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Abstract

Deep neural networks have become increasingly accurate and applicable to decision-making in
high-risk real-world settings, such as medicine or autonomous driving. In these situations, the
ability to detect that a network might be wrong – due to the input type changing, the domain
shifting, or any other cause – is crucial and allows requesting timely intervention. While
there are ways to produce uncertainty estimates for modern neural networks, they tend to be
overconfident and are rarely able to detect unfamiliar situations.

Deep ensembles have been shown to provide remarkable improvements in prediction
calibration – the correspondence of estimated uncertainty and empirical accuracy – both for
data drawn from the same distribution as the training set and in situations where dataset shift is
observed. The diversity of ensemble member predictions has been shown to be a key factor
differentiating deep ensembles from other alternatives, such as Bayesian methods.

Despite the inherent diversity, recent research has explored strategies to further diversify
deep ensembles, which we categorise as explicit and implicit. We explore in detail two explicit
methods for classification ensembles: negative correlation learning and regularising via pairwise
subnetwork cross-entropy. We show both methods can improve over deep ensemble calibration
under ideal conditions, but depend heavily on the choice of a scaling hyperparameter value,
which is difficult to tune with only in-distribution data available.

As a complementary method, we present a novel view of mixtures of experts (implemented
with neural networks for all component predictors) as a form of implicit deep ensemble
diversification. We show this strategy produces highly diverse and localised member networks
but has poor out-of-the-box calibration. This can be improved by using Bayesian gating
networks, with localisation and increased diversity maintained but confidence level adjusted.
Such strategies achieve calibration similar to that of deep ensembles for shifted data. However,
significant challenges are encountered when training mixtures of experts and the diversifying
effect is not fully utilised by these strategies, suggesting further work is needed to make the
method competitive.
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Chapter 1

Introduction

1.1 Motivation

Modern deep neural networks (DNNs) can achieve remarkable feats in their predictive perfor-
mance. Their capabilities have long expanded beyond somewhat isolated tasks like recognising
handwritten digits where the impact of trusting incorrect predictions is limited. DNNs are
increasingly applicable in scenarios with significantly higher inherent risk, such as medical
diagnostics (Esteva et al., 2017) and autonomous driving. In both of these settings, an incorrect
prediction made by the network can have far-reaching consequences – making patients undergo
unnecessary invasive procedures or causing crashes, e.g. the 2016 Tesla incident, partially
influenced by a segmentation error (NHTSA, 2017).

DNNs are capable of producing uncertainty estimates, indicating how confident they are
in the prediction’s correctness. A natural mitigation strategy for these issues might thus be
flagging up uncertain predictions as requiring further human attention. However, this relies on
the networks’ calibration – the confidence estimates corresponding to the true likelihood of
predictions being correct. Unfortunately, DNNs are often significantly over-confident (Guo
et al., 2017), reporting extremely high certainty in all predictions even when the overall accuracy
is relatively low. This is further exaggerated under dataset shift, e.g. when images different
from ones seen during the supervised training process are encountered, with plenty of humorous
examples – like models confident that a child is a balance beam (Shafaei et al., 2019). Similarly,
images falling into the training categories, but obstructed or shifted cause the accuracy to drop,
while confidence often remains high (Ovadia et al., 2019).

Deep ensembles (DEs) – sets of identical (except for initialisation) independently trained
DNNs used to produce a single prediction – provide remarkable improvements in uncertainty
estimation, as shown by Ovadia et al. (2019). It is a fundamentally intuitive concept – as long
as the predictors are individually accurate but not identical, we might expect them to make
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different mistakes. In particular, for images different from ones then networks were trained on,
the individual ensemble members might still produce over-confident predictions, but they can
now be diverse. As the final prediction is produced by averaging, the final confidence estimate
is generally lower (Rahaman and Thiery, 2020).

In this dissertation, we study DEs and methods which can be used to ensure the diversity of
their members’ predictions. We investigate implicit and explicit strategies used to achieve this
and their impact on the calibration of uncertainty estimates, both for in-distribution data and
under dataset shift.

1.2 Contributions

The contributions of this dissertation are as follows:

• We present a structured view of popular DE diversification methods, bringing focus to
the distinction between explicit and implicit diversification;

• We analyse explicit DE diversity regularisation methods, originally proposed to improve
in-distribution calibration and predictive performance, in the context of calibration under
distribution shift, providing a more thorough understanding of their impact;

• We identify the selection of diversification-specific hyperparameters as a key challenge
to applying explicit DE diversity regularisation in practice. We show that the sensitivity
to their values is high, and an in-distribution validation set cannot be reliably used to
choose their values while maintaining calibration improvements under dataset shift;

• Lastly, we provide novel analysis of the inherently diverse ensembles constructed as
mixture of experts models in the context of calibration. We show the calibration of a
mixture of experts tends to mimic that of a single predictor but can be improved by using
variations of Bayesian DNNs for the gating model.

Additionally, we provide the codebase created throughout this project as an open-source
repository1, containing a flexible and highly customisable framework for experimentation with
DEs and their variations.

1.3 Dissertation Outline

The dissertation follows the structure outlined here. In Chapter 2 we present an overview of
relevant background material on uncertainty quantification and DEs followed by a structured

1The codebase can be found at https://github.com/gintepe/DeepEnsembleUncertainty.

https://github.com/gintepe/DeepEnsembleUncertainty
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review of their diversification methods. Chapter 3 describes the experimental setup used
throughout the work, including a discussion of evaluation metrics and baseline methods.

The following two chapters contain the results, our analysis and discussion. Chapter 4
presents two methods of explicit deep ensemble diversification, NCL-DE and CE-DE, chosen as
promising approaches not previously examined in terms of impact on calibration under dataset
shift. We provide an overview of the potential these strategies offer under ideal conditions
and discuss the challenges encountered when choosing the values of diversification-specific
hyperparameters. Chapter 5 instead studies the implicitly induced diversity of mixture of
experts models. We analyse the classic model’s calibration and explore strategies to improve it
via using Bayesian approaches for the gating network. Lastly, in Chapter 6 we summarise the
overall findings and discuss aspects of potential future work.





Chapter 2

Background

In this chapter, we introduce methods for uncertainty estimation in deep neural networks
(DNNs), the concept of calibration and the importance of examining calibration under distri-
bution shift. This is followed by a brief literature review on deep ensembles (DEs) where we
provide a structured outlook on existing strategies aiming to improve both their calibration and
predictive performance via diversification. Lastly, we introduce the Mixture of Experts (MoE)
paradigm and its connection to deep ensembles.

2.1 Uncertainty Estimation in Neural Networks

It is often useful to interpret neural networks not simply as black-boxes capable of providing
predictions, but as a probabilistic model taking into account observed data and producing a
predictive distribution. It is common to take a Bayesian view, framing the goal distribution as a
Bayesian model average. It can be expressed as

p(y | xxx,D) =
∫

p(y | xxx,θ)p(θ | D)dθ , (2.1)

given a dataset D = {(xxx(n),y(n))}N
n=1 and parameters θ specifying the model.

