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Abstract

The amount of patients that need a donor organ far surpasses the number of donors. This
shortage results in many patients dying or being removed from the transplant waitlist before
ever receiving a transplant, leading us to question whether allocation policies are assigning
organs in an equitable, effective, and efficient manner. Using historical data, researchers
simulate how a novel allocation policy would offer organs across the patient-population
before it is actually implemented in practice. However, to our knowledge, no framework
exists to provide a post hoc analysis of a policy after it has been implemented. Post hoc
analysis is necessary because the implemented policy may differ wildly from its original
proposal. Such variation can be the result of (among others) clinical preference across
transplant centers, patients rejecting organ offers, or changing clinical practice. Further
complicating matters are conflicting definitions of optimal allocation. For example, the
UK takes an altruistic perspective on allocation by maximising a population-wide survival,
whereas the US and central EU take an individualistic perspective by selecting the patient
that is most in need. To account for all these sources of variation, an accurate system for
post hoc analysis should learn and model the implemented policy from data. In addition, to
support clinicians in assessing any past or future implemented policy in any jurisdiction a
policy agnostic framework is required.

We propose a policy agnostic framework based on priority queues, able to learn any
implemented policy from data to effectively model patient priority, health deterioration, and
variations in allocation practices. Our framework is tested using the United States’ liver
transplantation waitlist data, provided by the United Network for Organ Sharing (UNOS).
With a case study on the MELD-Na policy for liver transplantation, we show our framework
can accurately model an implemented policy, with which we can conduct meaningful analyses.
Specifically, we confirm that MELD-Na places emphasis on patients with hyponatremia when
allocating organs. Moreover, health professionals have clinically verified the applicability
and correctness of the results of our framework. The work in this dissertation is the first
step towards analysing any implemented policy. It can be used to verify whether policies
meet their intended effect when implemented, or to conduct further analyses to refine current
policies in the aim of guiding strategic policy improvements.
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Chapter 1

Introduction

Organ transplantation is the only effective treatment available for irreversible organ failure.
However, due to the limited availability of donors, over 100,000 Americans remain on
the transplant waitlist, with patients often having to wait months before an organ becomes
available (Colvin et al., 2021). Despite the increase in the number of donors, an average
of 17 people die each day in the U.S. while waiting for a transplant (OPTN, 2021) with
many more removed from the transplant list without having received an organ because they
have become too sick for transplant (Kwong et al., 2021). In studying such tragic outcomes,
appalling conclusions can be made. Notably, the distributions of organs amongst different
patient groups such as blood type groups, patients listed for repeat transplantation, patients
with rare anti genes, or patients with particular medical conditions is unequal (Sanfilippo
et al., 1992) causing discrepancies in waiting times, and ultimately, in survival. Faced with
these discrepancies, new allocation policies are being researched and developed with the
aim of reconciling disparities while still improving outcomes. For instance, the introduction
of the MELD-Na (Kim et al., 2008) policy which replaced the Model for End-Stage Liver
Disease (MELD) policy (Malinchoc et al., 2000) in the U.S. was motivated by the belief
that MELD-Na could prevent 7% of the deaths that occurred under the MELD policy by
better allocating organs to patients with hyponatremia whose health condition was more
severe. Hyponatremia means the sodium level which your body needs for fluid balance,
blood pressure control, as well as for the nerves and muscles is below normal. However, this
assertion, much like all other statements which convince clinicians for the implementation
of a new policy, is verified using historical data in a simulation setting, and may thus not
account for variations that happen in a real-life setting once the policy is implemented. With
the aim of providing the fairest and most effective allocation policy, it is essential to provide
a framework to evaluate such assertions after the implementation of new policies.
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In theory, a transplant system entails three components that interact and evolve in real-
time: the patients joining and leaving the waitlist, the organs arriving for transplant, and
an allocation policy that dictates to which patient an organ should be offered. This policy
evolves over time to incorporate novel medical knowledge, it differs in each country and may
have different objectives. Some policies aim at offering the organ to the sickest patient first
(Kim et al. (2008), Malinchoc et al. (2000)), while others aim at maximising post-transplant
survival (Neuberger et al., 2008). In recent years, this complex problem has captured the
interest of machine learning experts, who have proposed new allocation policies through data-
driven approaches to learning the compatibility between donors and recipients (Berrevoets
et al. (2021), Yoon et al. (2017), Xu et al. (2021)). These approaches, for example, do not
only consider potential outcomes, but also organ scarcity (Berrevoets et al., 2020).

In practice, however, many other factors influence the transplant system, and consequently
which patient receives an organ. There are two main variations which happen before and
after offers are made. The first, pre-offer is due to the specification of donor criteria. For
each patient, their clinician specifies criteria the donor must meet (e.g. age, weight, blood
type, distance), if an incoming organ does not meet these criteria, the patient will not receive
an offer for it even if following the policy the patient was eligible to receive an offer. The
post-offer variations encompass the clinician’s decision to accept/reject and offer. A clinician
may choose to reject an organ offer for medical reasons (e.g. the patient is too ill, multiple
organ transplants are required) or logistics reasons (e.g the operating room or the surgeon
is unavailable) in which case the offer is made to another patient. An organ is offered to
patients sequentially until one of them accepts. This ordered list of patients constitutes the
match run which is essentially the priority ordering of patients in the waitlist for a given
organ under a given allocation policy influence by real-life variations.

Due to these variations, the match run given by the allocation policy in a simulation
setting called the theoretical policy and the match run given by the allocation policy in a
real-life setting, called implemented policy may differ. Then in complement of the analyses
conducted on historical and simulated data when proposing a policy, it is necessary to perform
post hoc analyses of the implemented policy to evaluate if it is performing as it was intended.
To achieve this the implemented policy must be learned from data. Previous works have
focused on developing dynamic systems to provide the information needed before a policy
change is put into effect (Thompson et al., 2004) however, to the best of our knowledge no
model exists to achieve post hoc analysis.
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The goal of this disseration is thus to develop a framework in which it will be possible
to learn and model any implemented policy with the logic of being able to assess certain
aspects of its performance. As the allocation policies used are constantly evolving, to provide
support in the long run, it is necessary to develop a framework that will be policy agnostic,
meaning it will be suited to evaluate the post hoc performance of any theoretical allocation
policy for which we have data.

1.1 Core Challenges

The core challenges of modelling the implemented policy of any theoretical allocation policy
are (a) Organs and patients are unique and high dimensional with a mix of continuous and
categorical features making organ-patient interaction highly complex (b) The match runs
produced by the implemented policy are affected by pre-offer variations which influence
which patients are included in the match run and by post-offer variations which affect the
length of the match run. (c) The match run provided in the dataset is incomplete, as it is
truncated as soon as an offer is accepted and thus we never have access to a full ranking
of all the patients on the waitlist (d) All offers received by a patient are dependent on all
other patients on the waitlist, making the covariate space when deciding which patient should
get the offer even larger. (e) Different policies may function differently. For instance, the
current theoretical policy in the US (Kim et al., 2008) uses only patient covariates to allocate
organs while the current policy in the UK (Neuberger et al., 2008) uses both patient and
organ covariates. We need a framework that can represent the corresponding implemented
policy for both cases. (f) Patients’ health may deteriorate (or improve), causing their priority
with respect to the policy in place to evolve.

1.2 Contributions

In this dissertation, we do not attempt to create a new allocation policy as has been done in
many recent publications. Instead, we focus on creating a framework to learn and model
the real-life implementation of an allocation policy, from data collected under the policy of
interest.

We aim to model the real-life transplant system in a policy agnostic way by incorporating
aspects of operations research and machine learning to “translate” an organ transplant system
into a queuing system in which the parameters are learned from data. We use queuing theory
as it provides a stable setting in which it is possible to assess the different performance
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Fig. 1.1 How we envisage the usage of our framework in medical practice. When a new
policy is created, it undergoes analysis using historical data to seek approval (blue). The
policies which are approved are then implemented (green). Using our framework (red) it will
be possible to 1 verify that the intent of the new policy is met, and 2 conduct further analyses
to refine the current policy and guide strategic policy improvements.

aspects of the implemented policy. With the logic that such analyses could answer the
ongoing controversy surrounding the observed discrepancies between different groups of
patients (Barone et al., 2008; Sanfilippo et al., 1992).

In addition to confirming analyses made with the theoretical policy, such a framework also
provides avenues to conduct new analyses to guide strategic policy improvements (Figure
1.1). This may be necessary as the period between the development and the implementation
of a new policy is so lengthy due to regulations, the features recorded for each patient and
the profiles of the patients may have evolved. For instance, MELD-Na was published in 2008
but was only implemented in 2016. In this time, the Patient Protection and Affordable Care
Act (ACA) extended Medicaid eligibility and access to insurance coverage to millions of
Americans, notably low-income adults (Goyal and Weiner, 2018), which caused an increase
in the proportion of patients listed with Medicaid across all organs (Trivedi et al., 2018).
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Lastly, this framework may also have an impact on organ donation. Indeed, any inter-
ventions enhancing transparency and perceived fairness of organ allocation may improve
willingness to donate (Boulware et al., 2007) as in the United States, 71% of the population
believe the allocation system is “unfair”, causing them to be less willing to donate. From
the perspective of the patient and clinician having a better overview of the transplant system
through these queues could aid in making important medical decisions such as how to proceed
when an organ offer is received.

In the course of this work we make several contributions which we highlight below:

Reviewing the literature on queueing in organ allocation. In particular, we highlight where
existing queueing systems fall short when modelling realistic allocation policies.

Our framework, Organ Queue. We introduce Organ Queue, a novel method for modelling
the implemented allocation policy aimed at fitting the high dimensional organ to
recipient matching problem into a queuing system.

A case study on MELD-Na. We demonstrate Organ Queue’s potential by using our frame-
work to model real data on liver transplantation under the MELD-Na policy for organ
allocation.

1.3 Outline of the Dissertation

In the next chapter, we present useful background on the topic of organ transplantation
and the machine learning methods we use. We review previous attempts of modelling the
transplant waiting list with a queuing system. Chapter 3 describes the problem formalism. In
the subsequent chapter, we motivate our choice of organ types for the queuing model and
describe the two main components of our framework. Chapter 5 presents the experimental
methods and results of our framework on a case study of real liver transplantation. Chapter 6
dives into the performance and medical interpretation of both components of our framework
separately. The dissertation ends with a summary and reflections on future works.

Our study primarily focuses on liver transplants in the United States as we use the
American transplant dataset: the United Network for Organ Sharing (UNOS) data. (Cecka,
2000). Throughout this dissertation we had the privilege of working closely with doctors and
researchers in Los Angeles notably affiliated with UCLA, they provided valuable insights
both on the dataset and challenges currently faced by the organ transplant system. All clinical
findings and assertions in this dissertation have been discussed and verified by them.





