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Abstract

Ensuring machine learning algorithms deployed in the real world do not result in unexpected
unfairness or social implications is becoming increasingly important. However, there exists a
clear gap in literature for a measure of fairness that can detect discrimination against multiple
sensitive attributes while also handling continuous or discrete outcomes. In this thesis, we
propose a fairness measure, Fair-COCCO, based on the conditional cross-covariance operator
on reproducing kernel Hilbert Spaces. This novel method generalise to the majority of
existing fairness notions and naturally extends to settings with continuous outcomes and multi-
dimensional sensitive attributes. Additionally, we demonstrate how the proposed measure
can be readily implemented in stochastic gradient optimisation for fair policy learning in
supervised learning settings. Empirical evaluations of Fair-COCCO on synthetic and real-
world experiments reveal favourable comparisons to state-of-the-art techniques in balancing
predictive power and fairness. We also see much potential in applying machine learning
to analyse fairness in observed behaviour, especially in complex and high-dimensional
real-world environments. To that end, we propose the first known definition of fairness for
sequences of decisions and showcase how Fair-COCCO can be applied to quantify fairness in
these problems. Building off these definitions, we turn to learning fair policies in real-world
conditions, where learning is constrained to be performed offline. We propose Fair-PoLe, a
novel inverse reinforcement learning that operates completely offline and is computationally
efficient and functionally expressive when compared to existing methods. We illustrate the
potential for Fair-PoLe to learn policies that balance imitation of expert policies with fair
outcomes on the challenging problem of sepsis treatment.
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Chapter 1

Introduction

As machine learning (ML) technologies become increasingly prevalent in everyday life,
researchers and institutions have the responsibility of ensuring predictions made by the
algorithms are not unfair towards personal attributes such as gender, ethnicity and disabilities.
This issue was brought into the limelight by a ProPublica investigation into the COMPAS
software, a predictive algorithm employed by U.S. courts to assess risks of recidivism
(Angwin et al., 2016). Follow-up analysis of the algorithm revealed that African-Americans
are almost twice as likely as White-Americans to be labelled a higher risk but not actually
re-offend. Recently, this call for societal accountability and social understanding of ML has
reached mainstream media. Governments around the world, such as the EU (Hacker, 2018),
US (Podesta and Others, 2014) and NGOs (e.g. the Association of Internet Researchers
Markham and Others (2012)) are increasingly concerned with the responsible use of machine
learning.

In response to these challenges, the machine learning community has developed many
fairness notions and methods, which has sparked a field of research known as algorithmic
fairness. Within this growing body of literature, many works have pioneered new definitions
and metrics of fairness; illustrated how human or algorithmic behaviour can be audited; and
introduced data collection and modelling methodologies into creating policies in a fairness-
aware setting. Despite the increased discussion around fairness, what constitutes fairness or
how to quantify it are still open questions. The lack of universal standards means that most
commercial and deployed ML products are yet to include means to ascertain social fairness.



2 Introduction

While much discussion has been rightfully paid to the fairness of ML driven predictions,
if we invert the perspective, there also exists massive potential for ML techniques to be
used to analyse fairness in human decision making. Consider, as an example, the healthcare
setting, where there exists significant variation in clinical practice. In such complex and noisy
environments, how do we answer the question: what amount of variation is unwarranted or
unfair, and what amount if justified? This thesis seeks to address this question, specifically
focusing on developing methods to achieve two key goals:

1. Audit and quantify fairness of decisions made by humans,

2. Fairness-aware learning of policies for predictive tasks.

Achieving the first goal involves uncovering the motivations behind observed behaviour,
a challenging ML task when environments are complex and temporal dynamics are important.
For the second goal, we introduce a unifying framework of fair policy learning, which seeks
to learn fair policies in one-shot and sequential decision making settings.

Most studies to date in algorithmic fairness have focused on the comparatively simpler
one-shot decision making setting, or tasks where only a single decision is required. An
example of this is approving loans and ensuring the approval outcomes are not unfair with
respect to personal attributes of the applicant. These settings do not consider feedback
or delayed impact of the decisions made. A plethora of methods to quantify fairness in
these tasks have been proposed, but the generally consider discrete outcomes and personal
attributes although many sensitive attributes (e.g. age) are continuous values. Additionally,
fair predictions in the presence of multiple sensitive attributes has received less attention
amidst existing work. It is, however, necessary for algorithms deployed for real-world use to
be capable of analysing fairness when multiple sensitive attributes are present and when the
outcomes are continuous. Our first contribution directly addresses these issues by introducing
a novel kernel-based fairness measure. The proposed measure, which we term Fair-COCCO
employs a strong characterisation of fairness and naturally handles multiple attributes and
continuous outcomes. Additionally, if we formulate fair policy learning in one-shot settings
as supervised learning problems, Fair-COCCO can be employed as a differentiable regulariser
to perform fairness-aware learning.

Compared to the one-shot setting, auditing fairness in sequential decision making is
a challenge yet to be addressed in the literature. The problem is more challenging as
analysing fairness in sequential settings necessitates incorporating temporal dynamics and
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long-term outcomes. Inspecting fairness also means we must go beyond observed behaviour
to scrutinise the underlying goals and motivations that induced the behaviour. To that
end, we start by introducing definitions of fairness on sequences of decisions. We are also
interested in learning fair policies, particularly about learning in complicated and high-
stakes environments, such as clinical settings, where we do not have perfect knowledge
of the environment and we cannot interact with it (e.g. testing policies on patients). We
formulate this as a reinforcement learning problem, where the goal is to learn policies
solely from observational datasets of expert demonstrations. We introduce Fair-PoLe, an
inverse reinforcement learning algorithm, which, when incorporated with Fair-COCCO
regularisation, learns to mimic expert behaviour while improving fairness in a purely offline
fashion.

1.1 Contributions

The work completed in this thesis indicates a number of novel contributions, including:

• Introducing Fair-COCCO, a kernel-based fairness measure, with strong characteri-
sation of fairness that naturally extend to multiple attributes and types of outcomes,
addressing a clear gap in algorithmic fairness.

• Proposing a new framework of analysing fairness in sequential decision making
scenarios using Markov Decision Processes and introducing notions of fairness in
these settings.

• Presenting Fair-PoLe, a novel inverse reinforcement learning algorithm that is
computationally efficient and can learn fair policies in complex environments solely
from logged expert demonstrations.

• Demonstrating the superiority of Fair-COCCO and potential for Fair-PoLe to
improve fairness outcomes in real world problems.
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1.2 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2, we cover preliminaries, reviewing
different notions of fairness and describing general concepts around sequential decision
making and related works in inverse reinforcement learning.

In Chapter 3, we introduce Fair-COCCO, a kernel measure of fairness. We start by
reviewing key shortcomings in current methods, including the inability to scale with multiple
sensitive attributes and accounting for discrete and continuous outcomes. After briefly
reviewing the theory of covariance operators on reproducing kernel Hilbert Spaces, we
highlight the key features that make our novel measure superior. Then, we propose methods
to learn fair policies in one-step decision making, which are formulated as supervised learning
and leverage Fair-COCCO as a differentiable regulariser.

Moving on, in Chapter 4, we discuss the unifying framework of fair policy learning.
Based off of existing notions of group fairness, we introduce new definitions of fairness in
sequential decision making scenario, using Markov Decision Processes to model temporal
dynamics. We then introduce Fair-PoLe, an offline inverse reinforcement learning algorithm
that delivers policies balancing fairness and performance.

In Chapter 5 we provide empirical evidence to demonstrate that Fair-COCCO can ef-
fectively quantify fairness and that Fair-COCCO regularised learning compares favourably
to state-of-the-art techniques on a variety of benchmarks. Additionally, we demonstrate
Fair-PoLe as a method to analyse fairness in observed sequential decisions and derive fair
policies on a challenging medical problem of sepsis treatment. We conclude in Chapter 6,
provide closing thoughts, highlight limitations of our proposed study and indicate directions
for future improvements.



Chapter 2

Fairness and Decision Making

We start this chapter by reviewing key notions of fairness and how they can be stated in terms
of (conditional) dependencies. Subsequently, we set up general concepts around sequential
decision making and reinforcement learning: the task of learning a policy based on reward
signals provided to an agent. We then review existing methods in inverse reinforcement
learning, one of the main focuses of our work. In these settings, rewards are not explicitly
provided but rather learned from demonstrations provided by an expert. While traditional
methods are primarily concerned with fully online settings, we review the offline version of
inverse reinforcement learning, which is necessary when learning in the minimal possible
settings.

2.1 Notions of Fairness

Merriam-Webster Dictionary defines fairness as:

“Fair or impartial treatment, especially lack of favouritism towards one side or
another.”

Despite the straightforward definition, there is no universal measure of fairness, and the
correct notion depends on ethical, legal and technical contexts. Indeed, Corbett-Davies et al.
(2017) duly highlighted that many fairness notions are difficult or impossible to satisfy at the
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same time. Most approaches to quantify unfairness involve, to some extent, the concept of
sensitive, personal or protected attributes, terms which are employed interchangeably. A sub-
group is a group of individuals who share the same sensitive attributes. Sensitive attributes
are defined on socio-cultural variables of an individual that might result in discrimination and
unfair treatment. Some common examples include gender, ethnicity and age. While what
is considered a sensitive attribute can differ drastically across different settings, this is not
an aspect we consider in this thesis, instead resorting to those explicitly identified by legal
frameworks 12.

Studies to date have adopted one of two broad families of fairness definitions: group fair-
ness and individual fairness. Group fairness is typically defined on the outcomes received by
protected sub-groups and algorithms attempting to enforce group fairness do so by equalising
outcomes for all protected sub-groups. This is by far the most popular definition of fairness
and includes a very wide body of literature (see Barocas et al. (2017) for comprehensive
review). While group fairness guarantees are averaged over all individuals in a protected
sub-group, individual fairness (Zemel et al. (2013), Dwork et al. (2012)), in contrast, ignores
inter-group restrictions and requires similar individuals to be treated similarly. However, it is
unclear how similarity metrics should be defined over individuals and outcomes. Additionally,
analysis of individual fairness often make untenable functional assumptions (Fleisher, 2021)
In this study, we focus on group fairness notions and introduce methods to quantify fairness
that generalise to any specific notion of group fairness.

Next, we briefly overview four popular definitions of group fairness and how each
corresponds to a different aspect of fairness. We make an effort to make clear the connection
between fairness notions and measures of (conditional) dependence (see Table 2.1), an
insight important in the formulation of Fair-COCCO in Chapter 3. Let random variables
X ∈ X ⊂ RdX and Y ∈ Y ⊂ RdY denote respectively the dX -dimensional features and dX -
dimensional target. Let Z ∈Z ⊂RdZ denote dZ-dimensional sensitive attributes that we want
to protect (e.g. gender or race). We do not make specific assumptions around whether Z is
included in the feature vector. Consider the model f : X →Y with prediction Ŷ = f (X).

Fairness through unawareness (FTU) (e.g. Grgic-Hlaca et al. (2016)) prohibits the algo-
rithm from using sensitive attributes explicitly in making predictions. While straightforward
to implement, this method ignores the indirect discriminatory effect of proxy covariates
that are correlated with Z (e.g. “redlining” (Avery et al., 2009)). Demographic parity

1https://www.equalityhumanrights.com/en/equality-act/protected-characteristics
2https://www.gov.uk/discrimination-your-rights

https://www.equalityhumanrights.com/en/equality-act/protected-characteristics
https://www.gov.uk/discrimination-your-rights
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Table 2.1 Popular definitions of fairness in terms of (conditional) independence requirements

Definition Requirement

FTU Z ⊥⊥ Ŷ |X\Z
DP Z ⊥⊥ Ŷ
EO Z ⊥⊥ Ŷ |Y

CAL Z ⊥⊥ Y |Ŷ

(DP) (Barocas and Selbst, 2016; Zafar et al., 2017) does not allow for indirect discrimina-
tion, by requiring statistical independence between predictions and attributes Ŷ ⊥⊥ Z, i.e.
p(Ŷ |Z = z) = p(Ŷ ) ∀ z ∈ Z . Evidently, this strict notion sacrifices predictive utility by
ignoring all correlations between Y and Z, thereby precluding the optimal predictor. Dwork
et al. (2012), most notably, argued that this approach permits laziness, which can hurt fairness
in the long run.

To address some of these concerns, Hardt et al. (2016) introduced equalised odds (EO),
requiring that predictions Ŷ and attributes Z are independent given the true outcome Y , i.e.
Ŷ ⊥⊥ Z|Y or p(Ŷ |Y = y, Z = z) = p(Ŷ |Y = y) ∀ z ∈ Z, y ∈ Y . This approach recognises
that sensitive attributes have predictive value, but only allows Z to influence Ŷ to the extent
allowed for by the true outcome Y . Additional notions of fairness include calibration (CAL)
(Kleinberg et al., 2016), which ensures that predictions are calibrated between subgroups
(Y ⊥⊥ Z|Ŷ ). For a comprehensive review of fairness notions, we refer the interested reader to
§3 in Caton and Haas (2020).

2.1.1 Group Fairness Metrics

In performing retrospective audits of fairness in logged decisions, several metrics have been
defined to quantify the level of unfairness. These definitions are generally aligned with the
respective fairness notion that is being investigated or enforced. Problematically, the majority
of these metrics are defined for when outcomes and sensitive attributes are binary or discrete,
while a clear gap exists in literature for metrics that can handle continuous predictions and
attributes.
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Difference in equal opportunity (DEO) (Hardt et al., 2016) is defined for EO and high-
lights the different predictions made based on different group memberships:

DEO = |P(Ŷ |Z = 1,Y = 1)−P(Ŷ |Z = 0,Y = 1)|

which is 0 iff the false negative rates are the same for both groups, i.e. the probability of
being mistreated is independent of Z.

