over the posterior distribution of Y ,

Y |Σ,n∼N

(
Σ

n
,
n+1

n

)
. (3.5)

While the problem is formulated as having an infinite horizon, in practice, the dynamic
programming problem needs a starting point for it to be well defined. In the limit of large n,
information gained on successive uses of a bandit has a vanishing effect on the future strategy
and rewards. The uncertainty is so small that the bandit can be treated as if it produces a
constant reward of Σ/n. It has excess value max

{
Σ/n−λ

(1−γ) ,0
}

so we set our DP starting point
to

U(Σ,N) =
Σ/N−λ

(1− γ)
(3.6)

for a large number N. The effect of this approximation on steps early in the DP computation
might be large but it will begin to vanish for later steps (meaning earlier time-steps since
the DP calculation works backwards from N). This means we should select N so that it is
much larger than the effective horizon so that the approximation is good for steps before the
effective horizon.
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Notice that U(Σ,n) is non-decreasing in Σ and is unbounded. This means that it has a unique
root β . In fact, if β is defined in Σ-space then it is equal to −n times the exploration bonus
component of the Gittins index. i.e.

ν(Σ,n,γ) =
Σ

n
− β

n
. (3.7)

Noting the distribution Σ+y|Σ,n−1∼N
( nΣ

n−1 ,
n

n−1

)
, we can now reformulate the recursion

as

U(Σ,n−1) =
Σ

n−1
−λ + γ

∫ +∞

−∞

max{U(z,n),0}N
(

nΣ

n−1
,

n
n−1

)
dz

=
Σ

n−1
−λ + γ

∫
∞

β

U(z,n)N
(

nΣ

n−1
,

n
n−1

)
dz. (3.8)

Once the value function is in this formulation we can simplify it for our purposes by setting
λ = 0. Performing this integral is where the problem opens itself to innovation and a variety
of ideas present themselves. At each step we will only have access to U(Σ,n) from the
previous step at a set of sample points, rather than the full continuous function so some
approximation must be made which faithfully recreates the true value function but retains the
tractability of the integral.

This approximation can be viewed as an interpolation or regression problem. A powerful
tool for these tasks is the Gaussian process; it can transform the grid of points into a smooth
function while being easy to compute and the hyper-parameters can be optimised by max-
imising marginal likelihood. In other words U(Σ,n) will be replaced by the posterior mean
of a GP conditioned on the values computed in the previous step.

In order to use a GP we must select a covariance function. We will implement and compare
GP approximations using squared exponential and cubic spline covariance functions which
are described by Rasmussen & Williams (2006).

3.2 Squared exponential covariance

The squared exponential covariance function is

k(x,x′) = v2 exp
(
−(x− x′)2

2l2

)
(3.9)



3.2 Squared exponential covariance 25

where v is a scale the magnitude of the covariance and l is the length scale. We define the
matrix Ky such that (Ky)i j = k(xi,x j)+δi, jv2τ2 where τ2 represents the signal-to-noise ratio.
Adding this noise to the diagonal ensures positive-definiteness of the matrix and helps with
the numerical stability of inverting it.

The data provided to the GP is {xi,yi}d
i=1 so we can expect reasonable behaviour for x values

within the range of the data. We can ensure good behaviour for larger x by using a prior mean
function mgp(x). We will assume that if x, which represents Σ the total reward received from
the bandit, is very large then there is a negligible posterior probability that the true reward is
negative. Approximating this probability by 0 allows us to say that the optimal policy is to
activate this bandit forever (instead of the fixed bandit which for our purposes gives reward
λ = 0). Hence we should find that the value function U(Σ,n)≈ Σ

n(1−γ) . Therefore we set the
prior mean

mmmgp(xxx) =
xxx

n(1− γ)
. (3.10)

We can now find the posterior mean of the GP evaluated at a test point x∗

U(x∗,n) = mgp(x∗)+ kkk(x∗,xxx)K−1
y (yyy−mmmgp(xxx))

= mgp(x∗)+
d

∑
i=1

αiv2 exp
(
−(x∗− xi)

2

2l2

)
(3.11)

where αi = ∑
d
j=1(K

−1
y )i j(y j−mgp(x j)).

Inserting this expression into (3.8) we can reformulate U(Σ,n−1) in terms of the probability
density function N and cumulative density function Φ of the standard Gaussian distribution.
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Let m = nΣ

n−1 , s2 = n
n−1 . Then,

U(Σ,n−1) =
Σ

n−1
+ γ

∫
∞

β

U(z,n)N (z|m,s2)dz

=
Σ

n−1
+ γ

∫
∞

β

mgp(z)N (z|m,s2)dz+ γ

d

∑
i=1

∫
∞

β

αiv2 exp
(
−(z− xi)

2

2l2

)
N (z|m,s2)dz

=
Σ

n−1
+

γ

n(1− γ)

∫
∞

β

zN (z|m,s2)dz+ γv2l
√

2π

d

∑
i=1

αi

∫
∞

β

N (z|xi, l2)N (z|m,s2)dz

=
Σ

n−1
+

γ

n(1− γ)

(
mΦ

(
m−β

s

)
+ sN

(
m−β

s

))
+ γv2l

d

∑
i=1

αiZiΦ

(
m̃i−β

s̃

)
(3.12)

where Zi =
1√

l2+s2 exp
(
− (m−xi)

2

2(l2+s2)

)
, s̃ =

(
1
l2 +

1
s2

)− 1
2 and m̃i = s̃2

(
xi
l2 +Σ

)
.

Here we have used the following useful identity which will be proved as part of Proposition 1

∫
∞

β

zN (z|µ,σ2)dz = µΦ

(
µ−β

σ

)
+σN

(
µ−β

σ

)
. (3.13)

3.2.1 Hyperparameter optimisation

At each step of the DP we fit a new GP to a set of points. While the behaviour of the GPs
should not vary much from step to step, it is still important to ensure that a good distribution
has been learned which reasonably balances parsimony with goodness of fit. The standard
method to do this is maximising the marginal likelihood p(yyy|xxx,θ) over the hyperparameters
θ . For a squared-exponential covariance function, the hyperparameters are θ = (v, l) for the
covariance scale and length scale.

The marginal likelihood of any GP is

p(yyy|xxx,θ) =−1
2

yyyT (K +σ
2I)−1yyy− 1

2
log |K +σ

2I|− d
2

log(2π). (3.14)

We have reparameterised the noise parameter σ2 to be v2τ2 in our formulation so that it
scales with the covariances in K. The log of the determinant in this expression can be
computed conveniently as the sum of the diagonal of the Cholesky decomposition of the
matrix Ky = K + v2τ2I.
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In order to maximise the marginal likelihood we can use gradient ascent or any variation
thereof. To do this requires the partial derivatives of the marginal likelihood with respect to
the two hyperparameters. These are

∂

∂v
p(yyy|xxx,θ) = (yyy−mmmgp(xxx))T (Ky)

−1(yyy−mmmgp(xxx))−d (3.15)

∂

∂ l
p(yyy|xxx,θ) = 1

l2 xT

Wxxx−

(
x j

d

∑
i=1

Wji

)d

j=1

 (3.16)

where W = K ◦ ((Ky)
−1−ααααααT ) with ◦ denoting element-wise multiplication and ααα =

(α1, . . . ,αd) as defined above.1

Being a non-convex optimisation problem, finding the global maximum of the marginal
likelihood is not trivial. However, as long as a fine enough resolution of data points is
calculated at each step of the DP, functions drawn from the GP do not have much room to
oscillate in between the data points. This means that a posterior distribution which fits the
data well will be forced to almost entirely contain sensible functions. Therefore, perfectly
optimising the hyperparameters should not be necessary, and points in the vicinity of local
maxima are likely to be adequate.