The probability over outputs given a set of parameters, p(y|xxx,θ), is often referred to as the
likelihood when seen as a function of θ . The equation combines these functions across different
parameter settings, as weighted by the parameter posterior p(θ |D). The latter can be formally
obtained using a prior belief on the weights via Bayes theorem as p(θ |D) = p(D |θ)p(θ)

p(D) .
The approach is robust in modelling epistemic uncertainty – one arising from the variation

in possible models fitting the data. However, the integral is usually intractable, and has to be
approximated, as the distribution over models is often difficult to estimate.
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Traditional neural network training can be seen as a crude approximation. They provide a
point estimate of the weights – θ̂ – and are equivalent to solving this integral with p(θ |D) =

δ (θ − θ̂), where δ is the Dirac delta function (a probability density function zero everywhere
except the origin). For point-estimate networks, uncertainty values can be derived by a set of
well-established methods. In a k-class classification problem, a final layer with k units and
a softmax activation function is typically employed. Given the raw final layer output hhh, the
activations ooo are found as

oi =
exp(hi)

∑
k
j=1 exp(h j)

. (2.2)

The transformation ensures final activations sum to 1, and output can be interpreted as a
categorical probability distribution over the possible classes. For an input xxx, ground truth label
y and model parameters θ , we consider the output to be oi = p(y = i|xxx,θ). Predictions are
then made by selecting the class with the highest corresponding probability, as ŷ = argmaxi(oi).
The output values serve directly as confidence estimates.

Regression networks require a slight adjustment to provide interpretable confidence es-
timates. The models typically only output a predictive estimate, without any indication of
confidence. A common approach is to instead train a network with two outputs – the predictive
mean and variance (Jain et al., 2020; Lakshminarayanan et al., 2016). These can be further
interpreted to specify a Gaussian distribution approximating the predictive posterior, and a
training criterion chosen appropriately.

Due to the collapsing of the integral in Equation 2.1 to a single point, the uncertainty
estimates above are more reflective of aleatoric – inherent to the data – uncertainty.

Bayesian deep learning aims to approximate the Bayesian model average more explicitly.
If it is possible to sample from p(θ |D), a Monte Carlo (MC) approximation can be used to
approximate the overall integral:

p(y | xxx,D)≈ 1
M

M

∑
m=1

p(y | xxx,θm),θm ∼ p(θ |D). (2.3)

The distribution p(θ |D) is often difficult to directly express and sample from. It is com-
monly approximated with an easy to sample from proxy distribution q(θ ,D), parametrized
to make q as close to p as possible. For example, Laplace approximation (MacKay, 1992)
can be used to approximate the distribution by a Gaussian centred at a point estimate. An-
other common approach is to fit the parameters of q by variational inference (Blundell et al.,
2015). Lastly, it has been shown by Gal and Ghahramani (2016) that training and testing using
Dropout (Hinton et al., 2012) or DropConnect (Mobiny et al., 2021; Wan et al., 2013) can
be seen as approximating such a distribution as well. Test-time predictions are obtained by



2.2 The Uncertainty Calibration Problem 7

averaging the outputs of multiple forward passes through the network, each with a different
random sample of nodes or connections deactivated. Ultimately, this yields a Monte Carlo
estimate of the predictive distribution and the method is often referred to as MC Dropout.

2.2 The Uncertainty Calibration Problem

Having a range of methods for estimating the uncertainty of DNN predictions enables us to
study their quality. One of the problems often examined is uncertainty calibration. In the context
of machine learning, calibration refers to the correspondence between predictor accuracy and
the uncertainty estimates it produces. In other words, a well-calibrated network can detect when
its predictions are likely to be incorrect, often referred to as "knowing what it does not know".
While early neural networks were reasonably well-calibrated (Niculescu-Mizil and Caruana,
2005), in their work exploring the calibration of modern DNNs Guo et al. (2017) show this
is no longer true. They note a correlation between recent increases in model capacity, depth,
reduced use of weight regularisation, and significant overconfidence – causing dangerously
poor prediction calibration.
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(b) Shifted test set

Fig. 2.1 Reliability diagram illustrating the calibration of ResNet-20 (He et al., 2016) on an
image recognition dataset. Network’s predictions are binned along the x-axis by confidence,
with bar height indicating the mean accuracy in the bin. A well-calibrated network would have
accuracy falling within bin boundary values. Both figures show model overconfidence, with
empirical accuracy lying significantly below the corresponding confidence estimate (red line).

Reliability diagrams allow us to visualise over and under-confidence, showing accuracy
for predictions made with confidence within a given range. Fig. 2.1a provides an example
typical of modern DNNs, using a popular architecture on an in-distribution (ID) test set. The
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network exhibits significant overconfidence in predictions with low uncertainty, and slight
under-confidence on the other end of the spectrum. These behaviours indicate that confidence
estimates produced are largely unreliable.

2.2.1 Calibration Under Dataset Shift

A considerable body of work exists studying DNN uncertainty estimates on out of distribution
(OOD) inputs (Hendrycks and Gimpel, 2016; Lakshminarayanan et al., 2016), relating the
calibration problem to the wider field of outlier (or OOD) detection (Hendrycks et al., 2018;
Shafaei et al., 2019). Similarly, calibration for ID inputs is also crucial, and studied in
depth (Guo et al., 2017). However, Ovadia et al. (2019) argue that distribution shift provides
the most appropriate context for studying DNN calibration and quality of uncertainty estimates.

Dataset shift can occur naturally in a variety of settings (e.g. different camera settings
or light conditions for images). It is often gradual, with inputs resembling the ID samples –
making methods from other fields, like outlier detection, not applicable directly.

The test distribution not matching that of training data exactly can often further exag-
gerate miscalibration. As illustrated by Fig. 2.1b, it can cause the network to be even more
overconfident as the prediction accuracy inevitably drops, but confidence remains high.

Ovadia et al. (2019) find that strategies which lead to excellent calibration on ID samples are
often not robust to dataset shift. In particular, post-hoc temperature scaling on a validation set –
found to be most beneficial by Guo et al. (2017) – is used as an example. To comprehensively
evaluate a method’s calibration it is thus important to study it not only on ID data but also on
shifted samples.

2.3 Deep Ensembles

A variety of recent works (Gustafsson et al., 2020; Lakshminarayanan et al., 2016; Ovadia et al.,
2019) find that a fundamentally simple method – deep ensembles (DEs) – outperforms a wide
variety of other methods for producing robust uncertainty estimates in terms of calibration. In
this section, we present detailed background on the method and provide a review of strategies
used to further improve their performance.

Replacing a single predictor by an ensemble has long been a popular strategy for improving
overall predictions. The combined output, produced by (potentially weighted) averaging or
voting, have proven to be more robust, reducing overall model variance, and often more accurate
than a single model (Dietterich, 2000).
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Deep ensembles, formally introduced by Lakshminarayanan et al. (2016), provide a simple
ensemble construction method. It only requires several identical DNNs trained on the same
dataset, using the same training procedure. The only difference lies in their random initialisation
of the parameters. Ensemble predictions are constructed by averaging the individual outputs.
The strategy is loosely motivated by the classic ensembling technique called Bagging (bootstrap
aggregating), where identical predictors are trained on datasets created by repeatedly sampling
from the original one with replacement. However, DEs consistently outperform Bagging (Nixon
et al., 2020), showing the complexity added by dataset re-sampling is redundant in this case,
and the random initialisation is sufficient to ensure good performance.