Chapter 2

Background

In this chapter, we give the necessary background for a strong understanding of our methods.
We first review organ allocation policies and why so many different ones have been developed.
We then present the learning to rank (LTR) task and the most popular approaches to solving
it. LTR will be a core part of this dissertation as our framework ranks patients for organs.
We then review clustering methods as our framework makes use of clustering to discretise
the organ space and create queues. Lastly, we review previous attempts of modeling the
transplant system with a queuing system and show in what ways our proposed method is
unique.

2.1 Organ Allocation Policies

In the United States, new waiting list registrations continue to increase for heart (Colvin et al.,
2021), liver (Kwong et al., 2021), kidney (Hart et al., 2021) and pancreas (Kandaswamy
et al., 2021) transplants. However, despite the increase in the number of organ donations,
which reached an all-time high in 2019 for livers and kidneys, there is a severe shortage of
available donors organs across all organs and all jurisdictions. This shortage caused 2,406
patients to be removed from the liver transplant waitlist in 2019 in the US without receiving
an organ due to death or being too sick for transplant (Kwong et al., 2021). As organs are a
scarce and perishable resource, allocating them is a complex challenge that impacts the lives
of thousands of patients because the award of an organ to one candidate denies it to others.
New knowledge on patient to organ compatibility, and the emergence of data-driven studies
have spurred the development of many new allocation policies which all have one common
goal: to better allocate organs to improve the outcome of transplanted patients and reduce
the number of patients removed from the waitlist without an organ.
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A myriad of policies for the allocation of deceased donor organs has been proposed, in
an attempt to incorporate new medical knowledge and provide equal consideration for both
the needs of the sickest patients and the efficient use of organs. For instance, in the case
of livers transplantation, the United States has adopted a sickest first policy with priority
primarily based on the Model for End-Stage Liver Disease (MELD) (Malinchoc et al., 2000)
and MELD-Na (Kim et al., 2008). The MELD-Na score, which is a function of four routinely
measured laboratory values, has been shown to be predictive of waitlist mortality. The
policy allows for exception points whereby patients without a high laboratory MELD score
can achieve higher priority and allows patients to get highest priority if they have certain
conditions such as acute liver failure. This policy is different from the current policy in the
U.K. that has adopted the Transplant Benefit Score (TBS) (Neuberger et al., 2008), which
offers livers nationally to patients predicted to gain the most survival benefit from receiving
the particular liver.

The goal of the system we propose is to be able to model any allocation policy. A simple
policy, for example, would consider each patient independently of all others when placing
them into a queue. Thus, the placement on the queue would only depend on the patient’s
compatibility with each organ type and the patient’s priority for each of those types. Here,
the patient would receive the first compatible organ for which they had the highest priority.

However, this is not how more sophisticated policies work, in Table 2.1 we provide
a simple illustrative example. Assume there exist two organ types A and B, which have
different arrival rates and added life years for patients. When patient X arrives on the waitlist,
a policy that maximises the added life years for the entire population would not assign an
incoming organ of type B to patient X as long as patient X can afford to continue to wait for
an organ of type A. As such, X should not be placed on the queue for organs of type B when
they arrive in the system, as they should only be placed on queue B when their survival time
is lower than the expected arrival time for organs of type A. To model policies that maximise
the benefit for the entire population, our system must be able to model such behavior.
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Table 2.1 Example of an allocation policy. Illustrative example presenting 2 organ types
(A, B), the added life years if transplanted into patient X (ALY-X) or into any other patients
(ALY-other) and their arrival rates

Organ Type ALY-X ALY-other Arrival Rate

A 50 0.25 every 2 months

B 5 5 every week

2.2 Learning to Rank (LTR)

Machine-Learned Ranking (MLR) or Learning to Rank (LTR) is a class of algorithmic
techniques that apply supervised machine learning to solve ranking problems. Training data
consists of lists of items with some partial order specified between items in each list. This
order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g.
"relevant" or "not relevant") for each item. The most comment application of LTR is in
information retrieval (IR) systems for instance for document retrieval. For the document
retrieval task, the system maintains a collection of documents d1,d2,d3.., then, given a query
q, the system ranks the documents from the collection and returns the top ranked documents.
The ranking task is performed by using a ranking model to sort the documents. The ranking
model can be expressed as learning the function R such that:

R({di,dk . . .d j},q)−→ [d j ▷dk ▷ . . .di]q (2.1)

Where, the notation [di ▷d j]q indicates di is ranked higher than d j for query q. In the setting
of this dissertation the documents will be patients and the query organs, the "patient ranking
system" is illustrated in Figure 2.1.

The ranking algorithms are evaluated using information retrieval measures, such as the
Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2017) which
takes into account element relevance and positional information and Mean Average Precision
(MAP) (Yue et al., 2007) used to evaluate a ranking when there are only two levels of
relvenace: relevant and irrelevant. Both metrics are detailed and used in later chapters.

Liu (2011) categorised the existing LTR algorithms into three groups which differ by
the number of documents that are combined in the cost during training: the pointwise, the
pairwise and the listwise approaches.
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Fig. 2.1 Learn to rank for patient retrieval, in the setting of this dissertation, the queries
are organs and the documents are patients awaiting transplant. The notation [A▷B]q indicates
patient A is ranked higher than patient B for query/organ q.

The pointwise approach looks at a single document at a time. It assumes each query-
document pair in the training data has a numerical or ordinal score, in this case the learning-
to-rank problem can be approximated by a regression problem which aims at learning a
function predicting the score of the document to discover the best ranking for individual
results. These algorithms minimize a loss function over the training set which assigns a loss
to each individual feature vector. Examples include SubSet Rank (Cossock and Zhang, 2006),
McRank (Li et al., 2007) and PRank (Crammer et al., 2001) These approaches model ranks
as intervals on the real line and as a result the final ranking is highly dependant on the choice
of the rank boundaries.

The pairwise approach looks at two documents at once and assumes that each query-
document pair in the training data has a numerical or ordinal score. In this case, the
learning-to-rank problem is approximated by a binary classification problem that predicts
which document is better in a given pair. Then the loss function is calculated over every
pair of feature vectors pertaining to the same query. The founding methods of this approach
are RankSVM (Herbrich et al., 2000) which shows that the ranking problem can be solved
with Linear SVM classification, RankBoost (Freund et al., 2003) which iteratively creates
and aggregates a collection of “weak rankers” to build an effective ranking procedure and
RankNet (Burges et al., 2005) which puts forward a natural probabilistic cost function on
pairs of examples. These three methods have been the basis for many other approaches
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Finally, the listwise approach decides on the optimal ordering using the entire list of
documents. The group structure of ranking is maintained and ranking evaluation measures
can be more directly incorporated into the loss functions in learning. Indeed, in this case
the loss function treats each query (and its associated documents) as a single instance and
accordingly computes a single loss for all the documents pertaining to the same query. There
are two main sub-techniques for listwise LTR: The first, directly optimises the information
retrieval measures such as the NDCG or the MAP, this is the case of SoftRank (Taylor et al.,
2008) and AdaRank (Qin et al., 2010). The second defines a list wise loss function as an
indirect way to optimise the IR evaluation metric, examples include ListNet (Cao et al., 2007)
which adopts the KL divergence for loss function by defining a probabilistic distribution in
the space of permutation for learning to rank and ListMLE (Lan et al., 2014) which employs
the likelihood loss as the surrogate for the IR evaluation metrics.

We choose to focus on pairwise methods. From the point of view of complexity, the
pointwise methods seems to be preferable over pair-based methods since the latter must learn
using O(m2) pairs rather than m examples. However, pairwise approaches work better in
practice than pointwise approaches because predicting relative order is closer to the nature of
ranking than predicting class label or relevance score. From the point of view of accuracy,
listwise algorithms have been shown empirically (Li, 2011) to outperform pointwise algo-
rithms. Some publications (most prominently Liu (2011)) suggest that listwise approaches
are fundamentally superior to pairwise ones. However, Köppel et al. (2019) shows, this is
not necessarily always the case. Moreover, listwise algorithms are usually computationally
more demanding and lack conceptual simplicity. Also, they are comparatively more prone
to overfit as conjectured by Tan et al. (2013). Then pointwise methods seem to be the best
compromise between complexity and accuracy.

We work with pairwise methods, the most popular of which are those developed by
Christopher J.C. Burges and his colleagues at Microsoft, RankNet (Burges et al., 2005),
LambdaRank (Burges et al., 2006), LambdaMART (Wu et al., 2010) which have proven to
be very successful algorithms for solving real world ranking problems. LambdaMART is the
boosted tree version of LambdaRank, which is based on RankNet.

RankNet employs a probabilistic cost function which uses a pair of sample items to learn
how to rank them. This function essentially tries to minimize the number of swaps required
to correct an incorrect ordering of chosen items. The paper further suggest to explore this
approach by implementing this cost function through a neural network, due to their flexibility
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and their rapidity in test phase compared to competing kernel methods, the network is then
optimized through gradient descent. Burgess et. al. then found that during RankNet training
procedure, the costs are not required, only the gradients (λ ) of the cost with respect to the
model score are. They discovered that scaling the gradients by the change in NDCG found
through swapping each pair of documents gave good results. The core idea of LambdaRank
is thus to use this new cost function for training a RankNet. Going further, LambdaMART
combines the idea of LambdaRank and Multiple Additive Regression Trees MART (Fried-
man, 2001) by treating the ranking problem as a multiclass classification problem, with one
class for each of the levels of relevance identified in the training set. LambdaMART uses
gradient boosted decision trees using a cost function derived from LambdaRank for solving a
ranking task.

LambdaRank and LambdaMART are computationally more demanding to train compared
to the pairwise optimization of RankNet. Their key advantage over RankNet is the increase in
training speed. Then since our problem does not deal with huge amounts of data we choose
to favour simplicity and decide to employ the RankNet method.

For the problem of ranking patients for given organs, using a ranking algorithm is not
enough due to the high dimentionality of the organ space. To address this challenge we
employ clustering.

2.3 Clustering

Clustering is a natural approach for identifying phenotypic characterizations by grouping
“similar” instances into distinct clusters. In this dissertation we cluster organs to create organ
types. Clustering algorithms can be divided into two categories: unsupervised and supervised
clustering. Unsupervised clustering algorithms, utilize the feature space solely to learn the
partitions that maximize some given objective. Supervised clustering algorithms utilize both
the feature space and the label space for constructing clusters (Eick et al. (2004), Finley
and Joachims (2005)). In the setting of this dissertation we wish to cluster organs, how-
ever there is no label associated to this task thus we focus on unsupervised clustering methods.