Disparate impact (DI) (Zemel et al., 2013) is a parity metric based on DP and looks at
the probability of being classified with the positive label:

P(Ŷ |Z = 1)
P(Ŷ |Z = 0)

DI considers the difference in impact experienced by sub-groups and originated from legal
doctrine. The US Equal Employment Opportunity Commission Recommendation advocates
that DI should not be lower than 0.8 (when Z = 0 denotes the privileged group), a rule known
as the ‘80%-Rule’.

Test Fairness (TF) (Chouldechova, 2017) is defined on CAL and attempts to evaluate if
the probability of Y = 1 is the same across sub-groups if the same predictions are made:

P(Y = 1|Ŷ = ŷ,Z = 1) = P(Y = 1|Ŷ = ŷ,Z = 0)

This concept cannot be computed directly as it is conditioned on a particular value of
Ŷ = ŷ. Thus, CAL is usually visualised through the use of reliability diagrams.

2.2 One-Shot and Sequential Decision Making

In this section, we formally describe sequential decision making problems, but defer a full
review of the relevant theory to Sutton and Barto (2018). Generally, sequential decision
making describes any step-by-step decision making, where actions can have delayed impact
and dynamics of the environment affect the outcome of the problem. In ML literature, such
types of problems are usually set up through the reinforcement learning (RL) framework
using Markov Decision Processes (MDPs).
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Generally, RL refers to problems where agents taking actions in an environment in order
to maximise the notion of cumulative rewards. We consider the standard MDP M, described
by the tuple M = ⟨S,A,T,R,γ⟩, where:

• s ∈ S are states,

• a ∈ A are actions,

• T ∈ ∆(S)S×A describes the transition dynamics, where T (s′|s,a) is the probability of
transitioning to state s′ after taking action a while currently in s,

• R ∈RS×A are the rewards, where R(s,a) are the rewards for being in state s and taking
action a,

• γ ∈ [0,1) is the discount factor.

Let π : S → ∆(A) represent a stochastic policy, where π(a|s) indicates the probability
of taking action a given state s. In the standard RL problem, the aim is to find the optimal
policy π∗ that will maximise the expected discounted sum of rewards:

π
∗ = argmax

π

Eτ

[
∞

∑
t=0

γ
tR(st ,at)

]
(2.1)

Here, the expectation is with respect to trajectory τ =(s0,a0,s1,a1, . . .). More specifically,
the expectation depends on: the starting state distribution s0 ∼ µ , where µ : S → [0,1], policy
at ∼ π(·|st) and dynamics st+1 ∼ T (·|st ,at). For completeness, we further define several
auxiliary concepts, which simplify mathematical manipulation of policies. Let the value of a
state s when following policy π be given as:

Vπ(s) = ET,π

[
∞

∑
t=0

γ
tR(st ,at)|s0 = s

]
(2.2)

which can be interpreted as the expected discounted sum of rewards from starting in state s
and following policy π . A closely related idea is the action-value function:
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Qπ(s,a) = ET,π

[
∞

∑
t=0

γ
tR(st ,at)|s0 = s,a0 = a

]
(2.3)

= R(s,a)+ γET,π
[
Qπ(s′,a′)

]
(2.4)

Also known as the Q-function, it defines the expected discounted sum of rewards starting
in state s, taking action a and following policy π . The expression can be re-written to make
explicit the connection to the reward R and the discounted, expected action-value of the next
state-action pair (s′,a′). The Q-function is important in that, under the Bellman Optimality
Theorem, it fully describes the optimal policy. Namely, ∀s∈S , π∗(s) = argmaxa∈AQπ∗(s,a)

This is one of the fundamental pillars of RL and many successful algorithms have been
developed around the Q-function. This includes the original Q-Learning (Watkins and Dayan,
1992), a dynamic programming approach to evaluating the quality of particular actions in
states. Recently, these methods have been powered-up by leveraging the expressive function
approximations of deep learning approaches to approximate the Q-function (Henderson
et al., 2018; Lillicrap et al., 2015; Mnih et al., 2013). Regardless, these algorithms still
leverage the recursive Bellman Optimality equations and temporal difference error, seeking
to minimise the difference between estimated rewards and actual received rewards. However,
these methods require extensive interaction with the environment to evaluate the learned
Q-function in order to reach satisfactory performance (Li, 2017). Additionally, RL techniques
are highly reliant on reward mechanisms that elicit the desirable learning behaviours in the
agent (Dewey, 2014).

Importantly for our goal of analysing fairness in sequential decision making, if the
rewards at each step are explicit, the problem becomes significantly simpler. However, this
requirement rarely satisfied in the real world. Consider the healthcare setting—rewards for
individual clinician action are rarely available, meaning that we often rely on spare indicators
that are only available once the sequence of interactions is complete, such as indicators
on recovery after treatment. Additionally, core RL algorithms, are in their nature, online
algorithms that require repeated interactions with the environment. While this requirement is
satisfied in game-playing or simulated environments, it is infeasible in real-world settings
where online interaction will have meaningful consequences. For example, it is unjustifiable
to deploy policies on patients mid-training to learn policies.
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Thus, traditional RL techniques are not the main focus of this thesis, but the theory
reviewed provide relevant context when we focus on the inverse problem, that is, recovering
the underlying rewards from observed expert demonstrations.

2.3 Inverse Reinforcement Learning

Consider auditing real-world sequential decision making on the basis of demonstrated
behaviour—i.e. from logged trajectories of observations and actions taken by an expert. To
perform any meaningful analysis on the fairness of the actions, simply examining the actions
are not enough. Instead, we need knowledge of the expert’s preferences and motivations.
Decision theory literature suggest maximisation of expected utility as a model of decision
making in uncertainty. Thus, our task becomes that of recovering the utility function from
observed human behaviour. In the ML community, this field of research is known as inverse
reinforcement learning (IRL). Formally:

Definition 2.3.1 (Inverse Reinforcement Learning (Piot et al., 2016)) IRL is a paradigm
relying on Markov Decision Processes (MDPs), where the goal is to find a reward function
from the expert demonstrations that could explain the expert behaviour.

Imitation Learning (IL) is a closely related concept. IL is generally concerned with
mimicking and generalising observed expert behaviour (see Hussein et al. (2017) for review).
While IL is largely concerned with learning policies to match the expert, IRL directly models
the underlying reward function that induces the observed behaviour. Once the underlying
rewards are recovered, traditional RL techniques can be applied to learn a policy optimal
with respect to learned rewards.

2.3.1 Behavioural Cloning

Before discussing more advanced methods, we start by introducing behavioural cloning
(BC) (Bain and Sammut, 1995), the simplest of IL methods. In BC, the agent receives
demonstrations including both the states encountered and actions taken by the expert. By
assuming that each state-action pair is i.i.d., the algorithm reduces the problem to that
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of supervised learning, learning a regressor or classifier to match the expert policy (Ross
and Bagnell, 2010). BC methods are powerful as they do not require knowledge of the
environment or the ability to interact with it. To that end, it has successfully been applied to
a variety of IL tasks, including training a quadrotor to fly (Giusti et al., 2015), end-to-end
learning for self-driving cars (Bojarski et al., 2016), and teaching robots complex movements
(Niekum et al., 2015).

Of course, the i.i.d. assumption does not hold in sequential decision making as the future
state distribution depends on predictions made in the current step. Ross and Bagnell (2010)
proved that this leads to compounding errors and errors that grow quadratically with the
time horizon (alternatively, the further away from the training state distribution). The issues
of ignoring the effects on the underlying state distribution were elucidated in the success
of ALVINN (Pomerleau, 1989), a self-driving car, where the agent does not know how to
recover when the car occasionally strays away from the centre of the road.

2.3.2 Learning the Reward Function

State-of-the-art IL techniques address the generalisation issue of BC by accounting for the
temporal dynamics through MDPs. Inverse reinforcement learning (IRL) was first introduced
by Ng et al. (2000) and can be formally defined as recovering the unknown reward function
R(·, ·) given an MDP/R (an MDP without a reward function) and a dataset of N logged
trajectories D = {τi}N

i=1. Once the underlying reward function is learned, an imitator policy
can be learned through any variety of RL techniques.

Standard IRL solutions work by iterating through a few steps: 1) proposing reward
function, 2) solving the MDP with respect to the candidate reward function to generate
a candidate policy and 3) optimising the reward function against a loss defined on the
divergence between candidate policy and expert policy. These steps are repeated until a
satisfactory reward function is produced. We call the second step the forward RL step
to distinguish it from the inverse procedure. This standard template introduces a set of
challenges, the most important of which is that the inverse problem is fundamentally ill-
posed. Notably, that for any given set of demonstrationsD, there are (infinitely) many reward
functions for which the demonstrations are optimal (Ng et al., 2000). Consider as a simple
example if the reward function is constant for all inputs.
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Several broad approaches have been introduced to address this. Max-margin (Abbeel
and Ng, 2004) seeks to learn a reward function for which the margin between the expected
value of the demonstrated behaviour and that of any candidate policy is maximised. This
class of methods assume the reward function is linear in the feature map constructed from
state features φ(s,a), i.e. R(s,a) = w ·φ(s,a). The learning goal is to find reward weights w
that induces a policy that minimises the margin between feature expectations of the expert
and candidate policies (Ng et al. (2000), Abbeel and Ng (2004)). Nonetheless, as a heuristic,
max-margin introduces a bias into the learned reward function.

Additionally, max-margin assumes the expert is always acting optimally, which is rarely
satisfied in real-world situations involving human operators. In contrast, probabilistic meth-
ods have been developed, including around maximum entropy (MaxEnt) principle (Ziebart
et al., 2008) and Bayesian IRL (BIRL), which allows for near-optimal expert behaviour.

MaxEnt IRL is formulated around globally normalised distribution over trajectories,
which resolves ambiguity by selecting reward functions that best matches optimal behaviour
while maintaining maximum entropy in the distribution over trajectories (Ziebart et al., 2008).
This probability of a trajectory can be described as:

P(τ|w) = 1
Z(w)

exp

(
wT

∑
s j∈τ

fs j

)
(2.5)

where fs j is the feature count of state s j. Thus, trajectories with higher rewards are exponen-
tially more probable and preferred.

Both max-margin and MaxEnt methods employ heuristics to distinguish between plau-
sible reward hypothesis but at the cost of potentially dismissing the true reward function.
Bayesian IRL (BIRL) (Ramachandran and Amir, 2007) takes a probabilistic view of the
reward, where inference is performed on the posterior distribution of rewards having seen
the demonstrations. The likelihood of an action given a state is defined using the Boltzmann
distribution with inverse temperature β and respective state-action value QR(s,a) given the
rewards:

P(a|s,R,θ) = 1
Z(θ)

exp(βQR(s,a;θ)) (2.6)

where θ are the parameters of the reward function. The posterior distribution over
rewards is intractable and Ramachandran and Amir (2007) used a Markov Chain Monte
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Carlo (MCMC) approach to sample from the posterior. As Brown and Niekum (2019) noted,
BIRL suffers from linear reward formulation and the expensive sampling procedure limits
the feasibility to small, solvable environments.

Another challenge common to all these methods is the repeated inner-loop calls to forward
RL procedures. The forward RL procedures solves the MDP with the candidate reward
function to generate learned policy, which is a pre-requisite to evaluating the candidate reward
function against observed expert behaviour. While not an issue in small and known MDPs,
this inner-loop procedure quickly becomes infeasible for real-world tasks that routinely
involve continuous or large-dimensional environments. Consider as an example DQN
learning introduced in Mnih et al. (2013), which easily takes several hours to complete, a
procedure which will have to be repeated multiple times within the training loop of IRL
methods.

2.3.3 Offline Inverse Reinforcement Learning

In most real-world problems, we are constrained to operate in the minimal possible setting,
where we do not have perfect knowledge of the MDP and cannot perform further experi-
mentation. Consider again the medical setting, where we do not have perfect knowledge
of the environment and it is unethical and impractical to test policies during training. This
effectively means that we must must resort to offline IRL, where we only have access to
trajectories generated by an expert policy in the form of logged dataset D. The IRL methods
reviewed in the previous section are, by their nature, online algorithms that require knowledge
of dynamics or interactions with the environment (e.g. Choi and Kim (2011a), Abbeel and
Ng (2004)). Formally, we define offline IRL:

Definition 2.3.2 (Offline IRL) Offline IRL has the same goals IRL but performed in a
MDP/RT environment, where there is no knowledge of either the underlying reward R or
the transitions T . The lacking knowledge of dynamics is strong in the sense that it cannot be
approximated through simulation.

Porting pre-existing approaches to strictly offline settings is highly non-trivial. Max-
margin approaches are perhaps the easiest to adapt, as the linear parameterisation allows the
use of off-policy evaluation to estimate feature expectations. This is the approach taken in
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Klein et al. (2012), which utilises the feature expectations to parameterise the score function
of multi-class classifier. Similarly, Klein et al. (2011) propose using LSTD-Q to estimate
feature expectations, Bica et al. (2020) employ counter-factual reasoning and Lee et al. (2019)
propose a deep successor feature network based on Q-learning. However, these approaches
similarly assume reward functions that have a non-expressive linear parameterisation in state
feature maps.

Relatively speaking, transferring MaxEnt IRL for offline use is even more challenging.
The formulation of MaxEnt is based on a probability distribution over trajectories, where
the partition function (i.e. Z(w) in Equation 2.5) is defined over all possible trajectories
and is not straightforward to compute. This makes problems involving high-dimensional
environments or unknown dynamics intractable due to exponentially increasing number of
trajectories to consider. To address this, several model-free approximations for MaxEnt IRL
have been proposed, including Finn et al. (2016) and Ho and Ermon (2016) but both require
the ability to interact with a simulator to sample trajectories.