Relating back to the predictive distribution in Equation 2.1, DEs can be seen as an ex-
tension of the point estimate interpretation, sampling several distinct parameter settings via
maximum likelihood training. Wilson and Izmailov (2020) and Gustafsson et al. (2020) note
this can be interpreted as a Monte Carlo approximation, with the random initialisation inducing
approximate sampling from the distribution over model parameters.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

5 ResNet-20 Ensemble on the CIFAR10 Test Set
Ideal calibration
Mean accuracy for
confidence interval

(a) Original in-distribution test set
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Fig. 2.2 Reliability diagram illustrating calibration of an ensemble of 5 ResNet-20’s on an
image recognition dataset. Ensemble predictions are binned along the x-axis by confidence,
with bar height indicating the mean accuracy in the bin. Figure on the left displays good
calibration, with empirical accuracy similar to corresponding confidence estimates (red line).
Figure on the right displays slight but consistent overconfidence.

Due to their simplicity and ease of training parallelisation, DEs have become a popular
staple for producing state-of-the-art results in machine learning. As noted earlier and illustrated
by Fig. 2.2, they also significantly improve prediction calibration over that of a single network
(Fig. 2.1), both for ID and shifted data.
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2.4 Diversity in Deep Ensembles

Predictor diversity is often cited as one of the reasons for the effectiveness of ensembles (Buschjäger
et al., 2020; Fort et al., 2019; Melville and Mooney, 2004). In the case of tasks evaluated by the
mean squared error, it is theoretically motivated by the bias-variance-covariance decomposition
of the expected error (we refer to Sammut and Webb (2010) for further detail). For an M
network ensemble output ō(xxx) = 1

M ∑
M
m=1 om(xxx) it is given by

ED

[
(ō(x)− y)2]= bias 2

+
1
M

var+
(

1− 1
M

)
covar. (2.4)

Here bias,var and covar refer to the mean bias, mean variance and mean pairwise covariance
of the individual models. Diverse ensembles explicitly reduce the covariance term by producing
less correlated predictions, in turn reducing the overall expected error.

A recent study by Fort et al. (2019) investigated diversity in deep ensembles from the
perspective of solution positioning within the overall loss landscape. The authors show DEs
typically achieve what many other methods struggle with – exploring distinct modes of the loss
and inducing diversity in the functions learned, as illustrated in Fig. 2.3. With finite training
data, many DNN parameter settings can explain the observations equally well. However, the
extrapolations away from training samples, produced by models with these parameter sets can
differ greatly. Random initialisation used for training deep ensembles is typically sufficient
to allow individual predictors to find distinct solutions. Bayesian methods based on subspace
sampling (such as MC Dropout or weight averaging) tend to explore uncertainty within a single
mode. These findings indicate the diversity is a key factor allowing DEs to not only achieve
impressive predictive performance but also better calibration than other strategies.

Generalisation Loss
Training Loss
DE sample
Bayesian method sample

Parameter space

Fig. 2.3 Illustration (based on visualisation in Fort et al. (2019)) of optima found by DEs as
compared to common Bayesian methods. Individual networks in DEs fit distinct modes, but
ignore local uncertainty and may not pick the solution which generalises best, while Bayesian
methods explore local uncertainty.

Under ideal conditions, we may not only want to model different modes in prediction
space but also ensure they are picked to be significantly diverse. A variety of recent research
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has focused on further diversifying DEs. We believe a structured perspective is crucial to
understanding the methodologies explored, and propose the classification of diversification
methods shown in Fig. 2.4.

Diversification in deep ensembles

Explicit Implicit

Diversity Regularisation Diverse Architectures

Outlier Training Dataset Variation

Increased RandomisationOrthogonalising Gradients

Fig. 2.4 Proposed taxonomy for existing deep ensemble diversification methods. Leaf nodes
provide classes of common illustrative examples and are not intended as an exhaustive list.

The main feature differentiating the methods is the approach to inducing diversity. Some
methods are explicit, defining a measure of diversity, or a diversifying factor to optimise for.
Others, like DEs in their original formulation, are implicit. They often rely on randomness,
sampling, and decisions made before training the predictors, with the overall framework
remaining the same – independent network optimisation and post-hoc prediction combination.
We explore the two diversification method families in detail in the following sections.

2.4.1 Implicit Deep Ensemble Diversification

There are several key features to standard DE training – the DNNs used are identical, use the
same hyperparameters, and are trained on the same data. Implicit diversification typically
focuses on changing one of these aspects.

Constructing ensembles with predictors differing in terms of architecture is a classic
concept (Hansen and Salamon, 1990) explored in the context of DEs by Zaidi et al. (2020).
The authors suggest an automated strategy – using architecture search to construct a large
pool of trained predictors, from which an ensemble is selected via the procedure outlined
by Caruana et al. (2004), with validation performance as a heuristic. The method improves over
basic DE performance (where DE predictor architecture is chosen to be the same as the best
individual predictor found) both on ID test images, and shifted datasets. However, the effect of
architecture diversification is not isolated. When an equivalent ensemble selection procedure
is run for an equally sized set of trained networks with the same architecture, but different
parameter initialisations, baseline performance is also improved, although to a lesser extent.
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Following a similar final model selection strategy, Wenzel et al. (2020) suggest utilising
random search over hyperparameters to construct diverse DEs. A hyperparameter-diverse
ensemble is initially selected from the set of networks trained during a search for a network
with a fixed initialisation. For every selected setup additional models stratified over random
initialisations are trained, creating a new pool of possible predictors out of which a final
ensemble is selected. The authors conclude deep ensembles benefit from both initialisation and
hyperparameter diversity. Additionally, they note an ensemble selected from models using a
fixed initialisation and varied hyperparameters, can improve over standard DE calibration.

Both the strategies discussed rely on constructing a pool of hundreds of trained predictors
to select from. Although an argument can be made for the use of both architecture and
hyperparameter search as procedures one might run regardless of ensembling – simply to tune
a network appropriately – the baseline ensemble training cost increases dramatically when
compared with DEs. Wenzel et al. (2020) additionally propose a computationally conscious
alternative based on batch ensembles (Wen et al., 2020), outperforming the baseline while only
increasing the training cost by a factor of two, making the method more accessible.

Lastly, deep ensemble diversity can be implicitly encouraged by dataset variation. Although,
as mentioned in Section 2.4, sub-sampling the dataset (as in Bagging) is not generally beneficial
in DE training, other methods have been proposed, training each predictor on differently
augmented data. Stickland and Murray (2020) show this strategy tends to improve calibration,
particularly for shifted data. Although the original work exclusively used efficient ensembling,
the proposed diversification can be directly applied to traditional DEs.