3.3 Cubic spline covariance

An alternative covariance function which may be more suitable for computation of the Gittins
index is the cubic spline covariance function:

k(x,x′) =
|x− x′|

2
min(x,x′)2 +

1
3

min(x,x′)3 (3.17)

where σ2 is a scale hyperparameter. Given the data points {(xi,yi)}d
i=1, let (Ky)i j =

σ2(k(xi,x j)+ r2δi j) where r2 is a parameter which controls the signal-to-noise ratio.2 We
define the basis hhh(x) = [1,x]T and H = [hhh(xi), . . . ,hhh(xN)]. Finally define BBB = [B1,B2]

T =

(HK−1
y HT )−1HK−1

y yyy. The cubic spline GP has linear asymptotes so there is no need to

1The derivative with respect to l involves some slightly confusing notation which represents the vector of
row sums of W element-wise multiplied by xxx. This is difficult to notate clearly so this footnote is included to
hopefully add some clarity to the expression.

2The cubic spline GP is non-stationary because the variance k(x,x) grows with x3. This means it is not
possible to define a single signal-to-noise ratio when using a a stationary noise process. Hence for a given value
of r2 the signal-to-noise ratio will be different at every point in the process so r2 should not be interpreted as
literally being the signal-to-noise ratio.
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enforce a linear prior as we did with the squared-exponential covariance. The posterior GP
mean is

U(x∗,n) = hhh(x∗)T BBB+σ
2kkk(x∗,xxx)T K−1

y (yyy−HT BBB)

= B1 + x∗B2 +
N

∑
i−1

αi

(
|x∗− xi|

2
min(x∗,xi)

2 +
1
3

min(x∗,xi)
3
)

(3.18)

where αi = ∑
d
j=1(K

−1
y )i j(yyy−HT BBB) j. A derivation of this can be found in Rasmussen and

Williams (2006). Note that this expression is independent of the covariance scale σ2 so it
can be arbitrarily set to 1 and there is no need to optimise it.

This mean function is piecewise cubic in x so to solve the integral in (3.8) with this GP we
require a few facts about integrals of Gaussian distributions in z multiplied by z (which leads
to (3.13)), z2 and z3. These will be proved by repeated application of integration by parts.

Proposition 1. For a,b,µ ∈ R,σ > 0 the following all hold

i)
∫ b

a
zN (z|µ,σ2) =σ

(
N

(
a−µ

σ

)
−N

(
b−µ

σ

))
+µ

(
Φ

(
b−µ

σ

)
−Φ

(
a−µ

σ

))

ii)
∫ b

a
z2N (z|µ,σ2) =σ(a+µ)N

(
a−µ

σ

)
−σ(b+µ)N

(
b−µ

σ

)
+
(
σ

2 +µ
2)(

Φ

(
b−µ

σ

)
−Φ

(
a−µ

σ

))

iii)
∫ b

a
z3N (z|µ,σ2) =σ(a2 +µ

2 +µa+2σ
2)N

(
a−µ

σ

)
−σ(b2 +µ

2 +µb+2σ
2)N

(
b−µ

σ

)
+µ(3σ

2 +µ
2)

(
Φ

(
b−µ

σ

)
−Φ

(
a−µ

σ

))



3.3 Cubic spline covariance 29

Proof. We first let ã = a−µ

σ
and b̃ = b−µ

σ
and note the following 4 facts derived by integration

by parts:

∫ b̃

ã

1√
2π

exp
(
−x2

2

)
dx =Φ(b̃)−Φ(ã) (3.19)∫ b̃

ã

1√
2π

xexp
(
−x2

2

)
dx =− 1√

2π
exp
(
−x2

2

)∣∣∣b̃
ã
= N (ã)−N (b̃) (3.20)∫ b̃

ã

1√
2π

x2 exp
(
−x2

2

)
dx =− 1√

2π
xexp

(
−x2

2

)∣∣∣b̃
ã
+
∫ b̃

ã

1√
2π

exp
(
−x2

2

)
dx

= ãN (ã)− b̃N (b̃)+Φ(b̃)−Φ(ã) (3.21)∫ b̃

ã

1√
2π

x3 exp
(
−x2

2

)
dx =− 1√

2π
x2 exp

(
−x2

2

)∣∣∣b̃
ã
+2

∫ b̃

ã

1√
2π

xexp
(
−x2

2

)
dx

= ã2N (ã)− b̃2N (b̃)+2
(
N (ã)−N (b̃)

)
(3.22)

Deriving (3.21) uses (3.19) and deriving (3.22) uses (3.20).

We can now consider the integrals stated in the proposition and use a change of variables
to find integrals of the forms of (3.19) - (3.22) making their solution a simple matter of
substituting in already derived results.

∫ b

a
zN (z|µ,σ2)dz =

∫ b

a

1√
2πσ

zexp
(
−1
2σ2 (z−µ)2

)
dz

=
∫ b̃

ã

1√
2π

(σx+µ)exp
(
−x2

2

)
dx

= σ

∫ b̃

ã

1√
2π

xexp
(
−x2

2

)
dx+µ

∫ b̃

ã
exp
(
−x2

2

)
dx

and result (i) follows by application of (3.19) and (3.20).
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We also have∫ b

a
z2N (z|µ,σ2)dz =

∫ b

a

1√
2πσ

z2 exp
(
−1
2σ2 (z−µ)2

)
dz

=
∫ b̃

ã

1√
2π

(σx+µ)2 exp
(
−x2

2

)
dx

=σ
2
∫ b̃

ã

1√
2π

x2 exp
(
−x2

2

)
dx+2σ µ

∫ b̃

ã

1√
2π

xexp
(
−x2

2

)
dx

+µ
2
∫ b̃

ã

1√
2π

exp
(
−x2

2

)
dx

and result (ii) follows by application of (3.19), (3.20) and (3.21).

Finally, we have

∫ b

a
z3N (z|µ,σ2)dz =

∫ b

a

1√
2πσ

z3 exp
(
−1
2σ2 (z−µ)2

)
dz

=
∫ b̃

ã

1√
2π

(σx+µ)3 exp
(
−x2

2
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dx

=σ
3
∫ b̃

ã

1√
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x3 exp
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2
µ
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ã

1√
2π

x2 exp
(
−x2
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+3σ µ
2
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ã
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xexp
(
−x2
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3
∫ b̃

ã

1√
2π

exp
(
−x2

2
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and result (iii) follows by application of (3.19), (3.20), (3.21) and (3.22).