While there have been several extensions to the original BIRL formulation (e.g. Choi
and Kim (2011b) considers maximum-a-posteriori inference), very little work has been
done in the area compared to other approaches due to the difficulty in scaling the method to
higher-dimensional state-spaces and convergence difficulties inherent to MCMC (Gamerman
and Lopes, 2006). Thus, few works have extended BIRL methods, let alone to offline settings.
More recently, Chan and van der Schaar (2021) proposed a variational inference approach
to posterior reward learning, which has improved scalability and is applicable to the offline
setting.



Chapter 3

Fair-COCCO: Kernel Measure of
Fairness

The ability to quantify fairness variation across decision processes is the first step to learning
fair policies. In this Chapter, we introduce Fair-COCCO, a kernel measure to evaluate
fairness. Fair-COCCO employs a strong characterisation of fairness and naturally handles
sensitive attributes of multiple dimensions as well as outcomes that are continuous or discrete,
overcoming limitations of existing work. We further demonstrate how the differentiability of
Fair-COCCO enables it to be employed as a regulariser for fair policy learning and conclude
the chapter by illustrating this on one-shot decision making settings.

3.1 Makings of a Good Fairness Measure

Most studies to date on algorithmic fainess quantification have focused on classification
settings, where the outcome and sensitive attribute are discrete. In these discrete settings,
fairness criteria, such as DP and EO can be computed directly by comparing rates of outcomes
between sub-groups. However, many sensitive attributes, e.g. age or ethnic proportions, are
continuous values. Existing methods discretise continuous values into categorical bins, which
lacks intuitive and applied appeal as it introduces thresholding effects into the modelling
process and discards element order information.
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Additionally, fairness in the presence of multiple sensitive attributes has received less
attention amidst existing work. U.S. federal law protects groups from discrimination based
on nine protected classes 1, highlighting the need to detect discrimination against indi-
viduals with multiple sensitive attributes. Existing methods approach this by introducing
additional fairness conditions on each attributes, which can present computational challenges
or additional hyperparameters for regularisation approaches during learning.

Lastly, and perhaps most importantly, we wish for a strong characterisation of fairness.
§2.1 showcased how we can quantify fairness by evaluating dependence between random
variables. We use the word ‘strong’ in the sense defined by Daudin (1980) in terms of how
well a measure characterises dependence. A strong characterisation allows us to fully capture
fairness information, instead of resorting to relaxations at the risk of forfeiting true fairness
quantification.

Fair-COCCO applies kernel measures for evaluating the dependence of outcome and
protected attribute, such that the fairness requirements hold (Table 2.1). Fair-COCCO, as
an algorithmic fairness measure is based on the Conditional Cross-Covariance Operator
on reproducing kernel Hilbert Spaces (RKHS). It is a strong measure and, to the best of
our knowledge, it is the only measure that can naturally extend to sensitive attributes of
multiple dimensions as well s continuous or discrete outcomes. Additionally, it can serve as
a statistical test, leading to stronger guarantees and more transparency in practice.

3.1.1 Existing Approaches in Algorithmic Fairness

Binary Classification Much of the literature focus on the setting with single, binary label
and attribute (Donini et al., 2018; Goel et al., 2018; Jiang et al., 2020; Kamishima et al.,
2012). While these methods can be applied to continuous variables through discretisation,
this introduces unwanted threshold effects. By contrast, limited attention has been paid to
fairness in settings with continuous outcomes or settings with multiple protected attributes.
Fair-COCCO naturally addresses these settings by applying kernel transformations of the
distributions.

Conditional Dependence with Continuous Variables Table 2.1 explicitly connect fair-
ness notions with (conditional) dependence measures. At the core of many algorithmic

1https://www.eeoc.gov/discrimination-type.

https://www.eeoc.gov/discrimination-type
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fairness techniques is how these measures are estimated and constrained. In simplistic cases
where variables are categorical, a conditional independence measure can be obtained by
testing for unconditional independence X ⊥⊥ Y |Z = z for every possible realisation z ∈ Z.
However, quantifying conditional dependence between continuous variables is much more dif-
ficult than the discrete case (Bergsma, 2004). For intuition, consider the tuple {(Xi,Yi,Zi)}N

i=1,
where X is continuous: there is, with probability one, at most one observed (Xi,Yi) for any
value of Z. Bergsma (2004) proved that at least two pairs would be needed in order to have
any “information” on conditional dependence for corresponding values of D.

Relaxations The difficulty in measuring dependence in continuous variables prompted
many weak dependence measures of fairness (Daudin, 1980), which make simplifying
assumptions. Calders et al. (2013), Johnson et al. (2016b) and Bechavod and Ligett (2017)
reduce the problem to measuring the distance between moments of distributions. Donini
et al. (2018) generalises this to distance between first moments of functions of Ŷ ,X , and
Z. Zafar et al. (2017) measure second-order dependencies through conditional covariance
between Ŷ and Z, corresponding to linear correlations only and Kamishima et al. (2012)
introduced a first moment relaxation of mutual information (MI). While these methods are
computationally tractable, the relaxations reduce the measures to weak measures of fairness,
whereas our proposed kernel measure can strongly capture statistical dependence.

Strong Measures Another approach is to adopt strong measures of dependence (Daudin,
1980), including Mutual Information (MI), maximal correlation coefficients (MCC) and
kernel methods. Zhang et al. (2012) and Cho et al. (2020) focus on MI but rely on kernel
density estimation (KDE) for explicit estimation of the densities. Lowy et al. (2021) and
Mary et al. (2019) similarly develop MCC as a measure, but similarly rely on KDE. However,
density estimation is not straight forward for continuous variables, does not scale to higher
dimensions and can introduce bias through choice of kernels. Steinberg et al. (2020a) and
Steinberg et al. (2020b) adopts a MI-theoretic measure using density ratio estimation, which
requires the training of a separate probabilistic classifier in each training loop. In contrast,
our method is computationally efficient and naturally scales to high-dimensional sensitive
attributes. Perhaps most similar to our work is Pérez-Suay et al. (2017), who seek zero
correlation in RKHS to capture statistical independence but it cannot extend to conditional
dependence notions, limiting its use to DP fairness.

Multiple attributes Few existing methods support multiple attributes, even though this is
common in practice. Some works, including Cho et al. (2020); Donini et al. (2018); Zafar et al.
(2017) can be scaled to multiple attributes by calculating fairness against individual attributes
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and aggregating, which quickly becomes cumbersome. Additionally, when performing
fairness-aware learning, this approach results in more tune-able penalty parameters. By
comparison, the fairness-fitness trade-off of Fair-COCCO can be tuned through a single
hyperparameter.

3.2 Kernel Measure of Dependence

Most fairness metrics rely on estimating and enforcing (conditional) independence between
the algorithm predictions and the sensitive attributes to protect. As this dependence can
be arbitrarily complex, determining dependence is challenging. In this section, we briefly
overview a kernel measure of dependence, which Fair-COCCO is based on. While we frame
this discussion around conditional dependence, it is straightforward to generalise to the
unconditional case.

Setup To avoid confusion, we emphasise the distinction between the notation employed
in this section and elsewhere. Let X ,Y,Z be random variables with domains X ,Y,Z , respec-
tively. Let HX be the RKHS on X , with positive definite kernel kX . kY ,HY and kZ ,HZ

are defined similarly. The spaces of squared integrable functions of X are denoted by L2
X

i.e. L2
X = {g(X)|E[g2]< ∞}. We assume that all involved RKHSs are separable and square

integrable. Additionally, to ensure RKHSs are subsets of the L2 space, we assume kernels are
characteristic and integrality i.e. E[k(X ,X)]< ∞, (which is satisfied by Gaussian, Laplacian
kernels). Formally, the problem of interest is quantifying the conditional dependence between
X and Y given Z on finite samples.

Fortunately, a strong characterisation of dependence can be efficiently measured without
explicitly estimating the densities or making relaxations by using kernel-based methods.
We propose using a kernel measure, based on the conditional cross-covariance operator in
Reproducing Kernel Hilbert Space (RKHS) (Fukumizu et al., 2007). A RKHS is a Hilbert
Space in infinite dimensions, where each point in the space is a linear continuous function.
Distributions of variables can be embedded in the RKHS, allowing for comparison of higher-
order moments and inference on dependence properties between distributions. There is
a large body of literature on kernel-based methods developed to capture dependence of
variables (see Bach and Jordan (2002); Gretton et al. (2005) for more insights).
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The cross-covariance operator (CCO) is a unique, bounded operator ΣY X :HX →HY

defined by the relation:

⟨g,ΣY X f ⟩HY = EXY [ f (X)g(Y )]−EX [ f (X)]EY [g(Y )] (3.1)

for all f ∈HX and g ∈HY . Intuitively, the ΣY X operator extends the covariance matrix
defined on Euclidean spaces and represents higher-order covariance of X and Y through
functional transformations f (X) and g(Y ) with non-linear kernels. A closely related operator
is the normalised cross-covariance operator (NOCCO) (Baker, 1973):

Definition 3.2.1 (Normalised Cross-Covariance Operator (NOCCO)) VY X is defined by:

VY X = Σ
− 1

2
YY ΣY X Σ

− 1
2

XX (3.2)

which can be used to measure the dependence of X and Y . ΣYY ,ΣYY are defined similarly to
(3.1).

We note the inverses in Equation 3.2 may not exist as bounded operators (although
the theoretical definition is justified). In practise, to ensure invertibility, regularisation is
introduced. This operator can be used to evaluate the unconditional dependence between Y
and X . Note that VY X contains the same dependence information as CCO but is preferential
to work with as it disentangles the influence of the marginals (analogous to the relationship
between covariance and correlation). For many definitions of fairness (e.g. EO), we need
a measure of the conditional dependence of two variables given a third variable. Based on
NOCCO, the normalized conditional cross-covariance operator of (X ,Y ) given Z is given in
the following definition (Fukumizu et al., 2007):

Definition 3.2.2 (Conditional Normalized Cross-Covariance Operator) VY X |Z is defined
by:

VY X |Z =VY X −VY ZVZX , (3.3)

which can be used to measure the conditional dependence of X and Y given Z. VY Z,VZX are
defined similarly to (3.2).

To extend the intuition established previously, this operator can be interpreted as the
partial correlation between { f (X)∀ f ∈HX } and {g(Y )∀g ∈HY} given {h(Z)∀h ∈HZ}.
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We round up this discussion by characterising the relation between the VY X |Z operator and
conditional independence (Fukumizu et al., 2007).

Lemma 3.2.1 Denote Ẍ ≜ (X ,Z),kẌ ≜ kX kZ and HẌ the RKHS corresponding to kẌ .
AssumeHX ⊂ L2

X ,HY ⊂ L2
Y ,HZ ⊂ L2

Z . Further assume that kẌ kY is a characteristic kernel
on (X ×Y)×Z , and thatHZ +R (direct sum of two RKHSs) is dense in L2(PZ). Then:

VY Ẍ |Z = O⇐⇒ X ⊥⊥ Y |Z (3.4)

Alternatively, Lemma 3.2.1 can be inspected using Daudin’s characterisation of condi-
tional independence (Daudin, 1980), which explicitly enforces uncorrelatedness of functions
in L2 space. VY Ẍ |Z efficiently exploits the spaces corresponding to certain characteristic
kernels, which are usually smaller, making it more practically appealing (Zhang et al., 2012).
Note that Ẍ is simply the extended variable set—for ease of notation, we write VXY |Z in place
of VẌY |Z from this point on-wards.

3.3 Fair-COCCO for Fairness Evaluation

We define the Fair-COCCO score as the Hilbert-Schmidt norm of the normalised conditional
cross-covariance operator:

I = ||VY X |Z||2HS (3.5)

By Lemma 3.2.1, ||VY X |Z||2HS = 0⇐⇒ X ⊥⊥ Y |Z. This is also applicable to the uncondi-
tional case—if we consider, as a special case, Z = /0 and that the same assumptions hold,
||VY X ||2HS = 0⇐⇒ X ⊥⊥ Y . Thus, Fair-COCCO scores are non-negative and scores closer
to zero indicate higher levels of conditional independence. Consequently, this score can be
used to quantify and enforce fairness notions around conditional independence, by replacing
Y,X and Z with Ŷ ,Z,Y , in different manners, such that the fairness condition holds. Notably,
this score can also naturally accommodate continuous/discrete and multiple attributes. To
make the connection with fairness notions explicit (Table 2.1), the Fair-COCCO score for the
different notions can be expressed as:

IEO = ||VZŶ |Y ||
2
HS, ICAL = ||VZY |Ŷ ||

2
HS, IDP = ||VZŶ ||

2
HS. (3.6)
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3.3.1 Closed Form Expression of Fair-COCCO

The previous sections introduced covariance operators on RKHSs and made explicit the
connection to fairness. In this section, we flesh out the closed-form expression of the
empirical estimator of Fair-COCCO.

Fair-COCCO is based on the Hilbert-Schmidt (HS) norm of the covariance operators.
An operator A : H1 →H2 is called HS if, for complete orthonormal systems {φi} of H1

and {ψ j} ofH2, the sum ∑i, j⟨ψ j,Aφi⟩2HS is finite (Reed and Simon, 1980). Thus, for a HS
operator A, the HS norm, ||A||HS is defined as ||A||2HS = ∑i, j⟨ψ j,Aφi⟩2HS. Provided that VŸ Ẍ |Z
and VY X are HS operators, Fair-COCCO scores can be expressed as:

||VŸ Ẍ |Z||
2
HS (conditional fairness measure) (3.7)

||VY X ||2HS (unconditional fairness measure) (3.8)

We denote using ||V̂ (N)
Y X ||2HS and ||V̂ (N)

Ÿ Ẍ |Z||
2
HS the empirical estimators of the scores. More

details on the derivatinos can be found at Gretton et al. (2005); Fukumizu et al. (2007). Let
GX be the centered Gram matrices, such that:

GX ,i j =
〈

kX (·,Xi)− m̂(N)
X ,kX (·,X j)− m̂(N)

X

〉
HX

(3.9)

Additionally, m̂(N)
X = 1/N ∑

N
i=1 kX (·,Xi) is the empirical mean. GY ,GZ are defined similarly.