While we identify these as basic implicit diversification methods, it is not an exhaustive
list. In an earlier paper, Lee et al. (2016) propose using multiple-choice learning – choosing
k ensemble members with the lowest individual losses per sample to backpropagate through
during training. This results in ensemble members being trained on subsets of the original
dataset, specialising to achieve a state where some network is correct for almost any sample,
although ensemble performance may be limited. Similarly, a classic ensembling method which
we explore in-depth (see Section 2.5 and Chapter 5) – mixtures of experts – achieves implicit
dataset subsampling and network specialisation by using a gating model.

Despite the promising results described, implicit diversification methods do not provide
any guarantees – the diversity is not optimized for, and the final solution is not produced under
requirements to maximize it. This is directly contrasted by explicit diversification strategies
discussed in the following section.
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2.4.2 Explicit Diversification Approaches

The most intuitive explicit DE diversification method is diversity regularisation. It involves
deriving a quantifiable measure of overall diversity for the set of classifiers and using its scaled
version as an additive loss term. In training, this forces optimisation not only for low error,
but also for high diversity within the ensemble. A drawback of such methods is a reduction
in computational efficiency. To compute the regulariser we often need predictions from all
ensemble members, making parallelisation less trivial.

A classic strategy of diversity regularisation is negative correlation learning (Buschjäger
et al., 2020; Liu and Yao, 1999; Shui et al., 2018). Here a term rewarding negatively cor-
related predictions is used, explicitly inducing diversity beyond the point we might expect
if the networks were simply uncorrelated. The method has been shown to be effective in
diversifying deep ensembles in ID testing, however further effects and trade-offs induced by
this regularisation term remain to be studied. We do so in Chapter 4.

Other ways to quantify diversity yield different regularisers. Opitz et al. (2016), in their
study of efficient ensembling for classification, suggest regularising via the average negative
cross-entropy between predictor pairs. Meanwhile, Dvornik et al. (2019) focus on the categori-
cal distributions over non-ground-truth classes produced by the classification predictors and
regularise for negative cosine similarity between the vectors specifying these.

Jain et al. (2020) note that maximising diversity on the ID training data may be insufficient,
especially for improving calibration under dataset shift. They suggest regularising by an
approximation of OOD uncertainty estimates – an approach closely related to some OOD
detection methods (Hendrycks et al., 2018). Authors choose to draw from a uniform distribution
over the input space to produce this approximation, rather than use a specific dataset. This
creates a relatively unbiased approximation of possible data and yields remarkable results for
the regression tasks studied. However, this approach may not be as beneficial in, for example,
image classification as sampling noise from a random distribution does not reflect any realistic
OOD inputs – natural images are fundamentally highly structured.

Rather than optimising for function space diversity or OOD calibration, Kariyappa and
Qureshi (2019) seek to improve DE performance on adversarial examples. The authors argue
their goal can be achieved by creating non-overlapping adversarial subspaces via diversifi-
cation. They show explicitly minimising gradient alignment throughout training can make
ensembles significantly more robust to traditional adversarial examples. At first glance, the
connection between this form of diversification and functional diversity seems indirect and
may be considered implicit. However, more direct diversification methods have been shown to
improve adversarial robustness (e.g. Pang et al. (2019) optimising for diversity in predictions
of non-ground-truth classes), showing the connection between the tasks.
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In general, explicit DE diversification allows us to directly optimize for a diversity metric
most relevant to a task at hand – be it uncertainty on an outlier dataset when training for
calibration under dataset shift, or adversarial sub-space overlap when the goal is adversarial
robustness. The training procedure can then be expected to find a local optimum that trades-off
between individual networks’ predictive performance and the ensemble diversity.

2.5 Mixtures of Experts

While DEs rely on combining predictions from trained subnetworks with equal contribution,
this is not the only option. An alternative is provided by mixtures of experts (MoE) (Jacobs
et al., 1991). It is a classic ensembling method, using a divide-and-conquer approach – dividing
the prediction task, explicitly or implicitly, into subtasks, handled by individual predictors.

x

Expert 1

Expert 2

Expert M

Gating

Combination ŷ

Fig. 2.5 General structure of a mixture of experts model.

A set of M predictors, typically of the same type, are used as "experts", and an auxiliary
one provides gating. The standard setup is illustrated in Fig. 2.5. The gating output can
typically be interpreted as a categorical distribution over the experts. These values are used in
combining the individual outputs into a single ensemble prediction, effectively producing a
weighted average. This enables expert specialisation. As long as the gating predictor selects an
appropriate combination of outputs for a given input, the individual experts can be only suitable
for a subset of possible values.

All MoE components can be implemented as DNNs – in this case, the overall structure can
be highly similar to that of a DE, motivating our suggestion it might serve as an alternative. The
expert models can be trained independently, using pre-defined subsets of data – referred to as
explicit localisation by Masoudnia and Ebrahimpour (2014) – or jointly, by optimising a single
loss, with implicit localisation provided by the gating network which is trained alongside.

Expert localisation enables the individual predictors to be extremely diverse. As the training
focuses on only a subset of data, the predictions produced by models for sub-tasks they are not
specialised to are near-random. Thus MoE can be seen as a potential way to build intrinsically
diverse versions of DEs, with the added requirement to train a gating network.



Chapter 3

Experimental Setup

In this chapter we describe the experimental setup used throughout the dissertation. In particular,
we cover the main focus of experimentation, the key metrics for method comparison and their
relevance, the datasets we use for evaluation and the network architectures utilised.

3.1 Experimental Focus

In Section 2.1 we provided an overview of uncertainty estimation in DNNs. In particular, we
noted that while classification networks lend themselves to direct probabilistic interpretation,
the approach used for regression is less intuitive. This may have led to emphasis on the former
in literature, with papers such as those by Ovadia et al. (2019) and Guo et al. (2017) exclusively
examining classification tasks.

To take advantage of pre-existing knowledge, we likewise examine DEs and their variants
in the context of classification. In particular, we focus on image recognition tasks – they offer
interpretable inputs and established strategies to simulate semi-natural distribution shifts.

3.2 Metrics

Calibration, while an intuitive concept, is non-trivial to quantify. There is no consensus on a
single best way to measure DNN calibration. We choose to follow the loose convention (as
employed by Ovadia et al. (2019), Guo et al. (2017) and others) of compiling a set of metrics
providing complementary insights. The metrics chosen are the following:

• Expected calibration error (ECE). It quantifies the discrepancy between prediction
confidence and the empirical accuracy of the model (Naeini et al., 2015). To compute
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ECE, the model’s predictions on dataset D = {(xxx(n),y(n))}N
n=1 are partitioned into S bins.