The integral given in (3.13) follows by letting b→ ∞ in part (i) of the proposition. The other
two parts of the proposition can also give us integrals of this form but they are not useful for
our calculations here.

We can now derive an expression for the integral in (3.8) for the cubic-spline GP. Recall that
we are setting λ = 0 so the DP equation can be stated as

U(Σ,n−1) =
Σ

n−1
+ γ

∫
∞

β

U(z,n)N
(

nΣ

n−1
,

n
n−1

)
dz. (3.23)
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First, let m = nΣ

n−1 and s2 = n
n−1 and replace U(z,n) in the integral with the GP posterior

mean (3.18). This gives

U(Σ,n−1) =
Σ

n−1
+ γ

∫
∞

β

hhh(z)T BBBN (z|m,s2)dz

+ γ

d

∑
i=1

αi

∫
∞

β

(
|z− xi|

2
min(z,xi)

2 +
min(z,xi)

3

3

)
N (z|m,s2)dz (3.24)

Note that hhh(z)T BBB = B1 + zB2 so the fist integral in (3.24) can be solved as

∫
∞

β

hhh(z)T BBBN (z|m,s2)dz = B1Φ

(
m−β

s

)
+B2

(
mΦ

(
m−β

s

)
+ sN

(
m−β

s

))
(3.25)

once again making use of (3.13).

To deal with the sum of d integrals in (3.24) we need to separate the integrals depending on
whether xi ≤ β or xi > β as each collection of integrals will have different behaviour.

If xi ≤ β then the integral is over a range such that z≥ xi always so the integral is simply

∫
∞

β

(
|z− xi|

2
min(z,xi)

2 +
min(z,xi)

3

3

)
N (z|m,s2)dz =

∫
∞

β

(
x2

i
2

z−
x3

i
6

)
N (z|m,s2)dz.

(3.26)
This can once again be solved using (3.13).

If xi > β then the behaviour of the integral switches when z = xi so it must be split into two
integrals

∫
∞

β

(
|z− xi|

2
min(z,xi)

2 +
min(z,xi)

3

3

)
N (z|m,s2)dz = (3.27)∫ xi

β

(
xi

2
z2− 1

6
z3
)

N (z|m,s2)dz+
∫

∞

xi

(
x2

i
2

z−
x3

i
6

)
N (z|m,s2)dz.

we now see the importance of Proposition 1 as we have integrals involving z2 and z3 multi-
plied by a Gaussian density.

Careful application of Proposition 1 to (3.26) and (3.27), noting the various limits of the
different integrals and adding the term given in (3.25) finally leads us to a cumbersome but
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useful expression for U(Σ,n− 1). It is given entirely in terms of n, Σ and the previously
computed values B1, B2, β , xi and αi for i = 1, . . . ,d using the Gaussian probability density
function N and cumulative density function Φ.
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. (3.28)

A subtlety that has so far been ignored in these calculations is the fact that ordinarily the cubic
spline covariance function is only defined for x > 0 but here we have allowed x to exist on
the entire real line. In fact, allowing x≤ 0 leads to invalid covariance matrices K which may
have negative values on the diagonal. Fortunately, this abuse we have committed against the
covariance function does not cause problems for the posterior mean function which continues
to sensibly follow the data despite being generated from an invalid covariance matrix. On the
other hand, if we were to calculate the posterior covariance of the GP then problems would
arise and it would not be possible to make valid inferences. However, we never calculate or
use the posterior covariance so we escape unscathed. Possible resolutions would be to shift
the x values upwards before fitting the GP or to calculate two separate GPs, one for x > 0
and one for −x when x < 0. While going to these efforts may make the method feel more
theoretically sound, we do not see this as a necessary step since our method works without it.

The above discussion may make the cubic spline covariance seem to be a more complicated
choice than squared-exponential, involving unpleasant expressions like (3.28). However, this
choice brings a meaningful advantage in that the covariance depends on only one hyperpa-
rameter σ2 and the posterior mean is independent of it. This saves all the computational cost
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of optimising hyperparameters which had to be done at every step of the algorithm with the
squared-exponential covariance.

3.4 Algorithm details

The starting point N for dynamic programming should be much larger than the effective
horizon h so we set N = 2h. The choice of N is a handle by which the precision of the
algorithm can be adjusted at the expense of compute time. The appropriate discounting factor
is set at γ = 1−1/h.

At each step of the program an appropriate range of values for Σ must be chosen for which
we wish to compute U(Σ,n−1). The lower bound Σ0 needs to be low enough that the range
contains the zero-intercept of the function. Setting this bound to Σ0 =−

√
n always achieves

this. While choosing this bound works, it is very loose, especially for large n. We can
improve it by empirically checking how low the zero intercepts can become. Figure 3.2
shows the linear relationship between the minimum zero-intercept and

√
N. The slope is

approximately -0.62, so setting Σ0 =−0.62
√

n should always keep the zero-intercept within
the range of Σ without allowing for an increasingly large amount of unnecessary calculation
below the intercept.

The choice of upper bound for the range of Σs impacts the accuracy of the approximation. A
single reward has a variance of 1 so for the sum of n rewards the variance grows with n and
the standard deviation with

√
n. To capture almost all of the mass of a Gaussian distribution

we should consider at least 3 standard deviations from the mean. Hence we will set the upper
bound on Σ to 3

√
n. This can be increased to make a small gain in accuracy or reduced to

accelerate the algorithm.

The range of Σs also needs an appropriate resolution δ . It should be fine enough that the
zero-intercept of the value function can be accurately approximated. However, the dimension
of the covariance matrix scales linearly with the resolution so this significantly effects the
time needed for matrix inversion. We used a resolution of δ = 0.1 in our experiments.

U(Σ,N) is set to the linear function (3.6). This means that for the first step of dynamic
programming, no Gaussian process approximation is needed. The calculation is more simply
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Fig. 3.2 Minimum value of β against
√

N. The line y =−
√

N is marked.

expressed as

U(Σ,N−1) =
Σ

N−1
+

γ

1− γ

(
Σ

N−1
Φ

( √
NΣ√

N−1

)
+

1√
N(N−1)

N

( √
NΣ√

N−1

))
.

(3.29)
It can be assumed that this function has a single zero-intercept β so this can be approximated
by linear interpolation between the two computed points between which the change of sign
occurs.

To compute U(Σ,n−1) for n = N−1, . . . ,1 we set the test points Σ = {Σi} where Σ0 is the
lower bound discussed above and Σi = Σi−1 + δ . There are enough of these points that it
spans the space between the earlier discussed lower and upper bounds. We then compute
the value function approximation using (3.28) or (3.12) and the value of β computed from
U(Σ,n). The new zero-intercept is then computed and the next step of dynamic programming
can begin. Calculation of all of the points U(Σ,n− 1) for a given n can be computed in
vectorised form using NumPy or Matlab, which improves efficiency significantly over the
unvectorised form of the calculation.