Amongst unsupervised clustering algorithms two categories arise: the hierarchical and
non-hierarchical methods. Hierarchical clustering methods (Johnson, 1967) produce a classi-
fication in which small clusters are nested within larger clusters. Kaufman and Rousseeuw
(2009) further divides hierarchical clustering methods in two subgroups. Hierarchical ag-
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glomerative methods also knows as AGNES (Agglomerative Nesting) which generate a
classification in a bottom-up manner, by a series of agglomerations in which small clusters,
initially containing individual elements, are fused together to form progressively larger
clusters. And divisive hierarchical methods, also known as DIANA (Divisive ANAlysis
Clustering Algorithm) methods which generate a classification in a top-down manner, by
progressively sub-dividing the single cluster which represents an entire dataset.

Non-hierarchical clustering methods (or partitioning clustering), on the other hand, gener-
ates a classification by partitioning a dataset into a set of (generally) non-overlapping groups.
These method are generally much less demanding of computational resources than the hierar-
chic methods. There are three main categories of such methods. Single-pass methods which
produce clusters that are dependent upon the order in which the compounds are processed.
An example is the Leader method (Hartigan, 1975) which requires the user to specify the
approximate radius of a cluster. Relocation methods, such as k-means (Lloyd, 1982) and
expectation-maximisation (EM) algorithm (Dempster et al., 1977), which assign compounds
to a user-defined number of seed clusters and then iteratively reassign compounds to see
if better clusters result. k-means uses centroids where as EM uses statistical distributions.
And lastly, nearest neighbour methods, such as the the Density-based spatial clustering of
applications with noise algorithm(DBSCAN) (Ester et al., 1996), which assign compounds
to the same cluster as some number of their nearest neighbours.

In view of complexity and practicality, we choose to work with the unsupervised k-means
algorithm as have done multiple papers focusing on organ transplantation (Berrevoets et al.
(2020), Berrevoets et al. (2021), Xu et al. (2021)). K-means clustering has had extensive
use in healthcare research due to the algorithm’s simplicity and capacity to scale to large
and complex data. Indeed, Liao et al. (2016) showed k-means is the best clustering method
to cluster end stage renal disease patients who initiated hemodialysis. Such clustering is
also used by Tosto et al. (2016) to cluster patients with a Alzheimer’s Disease to examine
subgroups of patients and by Haldar et al. (2008) to classify patients with asthma.

Ranking and clustering are not enough to address the problem at hand of modelling
the organ transplant system. Indeed in the transplant system one of the most important
components, then to incorporate this aspect of the transplant system we will also employ
queues to construct our framework.
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2.4 Queuing Systems For Organ Allocation

Green (2006) demonstrates the growing use of queuing models in healthcare for instance to
analyse the impact of various admissions policies to ICU facilities or to model the occupancy
level of hospital beds. Queuing models have, in fact, already been applied to the organ
transplant problem. We now review past approaches.

A first model is the one developed by Zenios (1999) which assume K classes of organs
and patients where candidates of the same class are allocated organs on a first come first
transplant (FCFT) basis. One limitation of this model is that these classes of patients and
organs have no medical meaning. Using the same approach, but with medically meaningful
classed, Stanford et al. (2014) designed four classes based on blood types (ABO types). It
is worth noting however, that limiting to only four types means the model does not taking
into account other features relevant to determine compatibility such as age, weight, size, or
location to create the types.

Alternative approaches have also been explored, such as Boxma et al. (2011) which
proposed the use of double-matched queues; queues for the patients as well as queues for
the organs and Abellán et al. (2006) which does not consider patient or organ types and
simply models the system with a single queue of patients served following FCFT service
discipline. These alternative have the benefit of being simple enough to conduct further
analysis on the system in a straight forward manner using well known queuing models such
as M/M/1 (Hall, 1991) (M/M/1 represents a system having a single server, where arrivals
are determined by a Poisson process and job service times have an exponential distribution).
However these simplification preclude wide application as for instance since organs are a
scarce and perishable we may assume none are accumulating in a queue.

To improve upon Stanford et al. (2014) and Zenios (1999), approaches which cannot
model patient health deterioration, Drekic et al. (2015) proposed a two-level dependent
quasi birth and death process, where for each queue, patients can move from lower to higher
priority levels to account for the degradation in patient health. With the higher priority queue
being pre-emptive, meaning if an organ of type k arrives it will be offered to the patient on
the high priority level for type k before being offered to those on the low priority level of
type k. This model is the most comprehensive to date, however gaps to model a real life
allocation policy still remain. Indeed, in real life sicker patients gain access to transplants
quicker than healthy ones. However patients in Drekic et al. (2015) are still served following
FCFT discipline within the 2 priority levels meaning a patient can never have access to an
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Table 2.2 Comparison with related queuing systems. Organ Queue satisfies 5 key aspects
to model a transplant system: (1) It uses single matched queues as organs are scarce and
perishable resources, (2) it uses multiple queues for the patients to model organ-recipient
compatibility (2.b) specifies how many queues, 4 corresponds to ABO types queues, (3) it
is able to model the health degradation of patients over time, (4) it avoids using the over-
simplifies FCFT policy to model different patient priorities, (5) it can model any allocation
policy

REFERENCE (1) (2) (2.b) (3) (4) (5)

Boxma et al. (2011) ✗ ✗ - ✗ ✗ ✗

Abellán et al. (2006) ✓ ✗ - ✗ ✗ ✗

Zenios (1999) ✓ ✓ K ✗ ✗ ✗

Stanford et al. (2014) ✓ ✓ 4 ✗ ✗ ✗

Drekic et al. (2015) ✓ ✓ 4 ✓ ✗ ✗

Ours ✓ ✓ 4×K ✓ ✓ ✓

organ before a patient who was added to the high priority queue before them, even if his
health condition is worse.

With this work we propose to combine the ideas of previous works. We use 4×K queues
to make use of blood groups and other features to model the patient-organ compatibility.
We include a mechanism to model patient’s health deterioration by allowing patients to be
added to multiple queues at differed times. We also take into account the limitation of Drekic
et al. (2015) and propose to model continuous priority by allowing patient to be added at any
position in the queue not only at the back of one at the moment of their arrival.

Lastly, all previous queuing systems model specific allocation policies, Zenios (1999)
considers only open-loop randomized policies entirely described by the fraction of organs
from a certain class that are allocated to patients of given class, Stanford et al. (2014) only
considers ABO-identical transplantation policy and Drekic et al. (2015) models the CanWAIT
(Canadian wait-listing algorithm in transplantation) policy. While the goal of our model is
to be able to learn and model any allocation policy from the data, even more complex ones
due to the model’s capacity to hold out on when to add a patient to the queues. Then since
no other model is able to do this, we do not benchmark our model against other existing
model but rather benchmark it against a rule based version of the allocation policy in place
corresponding to the theoretical policy. Table 2.2 summarizes this comparison of existing
queuing models for organ transplantation.





Chapter 3

Problem Formulation

In practice, the allocation policy suffers from variations that affect the allocation of organs
pre and post-offer. These variations cause the allocations made by the implemented policy to
differ from those made by the theoretical policy. Because of theses variations, the offers made
may not comply with the theoretical policy and the clinical analyses made pre-implementation
may not be valid in real life. Having this discrepancy creates the need for a framework to
learn and model the implemented policy and which can be used to analyse it.

Notation. Let X ⊂ Rd denote the space of all possible patients, and let O ⊂ Re denote
the space of all possible organs. Let X (t) ∈ P(X ) denote the set of patients in the waitlist
at time t. Let X ∈ X denote the feature vector of a patient and O ∈ O the feature vector
of an organ. Denote t j the arrival time of O j. We assume we have an observational dataset
containing N patients, X1, . . . ,XN and M organs O1, . . . ,OM . We assume K organ types,
denote Ok an organ of type k.

Let π be the theoretical allocation policy in place, and Γπ its implemented policy (i.e the
policy encompassing all variations). Given an organ and the set of patients in the waitlist at
time of the organ’s arrival, Γπ returns an ordered priority list for that particular organ.

Γπ(O j) = Γπ(X (t j),O j)→ [Xi ▷Xn ▷Xm . . . ]O j (3.1)

with Xi,Xn,Xm, · · · ∈ X (t j). Where, the notation [A▷B]O j indicates A is ranked higher than
B for organ O j in the ordered list meaning A will receive an offer for the organ and if A
refuses, then B will receive an offer. ▷ is a quasiorder on the feature space X that satisfies re-
flexivity (Xi▷Xi), antisymmetry (X j�▷Xi ⇒ Xi▷X j) and transitivity (Xi▷X j ▷Xm ⇒ Xi▷Xm),
for all Xi,X j . . .Xm ∈ X . Then, the ranking is said to be consistent.
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Motivation. The need for our framework is created by the fact that

Γπ(X (t j),O j) ̸= π(X (t j),O j) (3.2)

Training Data. We assume access to a dataset of past organ offers comprising the features
of each organ offered and the features of the patients to whom the offers were made ordered
according to the order the offers were made in. Then we have access to

D = {(tm,X (tm),Om,Wm = [Xi ▷Xl ▷ ...]Om)}
M
m=1 (3.3)

with Wm being the match run for organ Om, Wm ⊆ X (tm) and tm the date at which the organ
arrived and the offers where made. As the problem is policy specific, we will train our
model on one policy at a time, then we split D into policy specific data denoted Dπ1,Dπ2, . . ..
Moreover, for each patient Xn the data contains when they were added to the waitlist and
when they were removed.

Addressing Core Challenges. To address the core challenges (stated in Chapter 1) we
use a queuing-theoretic framework with unsupervised learning to cluster the organs into
“organ types”, and then construct priority queues (associated with each organ type) wherein
incoming patients are assigned. Challenge (a) concerning complex interactions between
patients and organs due to their high dimensional feature spaces is addressed by using organ
types. Challenge (b) regarding post and pre offer variations is addressed by building our
model post hoc of the introduction of a new policy and using the data governed by the
policy to learn the implemented policy. Challenge (c) dealing with incomplete match runs
is addresses by adding randomly sampled patients to the end of the match runs to be able
to learn which patients are not prioritised for a given organ. Challenge (d) concerning the
dependence of the match runs on the patients in the waitlist is tackled by attempting to learn
functions which are a function of both the patient Xn , and the waitlist X (t). Challenges (e)
and (f) regarding the specific functioning of policies and the health deterioration of patients
are addressed by allowing patients to be added to multiple queues at differed times.

Correctly fitting the organ allocation problem into a queuing system is a challenging task
as in order to adequately learn the allocation policy in place from the data, the model must (i)
be able to account for health deterioration of patients (ii) be able to model patients that are
more critically ill than other (iii) learn which organ types each patient is compatible with
under the policy in place and the clinician’s criteria.



Chapter 4

Organ Queue

Having presented the necessary background and notations in the previous chapters, this chap-
ter presents Organ Queue, the framework developed. We include a discussion of the organ
types which allow us to split the problem into K queues and provide a detailed description of
the two components of our system: the ranking model and the timing model.