With ρ0,ρ1 . . .ρS denoting the bin edges we define

Bs = {1 ≤ n ≤ N|max
i
(p(y = i|xxx(n),θ) ∈ [ρs−1,ρs)}. (3.1)

ECE is then

ECE =
S

∑
s=1

|Bs|
N

(Acc(Bs)−Conf(Bs)) . (3.2)

Here we use Acc(Bs) to denote the accuracy of predictions in Bs

Acc(Bs) =
1
|Bs|

· ∑
n∈Bs

1(ŷ(n) = y(n)), (3.3)

and Conf(Bs) for mean confidence,

Conf(Bs) =
1
|Bs|

· ∑
n∈Bs

p(y = ŷ(n)|xxx(n),θ). (3.4)

with ŷ(n) = argmaxi(p(y = i|xxx(n)) (predicted class), and 1(·) – the indicator function, 1
when the argument is true and 0 otherwise. Low ECE values indicate good calibration.

Measuring calibration via ECE is intuitive and closely corresponds to visual methods,
such as reliability diagrams. However, it has significant drawbacks. It requires choosing
the number of bins (we use S = 20), potentially affecting the values. The metric also
disregards the accuracy achieved and has trivial minimisers. For example, a model
outputting the marginal class probabilities in the data distribution would, in expectation,
achieve an ECE value of 0.

• Negative log-likelihood (NLL). It is a common measure for assessing a model’s perfor-
mance on a held-out dataset (Friedman et al., 2001). In the form of cross-entropy loss for
one-hot ground truth labels, NLL is often used as a training criterion for classification
in deep learning. NLL is computed as the negative log-likelihood of the labels, using
probabilities assigned to them by the model. In particular, we have

NLL =−
N

∑
n=1

log
(

p(y = y(n)|xxx(n),θ)
)
. (3.5)

Low NLL indicates the model recovers the data distribution well, while large values
indicate a poor fit. Unlike ECE, NLL does not have trivial minimisers and is only zero
when the ground-truth labels are recovered with high confidence.
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• Brier score. This metric provides another way of evaluating both network accuracy and
the associated confidence estimates. It is defined as the squared difference between the
model’s output and a one-hot encoded ground-truth label, yyy(n) (Brier et al., 1950). Over a
dataset D , it is found as

BS =
1
N
·

N

∑
n=1

(
1
K
·

K

∑
i=1

(p(y = i|xxx(n),θ)− y(n)i )2

)

=
1
N
·

N

∑
n=1

(
1
K
·

K

∑
i=1

(p(y = i|xxx(n),θ)−1(y(n) = i))2

)
(3.6)

=
1
N
·

N

∑
n=1

(
1
K
·

(
K

∑
i=1

(
p(y = i|xxx(n),θ)2

)
−2p(y = y(n)|xxx(n),θ)+1

))
.

Like NLL, Brier score is minimised if and only if ground truth labels are recovered with
high confidence. NLL is highly sensitive to tail probabilities – the penalty for confident,
but incorrect predictions is unbounded. Meanwhile, the Brier score is less affected by
rare events – the maximum penalty for a single sample is bounded at 1 – making the
metrics complementary.

It is also crucial to maintain predictive performance. Thus we additionally report accuracy,
as a metric focused primarily on correctness, and disregarding confidence estimates.

Lastly, in Section 2.4, we noted the importance of diversity among the sub-networks in a
DE. To quantify this we use disagreement between network pairs, consistent with work by Fort
et al. (2019). It is defined as the fraction of samples networks provide different predictions
(disagree) on. The disagreement between two classification models with parameters θ1 and θ2

on a dataset D is

DA =
1
N
·

N

∑
n=1
1(argmaxi(p(y = i|xxx(n),θ1)) = argmaxi(p(y = i|xxx(n),θ2))). (3.7)

We often use the mean disagreement between all network pairs in an ensemble to provide a
global diversity metric.

3.3 Datasets

As mentioned in Section 3.1, we focus on image recognition datasets and their shifted variations,
allowing thorough calibration analysis. The first dataset examined, chosen for popularity and
fast experimentation, is MNIST (LeCun et al., 2010). The dataset contains 70,000 single-
channel, 28×28 pixel images of handwritten digits (samples shown in Fig. 3.1a). The images
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are partitioned into training and test sets of sizes 60,000 and 10,000 respectively. We addition-
ally split off a set of 6,000 randomly selected training samples to be used for validation.

(a) Original samples
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n
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an

sla
tio

n

(b) Sample shifted by increasing shift values

Fig. 3.1 Visualisation of MNIST samples, as used throughout the project. On the left a random
set of images from the original test set is shown, on the right – single sample’s increasingly
rotated and translated versions.

To model dataset shift, we introduce distortions via rotation and translation. In particular, to
test on rotated data with rotation level r, we rotate the original test set images by r◦ clockwise
or anticlockwise (direction chosen at random). To evaluate on translated data with translation
level t, we shift the original image left by t pixels, wrapping the excess back around to the
right. We evaluate using rotations r = 15k,1 ≤ k ≤ 180

15 and translations t = 2l,1 ≤ l ≤ 26
2 , with

k, l ∈N. A visualisation for a subset of these is provided in Fig. 3.1b.
We also use CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) as examples of more

complex image recognition datasets. Both datasets consist of 60,000 RGB 32× 32 pixel
images, with 50,000 used for a training set and 10,000 – for a test set. CIFAR10 contains
images from 10 different classes consisting of highly distinct objects, such as ships or dogs,
with a total of 6,000 samples per class – some of these are visualised in Fig. 3.2a. CIFAR100
offers 600 samples per class instead, with images from a total of 100 classes. As for MNIST, we
randomly split off 10% of each training set to form a validation set for tracking generalization
throughout training and hyperparameter selection.

To simulate shift for these datasets we employ the corruptions suggested by Hendrycks and
Dietterich (2019). While synthetic, they aim to emulate data shifts that can be encountered in
natural data. There are 19 (15 main and 4 supplementary) types of algorithmically generated
corruptions, ranging from various types of blur, brightness and contrast changes, to simulated
natural obstructions, like rain or fog. Each corruption can be expressed at intensity levels
ranging from 1 to 5. When evaluating model performance on shifted data, we use unseen
images (the test set) with corruptions of a given intensity applied. We refer to Fig. 3.2b for a
visualisation of a subset of the corruption types.
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(a) Original samples
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(b) Single sample corrupted at increasing intensity levels

Fig. 3.2 Visualisation of CIFAR10 samples. On the right a random set of images from the
original test set is shown, on the left – a single sample’s corrupted variations with corruption
intensity increasing left to right for two corruptions: contrast change and snow obstruction.
These are also representative of CIFAR100 samples as it has equivalent image and shift types.

3.4 Predictor Networks

As our goal is to eamine the calibration of DEs and their variations, we do not require state of
the art performance. To avoid excessive computational overhead we choose common and well-
established network architectures to serve as baseline predictors. These are then either evaluated
individually or combined, before or after training, via the various forms of ensembling.

The baseline predictor model used for the MNIST dataset is LeNet5 (LeCun et al., 1998)
– a relatively small and simple convolutional network designed for this dataset. It employs a
combination of convolutional and fully-connected layers, as well as average pooling (illustrated
in Fig. 3.3). The network is commonly used as a baseline for predictive performance, and
training can be carried out quickly. The architecture has also been applied in the context of
studying calibration by Ovadia et al. (2019); Wenzel et al. (2020) and others.
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Fig. 3.3 Architecture of LeNet5.