The value functions themselves are not useful but the zero-intercepts on the Σ axis are
important. At each step we can find the exploration bonus component of the Gittins index as
ν(0,n,γ) =−β (n)/n.



3.5 Results 35

3.5 Results

Figure 3.3 shows how the value function U(Σ,n) evolves as n changes going from n = 20 to
the final shape at n = 1. Figure 3.1 shows the shape at n = 1. Note that the function becomes
linear far away from the zero-intercept as little information can be learned about a bandit
which is in this area so its expected reward becomes a constant.

Fig. 3.3 U(Σ,n) at each step of DP for γ = 0.95. n = 20 is in yellow and n = 1 is in blue.

Figure 3.4 shows the evolution of β as n changes for different horizons/discount factors.
Recall that we always set γ = 1−1/h. The stength of the approximation improves for smaller
n, as we move away from the start of the DP. For this reason we should only really count
as valid the values of β for n < h. The more useful value that can be derived from this is
the exploration bonus ν(0,n,γ) =−β (n)/n. These are shown for various horizons/discount
factors in Figure 3.5. We see the expected behaviour; the exploration bonus decreases as
the number of observations of a bandit increases. In settings with a longer horizon (larger
discount factor) there is more incentive for exploration so the bonus is greater.

As expected, using the cubic spline covariance runs much faster than squared-exponential
due to the lack of a need to optimise hyperparameters. In order to use the calculated values
in practice, they only need to be computed once for a given γ however, for long horizons the
speed of the algorithm may become a relevant factor in how the algorithm should be executed.
The speed can be augmented by reducing the starting point for dynamic programming N or
the upper end of the range of values of Σ used in each step of computation. These choices
involve of a trade off with precision of the computed Gittins indices.
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Fig. 3.4 Zero-intercepts β of value functions. These are accurate for n < h = 1/(1− γ).

Fig. 3.5 Exploration bonus derived from value functions as a function of n. These are
calculated up to double the effective horizon.



Chapter 4

Correlated Bandits and Bayesian
Optimisation

Having computed the Gittins index, we now aim to extend its use beyond that which it is
designed for. We only have theoretical guarantees of optimality for the algorithm in the case
of uncorrelated bandits but it stands to reason that with appropriate modification it could form
a useful basis for an algorithm with correlated bandits. As we are entering territory without
theoretical guarantees, we will design an algorithm and evaluate its strength empirically
rather than theoretically.

Once an approach is established for correlated discrete bandits, the theoretical step to move
to Bayesian optimisation is relatively straight forward. In essence, the discrete bandit setting
is a special case of the continuous bandit setting in which we only consider a discrete set of
points in the learned reward function. While the two settings are theoretically similar, we
will find in chapter 5 that the empirical results are quite different.

4.1 Correlated bandits

The key insight that motivates our ‘correlated Gittins’ algorithm is that the uncertainty asso-
ciated with each bandit is purely a function of n, the number of times the bandit has been
observed. This means that if we can produce an alternative measure of the uncertainty then
we can convert it into ñ which we might call the effective n.

The way we calculate the uncertainty is to fit a GP to the observed rewards and extract the
marginal variances from the posterior GP at points 1, . . . ,k if there are k bandits. These
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marginal variances σ2
i can be transformed into the effective n as ñi = 1/σ2

i for i = 1 . . . ,k.
This value is used to extract a Gittins value which has already been computed for the appro-
priate γ .

However, the Gittins index is only designed for n ∈ N. We need to extend the definition
of ν(Σ, ñ,γ) to positive real values ñ > 0. For the time being, it can suffice to use to linear
interpolation of the pre-computed values, but we will use a more sophisticated approach
when we graduate to Bayesian optimisation. In other words, we compute the interpolated
Gittins index as

ν̃(ñµ, ñ,γ) = µ +ν(0,⌊ñ⌋,γ)+(ñ−⌊ñ⌋)(ν(0,⌊ñ⌋+1,γ)−ν(0,⌊ñ⌋,γ)) (4.1)

where we replace the usual total reward Σ by ñµ where µ is the posterior mean of the GP.

Once this index has been calculated, it is a simple task to select a bandit i to maximise
ν̃(ñiµi, ñi,γ). This bandit is then observed, the reward received and the GP is updated with
this new information. The algorithm for k bandits with noisy reward function r is summarised
in algorithm (1).

Algorithm 1: Correlated Gittins for multi-arm bandits
Require: k, maxIter, ν(0,n,γ) for n = 1, . . . ,N
xxx← [ ]
RRR← [ ]
firstAction← random(1, . . . ,k)
append(xxx, firstAction)
append(RRR, r(firstAction))
for step = 1, . . . , maxIter do

ttt← [1, . . . ,k]
µµµ ← K(ttt,xxx)(K(xxx,xxx)+ I)−1R
cov(µµµ)← K(ttt, ttt)−K(ttt,xxx)(K(xxx,xxx)+ I)−1K(xxx, ttt)
σσσ222← diag(cov(µµµ))
ñnn← 1/σσσ222

for i = 1, . . . ,k do
ν̃i← µi +ν(0,⌊ñi⌋,γ)+(ñi−⌊ñi⌋)(ν(0,⌊ñi⌋+1,γ)−ν(0,⌊ñi⌋,γ))

end for
action← argmaxi ν̃i
reward← r(action)
append(xxx, action)
append(RRR, reward)

end for
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Note that the first action is chosen entirely at random due to the lack of information and the
need for some data xxx and RRR to make sense of the GP equations.

Before exploring further, we will describe some alternative algorithms which are commonly
used in multi-arm bandit problems. These algorithms, as well as the regular Gittins index
algorithm, will be used as comparisons for the performance of our own algorithms. We will
also consider how some of the approaches have similarities to our own which will help us to
gain an intuition as to what constitutes a ‘fair’ comparison.

4.1.1 ε-greedy

Considering the aim of exploiting known information while exercising a non-zero but lim-
ited amount of exploration, the most immediate and straight forward algorithm one might
construct is ε-greedy. The idea is that most of the time the algorithm will strictly choose
the bandit which has delivered the greatest average reward in the past, but will test bandits
uniformly at random a proportion ε of the time. The degree of exploration can be easily and
explicitly controlled by the single parameter ε ; greater ε leads to more exploration. ε-greedy
for k bandits with reward function r is detailed in algorithm (2)

Algorithm 2: ε-greedy
Require: ε , maxIter
QQQ← [0 . . .0] ∈ Rk

nnn← [0 . . .0] ∈ Nk

for t = 1, . . . , maxIter do
Sample p∼U(0,1)
if p < ε then

a← random(1, . . . ,k)
else

a← argmaxi Qi
R← r(a)
QQQ[a]← QQQ[a]+ (R−QQQ[a])/(nnn[a]+1)
nnn[a]← nnn[a]+1

end for

Owing to its simplicity, this algorithm is severely flawed. If ε is too small, then the algorithm
will under-explore, and in general will be trapped in local maxima for long periods of time.
If the unknown means of the bandits happen to be set such that only a small number of them
have values close to the maximum and most bandits have much smaller means then this
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problem will be particularly bad. It may take many random observations before the algorithm
discovers one of the bandits with a large mean and in all the time up to that it will be greedily
exploiting low reward yielding bandits. In the discounted infinite horizon setting, delaying
rewards like this causes a great reduction in the total discounted reward.