We propose a framework to model the implemented policy able to correctly predict which
patients will receive organ offers. To this end, we choose to model the transplant system
using a queuing system, however, simply placing each patient at the end of queues when they
arrive only allows to model first come first transplant policy (FCFT). Instead we propose
a more sophisticated system able to model any allocation policy and model degradation in
patient’s health. Our system, Organ Queue, introduces K queues, Q1, ...,QK that correspond
to K clusters of organs. In choosing the value of K, we introduce a trade-off between having
very specific organ types and having enough data of each type to be able to train our model.
In particular, as we take K to infinity, each queue corresponds to a specific organ. To fit the
transplant system into these queues it is necessary to learn if and when a patient should be
added to each queue and where the patient should be added within the queue. This requires
to learn the ranking function for each organ types and the patient-organ type compatibility to
only add patient to queues for which they will receive offers under the implemented policy.
All these elements are characteristic of the policy in place and will be learnt from data. Once
these queues are correctly filled, the framework can be used to predict which patients will
receive organ offers under the implemented policy and to conduct further analysis on the
implemented policy. Indeed, upon the arrival of an organ, its type is determined and the
queue corresponding to this type is given as the predicted match run.
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More specifically, we assume K organ types from which are formed K priority queues.
Each priority queue is an ordered lists, we denote Qk = [Xi ▷X j ▷Xl]k the priority queue
assigned to type k which contains three patients: Xi,X j,Xl . To be able to correctly model
all types of allocation policies we will build two models. The timing model which given
a patient Xn predicts when (if ever) they should be added to each of the K queues. The
ranking model which given a set of patients and an organ type, returns an ordered priority
list of these patients for that organ. These models will be used back-to-back to correctly
place each patient Xn in each priority queue Qk at the accurate times. Both these models are
policy agnostic and will thus be able to model any policy π for which we have data Dπ . They
are designed to address the core challenges of the problem at hand in the best possible way
as will be described in further sections of this chapter.

In order to use our framework to perform various analysis on the implemented policy, we
choose to make it as stationary as possible and impose that patients not be re ordered once
placed on queues. This enforces the relative order on a queue to remain unchanged and puts
even more emphasis on placing patients on the queues at the correct times. Then a patient’s
health degradation may not be witnessed on a single queue but will be in the queuing system
as a whole as the health degradation will trigger the patient to be added to other queues. We
assume there is no limit on the number of patients that can be waiting on a queue.

4.1 Organ Types

Modelling the arrival of the high-dimensional organs is challenging, to address this difficulty
we introduce K organ types. To create the organ types, we first use the k-means clustering
algorithm, then split the donors of each cluster into four subgroups corresponding to the
blood types (A, B, O, AB) resulting in 4× k organ types. Splitting the clusters into blood
types allows them to have medical significance and restricts access to certain queues due to
the rules of blood type compatibility detailed in Table 4.1.

In the dataset, there also exists blood group subtypes A1, A2, A1B and A2B. In general,
80% of blood group A and AB persons are subtype A1 and A1B, respectively (Procurment
and Network, 2011). However, this is not observed in the data, this is because the majority of
clinicians record the patients or donors as A without specifying the subtype. For this reason
we decide not to use subtypes, even if they would allow to model more detailed blood type
compatibility rules. Indeed, since 2002 the OPTN allows for transplantation of livers from
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Table 4.1 Blood group compatibility rules and proportion of donors in each blood group in
the UNOS dataset for liver transplantats.

Donor Blood Group Can be transplanted to Proportion

O A, B, O, AB 48%

A A , AB 37.5%

B B, AB 11.5 %

AB AB 3%

donors that are blood group “A, non-A1” into O candidates (Procurment and Network, 2011).
We will explore the effect of having a different number of organ types.

4.2 The Timing Model

Having to model complex policies and patient health deterioration, requires to add patients
to different queues at different times. Indeed some organs may be less suited for a particular
patient, however when the patient comes close to dying, we must consider these organs.
Hence, when a patient’s condition deteriorates, we begin placing them on queues for less
suitable organs. Predicting when and with which queues to do this is why we need the timing
model. For each organ we have access to the match run i.e. the ordered list of patients who
received an organ up until the patient who accepted it. And for each patient we have the list
of offers they received including the date of each offer and the type of the organ that was
offered. Denote T k

n , the time in days after patient Xn’s arrival on the waitlist after which they
should be added to queue k. If Xn is never added to queue k, then T k

n = NaN.

Predicting when to add a patient to a queue is not an easy task. The main reason for this
is that, when a patient accepts an offer (or dies or is removed from the list before receiving
one), we can no longer observe how the timing of queues would have unfolded. In other
words, a patient’s list of offers is almost never complete. In addition, the match run for each
organ is incomplete since as soon as a patient accepts the organ no other offers are made, we
thus do not have access to which other patients would have received an offer for this organ
and thus would have been on the queue for that organ.

Then, the only information we have regarding if a patient is on a given queue is when a
patient receives an offer for an organ of this queue’s type. From this information we can build
a target dataset indicating that at least from that point on the patient was on the queue for this
organ type. However, knowing exactly when the patient joined the queues is impossible since
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the match run is incomplete and knowing which other queues the patient is compatible with
is not possible since the list of offers is incomplete. We decide to use the first time the patient
receives an offer for an organ of a given type (in number of days since the patient was added
to the waitlist) as an indicator of when the patient must be added to a given queue. However,
patients only receive offers from few organ types. Then all organ types for which the patient
never received an offer will have missing time until till offer. For some organ types, 90%
of entries are missing. Training a model to predict T k

n is thus extremely challenging. To
overcome this difficulty, we must develop a model that uses features both to predict the
probability of a response and to predict the value of a response if it occurs.

Ideally, we have to take into account other patients when predicting allocation, indeed
patients only receive an offer when all patients with higher priority or higher utility for an
organ have received and rejected the offer. Then the logical method would be to include the
waitlist X (t) as an input along side the patient covariates Xn. We thus constructed a neural
network following a siamese architecture which takes in these two inputs (details in section
A.1). However, we found such a network to perform worse than models based solely on Xn

(see Table A.2). We argue that the lack of data - having only minimally observed match runs
and list of offers - heavily impacts training difficulty. Indeed having such large amounts of
“unobserved” data develops noise for this model making the learning task much harder.

Instead, we explored the use of Hurdle Models (Cragg, 1971) to predict T k
n using only Xn.

A hurdle model is a two-part model that specifies one process for zero counts and another
process for positive counts which occur once a hurdle is cleared. In our case, clearing the
hurdle corresponds to being added to a queue. Then one process predicts if the patient
should be added to a queue and the other predicts when they should be added. To place
the hurdle at zero, all missing entries in the dataset (i.e. queues patient were not added
to) are filled with zero and +1 is added to all other values. Then a binomial probability
model governs the binary outcome of whether a count variable has a zero or a positive
value (i.e. if a patient is added to a queue or not). If the value is positive, the “hurdle is
crossed,” and the conditional distribution of the positive values (i.e. when to add a patient
to a queue) is governed by a zero-truncated count model. Hurdle models differ from count
models and zero inflated models as they assume zeros and non-zeros (positives) to come from
different data-generating process whereas count models assume they come from the same
and zero inflated models assume a mixture of distributions. Hurdle models have been used
in medicine due to their ability to handle excess zeros and over dispersion. For instance for
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Vaccine Adverse Event (Rose et al., 2006) or HIV-risk reduction intervention (Hu et al., 2011).

4.3 The Ranking Model

The ranking model’s goal is to learn a function R which ranks patients for an organ as the
implemented policy would. Given a set of patients and the type of an organ (called the query),
the ranking model must return the ordered priority list of these patients for that query

R({Xi,X j . . .Xl},k)−→ [Xi ▷X j ▷ . . .Xl]k (4.1)

As the patients have no absolute priority but rather a priority which is dependent on the
organ and the allocation policy we train a different model for each allocation policy, and
learn R as a function of the organ type k.

We use the RankNet approach (Burges et al., 2005) to ranking which solves the preference
learning problem directly by training on pairs of examples. Denote P̄k

i j, where i, j = 1, ..,N
and k = 1, . . . ,K the desired target values with P̄k

i j = 1 and P̄k
ji = 0 if [Xi ▷X j]k and P̄k

i j = 0.5
when no information is available as to the relative rank of two patients for an organ of type k.

The RankNet developed is detailed in Figure 4.1. It consists of a neural network which
given input xk

i outputs f (xk
i ). The input xk

i is the concatenation of the features of patient Xi

and the one hot encoding of organ Om’s type, denoted φk. To rank two patient Xi and X j for
organ Om of type k we input separately into the same network xk

i and xk
j. We consider models

f : Rd+K 7→ R such that the rank order of a set of test samples is specified by the real values
that f takes, specifically, f (xk

i )> f (xk
j) is taken to mean that the model asserts that [Xi ▷X j]k

Burges et al. (2005). Since we are interested in predicting the posterior P([Xi ▷X j]k) = Pk
i j,

the network uses a logistic function on the difference of the outputs.

Pk
i j =

eok
i j

1+ eok
i j
= 1−Pk

ji with ok
i j = f (xk

i )− f (xk
j) (4.2)

Then RankNet uses a binary cross entropy cost function on the priorities of the patients
for a given organ type:

Ck
i j =−P̄k

i j logPk
i j −

(
1− P̄k

i j

)
log

(
1−Pk

i j

)
(4.3)
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Fig. 4.1 Our RankNet Architecture, φk is the one hot encoding for an organ of type k and
σ represents the logistic function

Using a cost function on the difference of the outputs reflects the underlying goal of
learning to rank which does not focus on the exact score that each item gets, but cares about
the relative ordering among all the items.

During training we feed the network pairs of patients who are within the same match run.
The ultimate goal of our ranking model is to be able to output the ordered offer list for an
organ given the waitlist. However, challenge (c) concerned with the fact that the match run
only contains a subset of the patients, impacts the training of the RankNet. Indeed since the
match runs do not contain the entire set of patients in the waitlist but only those on the top of
the priority list for a given organ, if the RankNet were trained only using these match runs it
would not be able to learn compatibility criteria between organ types and patients as all the
patients it would be trained on would be already filtered to be compatible for the given organ.
To address this challenge, when training the ranking model, we add to the match run Wm

associated to each organ Om a few randomly sampled patients who did not receive an offer
for that organ, we call this the extended match run. Denote the set of added patients Sm, these
patients are all given the lowest priority i.e. if Om is of type k, Pk

i j = 0 ∀Xi ∈ Sm,X j ∈Wm

and Pk
i j = 0.5 ∀Xi,X j ∈ Sm. This enable the model to be more robust by learning which

patients would be irrelevant to an organ type.

In this chapter we have presented the main components of our model and motivated our
design choices. These models will be trained and tested using real life organ transplant data
in the following chapters.