We briefly trialled a custom architecture – a multi-layer perceptron consisting of three
hidden layers with ReLU activations, 200 units each and batch normalisation after every fully-
connected layer. Initial experimentation indicated the performance and calibration trends were
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equivalent for the two architectures (see Appendix A). To minimise the computational load,
further experiments use LeNet5 predictors.

We use ResNet-20 models as base predictors for the CIFAR datasets. This architecture
was introduced by He et al. (2016), alongside the more well-known versions ResNet-18 and
ResNet-50. The latter two, however, are adapted to ImageNet (Deng et al., 2009). We instead
use a version suggested by the authors specifically for use with the CIFAR10 dataset. It consists
of an initial convolutional layer, 3 sets of 3 residual blocks (as shown in Fig. 3.4), using values
of f = 32,16,8 for each set respectively, a global average pooling layer, and a fully-connected
prediction layer. Each convolution is followed by batch normalisation. This is another common
choice for studying network calibration on image data and DEs, employed by Fort et al. (2019);
Ovadia et al. (2019) and others.

f    3 x 3    filters

f    3 x 3    filters

+

Identity

Fig. 3.4 Residual block, as used in ResNet-20. Figure based on He et al. (2016).

3.5 Hyperparameter Selection and Training

Where fully or semi-independent training is possible the predictors are trained using a fixed set
of hyperparameters. This is done to compare model performance and calibration in maximally
equivalent settings. Where this is not reasonable – for example, when baseline predictors cannot
be trained separately in an end-to-end mixture of experts models, an additional random search is
performed. All experiments are run with 3 different random seeds (results are non-deterministic
due to randomness in initialisation and dataset shuffling). Fully-connected and convolutional
layers are initialised using the Kaiming uniform (He et al., 2015) distribution, unless stated
otherwise.

LeNet predictors are trained using the Adam optimizer (Kingma and Ba, 2014), with learn-
ing and weight decay rates chosen by random search, optimising for validation set performance.
The batch size is kept constant at 128, and models are trained for 40 epochs.

For ResNet-20 models, we use the hyperparameters suggested by He et al. (2016): training
via stochastic gradient descent, a weight decay rate of 0.0001, momentum of 0.9, batch size 128
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and an initial learning rate of 0.1, decayed by a factor of 10 after 90 and 135 epochs. Training
is carried out for 180 epochs in total. Parameters of convolutional and fully-connected layers
are initialised using the Kaiming normal (He et al., 2015) distribution.

All ensemble models studied have a constant size (M = 5). The decision to fix this ensemble
size was made in line with literature indicating that the calibration results are consistent even
for relatively small DEs. In particular, Ovadia et al. (2019) note that the improvement obtained
by increasing ensemble size quickly diminishes, and a five-network ensemble tends to have
calibration similar to that of a much larger DE.

3.6 Baselines

To assess the relative performance of the methods examined, we compare it to a set of baseline
methods. We include the following:

• A single neural network. We train a single baseline predictor and evaluate its performance
on the in-distribution test set, as well as shifted data. This provides the most basic standard
we aim to improve over, both in terms of predictive performance and calibration.

• A traditional DE (Lakshminarayanan et al., 2016). We train a set of baseline predictors
independently and identically, with random parameter initialisations drawn from the
same distributions. The predictions of the individual networks are then aggregated by
averaging to produce an ensemble prediction.

• Monte Carlo Dropout (Gal and Ghahramani, 2016). We insert dropout layers after every
non-final fully-connected or convolutional layer in the baseline predictors (with a dropout
rate of 0.5 for LeNet5 and 0.1 for ResNet-20, consistent with Ovadia et al. (2019)).
Dropout remains enabled in testing – predictions from 50 forward passes are averaged
to produce the final prediction. As noted in Section 2.1, it provides a simple Bayesian
approach to uncertainty estimation.

The networks are trained using the cross-entropy loss (equivalent to the negative log-
likelihood) and the procedure specified in Section 3.5.

These baselines do not cover the full variety of methods for improving calibration and
uncertainty estimation of deep neural networks. Some notable omissions include other Bayesian
neural networks, and post-hoc calibration methods, such as temperature scaling. It has been
shown by Ovadia et al. (2019) that the baselines selected outperform – in terms of predictive
performance and calibration under dataset shift – a wide variety of methods, including the
aforementioned ones. We thus claim comparison to the chosen methods throughout the study
provides a comprehensive perspective while maintaining focused analysis.





Chapter 4

Diversity Regularised Deep Ensembles
Under Dataset Shift

In this chapter, we take a closer look at two methods for explicit DE diversification via
regularisation – negative correlation learning (Liu and Yao, 1999; Shui et al., 2018) and
pairwise cross-entropy between ensemble members (Opitz et al., 2016). We introduce the
methods and the analysis framework, as well as modifications to the general experimental
setup outlined in Chapter 3. We then provide experimental results, analysing the impact of
such regularisation and its scaling. We find that while the proposed methods are capable of
improving the ensemble calibration and diversity level, their application in practice might be
limited. In particular, the regularisation weight is difficult to tune, with performance on an
in-distribution validation set not entirely indicative of calibration under distribution shift.

4.1 Methods for Diversity Regularisation

As discussed in Section 2.4.2, employing regularisation terms is the most common strategy
for explicit DE diversification. In this dissertation we focus on methods that allow for semi-
independent training of ensemble members, maintaining an overall procedure that is nearly
identical to DE training. In particular, training can still be easily parallelised, with independent
forward and backward passes – data sharing is only needed for loss computation.

As established in Chapter 3, we train k-class classification ensembles using the cross-
entropy loss with one-hot targets. Thus, with the k-dimensional output vector for network i
and input xxx, denoted oooi(xxx), it’s j’th element denoted oooi(xxx) j = p(y = j|xxx,θi) and ground truth
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vector yyy, the loss is

Li(xxx,yyy) = CE(yyy,oooi(xxx)) =−
k

∑
j=1

y j log
(
oi(xxx) j

)
. (4.1)

We can then define and add a regularising term Ri(xxx):

L∗
i (xxx,yyy) = Li(xxx,yyy)+λi ·Ri(xxx). (4.2)

Here λi denotes a hyperparameter controlling the relative impact of Ri(xxx). To simplify and
minimise the number of hyperparameters, we hold λ = λi constant for all ensemble members.
While Ri(xxx) may depend on network outputs other than oooi, these values are treated as constant
during backpropagation, and only the relevant term is used to update the weights of network i.

We hypothesise that regularisation may have a stronger impact in the early stages of
training. This is motivated by the traditional DE setup, with diversity induced purely by random
initialisation. Strongly emphasising the diversity inducing term early in the training, when
network predictions are still mostly uninformed, can be seen as further diversifying these
starting points. However, using a large scaling value λi throughout training might cause over-
regularisation and worsen predictive performance. To avoid this, we propose gradually reducing
the scaling factor via exponential annealing based on the current epoch ne. We investigate this
approach by extending the framework to involve a decay term d:

L∗
i (xxx,yyy) = Li(xxx,yyy)+λi ·dne ·Ri(xxx). (4.3)

Both methods we study in detail follow this framework but present distinct interpretations
of the regularisation function Ri. These are described in the following two sections.