On the other hand, if ε is set too large, then the algorithm will always be limited in how well
it can perform in the long run. Although it may identify the best bandits relatively rapidly, it
will continue observing random, sub-optimal bandits a large proportion of the time. The fact
that the algorithm is never able to converge is a severe handicap.

This problem of correctly tuning the hyperparameters of the algorithm is a major negative
side to algorithms which have this property, as we will see in the upper confidence bound
algorithm as well.

4.1.2 Upper confidence bound

The upper confidence bound (UCB) algorithm bears a resemblance to the Gittins algorithm. It
can be viewed as constructing an index for each bandit which consists of the current estimate
of the mean of the reward function plus an exploration bonus. To be precise, the choice of
bandit follows the formula given in Sutton and Barto (2018),

at = argmax
a

(
Q(a)+ c

√
log t
n(a)

)
(4.2)

where t is the current step in the algorithm. To make this algorithm valid we must always
have n(a)> 0 so we observe each bandit once before starting the algorithm itself. This can
be a non-negligible downside if the number of bandits is not very small relative to the horizon.
In the infinite horizon setting this is still a problem if we are considering discounted rewards,
as the more cleverly selected actions are deferred until a number of steps after the start. The
full algorithm is detailed in algorithm (3).

This index penalises bandits which have been observed a large number of times relative to
the total number of observations t. In fact, noting that the numerator is the natural logarithm
of t we see that the exploration bonus decays increasingly quickly the greater the number of
observations that have occurred. The idea of this index is that it represents the upper bound of
a confidence interval which contains the expected reward q∗(a) with overwhelmingly large
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Algorithm 3: UCB
Require: c, maxIter
QQQ← [0 . . .0] ∈ Rk

nnn← [0 . . .0] ∈ Nk

for i = 1, . . . ,k do
R← r(i)
QQQ[i]← R
nnn[i]← 1

end for
for t = 1, . . . , maxIter do

a← 0
score←−∞

for i = 1, . . . ,k do
s← QQQ[i]+ c

√
log t/nnn[i]

if s > score then
a← i
score← s

end if
end for
R← r(a)
QQQ[a]← QQQ[a]+ (R−QQQ[a])/(nnn[a]+1)
nnn[a]← nnn[a]+1

end for

probability (Auer et al., 2002).

This algorithm is generally superior to ε-greedy because the exploration is performed in
a controlled and reasonable way, rather than randomly selecting bandits which may even
have been repeatedly observed to be poor. In UCB, a bandit which has received very few
observations will be preferred to one with more observations, possibly even more than a
bandit which has produced greater rewards in the past. This can allow the algorithm to avoid
ignoring a bandit after it has given one or two low rewards which may have simply been a
result of the noise in the reward function. The algorithm follows the intuitive notion that
the size of the exploration bonus should be tied to the degree of uncertainty about a bandits
rewards.

However, we once again face the problem that the algorithm requires a free hyperparameter c.
A poor choice of c can cause under- or over-exploration and it is not clear how to select this
value without repeatedly running the algorithm and performing validation. The appropriate
value will depend on the specifics of the problem. When we use the algorithm in experiments
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we will run UCB with several values of c and we will report the few choices which produced
the strongest results to give the strongest benchmark against which to compare our algorithm.
However, it should be kept in mind that in practice, a single run of UCB may have a less well
chosen parameter and so cannot be expected to perform as well.

4.1.3 Thompson sampling

In Thompson sampling we iteratively update a Bayesian posterior for the reward distributions,
and generate a stochastic policy by sampling from the posterior distribution at each time
step. This approach is most convenient when the set up involves conjugate priors. Since the
sampling distribution we are interested in is Gaussian with known variance, we can use a
Gaussian prior and this becomes a very simple task.

If we apply a N (0,1) prior to each reward function mean q∗(a), and recalling that the
rewards have distribution r(a) ∼ N (q∗(a),1), the posterior distribution p(q∗(a)|Σ,n) =
N (Σ/n,1/(n+ 1)). At each step we take a sample from the posterior distribution of the
parameters q(a). In general, we would then select the bandit for which the sampled parameter
maximises the expected reward. In the special case that we are considering with Gaussian
reward functions, this is simply a matter of selecting the largest sample. The Thompson
sampling algorithm is detailed in algorithm (4).

Algorithm 4: Thompson sampling for r(a)∼N (q(a),1) and q(a)∼N (0,1)
Require: maxIter
QQQ← [0 . . .0] ∈ Rk

nnn← [0 . . .0] ∈ Nk

for t = 1, . . . , maxIter do
for i = 1, . . . ,k do

Sample ξi ∼N (QQQ[i],1/(1+nnn[i]))
end for
a← argmaxa ξa
R← r(a)
QQQ[a]← QQQ[a]+ (R−QQQ[a])/(nnn[a]+1)
nnn[a]← nnn[a]+1

end for
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4.2 Bayesian optimisation

Since we are modelling the rewards in the MAB problem by a GP, it is not a large conceptual
step to extend the action space to a continuous subset of the real line. Rather than just
considering the GP at a discrete set of points, corresponding to different bandits, we will
consider the entirety of the GP over a predetermined domain. We can continue to use the
uncertainty estimates produced by the GP to select the appropriate level of exploration, from
the precomputed GI. For this algorithm it will be more convenient for us to have a continuous
representation of the GI rather than the discrete one we have used previously. Since we have
computed the GI on a grid of integer points, this is an interpolation problem. Once again
GPs provide a convenient solution.

To make things as convenient as possible, we first reparameterise the GI in terms of the
standard deviation in the posterior distribution of the reward means q∗(x), i.e. in terms of
1/
√

n instead of n. In this form, we can evaluate the GP at any level of posterior uncertainty
and directly read off the appropriate exploration bonus. Let us call this version of the Gittins
index ν̃(σ(x)) where σ(x) is the marginal standard deviation of the reward GP at input x.
An example of the GI in this form is shown in 4.1. An interesting point is that under this
parametrisation, the index is approximately linear. This will be useful in comparing the
correlated Gittins method to UCB, as will be discussed later in this chapter.

The reward GP, giving us µ(x) and σ(x) is computed in exactly the same way as it was in
the MAB algorithm, except now we are interested in its values at real valued points x rather
than just integer points.

These calculations lead to an acquisition function, which is in analogy with the regular Gittins
index for bandits, which can be maximised to select the next sample point:

A(x) = µ(x)+ ν̃(σ(x)) (4.3)

with the next sample point x∗ chosen such that

x∗ = argmax
x

A(x). (4.4)

As is the normal goal of acquisition functions in BO, we have replaced an optimisation
problem on an expensive, black-box function with an optimisation problem on a relatively
cheap function for which we can compute gradients. Any standard optimisation algorithm
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Fig. 4.1 GP mean ν̃(σ(x)) of Gittins index parametrised as a function of standard deviation
σ(x) of reward distribution. γ = 0.98.

can be used to solve (4.4) such as L-BFGS. The correlated Gittins algorithm is the same
as algorithm 1 except that we first fit the GP for ν̃(σ(x)), values for ν̃ are calculated by
evaluating this GP at σ(x) rather than by linear interpolation and we do not test the reward
GP on the vector ttt = [1, . . . ,k] we instead evaluate where ever is required by our choice of
optimisation algorithm.