Based on this, RX can be defined as follows:

RX = GX(GX + εNIN)
−1 (3.10)

where ε is a regularisation constant, used in the same way as Bach and Jordan (2002), IN is
an identity matrix and RY ,RZ are defined similarly. The empirical estimator of ||V̂Ÿ Ẍ |Z||2HS

can then be computed:

||V̂Ÿ Ẍ |Z||
2
HS = Tr[RŸ RẌ −2RŸ RẌ RZ +RŸ RZRẌ RZ] (3.11)



3.3 Fair-COCCO for Fairness Evaluation 23

The unconditional fairness score can similarly be estimated empirically as follows (note
that unconditional dependence does not entail using extended variables):

||V̂Y X ||2HS = Tr[RY RX ] (3.12)

3.3.2 Connections to Other Strong Measures

Many works in algorithmic fairness have proposed different fairness measures. We are pri-
marily concerned with other strong measures of fairness, which includes Mutual Information
(MI) and Maximal Correlation Coefficient (MCC). In this section, we hope to make clear the
theoretical relationships between Fair-COCCO and other measures and illustrate the factors
that make Fair-COCCO superior. We include a brief overview in this section and formally
derive the connections in Appendix A.

Fair-COCCO, MCC and (conditional) MI are the three main ‘strong’ characterisations of
(conditional) dependence (‘strong’ in the sense defined by Daudin (1980)). Representative
works in algorithmic fairness based on MCC include Baharlouei et al. (2019); Mary et al.
(2019), which both rely on Witsenhausen’s characterisation (Witsenhausen, 1975) of MCC.
In the MI domain, representative works include Steinberg et al. (2020a,b).

Fair-COCCO and MCC, while different approaches in principle, are equivalent ideal
regularisers. Additionally, Fair-COCCO is an upper bound on MI. The key advantages of
Fair-COCCO lie in having the superior empirical estimator, which is straightforward to
compute and does not rely on further approximations, thus retaining all theoretical guarantees
around detecting dependence. On the other hand, the methods developed by Baharlouei
et al. (2019); Mary et al. (2019) involve multiple levels of relaxations. Even in the relaxed
formulation, it is not straightforward to estimate for continuous variables, is infeasible for
higher numbers of dimensions due to the requirement of explicit density estimation, and
relies on discretising continuous intervals for efficient marginalisation. The same challenges
exist for MI-approaches (Steinberg et al., 2020a), due to the requirement of probability
density and intractability of marginalisation over continuous variables. This is reflected in the
superior performance and better accuracy-fairness tradeoff characteristics of Fair-COCCO
on a benchmark of experiments.



24 Fair-COCCO: Kernel Measure of Fairness

3.3.3 On Computation of Fair-COCCO

While general kernel dependence measures depend not only on variable distributions, but
also the choice of kernel, Fukumizu et al. (2007) proved that in the limit of infinite data
and assumptions on richness of the RKHS (dense in the sense of continuous functions
on X with the supremum norm, see Hofmann et al. (2008)), the estimates converges to a
kernel-independence value. For our experiments, we use a Gaussian RBF kernel, k(Xi,X j) =

exp
(
− ||Xi−X j||2

2σ2

)
∀ i, j ∈ N, where σ is the tuneable bandwidth parameter. We employ the

median heuristic introduced by Schölkopf et al. (2002), i.e. σ =median{Xi−X j, ∀ i ̸= j ∈N}
to select the bandwidth.

A limitation of the kernel-based measure is the computational complexity. We address
this in two ways, 1) by employing a low-rank Cholesky decomposition of the Gram matrix
(of rank r), resulting in O(r2N) complexity and 2) by estimating the score on subsets of
each minibatch. We empirically demonstrate that these lead to strong results on real-world
experiments.

Statistical Testing

Equation (3.5) can be employed as a test-statistic for CI testing where the null hypothesis is
conditional independence H0 : X ⊥⊥ Y |Z and the alternative hypothesis H1 : X ⊥̸⊥ Y |Z. As
the distribution of the measure under the null hypothesis is unknown, local permutation is
employed to determine the rejection region. As the statistical test is not a novel contribution
or main focus of this work, we defer to Gretton et al. (2007); Tillman et al. (2009); Zhang
et al. (2012) for full review.

3.4 Fair Policies in One-Shot Decision Making

Having introduced Fair-COCCO as a means to evaluate fairness, we now turn our attention to
how it can be incorporated into fair policy learning. Existing approaches can be categorised
into three main types: prior to modelling (pre-processing), during modelling (in-processing)
or after modelling (post-processing) (del Barrio et al., 2020). We focus on developing
in-processing techniques, which achieve fairness by incorporating either constraints or
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Table 3.1 Comparison of Fair-COCCO with fairness-aware learning algorithms. (1) can
handle continuous targets, (2) can handle continuous attributes, (3) can handle multiple
attributes, (4) can be developed as a test statistic. MI=mutual information, CC=conditional
covariance, MCC=Maximal Correlation correlation, LL=linear loss, KM=kernel measure.

Method Regularisation Notion Models (1) (2) (3) (4)

Zemel et al. (2013) MI All Linear ✗ ✗ ✗ ✗

Zafar et al. (2017) CC DP Linear/Kernel ✗ ✗ ✗ ✗

Donini et al. (2018) LL EO Linear/Kernel ✗ ✗ ✗ ✗

Cho et al. (2020) DEO All Any ✗ ✗ ✗ ✗

Mary et al. (2019) MCC, MI All Any ✓ ✓ ✗ ✗

Steinberg et al. (2020b) MI All Any ✗ ✓ ✗ ✗

Pérez-Suay et al. (2017) KM DP Linear/Kernel ✓ ✓ ✓ ✓
Fair-COCCO KM All Any ✓ ✓ ✓ ✓

regularisers. An interesting future direction could be employing Fair-COCCO for pre-
processing to learn fair representations or post-processing, to perform post-hoc fairness
driven corrections.

In this section, we consider one-shot decision making scenarios or those with a single
interaction, where each data-point can be considered i.i.d.. This fits in the domain of
conventional supervised learning tasks, which much of algorithmic fairness literature focuses
on. Note that the Fair-COCCO score is differentiable, which means it can be employed as
a regulariser in any gradient-based method. We compare our approach to related methods,
which we have already reviewed in §3.1.1, in Table 3.1. Formally, given N training triplets
{(Xi,Yi,Ai)}N

i=1, method f (·;θ) : X → Y and original training loss L(·), the Fair-COCCO
score is computed for each minibatch and can be added to the original training objective. For
the EO notion of fairness, this gives:

argmin
θ

1
N

N

∑
i=1
L(θ , f (Xi;θ),Yi)+λ I( f (X ;θ),A|Y ) (3.13)

where the first term is the original loss (possibly including other regularisation) and the
second term term is the Fair-COCCO regularisation. Hyperparameter λ > 0 determines the
fairness-performance trade-off: a higher λ guarantees higher fairness, but this typically leads
to lower predictive performance.
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Fair-PoLe: Fair Policy Learning

In Chapter 3, we detailed Fair-COCCO as a measure to evaluate fairness. We also illustrated
how Fair-COCCO can be applied for fair policy learning (Fair-PoLe) in the simpler one-shot
decision making tasks. In this chapter, we move on to the more challenging sequential setting
where temporal effects and long-term outcomes have to be taken into account. We model
these dynamics through Markov Decision Processes (MDPs), introducing fairness definitions
to policies in MDPs. We then propose a novel inverse reinforcement learning algorithm that
can learn to imitate expert actions while maintaining fairness outcomes in sequential decision
settings, modelled as MDPs.

4.1 Fairness in Sequential Decision Making

It is interesting to wonder whether we can simply apply fairness techniques developed in the
previous chapters to sequential settings—indeed, if each state-action pair is considered i.i.d.,
fairness can be evaluated on the outcomes of each individual action. If we continue to flesh
out this idea, fair policies can be learned by naïvely enforcing fairness conditions on action
predictions ât , sensitive attribute, zt and/or true outcome yt , depending on the fairness notion
enforced. Upon further examination, we uncover two main problems with this setup: 1) the
i.i.d. assumption does not hold in the sequential setting, resulting in the even larger problem
that 2) enforcing fairness at the action level cannot guarantee fairness over the sequence of
interaction.
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The i.i.d. assumption does not hold in sequential settings as future state distributions
depend on predictions made in the current step. Ross and Bagnell (2010) proved that this
naïve i.i.d. assumption leads to compounding errors that grow quadratically with the time
horizon. The assumption also ignores long-term planning in sequential settings, ignoring
that agents will frequently take actions that generate negative utility in the current step to
accomplish a long-term goal.

There are also several issues with the second assumption. Firstly, imposing fairness
constraints without considering feedback effects of decisions actually hurts fairness. Several
studies, including Creager et al. (2020), Liu et al. (2018) and D’Amour et al. (2020) have
demonstrated that even ignoring one-step feedback, common fairness criteria will not longer
promote fairness over time. A second challenge is that the true outcome of individual actions,
which is required to evaluate certain fairness notions, is not always known. In many real-
world settings, rewards are sparse and only available when the sequence terminates. Consider
patients in an ICU, we have access to terminal statistics (e.g. whether the patient successfully
recovered) but it is highly non-trivial to extract true outcomes of individual actions taken by
clinicians.

Evidently, temporal effects need to be modelled to incorporate long-term outcomes into
fairness evaluations. We incorporate dynamics by using MDPs and introduce novel ways to
quantify group fairness in the MDP setting.

Setup Unless otherwise stated, we continue using the same notation established in §2.2.
We denote by MDP/RT a MDP without access to the reward function R(·, ·) and transition
dynamics T (·|·, ·). Let D = {τi}N

i=1 be N logged trajectories of expert demonstrations. Each
trajectory τi = {s0,a0, . . . ,sTi,aTi} records the state-action pairs, where Ti is the max time
horizon. Let each state s ∈ S consist of a feature vector s̃ ∈ S̃ and z ∈ Z that encode the
sensitive attribute, i.e. s = (s̃,z) where the state space can be described by S = S̃×Z. We
further denote by J(π) the infinite horizon discounted total return of a policy π:

J(π) = Eτ∼π

[
∞

∑
t=0

γ
tR(st ,at)

]
(4.1)

Here, the expectation is taken with respect to τ ∼ π , indicating that the distribution over
trajectories depends on π: s0 ∼ µ,at ∼ π(·|st),st+1 ∼ T (·|st ,at). We define another concept
to aid explanation in this chapter:
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Jz(π) = J(π) | s0 = (z, s̃0) (4.2)

This is the value of a policy conditioned on starting in initial state s0 and sub-group
z ∈ Z . We note that the condition of belonging to sub-group z is static as sensitive attributes
generally do not change in a logged trajectory. Thus, Jz(π) essentially denotes the expected
value of a policy for sub-group z.

4.1.1 Fairness Notions for Sequential Settings

In this section, we introduce group fairness notions for the MDP setting. As opposed to
defining fairness on an action level (i.e. whether a particular at was fair given the features
(z,st)), we define fairness at a policy level, that is, we consider whether expected value of
a policy is fair with respect to the sensitive attributes. Evaluating fairness at a policy level
introduces transition dynamics and long-term outcomes into the evaluation, making it more
suitable for sequential settings. We introduce definitions of fairness based on notions of DP
and EO in MDPs.

Definition 4.1.1 (Demographic Parity in MDP) We say a policy π satisfies demographic
parity (DP) if:

J(π)⊥ Z (4.3)

the expected value of the policy is independent of the sensitive attributes.

Definition 4.1.2 (Equalised Odds in MDP) We say a policy π satisfies equalised odds (EO)
if:

J(π)⊥ Z|Y (4.4)

the expected value of a policy is independent of sensitive attributes given the true outcome.

We emphasise that Y in Definition 4.1.2 is not defined on the action level but rather the
true outcome after a sequence terminates. Thus, by considering defining fairness on expected
value and outcomes of a sequence of ecisions, we address the difficulties of enforcing fairness
in sequential settings.
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4.1.2 Fairness Evaluation in Sequential Settings

Based on Definitions 4.1.1 and 4.1.2, it is not immediately obvious how Fair-COCCO can
be applied to evaluate fairness in MDP settings. The key challenge lies in estimating the
discounted total return J(π) of a policy π , which must be carried out using dataset D of
logged expert trajectories.

We apply the Inverse Reinforcement Learning (IRL) framework to perform this analysis.
Recallig our review from §2.3, IRL offers a principled way of modelling human behaviour
by recovering the unknown reward function being maximised when given D (Abbeel and
Ng, 2004; Ng et al., 2000; Ziebart et al., 2008). The proposed method is not limited in the
type of IRL procedure that can be applied. Once the reward function is learned, the expected
value of the policy Jz(π) for a sub-group z ∈ Z can be estimated empirically:

Ĵz(π) =
1
N ∑

τi∈D

Ti

∑
t=0

[
γ

tR(st ,at)
]
| s0 = (z, s̃0) (4.5)

(4.6)

As before, we make make the connection with group fairness notions explicit, Fair-
COCCO scores for different notions in the sequential setting can be expressed as:

IEO = ||VZJ(π)|Y ||2HS, ICAL = ||VZY |J(π)||2HS, IDP = ||VZJ(π)||2HS. (4.7)

4.2 Fair-PoLe: An Inverse Reinforcement Learning Algo-
rithm

Having established our definitions of fairness in the sequential settings, we now turn to the
problem of fair policy learning (Fair-PoLe) or learning a policy that maximises the expected
utility while maintaining fairness outcomes.