4.1.1 Negative Correlation Regularisation

Negative correlation learning has been present in ensembling literature for a long time (Liu and
Yao, 1999). The standard form uses a formulation specific to one-dimensional outputs oi and
labels y, and is typically seen in a regression context as

Ri(xxx) = (oi(xxx)− ō(xxx))

(
∑
j ̸=i

(o j(xxx)− ō(xxx))

)
. (4.4)

Letting M denote the number of networks in the ensemble, ō(xxx) = 1
M ∑

M
m=1 om(xxx).
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This term, while not directly corresponding to the formal definition of correlation, provides
a measure of how different the predictions of the subnetworks are relative to the ensemble
mean. Temporarily disregarding the dependence of ō(xxx) on the individual predictions, we note
that for a particular subnetwork i, Ri(xxx) is minimised when all the other predictions are on the
"other side" of ō(xxx), encouraging them to be low when oi(xxx) is high and vice versa – making
them negatively correlated. The term is non-positive and can be rewritten:

Ri(xxx) = (oi(xxx)− ō(xxx))

(
∑
j ̸=i

(o j(xxx)− ō(xxx))

)
= (oi(xxx)− ō(xxx))((Mō(xxx)−oi(xxx))− (M−1)ō(xxx))) (4.5)

= (oi(xxx)− ō(xxx))(ō(xxx)−oi(xxx))

=−(oi(xxx)− ō(xxx))2.

This gives an alternative intuitive interpretation for a minimising solution – ensemble member
predictions should be far from the mean, thus inducing diversity.

Shui et al. (2018) proposed to use the formulation directly in the context of classification
ensembles, claiming it can improve DE accuracy and calibration on ID testing data in terms of
ECE. However, the exact form of the penalty, as adapted for multi-element output is not given,
and the calibration is not studied in a context of distribution shift. To address the first point, we
suggest the most direct adaptation to the context of vector outputs oooi(xxx) replaces multiplication
with dot products as follows:

Ri(xxx) = (oooi(xxx)− ōoo(xxx))⊤
(

∑
j ̸=i

(ooo j(xxx)− ōoo(xxx))

)
(4.6)

= (oooi(xxx)− ōoo(xxx))⊤(ōoo(xxx)−oooi(xxx))

=−||oooi(xxx)− ōoo(xxx))||2. (4.7)

The replacement is well-founded – dot product (for vectors of a fixed length) is minimised
when the vectors denote opposite directions so this will encourage diversity in the deviations of
network predictions from their mean.

An alternative formulation can be derived as before and is given in Equation 4.7. The term
can again be seen as encouraging the probability vectors produced by individual networks to be
far from the mean vector in terms of Euclidean distance.

We use the vector-specific formulation for training negative correlation regularised deep
ensembles (NCL-DE). When training a specific network with output oooi(·), its contribution to
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the mean prediction is ignored for backpropagation, in line with Liu and Yao (1999), with both
ōoo(·) and the predictions of other networks treated as constants.

4.1.2 Pairwise Cross-Entropy Regularisation

The second method we examine is instead specific to ensembles of classification networks
and relies on the output interpretation as a categorical distribution. In their work on efficient
ensembling, Opitz et al. (2016) proposed regularising the training loss using the sum of
pairwise cross-entropies between the individual predictions made. This was done to improve
generalisation in terms of accuracy on an ID testing set. However, we hypothesise it should have
an effect comparable to that of negative correlation learning in terms of uncertainty calibration.

In particular, we propose adapting the regularisation term used by (Opitz et al., 2016) to fit
the framework for diversity regularisation (Equation 4.2) by setting

Ri(xxx) =
1

M−1 ∑
j ̸=i

−CE(oooi(xxx),ooo j(xxx)). (4.8)

The key adjustment we make is inducing separation, to allow regularisers specific to
different subnetworks to be used individually. DEs trained using this form of regularisation are
referred to as CE-DE.

This is a compelling diversity regularisation method due to how widespread the cross-
entropy function is in machine learning. It is the go-to loss for training classification networks
and a popular indicator of similarity between categorical distributions. Minimising the negative
cross-entropy between a given predictor’s output and the predictions made by other subnetworks
should thus have a diversifying effect in the probability distributions produced.

4.2 Improvement Achievable Under Ideal Conditions

To assess the strategies, it is important to understand the potential performance in terms of
calibration achievable using NCL-DE and CE-DE under ideal conditions. In this section,
we compare the results for the best hyperparameter settings of the annealed and constant-
regularised methods and baselines outlined in Section 3.6. To illustrate ideal performance,
diversification hyperparameters are chosen by actual performance on shifted test data for each
dataset, with the additional requirement of competitive ID accuracy.
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4.2.1 Results for MNIST Data

Figures 4.1, 4.2 and 4.3 summarise NCL-DE and CE-DE performance on the variations of
MNIST testing data. Figures 4.1 and 4.2 show the metric values under progressive image
rotation and translation respectively. Two corresponding tables are provided in Appendix B
(Table B.3 and Table B.4), providing numerical results for select shift levels. Notably, all the
methods tested consistently outperform a single network in terms of calibration metrics for
shifted data. Furthermore, all included regularised methods have lower ECE, NLL and Brier
score values than traditional DEs. While the improvements observed are more significant under
shift by translation, the trend is consistent across the two dataset shift types.
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Fig. 4.1 A comparison of baseline methods – a single DNN ("Single" in legend), MC Dropout,
and DE – with best-performing regularised alternatives (notation as per Equation 4.3) on rotated
MNIST test images. The x-axis labels denote the rotation level in degrees, bar height – the
metric value. Dark lines show the 95% confidence interval obtained from 3 independent runs.

The methods using decayed regularisation terms outperform the alternatives with fixed
values of λ , supporting the earlier hypothesis on the importance of early diversification. The
heavy initial regularisation does not have a significant adverse effect on the ensemble’s accuracy,
with the values being close and falling within error bars for most methods.

Additionally, the regularisation terms increase the diversity of network predictions in
function space. This is evidenced by the mean disagreement, which is consistently higher for
the regularised DE variations. Thus the metrics used to quantify diversity in regulariser design
have the intended effect.

As noted by Ovadia et al. (2019), on this particular shifted dataset MC Dropout is often
more effective in improving calibration than other methods. The level of disagreement between
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Fig. 4.2 A comparison of baseline methods with best-performing regularised alternatives on
translated MNIST test images. The x-axis labels denote shift in pixels, bar heights – the metric
value. Dark lines show the 95% confidence interval as obtained from 3 independent runs.

predictions illustrates that the large dropout rate (p = 0.5) we can use here induces highly
diverse subnetwork predictions. The disagreement is consistently higher than for DEs and,
for rotated data, their regularised variants. However, the randomness induced causes a slight
accuracy drop.
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Fig. 4.3 A comparison of baseline methods with best-performing regularised alternatives on ID
MNIST test images. Bar height equals the relevant metric value, while dark lines show the 95%
confidence interval as obtained from 3 independent runs.