Chapter 5

Experiments on Real Data

In this chapter, we present the data we use to train and test our framework. Focusing on the
MELD-Na policy for liver transplants, we provide results on the performance of our general
framework Organ Queue and perform various ablations studies to show the utility of each of
its components. We also provide an example of how our framework can be used to analyse
an implemented policy by assessing if the MELD-NA policy achieves its intended effect.

5.1 The Data

We have access to the United Network for Organ Sharing (UNOS) data (Cecka, 2000) since
1996 for liver, pancreas, intestine, kidney, thoracic and transplants. The data includes all
patients who were placed on the waitlists for these organs, including those who received a
transplant and those who were removed without receiving one. For all of these patients, we
have access to a large number of features which have evolved through time, reflecting clini-
cians’ growing understanding of organ-recipient compatibility and post transplant outcomes.
These features range from clinical (e.g. serum sodium concentration) to socio-economic ones
(e.g. education level, income). The data contains a similar range of features for donors.

We choose to focus on liver transplantation for which we have 318,049 patients. We limit
the data used to post 2005 (112,775 patients) for consistency as the features recorded were
different before that. For example, before 2005, the concentration in serum bilirubin and
creatinine were not documented whereas now a days these variables are deemed essential to
assess a patient’s condition. We restrict the study to non-pediatric patients (103,821 patients)
as pediatric transplants do not follow the same allocation due to the complexity of finding
matches notably due to restrictions on organ size and immunosuppressive drugs use.
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We do not consider patients who underwent multiple organ transplantation (e.g simul-
taneous liver kidney transplantation) as the goal is to correctly model the allocation policy
governing the allocation of livers specifically. Lastly, we only consider deceased-donor
organs as most often living donor donations are directed (meaning the donor specifies the
recipient) thus do not follow the implemented allocation policy which our model aims to learn.

For the medical features, the dataset comprises initial entries recorded when patients
were added to the waitlist and final entries recorded upon removal from the waitlist (due to
transplant, death or abandonment). As we attempt to develop a prediction model, we use
only the initial features, and remove all of the data concerned with the transplant and the
post-transplant outcomes. As a pre-processing step, we convert all categorical variable with
fewer than five options into indicator variables using dummy variable encoding and ordinal
encode the other categorical variables. We drop features which have an excessive proportion
of missing values and use a simple imputer to account for the missing values, using the most
frequent strategy for categorical features and the mean strategy for numerical features.

To evaluate Organ Queue’s performance, we choose the MELD-Na allocation policy
(Kim et al., 2008) which came into effect on January 11th 2016. (Kalra and Biggins, 2018)
after UNOS proposed that MELD-Na score — an extension of the Model for End-Stage
Liver Disease (MELD) which incorporates the serum sodium — was able to better rank
candidates based on their risk of pre-transplant mortality. In December 2017, UNOS updated
the (exception point) scoring system, we consider this as the start of a new policy and only
work on the data between January 11th 2016 and December 1st 2017. In this time frame,
15,186 deceased donor livers were donated, and 21,523 new patients were added to the
waitlist, in addition to the 13,557 patients already on the waitlist at the start of the time frame.

5.2 The MELD-Na Allocation Policy

The MELD-Na Allocation Policy offers organs to patients following their MELD-Na score.
As soon as 2004 (Heuman et al. (2004), Biggins et al. (2005)), Serum sodium concentration
(Na) was suggested as a useful predictor of mortality in patients with end-stage liver disease
awaiting liver transplantation. Various studies were conducted to identify the exact link
between sodium concentrations and mortality (Biggins et al. (2006), Kim et al. (2008), Leise
et al. (2011)) in an attempt to find the optimal way of defining a new score, the MELD-Na
score to prioritise patients for transplant . This score is based off of the previously used Model
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for End-Stage Liver Disease (MELD) score which is computed on the basis of the serum
bilirubin concentration and serum creatinine concentration, and the international normalized
ratio for the prothrombin time. The equation found to compute the MELD-Na is as follows:

MELDNa = MELD+1.32× (137− N̄a)−
(0.03×MELD× (137− N̄a))

(5.1)

with

N̄a =


125 if Na < 125 mmol/L

137 if Na > 137 mmol/L

Na otherwise

(5.2)

This equation places emphasis on serum sodium concentrations between 125 and 137
mmol/L as this is the range where the most meaningful differential effect of serum sodium
concentration on mortality appears (Kim et al., 2008).

5.3 Evaluation of Organ Queue

We evaluate Organ Queue’s performance by using the timing and the ranking model, back
to back to assess if these are able to correctly model the implemented allocation policy by
offering the incoming organs to the correct patients. For each organ, we compare the match
run predicted by Organ Queue, denoted Q, to the match run in the data denoted R. Q is
simply the entire queue corresponding to the incoming organ’s type.

5.3.1 Training and Testing Data

We consider the data governed by the Meld-Na policy and use the data from 11/01/16
to 31/10/17 to train the models and the data from 01/11/17 to 30/11/17 to test it. Details
concerning the training of the ranking and the timing model are given in the following chapter.
The test is conducted in two phases. The first X days are used to fill the queues with patients.
For each incoming patient, the timing model predicts if and when they should be added to
each queues and the ranking model places them on those queues at the corresponding day.
Then, starting on day X +1, once the queues contain patients, the system starts to consider
incoming organs and produces a match run for them while continuing to add incoming
patients to the queues.
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Fig. 5.1 Diagram of the experimental method for Organ Queue. Each day of the test 4
steps are performed: [Step 1] For each incoming patient that day use the timing model to
predict if and when each patient should be added to each queues. [Step 2] For each patient
that should be added to a queue that day, use the ranking model with the previous day’s
queues to place the patient within the queues. [Step 3] (In the second phase only) For each
incoming organ, deduce the type of the organ, and return the queue corresponding to that
type as the match run for that organ. [Step 4] Any patient in the testing system which was
removed from the transplant system that day in the real data is removed from the queues it
was a part of. (these updated queues are used for [Step 2] of the next day)

5.3.2 Experimental Method

In the evaluation process, two particularities must be taking into account. First, the system
we evaluate on only contains a subset of the patients on the waitlist: those whose arrival date
is after 01/11/17 (this subset is denoted P). In order to be able to compare R and Q we must
reduce R to contain only patients who are in the test system. Denote R̄ = R∩P . Secondly,
patients leave the transplant system. However, Organ Queue does not predict which patient
will accept the offer and thus be removed. Then the subset P of patients in the system will
be updated using the real dataset to remove from it those who are no longer in the transplant
system. Denote Q̄ = Q∩P the match run predicted by Organ Queue reduced to patients in
the test system which are still in the transplant system. Then for each day of the test we have
4 steps (see Figure 5.1).
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5.3.3 Evaluation Metrics

To evaluate the similarity between R̄ and Q̄, we use two metrics. First, the Jaccard Index
(Jac) which treats R̄ and Q̄ as sets is used to evaluate if the match runs contain the same
patients. We use this metric on sets as finding which patients to include in the match run is in
itself a challenging task. The Jaccard Index produces a percentage of similarity between two
sets by returning a value between 0 and 1, with 1 signifying the sets are the same.

Jac(R̄,Q̄) =
|R̄ ∩ Q̄|
|R̄ ∪ Q̄|

. (5.3)

Second, we use an edit distance, which handles R̄ and Q̄ as ordered lists and returns the
minimum number of operations required to transform one list into the other. We choose to
work with the Levenshtein distance (Levenshtein et al., 1966) which allows as operations
insertions, deletions and substitutions. The value of the Levenstein distance is between 0 and
max(|R̄|, |Q̄|) and is thus extremely dependent on the length of the lists. To make the edit
distances comparable across organ offers it is given as a ratio by dividing the distance by the
maximum length between the length of R̄ and Q̄. As this ratio (between 0 and 1) represents
a distance the lower the value of the ratio the better the performance.

Lev_ratio(R̄,Q̄) =
Lev_dist(R̄,Q̄)

max(|R̄|, |Q̄|)
(5.4)

The length of the match runs depends on the clinician’s decision to accept or reject an
organ which we do not model in our system. Thus to evaluate the similarity of the match
runs we consider all possible lengths for both match runs. Denote M = max(|R̄|, |Q̄|) and
R̄i to mean the match run R̄ cut at the ith patient or if |R̄|< i simply R̄ in its entirety. Then,
we report the Jaccard Index and Levenshtein Ratio as follows

Jac(R̄,Q̄) =
1
M

M

∑
i=1

Jac(R̄i,Q̄i) (5.5)

Lev(R̄,Q̄) =
1
M

M

∑
i=1

Lev_ratio(R̄i,Q̄i) (5.6)

5.3.4 Baselines

We use two baselines both of which do not consider any queues or organ types. First, one
based on the laboratoy MELD-Na score of patients. To produce a match run B from this
baseline, we take all the patients in the test system who are blood type compatible with the
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Table 5.1 Results of organ allocation with Organ Queue. We report the Jaccard index
(between 0 and 1, higher is better ↑) and the Levenstein distance ratio (between 0 and 1, lower
is better ↓) between the real match run R̄ and the predicted match run Q̄ obtained using (1)
Our timing and ranking model (2) Our ranking model and an ablation timing model which
adds a patient to all its blood type compatible queues upon arrival (3) Our timing model
and an ablation ranking model which orders the patients in the queue only using decreasing
MELD-Na score (4) two baselines which use no queues. We consider 20 and 32 clusters.
The test is conducted on 20 days with the first phase lasting 10 days, results are averaged
over 118 match runs (standard deviation in brackets)

Our model Timing Model Ablation Ranking Model Ablation Baselines

Metric 20 clusters 32 clusters 20 clusters 32 clusters 20 clusters 32 clusters MELD-Na ML

Jac ↑ 0.0482 (0.073) 0.071 (0.097) 0.035 (0.067) 0.033 (0.069) 0.040 (0.079) 0.062 (0.087) 0.040 (0.093) 0.021 (0.026)

Lev ↓ 0.963 (0.061) 0.941 (0.088) 0.987 (0.023) 0.981 (0.032) 0.972 (0.044) 0.946 ( 0.081) 0.975 (0.03) 0.985 (0.041)

incoming organ and order them in decreasing MELD-Na score to recover the ordered list
B. Second, we use a machine learning approach which produces a ranking of patients for
specific organs. This model is based on the RankNet described in section 4.3. However,
instead of concatenating the one hot encoding of the donor type to the patient covariates, we
concatenate the donor covariates. This model is trained with the same data as our ranking
model. Then to produce a match run M for a given organ Om using this model, we feed the
covariates of every pair of patients in P concatenated with the organ’s Om covariates into
our model and produce from the set of ordered pairs of patients an ordered list of patients.