The task of learning a policy to maximise the cumulative rewards in stochastic environ-
ments is usually formulated as a reinforcement learning (RL) problem. RL methods have
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been successfully applied to multiple sequential decision making problems, including in the
healthcare domains (Weng et al. (2017), Parbhoo et al. (2017) and Daskalaki et al. (2016)).
However, existing RL applications are grounded by the requirement of explicit rewards
signals to guide the RL agents on the goals to be achieved and ability to interact with an
enviornment, both requirements generally not satisfied in the real-world.

In such situations, it is necessary to consider an approach to RL where the policy can
be learned from a set of presumably optimal expert trajectories. This means that we must
consider solutions in the inverse reinforcement learning (IRL) framework. We present Fair-
PoLe as an IRL algorithm with goals of imitating the actions of the experts while ensuring
fair outcomes. We are especially interested in fair policy learning in the minimal possible
setting, with imperfect knowledge of the environment dynamics and inability to interact with
the environment to test policies. This essentially means we are restricted to learning solely
on the basis of observational data in the form of logged trajectories, making this an offline
IRL task.

§2.3.3 highlighted some of the limitations of existing approaches, including repeated
inner-loop calls to MDP solves, linear reward environments and feasibility only in small,
solve-able environments. We address the aforementioned challenges by setting our sights on
three key criteria:

• Operate in the minimal possible setting, where environment dynamics are unknown
and interactions online are infeasible. We propose learning rewards in a completely
offline fashion,

• Avoid inner-loop MDP solves in each IRL iteration, which is computationally costly
and untenable for high-dimensional environments,

• Overcome the assumptions on linear reward functions and derive more functionally
expressive reward function approximators.

One of the key contributions of Fair-PoLe is that it can naturally address all three concerns,
without additional requirements or assumptions. In subsequent sections, we develop different
aspects of the algorithm before finally putting it together.

One of the fundamental components of Fair-PoLe is a well-known relationship between
the action-value function and the reward function. We forego learning an explicit reward
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function but obtain an implied reward given as the difference between the Q-values of
the current step and the expected, discounted Q-values in the subsequent step. This is a
straight-forward re-arrangement of the theory presented in §2.2:

Q(s,a) = R(s,a)+ γEa′∼π,s′∼T [Q(s′,a′)] (4.8)

R(s,a) = Q(s,a)− γEa′∼π,s′∼T [Q(s′,a′)] (4.9)

Moreover, we use Q∗R(s,a) to denote the optimal action-value function with the property
that π∗ is an optimal policy relative to R, if π∗(s) ∈ argmaxa∈A Q∗(s,a) ∀ s ∈ S. The
connection between Equation 4.9 and Q∗R(s,a) can be written using the Bellman Optimality
Theorem that ∀s ∈ S,a ∈ A:

R(s,a) = Q∗R(s,a)− γEs′∼T

[
max
a′∈A

Q∗R(s
′,a′)

]
(4.10)

This links the optimal action-value function to the reward function through a simple
calculation. Piot et al. (2014); Reddy et al. (2019) take advantage of this formulation to
impose sparsity regularisation on the implied reward. Additionally Jarrett et al. (2020) proved
that behavioural cloning techniques can be seen as maximising this implicit reward through
the energy-based model implied by the corresponding policy.

4.2.1 Maximum Entropy Model of Expert Behaviour

For the model of expert behaviour, we move within the Maximum Entropy (MaxEnt) frame-
work (Ziebart et al. (2008), Levine (2018)). Unlike Max-margin, which by definition assumes
that the observed expert behaviours are always optimal, the probabilistic formulation of Max-
Ent allows for sub-optimal expert behaviour, which is common in the real-world involving
human demonstrators. The optimal policy in this framework is parameterised by a Boltzmann
distribution:

π(s,a) =
exp(Q(s,a))

∑a′∈A exp(Q(s,a′))
(4.11)
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We introduce a function approximator Qθ : S ×A→ R parameterised by θ to predict
the Q-function. The θ parameters can be trained by directly maximising the likelihood of
the input data. In the next section, we introduce a fairness regularisation term on the learned
reward in Equation 4.10. As this expression involves the Bellman operator (maximisation
term), it is not differentiable. We address this by substituting the Q-functions with soft Q
functions, given by the soft Bellman equations:

Q(s,a) = R(s,a)+ γEs′∼T

[
log

(
∑

a′∈A
exp(Q(s′,a′))

)]
(4.12)

We note that this expression essentially repllaces the maximisation term with a softmax
function. Next, we briefly sketch the maximum likelihood procedure. Given the Markov
assumption, we can formulate the probability of a trajectory τ as such:

p(τ|θ) = p(sτ
0)

Tτ−1

∏
t=0

[
πθ (sτ

t ,a
τ
t )T (s

τ
t+1|sτ

t ,a
τ
t )
]

(4.13)

Further assuming that trajectories are i.i.d., the likelihood of demonstrations in D can be
expressed as:

Lθ (D) = log ∏
τ∈D

p(τ|θ) = ∑
τ∈D

log p(τ|θ) (4.14)

4.2.2 Fairness Regularisation

Training an imitation learning algorithm directly using Equation 4.14 corresponds to finding
a model πθ that maximises the log likelihood. However, the optimisation procedure will not
yield a valid soft Q function which satisfies the Bellman conditions in Equation 4.12. Indeed,
it is easy to see that this loss corresponds to the standard behavioural cloning (BC) setup.
The loss does not incorporate any temporal dynamics and the training procedure encourages
greedily maximising Q-values assigned to demonstrated actions, without considering delayed
impacts. The naive assumptions about state distributions leads to compounding errors as the
underlying distribution shifts (Ross and Bagnell, 2010).
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We introduce fairness regularisation that adds constraints ensuring the learned Q-vaoues
are valid with respect to the reward function. More importantly, the fairness constraints are
placed on expected value of policy for sub-groups that we defined in §4.1.1, allowing fair
policies to be learned while accounting for temporal effects. Under the soft Q framework,
the value of following a policy can be empirically estimated by substituting:

Ĵz(π) =
1
N ∑

τi∈D

Ti

∑
t=0

[
γ

tR(sτi
t ,a

τi
t )
]
| s0 = (z, s̃0)

=
1
N ∑

τi∈D

Ti

∑
t=0

[
γ

t

(
Q(sτi

t ,a
τi
t )− γEs′∼T

[
log

(
∑

a′∈A
exp(Q(s′,a′))

)])]
| s0 = (z, s̃0)

(4.15)

To achieve fairness-aware learning, we introduce the regularisation term I(J(π),A|Y ) (for
EO, or alternatively I(J(π),A) for DP). The regularisation term injects information about the
state transition dynamics into the imitation learning objective, as R(s,a) is a function of an
expectation over next state s′ ∼ T (·|s,a). This encourages learning long-horizon behaviour
instead of greedy maximisation in standard BC.

Regularisation to Resolve Degeneracy

IRL in unregularised MDPs have been shown to be an ill-posed problem. As an example, any
constant reward function can perfectly rationalise observed expert behaviour. Additionally
Ng et al. (2000) demonstrated that multiple reward hypothesis meet the criteria of being a
solution. This obstacle has been approached from the perspective of regularisation theory,
which have been adopted for ill-posed problems in general (see the theory presented by
Tikhonov (1963)). Tikhonov (1963) saw regularisation as a constraint on the hypothesis
space when approximating functions from sparse data. Indeed, if the hypothesis space is
unconstrained, it is possible to find functions that exactly fit the data but lack generalisation
ability (Vapnik, 1999).

Specifically in the context of IRL, BC can be seen as unconstrained search, which
maximally fits the data given but can fail to generalise when encountering new data or when
the distribution changes. MaxEnt IRL (Ziebart et al. (2008), Ziebart (2010)) and its variants
(Finn et al. (2016), Ho and Ermon (2016)) use the Shannon Entropy as regulariser on the
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policy and can address the degeneracy issue by maximising expert’s return along with entropy
of the expert policy. Jeon et al. (2020) generalised MaxEnt IRL and demonstrated that IRL
with a class of strongly convex policy regularisers Ω : π(·|s)→ R does not suffer from a
degenerate solution (Geist et al., 2019). Formally:

Theorem 4.2.1 (Unique Solutions in Regularised IRL (Jeon et al., 2020)) IRL with a class
of strongly convex regularisers Ω : π(·|s)→ R:

IRLΩ(πE) := argmax
R

{
JΩ(R,πE)−max

π
JΩ(R,π)

}
(4.16)

were πE is the expert policy, does not suffer from degenerate solutions since there is a unique
optimal policy in the regularised MDP (Geist et al., 2019).

Viewed through the lens of regularisation, Fair-PoLe can be interpreted as a policy
learning method with regularisation on implied rewards, requiring them to be fair and
consistent across temporal dynamics. Thus, if a convex regulariser is adopted, IRL will no
longer suffer from degenerate solutions. Unfortunately, our Fair-COCCO regulariser rely
on non-linear mappings to the Hilbert Space, rendering it not convex. We see this as an
interesting direction to explore in future works. Conceptually strong characterisations of
fairness dependence generally result in non-convex regularisation, alternative measures that
are weak but convex are covariance and conditional covariance in the original Euclidean
spaces:

||ΣJ(π),Z||2F (4.17)

||ΣJ(π),Z|Y ||2F (4.18)

where || · ||F denotes the Frobeniuns norm. We note that these measures are equivalent to
Fair-COCCO without the non-linear extensions to higher-order moments.

4.2.3 Putting It All Together

We wrap up our discussion on Fair-PoLe by putting the components together. One aspect
that we have left out thus far is how the expectation term in Equation 4.15 is computed. The
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expectation is taken with respect to transition dynamics T (·|s,a), which is intractable to
compute in continuous cases. We consider two approaches to address this.

Monte-Carlo (MC) Sampling We introduce another function approximator Tφ : S×
A→ S parameterised by φ to learn transition dynamics T (s′|s,a). Tφ can be trained using
gradient descent and Mean-Squared Error Loss problem directly from the data (s,a,s′)∼D.
The expectation can then be estimated using MC integration with M samples drawn from Tφ :

Es′∼T

[
log

(
∑

a′∈A
exp(Q(s′,a′))

)]
=

1
M

M

∑
i=1

log

(
∑

a′∈A
exp(Qθ (si,a′))

)
, si ∼ Tφ (4.19)

Sampling from True Dynamics We also consider the special case of using observed
transition tuples (s,a,s′) in D to approximate the expectation:

Es′∼T

[
log

(
∑

a′∈A
exp(Q(s′,a′))

)]
= log

(
∑

a′∈A
exp(Qθ (s′,a′))

)
(4.20)

While the MC sampling approach is performed with respect to the learned transition
dynamics Tφ , utilising the next observed state in D can be viewed as sampling from the
true dynamics. However, there naturally exists the bias-variance trade-off between the two
approaches, which we compare in subsequent experiments.

Next, we give how Fair-COCCO can be employed as a regulariser in Fair-PoLe. Formally,
given N training triplets {(τi,Yi,Ai)}N

i=1, consisting of trajectories, outcome of trajectory and
sensitive attributes, the objective function (for the EO notion of fairness) is given as:

argmin
θ

J(θ) :=− 1
N

N

∑
i=1
L(τi,Ai,Yi)+λ I(J(π), A| Y ) (4.21)

Here the first term is the log likelihood as described in Equation 4.14 and the second
term is the fairness regularisation. As the function is differentiable, it is amenable to mini-
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batch gradient-based optimisation. The corresponding optimisation process for the MC
sampling-variant of Fair-PoLe is presented in Algorithm 1.

Algorithm 1: Fair-PoLe
Result: θ , φ

Input: D,γ,λ , learning rate η , batch size B, and M MC samples;
Initialise θ ,φ ;
Train Tφ using MLE with D;
while not converged do

Sample Dmini := {(τi,Ai,Yi)}B
i=1 ∼D;

Sample {si}M
i=1 ∼ Tφ to compute 1

M ∑
M
i=1 log

(
∑a′∈A exp(Qθ (si,a′))

)
;

Compute Ĵ(π) using (4.15) and IEO(Ĵ(π),A|Y ) using (4.7);
Compute J(θ) using Dmini, (4.21) and IEO(Ĵ(π),A|Y );
θ ← θ +∇θ J(θ);

end

Implicit Rewards and Interpretability Most conventional IRL techniques seek to learn
a parameterised reward function Rψ(·, ·), upon which forward RL techniques are applied to
recover an optimal policy with respect to the reward function (Abbeel and Ng, 2004; Ng et al.,
2000; Ramachandran and Amir, 2007). In our outlined approach, the rewards are learned
implicitly, meaning the learned rewards are no longer coupled to a specific parameterised
form, affording more flexibility when it comes to interpretation. Once we recover the
rewards, any variety of techniques can be applied, thus making our method model-agnostic
(e.g. statistical testing for increased transparency or decision trees for hierarchical modelling
of decision trees are possible).

To conclude, Fair-PoLe is a policy learning method where the implied rewards are
regularised at a policy level to ensure fair outcomes. We revisit the key desiderata outlined at
the beginning of this section. Evidently, our proposed method works in a stricly offline sense,
without requiring knowledge of dynamics or interactions with the environment. Additionally,
by formulating rewards as implied in the learned Q-values, we remove the need for expensive
inner-loop MDP solve. Lastly, we decouple the learned rewards from a parameterised form,
opening up the possibility for a variety of function approximators to interpret and explain the
rewards inducing the observed behaviour.