Before continuing on to the experiments we must describe the BO algorithms which will be
used as comparisons against our algorithm, these being expected improvement, Thompson
sampling and UCB.

4.2.1 Expected improvement

In BO the objective is the largest value sampled from the target function throughout the
running of the algorithm. An intuitive criterion then for selecting a point to sample is
how much we expect it to improve our value for this objective. If the greatest value so far
sampled at time t is f ∗t and the function value at x is f (x) then sampling at x will lead to
an improvement of max( f (x)− f ∗t ,0). This is because if f (x) is greater than f ∗t then we
have improved our greatest reward by f (x)− f ∗t , otherwise the value of our objective is
unchanged- the improvement is 0. Since we are using a statistical model as a surrogate
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for f (and because our function evaluations are noisy), we are interested in the expected
improvement acquisition function (Močkus, 1975), (Jones, 1998)

EIt(x) = E[max( f (x)− f ∗t ,0)] (4.5)

and the next sample point is selected to maximise this function.

Using a GP with posterior mean µt(x) and marginal variance σ2
t (x) at time t we can compute

this acquisition function as

EIt(x) = µ(x)− f ∗t +σt(x)N
(

µt(x)− f ∗t
σt(x)

)
−|µt(x)− f ∗t |Φ

(
µt(x)− f ∗t

σt(x)

)
. (4.6)

This choice of acquisition function is widely used due to its simplicity and intuitive appeal.
It is not specifically designed to be applied to noisy objective functions and the exact
interpretation as described does not strictly apply in this case. It is not uncommon to use
this acquisition in this form even when noise is present, however this has been shown to
negatively effect the algorithm’s performance compared to other algorithms (Wu et al., 2017).

4.2.2 Thompson sampling for Bayesian optimisation

Thompson sampling for Bayesian optimisation (Kirthevasan et al., 2018) is a simple ex-
tension of the intuition behind Thompson sampling for MABs. We will simply sample a
function from the GP which represents the current posterior distribution of the rewards and
then maximise this function to select the next input value. It is clear how this approach is
almost identical to the MAB method we took a sample form the predictive distribution of
each bandit and selected the bandit with the largest sample.

This encourages exploration due to the fact that points at which the GP has a large mean are
likely to produce large function values but also exploration as regions of input space with
high uncertainty may allow the sampled function to take especially large values. This method
again has an intuitive appeal despite having no guarantee of optimal performance.

4.2.3 GP-UCB

UCB for Bayesian optimisation, known as GP-UCB (Srinivas, 2009) as another intuitive
generalisation from MABs. This acquisition function puts a probabilistic bound on the reward
such that the sampled reward will be less than this bound with overwhelming probability.



46 Correlated Bandits and Bayesian Optimisation

In this case we simple need to extract the standard deviation of the reward GP and add a
constant multiple c of it to the estimated mean.

UCB(x) = µ(x)+ cσ(x). (4.7)

A difficulty of this acquisition function is that fact that the constant c must be selected. This
is the same problem found in the MAB version of the algorithm. The level of exploration is
left to be determined by the user. As was noted earlier, the correlated Gittins index method
takes as the exploration bonus the Gittins index which is approximately linear as a function
of the standard deviation. This makes the algorithm very similar to UCB which also has this
behaviour. The correlated GI method does not have this free hyperparameter c to select, as
it is effectively set automatically by the slope of ν̃(σ(x)). Considering this, it may be fair
to compare the correlated GI to a UCB algorithm where c has not been carefully selected.
However, this seems like an excessively large handicap to place on the UCB algorithm and
so in chapter 5 we will roughly tune UCB by running it with a few different values for c
and selecting a small number with the best performance. It should be kept in mind when
comparing these two algorithms that this tuning has gone on behind the scenes, arguably
giving UCB an unfair advantage.



Chapter 5

Experiments

5.1 Multi-arm bandits

We first conduct experiments on the discrete multi-arm bandit problem using the correlated
Gittins algorithm. We do this by simulating a large number (on the order of 1000) of runs in
which a set of bandits with randomly generated mean rewards is created and we execute the
algorithms that have been discussed on that set of bandits. The cumulative discounted reward
at each time step is averaged across the runs. The criterion that our algorithm is designed to
optimise is cumulative discounted rewards over an infinite horizon so in order to test this we
first select a discount factor γ (or equivalently an effective horizon h = 1−1/γ) and run the
algorithm for a multiple (e.g. 2-3) times the effective horizon. This gives a approximate idea
of the long term behaviour.

To generate bandits with correlated means, a good approach is to use a Gaussian process.
The hyperparamters of a squared-exponential covariance function can be used to modulate
the level of correlation between them. To generate the mean rewards we simply sample
the GP at locations 1, . . . ,k where k is the number of bandits. The length scale l is key to
controlling the amount of correlation; since the bandits are at a separation of 1 unit, the
length scale indicates how many bandits on either side of a given bandit are correlated with it
in a non-negligible way. For example, if l = 2 then bandit i should be strongly correlated
with bandits i−1 and i+1, weakly correlated with bandits i−2 and i+2 and very little with
any other bandits. If l≪ 1 then the bandits will hardly be correlated at all, since functions
from the GP can oscillate freely in between two bandits, information about one bandit tells us
nothing about any others. This setting provides a useful first experiment- we can test whether
the correlated Gittins algorithm reduces (approximately) to the uncorrelated version when
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the bandits are uncorrelated.

Figure 5.1 shows that the discounted rewards from the correlated and uncorrelated Gittins
algorithms are very similar and they outperform the other algorithms tested.

Fig. 5.1 Uncorrelated bandits. γ = 0.99, l = 0.1, k = 50. The Gittins index algorithms
outperform all others.

When the length scale is increased, the bandits become correlated. A sample of the generated
sets of bandits is shown in Figure 5.2. Now there is a large amount of information that can
be gained by observing nearby bandits. Figure 5.3 shows that in this scenario, with l = 4
the correlated Gittins algorithm far outperforms all the other algorithms tested. In fact, all
algorithms other than correlated Gittins take a significant penalty to performance in the
correlated setting. We see that the regular Gittins algorithm is no longer superior to UCB,
Thompson sampling or ε-greedy.