5.4 Results

5.4.1 Main Results

In table 5.1 we report the performance of our model (with 20 and 32 clusters) in comparison
to the baselines and conduct an ablation study to assess the utility of the timing and ranking
models. The first columns is the performance when using the timing and ranking model as
described in sections 4.2 and 4.3. The second columns use an ablation of the timing model
where each patients is added to all the queue it is blood type compatible with at the time of
the patient’s arrival in the waitlist, patients are then placed within the list using the ranking
model of section 4.3. In the third columns our timing model is used however instead of
using the ranking model to order patients on each queue, the patients are ordered using the
decreasing Meld-Na score. Finally, the last columns present the results given by the two
baselines. (Additional results in Table A.1).



5.4 Results 31

Table 5.2 Results of organ allocation with Organ Queue for different organ clustering
methods and blood groups. We report the Jaccard index and the Levenstein distance ratio
between the real match run R̄ and the predicted match run Q̄ for 32 queues. The 32 organ
types are created using (i) k-means then further splitting into blood groups (ii) k-means and
(iii) blood groups further split using k-means. We also report the performance for each blood
group using k-means + blood clustering method. The test is conducted on 20 days with the
first phase lasting 10 days.

Organ Clustering Method Organ Blood Type

k-means + blood k-means blood + k-means A B O AB

Jac ↑ 0.071 (0.097) 0.037 (0.055) 0.033(0.565) 0.126 (0.213) 0 0.056 (0.055) 0

Lev ↓ 0.941 (0.088) 0.970 (0.048) 0.977 (0.035) 0.878 (0.215) 1 0.966 (0.029) 1

We find that our model outperforms the baselines. In addition our models performs better
then the timing and ranking ablations proving each component of the model is necessary.
Essentially the ranking model ablation and the MELD-Na baseline rank the patient in the
same way: using the decreasing MELD-Na score however, they don’t rank the same patients.
The fact that the ranking model ablation outperforms the baseline by so much (for 32 clusters)
proves the utility of the queues and the timing model to narrow down which patients to rank.
The difference in the performance of our model and the timing model ablation shows the
impact of delaying when to add patients to queues as well as choosing which queues to add
them to. The low performance of the ML baseline is due to challenge (a) concerning the
high dimentionality of the organ to patient compatibility space, it shows the utility of re-
ducing the high dimensional problem to a lower dimensional problem by using K organ types.

5.4.2 Additional Analyses

Clustering method. We report an ablation study on the method of clustering organs into
types (Table 5.2). Our chosen method (used for Table 5.1) which first clusters using k-means
then splits each cluster into the 4 blood groups (denoted k-means + blood) yields the best
performance.

Blood types. There are large disparities in the number of donors per blood groups (Table
4.1) which translates in discrepancies in the number of donors per queues and thus the number
of patients added to these queues. As it could be expected, this affects the performance
of our model (Table 5.2). Indeed the timing model is unable to correctly model when to
add patients to the queues corresponding to blood type B and AB donors as there are very
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Table 5.3 Results of organ allocation with Organ Queue with the mixed method for
MELD-Na policy and a new policy. We report the Jaccard index and the Levenstein
distance ratio between the real match run R̄ and the predicted match run Q̄ for 32 queues.
The normal method uses our timing model, the mixed method uses the timing ablation for
queues corresponding to blood group B and AB and our timing model for queues O and A,
both use our ranking model. In addition, the performance is given for each blood group using
the mixed method these can be compared to the results in Table 5.2. Lastly we also report the
performance for a new policy. All tests are conducted on 20 days with the first phase lasting
10 days, the results are averages over the number of donors for each column.

All Organs Organ Blood Type (mixed method) New Policy

normal mixed A B O AB mixed

donors 119 119 41 14 60 4 127

Jac ↑ 0.071 (0.097) 0.085 (0.143) 0.126 (0.213) 0.060 (0.049) 0.056 (0.055) 0.186 (0.1959) 0.082 (0.147)

Lev ↓ 0.941 (0.088) 0.932 (0.137) 0.878 (0.215) 0.960 (0.020) 0.966 (0.029) 0.873 (0.116) 0.939 (0.149)

few patients which are added to these queues. The timing model then simply never adds
patients to these queues causing the match run predicted for the organs associated to those
queues to be empty and the performance to be at its lowest. Not being able to generalise
models to certain blood types is a common problem, indeed in Drekic et al. (2015) due to the
disparate relative frequencies of blood types, no results for blood type AB are presented as
the corresponding parameter estimates were deemed not to be reliable. To remedy this and to
obtain an accurate model for all blood groups we decide to use the timing ablation for the
queues corresponding to donors of blood group B and AB. To recall the timing ablation adds
each patient to all its blood type compatible queues upon arrival on the waitlist. Only patients
of blood group B or AB are compatible with donors of blood group B and AB then we apply
the timing ablation only for these patients for theses queues, this is called the mixed method.
The mixed method improves considerably the performance of our model (Table 5.3).

Another Policy. Lastly, we show our model can learn any allocation policy from data by
showing it can achieve similar performance on a different allocation policy. We consider the
data from 18/06/2013 to 01/06/2015 when the Share 35 distribution policy was implemented
in complement of the MELD score and before exception scores were updated (Kalra and
Biggins, 2018). Allocation results after training our ranking and timing model on this data
are given in Table 5.3 column New Policy.
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5.5 Clinical Application

Verifying the intended effect of MELD-Na. The MELD-Na score was developed so as
to give more points, and thus higher priority, to patients with hyponatremia (defined as serum
sodium concentration <137 mmol/L) as the the MELD score does not accurately reflect the
risk of death of this patient group. Then the MELD-Na policy was implemented with the
belief that for these patients, the difference between the MELD score and the MELD-Na
score would be large enough to make a significant difference in the probability of receiving a
liver transplant and averting death. We now use our framework to verify that the MELD-Na
policy achieves its intended effect.

We use our model to learn the implemented policy of the MELD policy and the im-
plemented policy of the MELD-Na policy (using different data governed by each of these
policies). Then we run a test using patients amongst which patients with hyponatremia and
observe if these patients receive more offers and are at the head of more queues under the
MELD-NA implemented policy than the MELD implemented policy.

We consider 19 patients whose serum sodium concentration is between 125 and 137
mmol/L as this is the range where the most meaningful differential effect of hyponatremia on
mortality appears (Kim et al., 2008). Under the MELD implemented policy, these patient
are added on average to 3.74 of the 32 queues, while under the MELD-NA implemented
policy the same patients are added to on average 4.52 queues. Proving these patients’ health
is deemed worse under the MELD-Na policy. In addition, given the same queue, we observe
where in the queue each of the implemented policies places a patient with hyponatremia.
This test is conducted with many different queues and patients with hyponatremia always
reaching the same conclusion (illustrated in Table 5.4): the MELD-Na implemented policy
gives the patient with hyponatremia higher priority in the queue. These results prove that the
implemented policy achieves the intended effect of the theoretical policy.

In this chapter we have showed our framework is able to truthfully model an implemented
policy. Using a case study focused on the MELD-Na policy we have shown our framework
outperforms a baseline based on the theoretical policy and one which uses ML without any
consideration of queues. Through ablation studies we have exhibited the utility of each of
our design choices. In addition, we have used our framework to confirm that the MELD-
Na implemented policy reaches the desired effects of the MELD-Na theoretical policy by
prioritising patients with hyponatremia. This proves our framework is able to fulfill its goal
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Table 5.4 Illustrative example placing patient 1368548 with hyponatremia into a queue
using the ranking model for the MELD and MELD-Na implemented policy. Patients are
represented by their waitlist ID.

Policy Resulting Queue

MELD [ 1366757▷1365761▷1365811▷1365372▷1366491▷1365548▷1365851▷1366298▷1365924▷1365742

▷1366478▷1365357▷1368548▷1366358▷1365951▷1366110▷1366342▷1366459]

MELD-Na [1366757▷ 1368548▷1365761▷1365811▷1365372▷1366491▷1365548▷1365851▷1366298▷1365924

▷1365742▷1366478▷1365357▷1366358▷1365951▷1366110▷1366342▷1366459]

of providing analyses on the implemented policy. In the following chapter we investigate the
performance of each of the components of Organ Queue separately.



Chapter 6

Further Analysis: How it Works

In this chapter, we present how each of the components of Organ Queues is trained and
evaluated. We also give clinical interpretation of their output. To ease comprehension Figures
6.1 and 6.5 help re-situate each component within the broad Organ Queue system.

6.1 Evaluation of the Timing Model

Fig. 6.1 Re-situating the timing model within the Organ Queue system. Recall the timing
model predicts if and when a patient should be added to each queue.

6.1.1 Evaluation Metric

We construct K hurdle models which predict the time until first offer (if any) for each organ
type separately. Denote T̂ k

n the target value, then we define the leaky RMSE for queue k as:
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Fig. 6.2 Computation of the baseline for the regressor, the table indicates the number of
days after which the patients should be added to each queue, and NaN if they are never added.
Then baseline for queue A is (0 +3+2) / 3 and for B is (2+1)/2

LeakyRMSEk =

√√√√∑
N
i=1

[
max(0.2∗ (T k

n − T̂ k
n ),T k

n − T̂ k
n )
]2

N
(6.1)

This loss takes into account that the time until a patient was added on the queue may be less
than the target value which is when the patient receives an offer for the queue. Then this loss
penalises less predicting a smaller value for T k

n than a larger one.

6.1.2 Baseline

We use two baselines. The baseline for the regressor predicts a constant value specific to
each queue computed by taking the mean of the non missing entries for each queue (Figure
6.2). The baseline for the classifier simply predicts 1 for all the queues the patient is blood
type compatible with and 0 otherwise.

6.1.3 Results

We consider 12,604 patients who were added to the waitlist after January 11th 2016 and
who were removed from the list before December 1st 2017 and the offers they received. We
explore and compare different configurations of hurdle models, with different classification
and regression models such as logistic and linear regression, support vector machine (SVM),
random forest (RF) and gradient boosting machine (GBM) (Results are given in Table A.2).
The best performance comes from using a Random Forest Classifier (RFC) followed by a
Random Forest Regressor (RFR).

The Random Forest Classifier has 100 estimators, uses the entropy criterion, balanced
sub-sampled class weights to account for the unbalanced data (particularly for queues of
blood type B and AB), and requires a minimum number of 3 samples to split. It is trained
on the entire dataset which is binarised (1 if the patient received an offer for the queue, 0
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Table 6.1 Hurdle model performance for different number of clusters. The mean leaky
RMSE (lower is better) averaged over all clusters (standard deviation in brackets) for different
number of clusters

Our Timing Model

8 Clusters 20 Clusters 32 Clusters 48 Clusters

Leaky RMSE 30.58 (15.56) 32.96 (13.51) 32.98(14.75) 33.46 (16.83)

Fig. 6.3 Performance of the random forest classifier (RFC) and random forest regressor
(RFR) of the hurdle model for different number of clusters The performance is averaged
over the number of clusters. For the classifier the accuracy (higher is better), and for
the regressor the leaky RMSE (lower is better), the error bars represent the variability in
performance over the clusters. The dotted lines show the baseline’s performance for each
task. (Baselines described in section 6.1.2)

otherwise). The Random Forest Regressor uses 100 estimators, the minimum number of
samples at a leaf node is 4, it considers a maximum 3 features when searching for the best
split, requires a minimum decrease in impurity for a split of 0.5 and has a maximum depth
of 10. It is only trained on data where the patient received an offer. The performance of the
hurdle model for different number of organ types is given in Table 6.1.