Chapter 5

Insights on Synthetic and Real Datasets

Having proposed Fair-COCO as a fairness measure and regulariser and Fair-PoLe as a fair
imitation learning algorithm, we now turn our attention to how it works (and can be applied)
in practice. There are a number of areas that require empirical demonstration and so we
proceed as follows:

1. We first consider a synthetic validation of Fair-COCCO — demonstrating that Fair-
COCCO can successfully learn a range of fairness trade-offs, and inspecting the
empirical impact this has on predictive distributions.

2. We then take incorporate Fair-COCCO into Fair-PoLe for one-shot decisions. On a
range of standard benchmarks we compare to existing methods on protecting single bi-
nary attributes and outcomes, resulting in competitive (and usually superior) predictive
performance on these tasks while consistently producing the best fairness score.

3. Further, we apply Fair-COCCO to real data with multiple attributes and continuous
outcomes. This is an area that to the best of our knowledge no other method naturally
extends to, and one that Fair-COCCO now sets a strong benchmark for future work.

4. Finally we move into the setting of sequential decision making. Here we demon-
strate on the problem of sepsis treatment how fair imitation learning is a significant
application of Fair-PoLe, establishing the first known study on fairness in sequential
policies.
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In this section, we perform experiments within the EO framework, since it is usually
considered the most challenging and it covers the middle-ground between the strict DP and
lenient FTU definitions. However, we re-iterate that our method is framework-agnostic and
attach further results performed under alternative definitions in Appendix B.

The Python implementation for Fair-COCCO is available at https://github.com/tennisonliu/
fair-cocco and the implementation for Fair-PoLe is available at https://github.com/tennisonliu/
fair-pole.

5.1 Experiments on Fair-COCCO

5.1.1 Inspecting Fairness on Synthetic Data

Experimental Setup We simulate a synthetic binary classification dataset with two non-
sensitive and one binary sensitive attribute, encoded into group memberships. For data
points belonging to group 1 and label 1, samples are drawn from an isotropic Gaussian with
µ = (−1,−1),σ2 = 1.0. Likewise, samples are drawn from Gaussians parameterised by
µ = (1,1),σ2 = 1.0, µ = (−0.5,0.5),σ2 = 0.5 and µ = (0.5,0.5),σ2 = 0.8 for group 2,
label 1, group 1, label 0 and group 1, label 0, respectively. 1000 samples are drawn for each
combination, except for group 2, label 1, where 500 samples are drawn. Training standard
machine learning models on this dataset will be unfair w.r.t. to group 2, in that the classifier
tends to negatively classify the examples in this group.

Evaluation Metrics We are mainly concerned with the performance and fairness trade-
offs of our proposed methods. We use accuracy as the key metric for performance evaluation
and metrics that were introduced in §2.1.1 to evaluate fairness.

We train a logistic regression model for this task. The unregularised model achieved an
accuracy of 79.00% with DEO of 0.38. By contrast, a model trained with λ = 500 achieved
73.71% accuracy and DEO of 0.07. In Figure 5.1, we show the decision boundaries produced
by models with varying levels of regularisation. In Figure 5.2, we plot the distributions of pre-
dictions with ground truth label 1 at different regularisation settings. Note that regularisation
encourages the distributions to match, better satisfying EO desiderata.

https://github.com/tennisonliu/fair-cocco
https://github.com/tennisonliu/fair-cocco
https://github.com/tennisonliu/fair-pole
https://github.com/tennisonliu/fair-pole
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Fig. 5.1 Decision boundaries produced by logistic regression models with varied levels of
regularisation (λ = 0,λ = 100,λ = 500,λ = 1000).

(a) (b) (c)

Fig. 5.2 Distribution of predictions for label 1 for different group memberships produced by
logistic regression model. (a), (b), (c) correspond to models with varied levels of regularisa-
tion (λ = 0,λ = 500,λ = 1000, respectively).

5.1.2 Statistical Testing

In this section, we demonstrate how the (conditional) dependence measures on which Fair-
COCCO is based on can be employed as a test statistic to perform statistical tests, leading to
stronger guarantees and more transparency in practice.

Figure 5.3 shows the distributions of predictions under different fairness constraints. No-
tably, EO only requires statistical independence between predictions and sensitive attributes
given true outcome whereas DP precludes sensitive attributes from having any predictive
value by enforcing independence between predictions and attributes.

Table 5.1 reveals the accuracy-fairness trade-offs as well as p-values under different
regulation strengths. The p-values indicate the likelihood of observing the data under the
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null hypothesis (conditional/unconditional independence), see §3.2. As we expect, stronger
fairness regularisation leads to lower levels of unfairness as measured by DI and DEO, as
well as stronger guarantees in statistical tests. For example, λ = 10000, we can say with
81% chance that predictions are conditionally independent of sensitive attributes (under EO)
or 27% chance that predictions are independent of sensitive attributes (under DP).

(a) (b) (c)

(d) (e) (f)

Fig. 5.3 Top row: distribution of predictions for label 1 of different group memberships
under EO. Bottom row: distribution of predictions for different group memberships under DP.
Predictions are produced by regularised logistic regression model with λ = 0,λ = 500,λ =
1000, respectively across each row.

5.2 Experiments on One-Shot Decision Making

Having validated our method on synthetic data, we now evaluate the performance of Fair-
COCCO and benchmarks methods on six datasets from the public UCI ML Repository (Dua
and Graff, 2017), whose characteristics are summarized in Table 5.2. A full description of the
datasets can be found in Appendix C. The Adult, Drugs, German and COMPAS datasets have
binary attributes and outcome, which means we can compare against existing fair learners.
The C&C and Students datasets have continuous outcomes with multiple protected attributes;
a setting that none of the existing works can handle.
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Table 5.1 Accuracy-fairness trade-offs under different fairness notions and corresponding
statistical test results.

(a) Accuracy (ACC), DI, COCCO score
(scaled by 1e−3), p-value under DP.

λ ACC DI COCCO p-value

0 78.71 1.08 7.83 0.00
100 78.00 0.82 3.99 0.06
500 75.21 0.85 3.13 0.09

1000 55.30 1.02 3.12 0.18
10000 52.36 0.99 0.37 0.27

(b) Accuracy (ACC), DEO, COCCO score
(scaled by 1e−3), p-value under EO.

λ ACC DEO COCCO p-value

0 78.71 0.41 3.27 0.00
100 72.96 0.03 0.34 0.21
500 70.36 0.03 0.26 0.45

1000 53.54 0.02 0.29 0.57
10000 51.38 0.00 0.17 0.81

Model Details For all experiments, we train a two-layer neural network with ReLU-
activated nodes. The number of nodes chosen is between 40∼100 depending on the complex-
ity of the data. The network is trained with Cross Entropy or MSE Loss and is optimised using
Adam (Kingma and Ba, 2014). The hyperparameters include batch size ∈ {64,128,256},
learning rate ∈ {1e−2,1e−3,1e−4}, and fairness penalty ∈ {100,101,102,103} and are
chosen through cross-validation. For datasets without a defined test set, the data is split
60-20-20 into train, validation and test set and results are averaged over 10 runs. Experiments
are run on either a CPU or NVIDIA Tesla K40C GPU, taking around an hour.

Table 5.2 Description of datasets. ‘-B’ suffix indicates binary variables, ‘-C’ indicates
continuous variables.

Dataset Examples Features Sensitive (A) Outcome (Y)

Adult (Kohavi, 1996) 45222 12 Gender-B Income-B
Drugs (Mirkes, 2015) 1885 11 Ethnicity-B Drug use-B
German (Hoffman, 1994) 1700 20 Foreign-B Income-B
COMPAS (Angwin et al., 2016) 6172 10 Ethnicity-B Recidivism-B

C&C (Redmond, 2009) 1994 128 Ethnic Proportions-C Crime Rate-C
Students (Cortez, 2014) 649 33 Age-C, Gender-B Performance-C

Single Binary Attributes and Outcomes In order to prove Fair-COCCO is competitive
with state-of-the-art on binary variables, we reproduce the experiments from (Donini et al.,
2018; Mary et al., 2019) based on UCI’s Drugs, German, Adult and COMPAS datasets. We
also compare against (Hardt et al., 2016; Zafar et al., 2017) and a standard (unfair) neural
network (NN).1 As can be seen in Table 5.32; notably, Fair-COCCO achieves higher levels

1None of the other EO-based related works have publicly available code or results for these datasets.
2All benchmark results are taken from (Donini et al., 2018) and (Mary et al., 2019). We have re-run their

experiments with our own pre-processing pipeline. We were unable to reproduce the results reported by Mary
et al. (2019) on COMPAS, and include their reported scores instead.
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(a) (b)

Fig. 5.4 Fairness-accuracy trade-off curve for single sensitive attribute ‘racePctBlack’ on
C&C (a) and ‘age’ on Students (b). Note, the optimum desiderata is at the origin, where both
MSE and unfairness are minimised.

of fairness (lower DEO) while maintaining strong predictive accuracy on large and small
datasets.

Table 5.3 Accuracy (ACC) and DEO on benchmark of relevant algorithms on datasets.
Results are aggregated over 10 runs for datasets without a designated test set. NN is an
unregularised neural network and Fair-COCCO is the NN with our proposed regularisation.

COMPAS German Drug Adult
Method ACC DEO ACC DEO ACC DEO ACC DEO

Zafar et al. (2017) 0.69±0.02 0.10±0.06 0.62±0.09 0.13±0.11 0.69±0.03 0.02±0.07 0.78 0.05
Hardt et al. (2016) 0.71±0.01 0.08±0.01 0.71±0.03 0.11±0.18 0.75±0.11 0.14±0.08 0.82 0.11

Donini et al. (2018) 0.73±0.01 0.05±0.03 0.73±0.04 0.05±0.03 0.80±0.03 0.07±0.05 0.81 0.01
Mary et al. (2019) 0.96±0.00 0.00±0.00 0.72±0.03 0.21±0.15 0.80±0.04 0.00±0.01 0.83 0.08

NN 0.90±0.00 0.01±0.00 0.74±0.07 0.11±0.35 0.80±0.08 0.06±0.12 0.84 0.19
Fair-COCCO 0.89±0.00 0.00±0.00 0.73±0.10 0.02±0.02 0.80±0.06 0.01±0.01 0.83 0.04

Single Continuous Attribute Our closest competitor is (Mary et al., 2019), which is
not able to handle multiple attributes but does allow for single continuous attributes. We take
the datasets C&C and Students, and only use protected attributes racePctBlack and age
respectively. We plot the performance versus fairness by varying the fairness penalty, see
Figure 5.4. Observe that Fair-COCCO obtains a better trade-off between fairness and MSE
than Mary et al. (2019).

Multiple Attributes and Continuous Outcomes Many real world environments re-
quire prediction with multiple sensitive attributes, which require simultaneous protection.
We illustrate a main contribution of our proposal, by evaluating Fair-COCCO on datasets
with multiple sensitive attributes and continuous outcome variables.
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For C&C, the sensitive attributes are ethnic proportions (i.e. racePctBlack, racePctWhite,
racePctAsian, racePctHisp) which are given as continuous values. On Student, the at-
tributes are gender (binary) or age (continuous). Both problems demand multiple sensitive
attributes to be simultaneously protected, which is natural for Fair-COCCO but cannot be
done by any existing EO-based method (Table 3.1). We compare Fair-COCCO against
(unfair) linear regression and XGBoost models, demonstrating strong accuracy-fairness
performance even on multi-dimensional variables (Table 5.4) We also demonstrate how
Fair-COCCO scales as a regulariser with the number of sensitive attributes and attach those
results in Appendix D.

Table 5.4 MSE and Fair-COCCO score when protecting multiple attributes. Results are
aggregated over 10 runs and COCO scores are scaled by 1e−3.

C&C Student
Method MSE COCCO MSE COCCO

Linear Regression 0.030 1.34 0.280 4.69
XGBoost 0.024 1.95 0.257 3.35

NN 0.031±0.001 1.26±0.12 0.254±0.008 4.39±0.13
Fair-COCCO 0.034±0.003 0.55±0.11 0.303±0.013 2.32±0.20

5.3 Experiments on Sequential Decision Making

Finally, we emphasise that Fair-COCCO is not limited to the one-shot supervised learning
setup and demonstrate how our approach can be applied in a sequential decision making
scenario for learning fairer policies in imitation learning. This is an area in which it is
especially important to learn fairly – since the fundamental assumption is that the (usually
human) demonstrator is acting near-optimally.

However, implicit biases can easily manifest in such settings, as an example it has been
well-documented that implicit prejudices held by healthcare professionals affect treatment
outcomes for minority groups (Hall et al., 2015). Under no circumstances should this
be allowed to leak into a policy that will be used in practice down the line. As such we
demonstrate our approach on the MIMIC-III ICU database (Johnson et al., 2016a), containing
data routinely collected from adult patients in the United States.

We note that we do not compare Fair-PoLe with other known baselines. The reason for
this is simple - there simply do not exist comparable methods for fair policy learning in the
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offline setting. The only methods that can be reasonably applied are behavioural cloning
options, and we introduce multiple variations in an ablation study to demonstrate the potential
of our proposed method.

5.3.1 Learning Fair Policies for Sepsis Treatment

Sepsis is one of the leading causes of mortality in intensive care units (ICUs) (Singer et al.,
2016) and while efforts have been made to provide guidelines for treatments, physicians at
bedside largely rely on experience giving rise to possible variations in fair treatments.