A further interesting metric is the largest reward found during a run. While this metric is
not explicitly optimised for by any of these algorithms it can be an instructive statistic. It is
influenced by both the accuracy with which an algorithm locates the optimum of the reward
function and the amount of time spent at or near the optimum. An algorithm which rapidly
converges on the optimum will have the best opportunity to receive large individual rewards
due to the inherent randomness of the rewards. We measure this metric by identifying
the algorithm which receives the largest individual reward on each run and calculating the
proportion of ‘wins’ for each algorithm. Results for average total discounted rewards and
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Fig. 5.2 Samples of bandits drawn from a GP with length scale l = 4 and k = 50. There is a
high degree correlation between neighboring bandits.

probability of receiving the greatest reward are given in Tables 5.1 and 5.2 for k = 10 and
k = 50 respectively.

Table 5.1 Average total discounted reward and probability of receiving greatest reward with
k = 10.

Total Discounted Reward % Largest Reward
Length scale 0.1 1 2 3 4 0.1 1 2 3 4
Corr. Gittins 138.1 96.66 77.57 63.91 50.06 0.231 0.190 0.202 0.202 0.214
Gittins 132.5 87.59 65.78 50.36 37.56 0.204 0.142 0.155 0.166 0.185
UCB (c=1.0) 104.2 87.94 65.82 52.77 38.22 0.193 0.203 0.141 0.179 0.185
UCB (c=1.5) 94.91 78.90 58.97 45.16 31.84 0.104 0.180 0.175 0.145 0.162
Thompson 103.1 87.23 66.17 51.89 37.75 0.175 0.149 0.215 0.161 0.151
0.1-Greedy 98.16 74.82 60.23 48.63 37.35 0.093 0.135 0.112 0.141 0.106

These results show that the correlated Gittins algorithm consistently outperforms the other
algorithms when l ≥ 1 and this advantage is greater for higher degrees of correlation between
the bandits. The effect is also increased by having a greater number of individual bandits.
We see that the correlated Gittins algorithm typically has the greatest chance of receiving
the largest reward, however the relationship between this metric and the level of correlation
and number of bandits is not so obvious. This data also indicates that the two metrics are not
as closely related as one might imagine; it is possible for an algorithm to receive far greater
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Fig. 5.3 Correlated bandits. γ = 0.99, l = 4.0, k = 50.

Table 5.2 Average total discounted reward and probability of receiving greatest reward with
k = 50.

Total Discounted Reward Probability of Greatest Reward
Length scale 0.1 1 2 3 4 0.1 1 2 3 4
Corr. Gittins 134.6 142.1 140.6 128.5 116.9 0.083 0.140 0.230 0.223 0.220
Gittins 130.7 116.4 98.60 83.51 70.44 0.052 0.123 0.097 0.073 0.099
UCB (c=0.2) 113.6 108.5 97.19 84.09 72.09 0.213 0.278 0.217 0.210 0.207
UCB (c=0.5) 110.5 105.1 92.73 79.14 68.44 0.245 0.193 0.210 0.181 0.173
Thompson 116.8 111.7 98.03 82.58 69.74 0.271 0.150 0.168 0.167 0.162
0.1-Greedy 117.3 104.3 94.20 88.84 76.79 0.136 0.101 0.078 0.147 0.139

discounted rewards than another algorithm but not necessarily receive the largest reward on a
consistent basis.

5.2 Bayesian optimisation

To test the correlated Gittins Bayesian optimisation algorithm we generate the reward mean
function from a GP with a squared-exponential covariance function with length scale l. The
algorithm and the comparison algorithms are all run on the same function for a fixed number
of steps and the total discounted rewards is calculated. This is averaged over a large number
of runs with different functions generated from the same GP. UCB was once again roughly
tuned and the best performing values recorded. We can link the BO problem to MABs by
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noticing that if the length scale is l and the domain of the inputs has width w then we can
roughly divide the domain into w/l approximately independent regions. We take this number
to be an analogue for the number bandits in a MAB problem, k̃.

Table 5.3 Average total discounted reward and probability of receiving greatest reward in
Bayesian optimisation.The Gittins index uses γ = 0.98. In these experiments w = 2, so
k̃ = 2/l.

Total Discounted Reward Prob. Greatest Reward
Length scale 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0
k̃ 10 5.0 2.5 0.5 10 5.0 2.5 0.5
Corr. Gittins 23.64 21.24 15.77 16.02 0.22 0.22 0.24 0.26
Expected Improvement 19.73 17.77 13.69 13.56 0.10 0.18 0.18 0.16
UCB (c=2.1) 23.94 21.71 14.07 15.56 0.20 0.24 0.28 0.18
UCB (c=2.5) 23.92 21.32 13.50 14.75 0.22 0.24 0.14 0.14
Thompson 17.10 12.36 7.63 7.97 0.26 0.12 0.16 0.26

These results suggest that the correlated Gittins algorithm is less successful in this setting
than with discrete bandits. While it achieved relatively stronger performance for longer
length scales, its performance is much more inconsistent at shorter scales and is outperformed
by UCB. As noted in chapter 4, the correlated Gittins algorithm can approximately be viewed
as a version of UCB with the exploration parameter already determined by the Gittins index.
However, these experiments show that this approach does not find an optimal level for this
exploration as it can be improved upon by tuning UCB. This suboptimality may be because
our algorithm only considers the marginal variance at each point when determining the
exploration bonus to apply. The lack of reference to the posterior GP covariance between
points may be causing it to under-explore. It is not immediately obvious how to solve this
problem, or why it seems to be more impactful in BO than in MABs.

Despite this, we found that the correlated Gittins algorithm had comparable or better perfor-
mance in terms of total discounted reward than the other methods tested on longer length
scales. This is especially useful as our algorithm does not require any hyperparameter tuning,
unlike the next best performing algorithm, UCB. Therefore, especially in settings where it
is too expensive to test different exploration parameters, our algorithm may be considered
better than UCB.

The results are less encouraging in terms of the probability of correlated Gittins receiving a
larger single greatest reward compared to the other algorithms. This is maybe not entirely
surprising. The intuition which suggests using the GI as a basis for an algorithm of this kind
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comes from the optimality of GI for total discounted rewards. We have no such guarantees
of optimality for the single largest reward attained. Therefore this metric it testing a property
which this approach is not strictly designed for, however this limitation should be kept
in mind when comparatively evaluating the algorithm. Ultimately, the usefulness of the
algorithm very much depends on the specifics of the problem and the criteria which one
wants to optimise.



Chapter 6

Conclusion and Future Directions

The aims of this project can be divided into three parts; an algorithm for the computation
of the Gittins index, a Gittins based algorithm for correlated bandits and a Gittins based
algorithm for Bayesian optimisation. We will give conclusions to these sections individually
and following that we suggest a number of possible directions that these ideas could be taken
in.

One of the main aims of the work on calculating the Gittins index was to build upon the
squared-exponential GP approach and to create a version which does not require gradient
based hyper parameter tuning. Since the cubic spline GP has a posterior mean which is
independent of the hyperparemeter of the covariance function, this was successful. This can
lead to a much faster run-time of the algorithm for a given horizon length and level of preci-
sion. It is not entirely meaningful to quantify the difference in run-time, since this is heavily
determined by the user’s choice of how many iterations to optimise the squared-exponential
hyperparameters for. However, it is clear that avoiding this step entirely, which involves
many expensive matrix inversion operations, will necessarily increase the speed. This allows
for computing the index for longer horizons in a given length of time. The closed form of
the DP step of the calculation is dependent on the choice of covariance function, so this
work required deriving this expression by solving the integral of the cubic-spline GP mean
multiplied by a Gaussian distribution. All together, this aspect of the project achieved its
aims, and the ability to efficiently compute the Gittins index enabled the work that followed.