We investigate the performance of the classifier and the regressor separately into more
detail to understand the effect of the number of clusters. Figure 6.3 clearly illustrates that a
trade off will have to be made. Indeed, as the number of clusters increases, the accuracy of
the classifier increases and the variability in performance amongst the classifier decreases.
Conversely, as the number of clusters increases the performance of the regressor worsens
(leaky RMSE increases) and the variability in performances increases. To address this trade
off we work with 32 clusters which offers a middle ground.
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Table 6.2 Example of outputs from the timing model with 32 queues. The timing model
only adds patients to queues they are blood type compatible with. - indicates the patient was
never added to the corresponding queue while an integer value specifies how long after the
patient’s arrival they should be added to the queue.

Queue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Patient Type A B O AB A B O AB A B O AB A B O AB A B O AB A B O AB A B O AB A B O AB

1348223 O - - 1 - - - - - - - 12 - - - - - - - 5 - - - - - - - - - - - - -

1254238 A 2 - - - - - 6 - - - 10 - - - - - - - - - - - 23 - - - - - 8 - - -

6.1.4 Clinical Interpretation of Results

Classifier. We verify that the classifier of the hurdle model is able to capture and learn
simple patient to organ compatibility criteria such as blood type compatibility. To assess this
we run the timing model for a set of test patients and recover the timing predictions (i.e. T k

n

for k = 1..K for each patient in our test group). Then observing which queues the timing
model adds the patient to, we compute which percentage of these the patient is blood type
compatible with. Recall O patients can receive a transplant only from O donors, A patients
from A and O donors, B patients from B and O donors and AB patients can receive an organ
from a donor of any blood group.

We use 32 queues and test on a set of 159 patients, on average 99.27% of the queues
the patients are added to respect the blood type compatibility criteria. (see Table 6.2 for
an example) This proves our timing model can capture medical criteria of compatibility to
accurately model the transplant system.

Regressor. To interpret what the Random Forest Regressor is carrying out we focus on
feature importance. We consider 32 organ types, record feature importance for each of the 32
regressions and compute the average importance for each feature. The top five most important
features on average along with the value of the average feature importance are presented in
Figure 6.4. The clinician we work with confirmed that all 5 of these are important factors
when deciding which patient will receive an offer under the MELD-Na policy. Meaning that
under MELD-Na these are all important indicators when predicting when a patient should be
added to the queues. This prove that our model is correctly learning the implemented policy
from the data.
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Fig. 6.4 Top 5 highest average feature importance averaged over 32 the Random Forest
Regressors . The "MELD-Na LAB SCORE’ and ‘MELD LAB SCORE’ are the laboratory
MELD-Na and MELD score when the patient joined the waitlist, the ‘INIT DATE’ is a
proleptic gregorian ordinal of the date at which the patient joined the waitlist, ‘ABO’ is the
patient’s blood group and ‘HCC EVER APPR Y’ is a binary variable indicating if the patient
ever had an approved Hepatocellular Carcinoma (HCC) exception.

6.2 Evaluation of the Ranking Model

6.2.1 Evaluation Metrics

The NDCG Metric

There exists many statistical metrics to evaluate distances between rankings such as Spear-
man’s ρ and Kendall’s τ . However, these fail to take into account element relevance and
positional information (Kumar and Vassilvitskii, 2010) concepts which are crucial to evaluat-
ing a result set in information retrieval (See Table A.3). Thus, the ranking accuracy is given
using a Normalised Discounted Cumulative Gains measure of top-r documents retrieved
(NDCG @ r) (Järvelin and Kekäläinen, 2017) which takes into account element relevance
and positional information by giving each patient a relevance score rel() for a given organ.
The first patient to receive an offer has highest score, scores decrease in the order of the
offers, any patient who did not receive an offer has score 0. The DCG (Eq.(6.2)) places a
strong emphasis on retrieving relevant documents by penalizing highly relevant documents
that appear lower in the search by reducing the graded relevance value logarithimically
proportionally to the position of the result. Normalising the DCG allows to compare queries
for which search results list vary in length.
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Fig. 6.5 Re-situating the ranking model within the Organ Queue system. Recall the
ranking models learns a ranking function for each organ type to place patients within queues.

The NDCG computed at rank r is given by

NDCG@r =
DCG@r
iDCG@r

DCG@r =
r

∑
i=1

rel(i)
log2(i+1)

(6.2)

with rel(i) the relevance score of the ith patient and iDCG being the DCG of the ideal order,
so that a perfect ordering has NDCG = 1. For queries with fewer than r offers the NDCG
is computed for all returned patients. 0 ≤ NDCG@r ≤ 1, with a higher value being better.
An alternative to the DCG in Eq.(6.2) given in Eq.(6.3), it puts a stronger emphasis on
the relevance score and thus gives a relatively too big importance to the first few patients
compared to the following ones. Seeing as for most organs the first offers are not accepted it
is important to place a strong emphasis on the entire ranking, then we choose to work with
the DCG in Eq.(6.2).

DCG@r =
r

∑
i=1

2rel(i)−1
log2(i+1)

(6.3)

The mAP Metric

In addition to the NDCG metric we use the Mean Average Precision (mAP) metric to evaluate
the performance of our model to distinguish and rank relevant/irrelevant patients. Indeed we
need our ranking model not only to correctly order the patient who received an offer but also
to correctly predict those who will be irrelevant for a particular organ type and who will thus
be ranked lowest for it. For this metric, the precision for the top-k documents for query q is
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introduced. Since this only makes sense for binary classes, we binarize the relevance score so
that rel(i) = 1 indicates the ith patient is relevant i.e. received an offer for that query/organ,
and rel(i) = 0 indicates the ith patient is irrelevant i.e. did not receive an offer. Then the
average precision over all relevant patients, where n is the number of patients for query q is

AvgPq =
1

n ·P@n

n

∑
r=1

rel (r)Pq@r Pq@r =
1
r

r

∑
i=1

rel (i) (6.4)

Finally the mAP (between 0 and 1) for a dataset with Q queries is given by:

mAP =
1
Q

Q

∑
q=1

AvgPq (6.5)

6.2.2 Baseline

We obtain a ranking using the MELD-Na score, it is constructed by ordering the patients in
the extended match run in decreasing MELD-Na score order taking into account blood type
compatibility. Meaning that in this ranking, the patients which are blood type compatible
with the organ are ranked with higher priority than those which are not compatible even if
their MELD-Na is lower.

6.2.3 Training and Testing Data

Organ Procurement Organisations (OPOs) are non-profit organizations responsible for the
evaluation and procurement of deceased-donor organs for organ transplantation. They have
the ability to explicitly mark a record on the match run as a “bypass” to indicate that the
candidate/center never actually received an offer. Candidates are ‘bypassed’ for a variety
of reasons for instance in the case of a directed donation or natural disaster. Even if theses
candidates never receive the offer, the bypassed offers give us an insight on which patients
the policy would have made an offer to. Thus we decide to leave these offers in the dataset
used for training and testing. This causes the number of offers to sometimes explode giving
rise to an excessive amount of training pairs, thus we apply a cut off and choose to only
work with the first 2053 offers for an organ, which corresponds to the 75th percentile on the
number of offers. Then the median number of offers (including bypassed offers) becomes
407, this will be used as the rank for the NDCG.

All the patients in the match run in the data are ‘relevant’ to the organ type considered, in
order to make our ranking network more robust we add to each match run a random number
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of randomly selected patients, this is called the extended match run. The goal it to permit
our model to encounter patients which are ‘irrelevant’ to a particular organ type for instance
patients that are blood type incompatible so that it learns to give them lowest priority. The
ranker is tested on 10 sets of offers containing 10 extended match runs. The performance is
evaluated using the NDCG and mAP.

6.2.4 Results

We train on 10,000 offers and add between 1 and 100 randomly selected patients to each
match run. This yields more than 3 million training pairs. We train for 50 epochs with a
batch size of 256. The RankNet used has 3 hidden layers and a dropout layer. The data
is normalised and we use an Adam optimizer with learning rate 0.01. We average the test
results on 10 sets of 10 match runs, adding to each of the match runs between 1 and 100
random patients. In Table 6.3 we report the mean NDCG (at rank 407) for two rankings: the
ranking obtained using our RankNet and the ranking obtained using the baseline.

Table 6.3 Performance of our ranking model for different number of clusters.
NDCG@407 (higher is better) of the rankings given by the RankNet and by decreasing
MELD-Na score averaged over 10 * (10 extended match runs) (standard deviation in brackets).
A random number of patients between 1 and 100 are added to each match run.

Our Ranking Model Baseline

8 Clusters 20 Clusters 32 Clusters 48 Clusters

NCDG 0.695 (0.095) 0.725(0.093) 0.736 (0.07) 0.753 (0.091) 0.445 (0.102)

Our ranking model must be able to adequately differentiate relevant and irrelevant patients.
Indeed, when the model will be used on the transplant system there will be a mix of relevant
and irrelevant patients. We wish to further investigate the effect of extending the match runs.
To do so we train one model with a random number between 1 and 200 of ‘irrelevant’ added
patients to each match run (denoted Q +200) and a second model with no added ‘irrelevant’
patients added (denoted Q +0). Then, we test both these models on data with 10, 100, 200
and and 500 randomly added patients to each match run in the test data. The mAP is used to
evaluate the models’ capacity to sort relevant and irrelevant patients. Results in Table 6.4
show performance decreases when adding more irrelevant patients to each match run of the
test set. However, the performance is better when the model is trained with irrelevant patients
(right column of Table 6.4), proving the model has learnt to differentiate irrelevant patients.
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Table 6.4 Effect of adding randomly sampled ‘irrelevant’ patients to the match runs
when training the ranking model, mAP (higher is better) of two RankNets: one trained
with with no added patients to the match runs (Train Q+ 0) and the other trained with a
random number between 0 and 200 of randomly added irrelevant patients to each match run
(Train Q + 200). Then tested with a random number between 1 and X of randomly added
patients to each match run of the test set for X = 10, 100, 200, 500. Using 32 clusters.