Experimental Setup We analyse the decisions made by clinicians to treat sepsis, using
a patient cohort fulfilling the Sepsis-3 criteria, delineated by Komorowski et al. (2018) from
the MIMIC-III ICU Database (Johnson et al., 2016a). The key characteristics of the Sepsis-3
Cohort are described in Table 5.5. The dataset contains trajectories for 19,585 patients in
the ICU, where each trajectory contains states (clinical state of patient) and actions (medical
interventions) recorded at 4 hour intervals. The trajectories terminate when the patients are
discharged or succumb to sepsis, with patients spending on average 53 hours in the ICU,
accruing an average of 13 measurements.

For each patient, we have a 45-dimensional feature vector S̃ ∈ R45 containing static
patient information, lab values, vitals measurements and intake/output recordings, recorded
at 4 hour resolution. There also exists Z ∈ {0,1} a binary sensitive attribute corresponding
to patient gender. The dataset records the actions taken by clinicians at 4 hour intervals,
A ∈ {0,1, . . . ,24}, corresponding to 25 discrete interventions based on intravenous (IV)
fluid and vasopressor dosage within the 4 hour window. Ground-truth treatment outcomes
Y ∈ {0,1} are recorded at the end of the trajectory for each patient, corresponding to 90-day
mortality after discharge. There are no true treatment outcomes for each individual action,
and we compute action-level outcomes using methods described by Raghu et al. (2017). For
the complete problem setup, refer to Appendix E.

Methods We consider several methods to compare against to demonstrate the potential
of Fair-PoLe:

• Behavioural cloning without regularisation (BC). The expert’s demonstrations D are
divided into i.i.d. state-action pairs,
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Table 5.5 Summary of MIMIC-III Sepsis-3 Cohort dataset. Trajectory count is based on the
number of unique patients and trajectory lengths reports the average number of measurements
(average time) spent in the ICU.

Trajectory Count Trajectory Lengths Total Measurements

Total 19,585 13.06 ± 4.95 255,755

Gender Male 10,901 13.10 ± 4.93 142,819
Female 86,84 13.01 ± 4.98 112,936

Mortality Survival 17,712 12.87 ± 4.88 228,023
Death 1,873 14.81 ± 5.28 27,732

• Behavioural cloning with reward sparsity regularisation (BC.RR). This is based on
the work of Piot et al. (2014); Reddy et al. (2019), which demonstrated that implicit
rewards regularisation can effectively incorporate subsequent dynamics,

• Fair-PoLe with fairness imposed at an action level (Fair-PoLe.A), ensuring individual
actions are fair with respect to the protected attribute,

• Fair-PoLe with fairness imposed at a policy level and MC sampling of 3 samples to
approximate subsequent states (Fair-PoLe M=3),

• Fair-PoLe with fairness imposed at policy level but using observed next actions as
approximation to expectation (Fair-PoLe M=1).

Model Details For all methods, we approximate the Q-value network Qθ (·) with a
two hidden layer neural network (NN) with ReLU activation. The networks are trained
with Cross Entropy Loss and optimised using Adam (Kingma and Ba, 2014). The transition
network Tφ (·, ·) is likewise approximated with a three hidden layer NN with ReLU activations.
A Gaussian output layer is employed that learns the mean and standard deviations for the
transition prediction. The local reparameterisation trick (Kingma et al., 2015), MSE Loss, and
Adam are employed to train the transition network. The hyperparameters include batch size
∈ {64,128,256}, learning rate {1e−2,1e−3,1e−4} and fairness penalty ∈ {10,25,50,100}
and are tuned through cross-validation. We use γ = 0.9 as the discount factor. The dataset is
split into train, validation and test sets such that 60%, 20% and 20% of the trajectories are
assigned to each set. The results are averaged over 10 runs. Experiments are tun on NVIDIA
Tesla K40C GPUs, taking between a couple of hours to complete.

Results Table 5.6 describes the performance-fairness trade-off achieved by different
models. We use the same evaluation metrics as detailed in our previous set of experiments
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(§5.2) to evaluate accuracy-fairness trade-off. However, there are subtle distinctions—here,
accuracy describes the action matching performance and COCCO scores are measured
at the trajectory level (i.e., using Equation 4.7) instead of action-level as in the one-shot
setting. We see that the most simplistic behavioural cloning model already achieves strong
accuracy, likely as the distribution between train and test sets are quite similar, thus the lack
of generalisability of BC methods are less pronounced. Behavioural cloning with reward
sparsity regularisation, by incorporating temporal dynamics through reward sparsity, achieves
superior accuracy, although this also comes at a higher cost of fairness.

Additionally, we see that while Fair-PoLe.A (imposes fairness at the action level) does not
suffer a major decrease in action matching accuracy, does incur the highest fairness penalty.
This echoes the findings of D’Amour et al. (2020); Liu et al. (2018), which highlighted the
dangers of naïvely imposing fairness constraints without long-term planning. Lastly, we see
that the two variations of Fair-PoLe with fairness imposed at the policy level achieve similar
trade-off characteristics. Fair-PoLe where the rewards are computed using the observed
next state performs better with the lowest fairness penalty, likely as the expectation over
subsequent states is with respect to the true transition dynamics, resulting in more accurate
estimatinos.

Table 5.6 Accuracy and Fair-COCCO score of different inverse reinforcement learning
methods. Results are aggregated over 10 runs and COCCO scores are scaled by 1e−3.

Model Accuracy COCCO

BC 84.18 ± 1.62 2.97 ± 2.12
BC.RR 85.33 ± 1.93 3.12 ± 4.99

Fair-PoLe.A 81.28 ± 1.70 3.23 ± 2.57
Fair-PoLe M=3 78.07 ± 1.93 2.76 ± 2.18
Fair-PoLe M=1 79.44 ± 1.95 2.65 ± 1.69

Interpretation Next, we demonstrate how the implicit reward learning approach adopted
by Fair-PoLe allows opens up for a variety of interpretation that is decoupled from the exact
parameterisation of R(·, ·). We illustrate this by applying linear regression and Random
Forest methods to interpret clinical decision making when 1) no intervention is prescribed
and 2) when the highest doses of IV and Vasopressors are prescribed.

We leave formal analysis and interpretation to domain experts but highlight some notable
points. When no treatment is prescribed, which can reasonably be assumed to mean the
patient’s sepsis condition is under control, more aspects of the patient’s condition are taken
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into consideration (Figure 5.5). However, when the highest doses of drugs are prescribed,
key indicators, namely lactate levels and SOFA scores, dominate consideration (Figure
5.6). These correspond the most important mortality indicators for clinicians during sepsis
treatment (Liu et al., 2019).
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Fig. 5.5 Different reward interpretations in scenarios where clinicians did not prescribe any
treatment. (a) shows the 10 most important feature weights learned by a linear regression
model and (b) ranks feature importance based on Mean Decrease in Impurity returned by a
Random Forest Regressor.
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Fig. 5.6 Different reward interpretations in scenarios where clinicians prescribed the strongest
possible combination of IV and Vasopressors. (a) shows the 10 most important feature
weights learned by a linear regression model and (b) ranks feature importance based on Mean
Decrease in Impurity returned by a Random Forest Regressor.



Chapter 6

Conclusion

In this thesis, we introduced methods to audit fairness of decisions made by humans and
algorithms alike. We also focused on evaluating fairness in sequences of decisions, which are
modelled as MDPs. Last, we developed fair-policy learning, a regularisation based learning
method that is modular and can be incorporated into any gradient optimisation procedure
and illustrated learning on one-shot and sequential problems.

In Chapter 3, we proposed Fair-COCCO, a kernel-based fairness measure that quantifies
unfairness in the presence of multiple sensitive attributes as well as continuous or discrete
outcomes. We made clear the connection between Fair-COCCO and other strong measures
of fairness in literature and illustrate a statistical testing method that can lead to stronger
guarantees in practice. We empirically demonstrate the ability of Fair-COCCO to cap-
ture fairness through simulated studies and demonstrate superior performance in balancing
fairness-prediction trade-off on a range of benchmarks.

Then in Chapter 4, we tackle the more challenging problem of algorithmic fairness in
sequential decision making, becoming the first work to address this problem. We propose
definitions of fairness in sequential settings modelled as MDPs, where fairness is defined on
the expected value of a policy for different sub-groups. We introduce a Fair-PoLe, a novel
IRL algorithm that is completely offline, avoids costly inner-loop computations and allows
for functionally expressive reward function approximators to be learned. This is achieved
through implicit reward learning and fairness regularisation placed on fairness at a policy
level. In our experiments, we demonstrate the potential of Fair-PoLe to learn fair policies in
complex real-world environments on the task of sepsis treatment.
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Limitations The main limitation of Fair-COCCO is also the source of its key strength—
the matrix operations required to kernalise the data and embed it in the RKHS has complexity
O(N3). We propose two directions to alleviate this, by using i) a low-rank approximation
of the kernel matrix and ii) subsets of minibatches to evaluate the Fair-COCCO score.
Empirically, these computational tricks do not noticeably impact performance. As Fair-
COCCO is not a convex function, incorporating it was regularisation on rewards in Fair-PoLe
cannot fully resolve the degeneracy issues common to IRL problems. We proposed covariance
measures on the original feature space as a alternative means of convex regularisation.

Future Works One interesting direction for future work is to evaluate performance of
Fair-COCCO on larger datasets or improving its computational characteristics by incorpo-
rating the kernel operation speed ups proposed by Zhang et al. (2012). One assumption
that we made Fair-PoLe is that the environment is fully-observable and Markovian, an as-
sumption that rarely holds in real-world problems such as healthcare. An interesting project
for the future would be to model policies that depend on histories in partially observable
environments.

Societal Impact It is encouraging to see that the ML community is paying more attention
for algorithmic fairness. To that end, we humbly hope our proposed methods can address
some of the challenges currently facing deployment of fair algorithms. Nonetheless, we
caution against using our proposed methods as a ‘certificate‘ of fairness. As Corbett-Davies
et al. (2017) rightfully emphasise, fairness measures do not rule out blatantly unfair practices.
Additionally, future works should focus on interpretable fairness quantification and fairness-
aware training to provide better understanding of root causes of unfairness in prediction
settings.
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Appendix A

Connection to Other Fairness Measures

We discuss the theoretical connections between Fair-COCCO and Mutual Information (MI)
and Maximal Correlation Coefficients (MCC) in depth here. There exists several main
approaches to characterising conditional dependence, here we sketch the relevant ones:

• Daudin (1980) characterises dependence as the correlations of functions in certain L2

spaces,

• Kernel-theory based measures (our work). This characterisation is related to Daudin’s
in that instead of considering all functions in L2, this measure exploits RKHSs corre-
sponding to some characteristic kernels, which are much smaller. Alternatively, if we
restrict the functions considered in the L2 to those belonging to the RKHS, Daudin’s
approach reduces to the kernel-based measure,

• Conditional Mutual Information (CMI), which can be concisely expressed mathemati-
cally as X ⊥ Y |Z ⇐⇒ I(X ;Y |Z) = 0.

Having established the general approaches, we elaborate on the exact connection between
the measure we use and others:

Maximum Correlation Coefficient At a high level, both Fair-COCCO and the maxi-
mum correlation coefficient (MCC) fall within the framework set out by Rényi (Rényi, 1959),
namely that for sufficiently rich function classes, the functional correlation (or, alternatively,
the cross-covariance) can be used to measure (conditional) dependence.
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MCC is defined as the supremum of Pearson’s correlation coefficient ρ over all Borel-
measurable functions of finite variance. Formally:

Definition A.0.1 (Maximal Correlation Coefficient (MCC)) Given two random variables
X ∈ X and Y ∈ Y , the Maximal Correlation Coefficient is defined as follows:

MCC(X ,Y ) = sup
f ,g

ρ( f (X),g(Y )) (A.1)

where ρ is the Pearson’s correlation coefficient, f and g are measurable functions with
E[ f 2(X)],E[g2(Y )]< ∞ .

Evidently, MCC fits the characterisation of dependendence provided in Daudin (1980).
However, as the supremum is computed over an infinite-dimensional space, MCC is not
directly computable. Baharlouei et al. (2019); Mary et al. (2019) employ Witsenhausen’s
characterisation (Witsenhausen, 1975), which calculates MCC as the second largest singular
value of a stochastic matrix Q. As estimating the singular values is difficult, Mary et al.
(2019) instead employ the χ2 divergence as the upper-bound of MCC:

MCC(X ,Y )2 ≤
∫

π(x,y)
π(x)π(y)

dxdy = χ
2(π(x,y),π(x)⊗π(y)) (A.2)

To avoid cumbersome notation, we let π(x,y) be shorthand for the joint distribution
πXY (x,y) and π(x), π(y) are the corresponding marginals πX(x) and πY (y). This upper
bound is the same as the kernel-free integral expression (in the limit of infinite data) for
||VY X ||2HS (Theorem 4 in Fukumizu et al. (2007)):

||VY X ||2HS =
∫ ∫ (

π(x,y)
π(x)π(y)

−1
)2

π(x)π(y)dxdy (A.3)

The kernel dependence measure is thus equivalent to the χ2 divergence, which is also
well-known as mean square contingency (Hirschfeld, 1935). A similar relationship holds
between the conditional cross-covariance operator ||VY X |Z||2HS and the conditional mean
square contingency.
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Thus, our work and other algorithmic fairness works using MCC (Baharlouei et al.,
2019; Mary et al., 2019) rely on the same ideal regulariser but employ a different empirical
estimator, which is where the advantages of our proposed methods lie:

• Our measures deliver kernel estimators for the χ2-divergence (with known consistency,
see Theorem 5, Fukumizu et al. (2007)). However, it is straightforward to compute as
only Gram matrix operations (trace, product) are involved,

• While Witsenhausen’s characterisation of MCC is an easy approximation for discrete
cases, it is not easily extended to continuous features and rely on strong assumptions
(matrix Q is viewed as kernel of a linear operator on L2(dπY πX), see Witsenhausen
(1975)),

• There are two layers of difficulty in empirically computing the MCC for continuous
variables. 1) It involves estimating the joint distribution and marginal distributions.
Mary et al. (2019) employs KDE to estimate the distributions, which inherits the
difficulty in choice of kernels. Additionally, direct estimation of PDF is infeasible if
the joint space even has a moderate number of dimensions, restricting the scalability. 2)
the marginalisation over Q is intractable for continuous values. To make this tractable,
Mary et al. (2019) compute the estimation of the density on a regular square grid. This
partitioning introduces its own set of problems, namely thresholding effects and that
enough samples exist in each partition for low variance estimates.