In designing an algorithm for correlated multi-arm bandits we had two criteria for a successful
job. One criterion was that the design of the algorithm comes from a principled position
where our approach to balancing exploration and exploitation was based on well established
theoretical concepts. This is why we believe our Gittins based approach is sensible, we
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are basing our method on an algorithm which is provably optimal in a special case of the
problem we are addressing. This is in contrast to some other existing approaches which,
while they have good justifications behind them for why they should give good performance,
do not not necessarily have a good reason to say they should be optimal. This is especially
the case for algorithms which require the selecting of hyperparameters like UCB, an issue
which our algorithm avoids. The second criterion for evaluating our algorithm is, of course,
its performance. In the special case of uncorrelated bandits, we saw the expected result that
our algorithm outperforms the others, since we are approximately just performing the Gittins
index algorithm. Importantly, when the bandits become correlated we see the correlated
Gittins algorithm greatly outperform the other methods.

The algorithm for Bayesian optimisation had similar aims. The algorithm is almost identical
to the bandits algorithm, so we are happy that the idea comes from a theoretically principled
position. However, it seems that something is lacking that is needed to make this algorithm
thoroughly outperform its competition. It has comparable performance to the other algo-
rithms that were tested however it could be outperformed in terms of total discounted rewards
by a tuned UCB algorithm. Also, Bayesian optimisation places emphasis on a different
evaluation criterion from bandits. In BO we are usually more interested in the largest function
evaluation found rather than a total reward. Our algorithm was not very consistent on this
front compared to alternatives, which is not necessarily surprising as this criterion is quite
distinct from that which the Gittins index is designed for. Perhaps this change in criterion is
a step too far away from the assumptions which informed our approach.

One further direction to take this work in is to attempt to understand the cause of the shortfall
in performance in the BO algorithm. Experiments performed to this end didn’t expose a clear
reason or bring much value to the discussion (leading to their omission from this paper), but
with more time it would be valuable to learn if the issue can be fixed by a small adjustment
or if the problem runs deeper in the concept itself. It would be interesting to understand why
the performance is so different (relative to other algorithms) between the MAB algorithm
and the BO algorithm despite the two being conceptually very similar.

There are also directions which could be investigated with regards to computation of the
Gittins index. One possibility is to create a version of the algorithm for finite horizons. In this
work we always assumed an infinite horizon with discounted rewards which led to a notion of
an effective horizon. It may be more accurate to real world experiments to work with actually
finite horizons. We can see this because in the infinite horizon case the exploration bonus is
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always positive, however if the experiment must end at some time N there should be no value
in exploring at this final step. Computing these values for a finite horizon would require
computing a value of the Gittins index for every pair of n, the usual statistic for the number
of observations of the bandit and N− t, the number of remaining steps to the horizon N. This
would be a grid of O(N2) numbers rather than the O(N) from infinite horizons. These values
could be used in our algorithms to see how much removing this source of approximation
affects the performance in experiments with finite horizons.

Another direction may be to consider other variations on the MAB problem. One change
would be to consider bandits with Bernoulli rewards rather than Gaussian, or rewards from
other exponential family distributions or otherwise. One could also consider other variants
of the MAB such as restless bandits (Whittle, 1988), contextual bandits or combinatorial
bandits (Chen et al. 2013). While the specifics of the approach would vary under the differing
assumptions of these problems, they all depend on the fundamental question of balancing
exploration and exploitation which means the ideas discussed in this project should be useful
to their study.
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Močkus, J. (1975). On bayesian methods for seeking the extremum. In Optimization
techniques IFIP technical conference, pages 400–404. Springer.

Narendra, K. S. and Thathachar, M. A. (1989). Learning automata: an introduction. Courier
corporation.

Negoescu, D. M., Frazier, P. I., and Powell, W. B. (2011). The knowledge-gradient algo-
rithm for sequencing experiments in drug discovery. INFORMS Journal on Computing,
23(3):346–363.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535.

Shen, W., Wang, J., Jiang, Y.-G., and Zha, H. (2015). Portfolio choices with orthogonal
bandit learning. In Twenty-fourth international joint conference on artificial intelligence.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process op-
timization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Teugels, J. L. (1976). A bibliography on semi-markov processes. Journal of Computational
and Applied Mathematics, 2(2):125–144.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294.

Thompson, W. R. (1935). On the theory of apportionment. American Journal of Mathematics,
57(2):450–456.

Titsias, M. (2009). Variational learning of inducing variables in sparse gaussian processes.
In Artificial intelligence and statistics, pages 567–574. PMLR.

Tsitsiklis, J. N. (1994). A short proof of the gittins index theorem. The Annals of Applied
Probability, pages 194–199.

Wald, A. (1949). Statistical decision functions. The Annals of Mathematical Statistics,
20(2):165–205.



References 59

Weber, R. et al. (1992). On the gittins index for multiarmed bandits. The Annals of Applied
Probability, 2(4):1024–1033.

Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal of
applied probability, 25(A):287–298.

Witten, I. H. (1976). The apparent conflict between estimation and control—a survey of the
two-armed bandit problem. Journal of the Franklin Institute, 301(1-2):161–189.

Wu, J., Poloczek, M., Wilson, A. G., and Frazier, P. I. (2017). Bayesian optimization with
gradients. arXiv preprint arXiv:1703.04389.

Wyatt, J. (1998). Exploration and inference in learning from reinforcement.

Zhou, Q., Zhang, X., Xu, J., and Liang, B. (2017). Large-scale bandit approaches for
recommender systems. In International Conference on Neural Information Processing,
pages 811–821. Springer.


	Table of contents
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Background and Related Work
	2.1 Balancing exploration and exploitation in reinforcement learning
	2.2 Multi-arm bandits
	2.3 The Gittins index
	2.3.1 Proof of the Gittins index theorem

	2.4 Gaussian processes
	2.4.1 GP prediction
	2.4.2 Hyperparemeter adaptation

	2.5 Bayesian optimisation

	3 Approximate Computation of the Gittins Index
	3.1 GI from recursive formulation of the value function
	3.2 Squared exponential covariance
	3.2.1 Hyperparameter optimisation

	3.3 Cubic spline covariance
	3.4 Algorithm details
	3.5 Results

	4 Correlated Bandits and Bayesian Optimisation
	4.1 Correlated bandits
	4.1.1 -greedy
	4.1.2 Upper confidence bound
	4.1.3 Thompson sampling

	4.2 Bayesian optimisation
	4.2.1 Expected improvement
	4.2.2 Thompson sampling for Bayesian optimisation
	4.2.3 GP-UCB


	5 Experiments
	5.1 Multi-arm bandits
	5.2 Bayesian optimisation

	6 Conclusion and Future Directions
	References