Train Q +0 Train Q +200

Test Q +10 0.784 0.929

Test Q +100 0.437 0.723

Test Q +200 0.378 0.602

Test Q +500 0.195 0.476

6.2.5 Clinical Interpretation of Results

The theoretical MELD-Na policy uses the patient’s probability of dying to rank patients. This
only depends on X, the covariates of the patient and not on X (t) the other patients in the
waitlist or on the organ O j. Denote M the ranking function of the theoretical MELD-Na
policy, we have that

M ({Xi,Xm,Xl},k1) = M ({Xi,Xm,Xl},k2) (6.6)

However, when analysing the results of the ranking model, we notice this does not hold
for the ranking function R that is learnt. Indeed, the same set of patients will not be ranking
in the same order for two organs of different type.

R({Xi,Xm,Xl},k1) ̸= R({Xi,Xm,Xl},k2) (6.7)

This shows that the theoretical policy is affected by the variations such as the donor
criteria specified by the clinician and thus that the resulting implemented policy may not
allocate organs in the same manner.

In this chapter, we introduced evaluation metrics and baselines for the timing and ranking
models. We found that for the timing model, a smaller amount of clusters gives a better
performance (Table 6.1) whereas for the ranking model a larger number gives higher NDCG
(Table 6.3). The clinical interpretation of the outputs of the timing model shows the classifier
can capture elements of patient to donor compatibility while the regressor can capture
specific aspects of the allocation policy studied. Concerning the performance of the regressor,
we showed the benefit of adding randomly samples patients to extend the match run and
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through the clinical interpretation of the returned rankings, we were able to conclude the
ranking model can implicitly capture real-life variations such as clinicians’ specifications of
donor criteria. The good performance results and coherent clinicians interpretation of each
component are promising and explain the high performance of the Organ Queue framework
in the previous chapter.



Chapter 7

Conclusion & Future Work

7.1 Conclusion

This dissertation identified a gap in clinical practice due to the discrepancy between theo-
retical and implemented policies and the lack of tools to analyse the latter. Our goal was to
provide a policy agnostic framework to learn and model implemented allocation policies,
which can be used to assess whether the implemented policy reaches its objectives, or to
conduct further analyses to refine the current policy. Based on research and discussions with
clinicians, to understand the key components and challenges of modelling an organ transplant
system, we formulated the problem mathematically and proposed our first solution. Our
solution is a framework which integrates a queuing system with (i) an unsupervised clustering
algorithm to cluster organs into organ types and constructs priority queues associated with
each organ type, (ii) a timing model to assign incoming patients to queues, and (iii) a learning
to rank algorithm to place these patients within the queues.

Our case study — on the MELD-Na allocation policy for liver transplantation — showed
the utility of each component of the framework to accurately model an implemented policy
with which we can conduct meaningful analyses. Specifically, we were able to confirm that
MELD-Na places emphasis on hyponatremia patients when allocating organs. Moreover,
by reaching similar performance results with different allocation policies and providing
clinical interpretation of our results in accordance with the theoretical policy, we showed our
model is policy agnostic and able to learn any implemented policy from data. These initial
experiments using UNOS data hint at the potential of our framework.
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However, the framework does have some shortcomings. Indeed, the incomplete match
runs and list of offers in the observed dataset cause certain aspects of the transplant system—
such as the waitlist’s influence on the timing of offers to not be modelled by our framework.
Moreover, the variations which create the discrepancy between the theoretical and imple-
mented policies are only modelled implicitly through the data.

7.2 Future Work

To address the issue of large amounts of unobserved data notably in the list of offers received
by a patient we could consider performing counterfactual analysis to predict which other
queues the patient would have received an offer from had they not been removed from the
waitlist. However, even with these estimates, it is not certain a neural network approach that
considers both the patients and the waitlist would give satisfactory results due to the limited
amount of patients we have for each policy.

Moving forward, we wish to extend and test our framework on other datasets. Our model
was tested on various allocation policies and was shown to be policy agnostic. However,
different datasets from different countries or different organs may record different covariates
for the patient and the donors, these changes may affect the performance of our model. It is
important to note that the UNOS data is one of the largest in the world, then all other datasets
will have fewer patients and match runs to train on. This is not an issue for the ranking model
as it is trained using pairs of patients within the same extended match runs. However, for
the timing model, the use of simpler machine learning architectures such as random forests
rather than complex models such as neural networks are essential to be able to expand to
smaller datasets. Moreover, these models have the added benefit of remaining interpretable,
a feature that is often desirable in a medical context.

In addition, we would like to more explicitly incorporate variations which modify the
theoretical policy such as clinicians’ specification of donor criteria and their decision to
accept/reject an offer. Currently, this is done implicitly through the data, but considering
it has such a large influence on wait times and how the proposed policy is implemented,
modelling this more explicitly could yield better results. For instance, an approach could be
to learn a representation of clinicians’ decision-making behaviour when accepting/rejecting
an organ offers with bayesian methods as in Hüyük et al. (2020). Modelling such decisions
explicitly could allow to accurately predict which patient in the predicted match run will
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accept an organ offer and thus permit the estimation of patient wait times. Furthermore, this
information could be used across policies, which would reduce the requirement for data.

It is our hope that this dissertation will inspire more methods to focus on evaluating
implemented policies to help inform the creation of new theoretical allocation policies with
the goal of developing a more equitable, effective, and efficient allocation of organs.
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Appendix A

Supplementary Material

A.1 Original Timing Model

In this section, we present the timing model we had originally designed. For the same reasons
detailed in chapter 4, this model must predict both the probability of response (if a patient
should be added to a given queue) and the value of the response (if a patient is to be added,
when that should be). As stated in challenge (d), when a patient receives an offer is dependent
of which other patients were in the waitlist. Then, in addition to the patient covariates, the
wait list should also be an input to the model to predict T k

n .

The network developed (Figure A.1) is inspired by siamese network architecture (Bromley
et al., 1993) in that it takes two separate inputs. The patient’s covariates X and the covariate
of the patients in the waitlist at the time of the patient’s arrival, X (t). Both these inputs are
passed through separate φ networks used to reduce their dimensionality. Then the outputs
of these networks, φ(X),φ(X (t)) are concatenated and passed through a neural network
denoted L. The aim of this neural network is to capture the complex interactions between
the patient and the wait list and create a latent representation of them denoted L(φ). Simply
concatenating the two vectors would not allow to learn such complex interactions. The
resulting vector L(φ) is fed as input to a classification network and to a regression network
denoted respectively C and R. The classification and regression are learnt within the same
network for multiple reasons, firstly as it is more efficient computation wise, second as we
want the same learnt interactions to affect the classification and the regression and lastly
because this allows one task to be a regulariser for the other as learning them jointly and
having a loss on the two allows to create a compromise between the performance of the two
networks.
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Fig. A.1 Initial Timing Model Architecture

The loss used to train the network is the sum of the loss from the regressor and the loss
from the classifier. Denote y the target values of T k

n , and g the binarized version of the target
(g = 1y>0). Denote r̂ the prediction of the regressor and ĉ the prediction of the classifier. We
use the mean squared error (MSE) and the binary cross entropy (BCE) loss to compute the
networks loss as follows:

L = MSE(r̂,y)+BCE(ĉ,g) (A.1)
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A.2 Additional Results

Table A.1 Results of organ allocation for various number of clusters. Jaccard index
(higher is better) and the Levenstein distance ratio (lower is better) between the real match
run R̄ and the predicted match run Q̄. These results complete Table 5.1

Our model

8 clusters 12 clusters 20 clusters 32 clusters 36 clusters 48 clusters

Jac ↑ 0.037 (0.061) 0.043 (0.058) 0.048 (0.073) 0.071 (0.097) 0.068 (0.122) 0.084 (0.166)

Lev ↓ 0.974 (0.030) 0.969 (0.034) 0.963 (0.061) 0.941 (0.088) 0.941 (0.122) 0.927 (0.115)

Timing Ablation

8 clusters 12 clusters 20 clusters 32 clusters 36 clusters 48 clusters

Jac ↑ 0.038 (0.077) 0.038 (0.079) 0.035 (0.067) 0.033 (0.069) 0.030 (0.065) 0.042 (0.082)

Lev ↓ 0.979 (0.022) 0.977 (0.033) 0.987 (0.023) 0.981 (0.032) 0.983 (0.026) 0.975 (0.032)

Ranking Ablation

8 cluster 12 clusters 20 clusters 32 clusters 36 clusters 48 clusters

Jac ↑ 0.043 (0.067) 0.046 (0.065) 0.040 (0.093) 0.062 (0.087) 0.061 (0.092) 0.082 (0.181)

Lev ↓ 0.970 (0.032) 0.965 (0.037) 0.972 (0.044) 0.946 (0.081) 0.947 (0.088) 0.918 (0.181)

Our model - mixed

8 clusters 12 clusters 20 clusters 32 clusters 36 clusters 48 clusters

Jac ↑ 0.041 (0.04) 0.058 (0.082) 0.061 (0.115) 0.086 (0.143) 0.080 (0.097) 0.099 (0.180)

Lev ↓ 0.972 (0.040) 0.959 (0.037) 0.952 (0.102) 0.932 (0.137) 0.935 (0.112) 0.913 (0.173)

Table A.2 Results of the timing model under different architectures. Leaky RMSE
(lower is better). Siamese network is the neural net described in Section A.1 which uses
Xn and X (t) whereas the hudrle models are based solely on Xn. RFC/RFR = Random
Forest Classifier/Regressor, GBC/GBR = Gradient Boosting Classifier/ Regressor, LoR/LiR
= Logistic/Linear Regression, SVM = Support Vector Machine Classifier. All these have
undergone hyperparameter optimisation.

Hurdle Model Siamese Net

RFC+RFR GBC + GBR LoR + LiR SVM + RFR RFC + GBR LoR + RFR

32 clusters 32.98 (14.75) 33.1 (15.08) 36.32 (15.56) 34.69 (13.04) 34.61 (14.88) 34.59 (15.86) 37.04 (17.89)

8 clusters 30.58 (14.03) 30.67 (13.92) 35.18 (16.22) 34.13 (13.85) 32.52 (15.97) 33.67 (15.24) 37.63 (16.41)
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A.3 Evaluation Metrics

Benefit of NDCG vs Kendall’s τ or Spearman’s ρ Table A.3 shows Spearman’s ρ and
Kendall’s τ are unable to take into account element relevance and positional information.
Indeed Kendall and Spearman coefficient are the same for both rankings of Table A.3, while
the NDCG is higher for the first ranking which places the relevant patient X higher.

Table A.3 Illustrative example to compare NDCG, Spearman’s ρ and Kendall’s τ . Con-
sider 3 patients {X, Y, Z} patient X is relevant for the query while patient Y and Z are
equally irrelevant.

Ranking NDCG Kendall’s τ Spearman’s ρ

Y ▷X▷Z 0.630 -0.499 -0.5

Y ▷Z▷X 0.5 -0.499 -0.5
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