To the best of our knowledge, no practical estimators of MCC exist yet for multi-
dimensional, continuous variables. Instead, continuous variables are treated the same way as
discrete ones (see another example of this Baharlouei et al. (2019)).

(Conditional) Mutual Information (Conditional) Mutual Information (CMI) is the best
known dependence measure, but its finite sample empirical estimate is not straight-forward,
especially for continuous variables. Formally, MI is defined:

MI(X ,Y ) =
∫ ∫

π(x,y) log
(

π(x,y)
π(x)π(y)

)
dxdy (A.4)

Compared to Equation A.3 and noting that log(z)≤ z−1, the inequality can be derived:
MI(X ,Y ) ≤ ||VY X ||2HS, which holds under the same assumptions as Lemma 3.2.1. Thus,
Fair-COCCO is an upper bound on MI.
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The main challenge with employing MI in practise is the difficulty in estimating it for
continuous variables. This includes estimating densities as well as marginalising over the
random variables. Due to these difficulties, there haven’t been many works on employing
CMI with continuous variables in the algorithmic fairness literature. To the best of our
knowledge, Steinberg et al. (2020a) is the only work that employs CMI as a regulariser,
but only works when the sensitive attributes are categorical and involves training a separate
classifier in the inner loop.



Appendix B

Experiments using Demographic Parity

To highlight Fair-COCCO’s compatibility with different fairness definitions other than EO,
we apply it to demographic parity (DP). This requires statistical independence between
predictions and attributes. Disparate impact (DI) is a metric frequently used to evaluate DP
(Feldman et al., 2015):

DI =
P(Ŷ = 1|A = 1)
P(Ŷ = 1|A = 0)

(B.1)

where A = 1 and A = 0 denote respectively the discriminated and non-discriminated groups.
The US Equal Employment Opportunity Commission Recommendation advocates that DI
should not be below 80%, commonly known as the 80%-rule.1

We perform the same experiments on i) binary classification tasks (Table B.1), ii) re-
gression task with multiple sensitive attributes (Table B.2), and iii) regression with a single
sensitive attribute (Figure B.1).2 The experiments are performed using the same procedures
described in §4.2. Note, DI closer to 1 corresponds to lower levels of disparate impacts across
population subgroups. We demonstrate that Fair-COCCO can balance strong predictive
accuracy with fairness across multiple tasks and datasets, thus demonstrating the flexibility
of our proposed method.

1www.uniformguidelines.com.
2None of the other methods in Table 5.3 have available code or results offor DP-regularised learning. We

compare against results of Mary et al. (2019) re-run on our pre-processing pipeline.

www.uniformguidelines.com
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(a) (b)
Fig. B.1 Fairness-accuracy trade-off curve under DP for single sensitive attribute ‘racePct-
Black’ on C&C (a) and ‘age’ on Students (b). Note, the optimum desiderata is at the origin,
where both MSE and unfairness are minimised.

Table B.1 Accuracy (ACC) and DI under DP on benchmark of relevant algorithms on datasets.
Results are aggregated over 10 runs for datasets without a designated test set. NN is an
unregularised neural network and Fair-COCCO is the NN with our proposed regularisation.
Note that the optimal DI value is 1.0.

COMPAS German Drug Adult
Method ACC DI ACC DI ACC DI ACC DI

Mary et al. (2019) 0.87±0.04 0.76±0.07 0.71±0.08 0.96±0.25 0.80±0.06 0.73±0.17 0.79 0.83
NN 0.90±0.00 0.39±0.32 0.74±0.07 1.26±0.54 0.80±0.08 0.42±0.22 0.84 0.22

Fair-COCCO 0.88±0.03 0.90±0.06 0.73±0.06 1.02±0.19 0.78±0.02 0.84±0.07 0.83 0.97

Table B.2 MSE and Fair-COCCO score under DP when protecting multiple attributes. Results
are aggregated over 10 runs and COCO scores are scaled by 1e−2.

C&C Student
Method MSE COCCO MSE COCCO

Linear Regression 0.024 3.59 0.280 0.57
XGBoost 0.024 3.09 0.247 0.50

NN 0.023±0.002 3.66±0.04 0.224±0.051 0.55±0.03
Fair-COCCO 0.027±0.007 1.36±0.89 0.263±0.060 0.31±0.12



Appendix C

Description of Datasets

1. Adult (Kohavi, 1996). The task on the Adult dataset is to classify whether an indi-
vidual’s income exceeded $50K/year based on census data. There are 48842 train-
ing instances and 14 attributes, 4 of which are sensitive attributes (age, race, sex,
native-country). Here, the sensitive attribute is chosen to be sex, which can be
either female or male.

2. Drug Consumption (Drugs) (Mirkes, 2015). The classification problem is whether
an individual consumed drugs based on personality traits. The dataset contains 1885
respondents and 12 personality measurements. Respondents are questioned on drug use
on 18 drugs, including a fictitious drug Semeron to identify over-claimers. Here, we
focus on Heroin use, drop the respondents who claimed to use Semeron and transform
the categorical response into a binary outcome: “Never Used” versus “Used”. The
binary sensitive attribute is Ethnicity.

3. South German Credit (German) (Hoffman, 1994). The German dataset contains
1000 instances with 20 predictor variables of a debtor’s financial history and demo-
graphic information, which are used to predict binary credit risk (i.e. complied with
credit contract or not). The sensitive attribute is a binary variable indicating whether
the debtor is of foreign nationality.

4. COMPAS (Angwin et al., 2016). COMPAS is a commercial software commonly used
by judges and parole officers for scoring criminal defendant’s likelihood of recidivism.
The dataset contains 6172 instances with 10 features. The outcome is a binary variable
corresponding to whether violent recidivism occurred (is_violent_recid) and the
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sensitive attribute is race, which is binarised into “Caucasian” and “Non-Caucasian”
defendants.

5. Communities and Crime (C&C) (Redmond, 2009). C&C contains socio-economic
data from the 1990 US Census, law enforcement data from the 1990 US LEMAS
survey and crime data from 1995 FBI UCR. It contains 1994 instances of communities
with 128 attributes. The outcome of the regression problem is crime rate within
each community ViolentCrimesPerPop, which is a continuous value. There are
three sensitive attributes, corresponding to ethnic proportions in the community—
racePctBlack, racePctWhite, racePctAsian.

6. Student Performance (Students) (Cortez, 2014). The Students dataset predicts aca-
demic performance in the last year of high school. There are 649 instances with
33 attributes, including past academic information and student demographics. The
response variable is a continuous variable corresponding to final grade and the sensitive
attributes are age (continuous value from 15-22) and sex (‘F’-female, ‘M’-male).



Appendix D

Accuracy-Fairness Trade-offs: Multiple
Attributes

One of the key contributions of this study is the introduction of a differentiable fairness
penalty that can naturally extend to multiple sensitive attributes. In this section, we generate
the frontier of possible values on three experiments to better evaluate the accuracy-fairness
trade-offs in different tasks:

1. Regression task on C&C with sensitive attributes: racePctBlack, racePctAsian,
racePctWhite, and racePctHisp,

2. Regression task on Students with two sensitive attributes: age and gender,

3. Binary classification task on Drugs with three sensitive attributes: age, gender, and
ethnicity.

We emphasise that, using our method, fairness w.r.t. multiple sensitive attributes can
be tuned through a single penalty parameter whereas Mary et al. (2019), Pérez-Suay et al.
(2017) will have to introduce multiple penalty terms, which presents optimisation challenges
and additional hyperparameters. As Figure D.1 illustrates, fair outcomes can be achieved
with minimal loss in MSE or accuracy.
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(a) (b) (c)

(d) (e) (f)

Fig. D.1 Top row: trade-offs under EO. Bottom row: trade-offs under DP. (a), (d): C&C
dataset with four sensitive attributes. (b), (e): students dataset with two sensitive attributes.
(c), (f): drugs dataset with three sensitive attributes.



Appendix E

Problem Setup: Sepsis Treatment

The data used to develop and evaluate our experiment on fair imitation learning is extracted
from the MIMIC-III ICU database (Johnson et al., 2016a), based on the Sepsis-3 cohort
defined by Komorowski et al. (2018).

Discrimination in Healthcare Sepsis is one of the leading causes of mortality in inten-
sive care units (Singer et al., 2016), and while efforts have been made to provide clinical
guidelines for treatment, physicians at the bedside largely rely on experience, giving rise
to possible variations in fair treatments. Prejudice in healthcare has been reported in many
instances—for example, healthcare professionals are more likely to downplay women’s
health concerns (Rogers and Ballantyne, 2008) and racial biases affect pain assessment and
treatment prescribed (Hoffman et al., 2016). Thus, it is critical, when learning to imitate
expert policy, that no underlying prejudices are leaked into the learned policy.

Problem Setup We have access to a set of expert trajectories D = {τ1, ...,τN}, where
each trajectory is a sequence of state-action pairs {(s1,a1), ...,(sT ,aT )}. Each trajectories
correspond to the state of a unique patient and the actions taken by the clinician to treat
sepsis.

Data We obtain data from MIMIC-III and use the pre-processing scripts provided by
Komorowski et al. (2018) to extract patients satisfying the Sepsis-3 criteria.1 The description
of the Sepsis-3 Cohort is provided in Table E.1.

1https://github.com/microsoft/mimic_sepsis.

https://github.com/microsoft/mimic_sepsis
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Table E.1 Summary of MIMIC-III Sepsis-3 Cohort dataset. Trajectory count is based on the
number of unique patients and trajectory lengths reports the average number of measurements
(average time) spent in the ICU.

Trajectory Count Trajectory Lengths Total Measurements

Total 19,585 13.06 ± 4.95 255,755

Gender Male 10,901 13.10 ± 4.93 142,819
Female 86,84 13.01 ± 4.98 112,936

Mortality Survival 17,712 12.87 ± 4.88 228,023
Death 1,873 14.81 ± 5.28 27,732

State Space The pre-processing yields 46×1 feature vectors for each patient at each
timestep, which are summarised in Table E.2. Of the 46 features, there are 43 features corre-
sponding to physiological parameters, lab values, vital signs and intake/output recordings.
There are three sensitive attributes, namely gender, weight and age. In our experiments, we
consider age as the sole sensitive attribute. Data are aggregated into 4 hour windows.

Table E.2 Description of patient features recorded at four hour intervals.

Feature Type Features

Demographic Gender, Age, Weight (kg),

Static
Re-admission, Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA),
Systematic Inflammatory Response Syndrome (SIRS), Shock Index,

Lab Values

Potassium, Sodium, Chloride, Glucose, Magnesium, Calcium, White Blood Cell Count,
Platelets Count, Bicarbonate, Hemoglobin, Partial Thromboplastin Time (PTT), Prothrombin Time (PT),
Arterial pH, Arterial Blood Gas, Arterial Lactate, Blood Urea Nitrogen (BUN), Creatinine,
Serum Glutamic-Oxaloacetic Transaminase (SGOT), Serum Glutamic-Pyruvic Transaminase (SGPT),
Total Bilirubin, International Normalized Ratio (INR),

Vitals
Heart Rate, Systolic Blood Pressure, Mean Blood Pressure, Diastolic Blood Pressure,
Respiratory Rate, Temperature (Celsius), FiO2, PaO2, PaCO2, PaO2/FiO2 ratio, SpO2,

Intake/Output
Mechanical Ventilation, Fluid Intake (4 hourly), Fluid Intake (Total), Fluid Output (4 hourly),
Fluid Output (Total)

Action Space The actions taken by the clinician correspond to volume of intravenous
(IV) fluids and maximum vasopressor (VP) dosage prescribed in a given 4 hour window.
The action space is discretised into 25 values, with larger values corresponding to higher
combined dosage. See Figure E.1 (provided in Komorowski et al. (2018)) for more on the
action discretisation.

Treatment Outcome For our experiments, we consider two types of rewards: 1) defined
on an action level and 2) defined on the trajectory level. Action level rewards are not readily
available in the dataset and we leverage the estimation methods described by Raghu et al.
(2017) to calcualte the true treatment outcome. The ground truth treatment outcome in each
timestep is evaluated using SOFA (measuring organ failure) and the arterial lactate levels
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Fig. E.1 Discretisation of clinician actions. The dose of intravenous fluids and vasopressors
were discretised into 25 possible actions. Graphic taken from Komorowski et al. (2018)

(higher in septic patients). Specifically, the treatment outcome penalises high SOFA scores
and increases in SOFA and lactate levels from the previous timestep:

yt =−0.0251(sSOFA
t+1 = sSOFA

t · sSOFA
t+1 > 0)−0.125(sSOFA

t+1 − sSOFA
T )−2tanh(slactate

t+1 − slactate
t )

(E.1)

At the trajectory level, true treatment outcomes are defined as the 90-day mortality after
ICU admission, which are included in the dataset.
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