In-distribution results, shown in Figure 4.3, with numerical values in Table B.2, provide
a somewhat different perspective. We observe that regularised methods chosen by their
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performance on shifted data tend to perform slightly worse than DEs, in at least one calibration
metric on ID sets (validation and testing). This can be explained by the slight increase in
network disagreement on ID data. The dataset considered is simple, with very high accuracy
achieved (≈ 99% test accuracy), so any drop in confidence induced by diversification can cause
slight miscalibration. As on shifted data, regularised methods utilising scaling term decay
perform slightly better than those using constant λ , providing a better trade-off between over
and under-regularising.

Notably, the base network used here, LeNet5, is not very deep and, as noted by Guo et al.
(2017), such classic networks were better calibrated on ID data than modern alternatives. This is
reflected in our results, with the lowest ECE values achieved by a single predictor. However, we
have shown this does not hold under dataset shift and both the use of DEs and their regularised
variations are beneficial for calibration in these conditions.

4.2.2 Results for CIFAR Data

The CIFAR10 and CIFAR100 datasets are both larger, with shifts emulating natural ones more
closely than those used for MNIST. Furthermore, Ovadia et al. (2019) found trends observed
here to be representative of even more complex datasets, such as ImageNet (Deng et al., 2009).

Fig. 4.4 illustrates the result for the CIFAR10 dataset. As before, NCL-DE and CE-DE
tend to have slightly lower median ECE, NLL and Brier score values than traditional DEs,
particularly for severe dataset shift intensities. In these cases, accuracy is also slightly increased.
Unlike for MNIST, these approaches typically obtain the best scores (as further illustrated
by Table B.5 in Appendix B) – MC Dropout no longer outperforms DEs. This is likely due
to the significantly lower dropout probability (p = 0.1) used to ensure competitive predictive
performance. As a result, the diversity of MC Dropout predictions is lower than that of DEs
and their variations, producing poorer calibration.

Fig. 4.5 illustrates equivalent trends on the CIFAR100 dataset, although we no longer
observe a consistent improvement in the accuracy for severely shifted data. The differences
in calibration metric values are also smaller, but still present as seen in numerical results in
Appendix B.

The regularised methods are more robust to the type of dataset shift applied on both datasets
– the range of values obtained for ECE, NLL or Brier score is typically smaller than that of DEs.
This is a desirable property and suggests the NCL-DE and CE-DE might generalise better to
unseen dataset shift. The effect is stronger on CIFAR10, but still present on CIFAR100.

A notable difference from the trends on MNIST lies in the comparison of constant and
annealed regularisation. Here the differences between the best results for the two strategies are
much smaller. While for instance the annealed version of NCL-DE consistently outperforms the
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constant-regularised alternative in terms of the mean metric values across all shifts of a certain
intensity, the difference is less clear for the medians. This is partially due to the narrower range
of values obtained under annealing impacting the mean more directly.
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Fig. 4.4 A comparison of baseline methods with best-performing regularised alternatives on
CIFAR10 data. Box plots summarise the distributions of metric values across different data
shift types. Box boundaries indicate 25th and 75th percentiles, thick coloured lines – the
median, and whiskers show the full range of values.



4.2 Improvement Achievable Under Ideal Conditions 31

Val Test 1 2 3 4 5
Shift Intensity

0.2

0.4

0.6

Ac
cu

ra
cy

Val Test 1 2 3 4 5
Shift Intensity

0.2

0.4

0.6

EC
E

Val Test 1 2 3 4 5
Shift Intensity

3

6

9

NL
L

Val Test 1 2 3 4 5
Shift Intensity

0.4

0.8

1.2

Br
ie

r S
co

re

Val Test 1 2 3 4 5
Shift Intensity

0.00

0.25

0.50

0.75

M
ea

n 
Di

sa
gr

ee
m

en
t

Single
MC Dropout

DE
NCL-DE ( = 1)

NCL-DE ( = 100, d = 0.92)
CE-DE ( = 0.1)

CE-DE ( = 2, d = 0.9)

Fig. 4.5 A comparison of baseline methods with best-performing regularised alternatives on
CIFAR100 data. Box plots summarise the distributions of metric values across different data
shift types. Box boundaries indicate 25th and 75th percentiles, thick coloured lines – the
median, and whiskers show the full range of values.
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4.3 Sensitivity to Regularisation Weight

While the preceding section illustrates some desirable properties of NCL-DE and CE-DE, the
hyperparameters have been carefully selected to display the best possible use case. In practice,
this is not always possible. It is particularly challenging to select hyperparameters to guarantee
good performance on shifted data. Such samples are typically not available during training and
even the type of dataset shift that might be encountered in practice is largely unknown.

Both of the methods studied in this chapter heavily rely on the parameters λ and d. To
ensure they can be easily applied in practice, with improvement under the unknown conditions
as described above, the sensitivity to particular hyperparameter values should be low. To study
this, we investigate how the performance of NCL-DE and CE-DE on both ID and shifted data
is affected as the hyperparameter values are varied.

We sweep over logarithmic search spaces of 10a with a ∈ [−2,−1,0,1] for NCL-DE and 4a

with a ∈ [−4,−3,−2,−1,0] for CE-DE in their constant-regularized versions, and investigate
d ∈ [0.9,0.92,0.94,0.96,0.98] with a fixed λ for the annealed ones. Well-performing ad-hoc
values are included for illustrative purposes. We focus on evaluating the performance in terms
of the accuracy and ECE – summarising both the predictive performance and calibration. The
results are visualised in Fig. 4.6 and Fig. 4.7 for the MNIST and CIFAR datasets respectively.
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Fig. 4.6 Performance of regularised methods with different hyperparameters on rotated MNIST
data. A row in each subfigure displays accuracy, ECE and legend for the two plots. Solid lines
show mean values across 3 runs and all shift types of a given intensity, shaded areas – 95%
confidence interval, dashed dark line – mean baseline (DE) performance.

Across both datasets, annealed and constant-weighted versions of NCL-DE and CE-DE, we
observe relative large sensitivity to hyperparameter choice. In particular, only a narrow range
of values leads to performance improvement over standard DEs on shifted data without causing
over-regularisation. The latter manifests either in significantly higher ID ECE values (λ = 10
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for const. NCL-DE in Fig. 4.6a; λ = 4−1 for const. CE-DE in Fig 4.7b), or a combination
of rising ID ECE and a drop in accuracy (λ = 1 in Fig. 4.6b; λ = 10 in Fig. 4.7a). On the
opposite side of the spectrum, small regularisation terms or quick decay makes the method’s
performance equivalent to that of a DE.
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Fig. 4.7 Performance of NCL-DE and CE-DE for different hyperparameters on shifted CIFAR10
data. A row in each subfigure displays accuracy, ECE and the legend for the two plots. Solid
lines show mean values across 3 runs and all shift types of a given intensity, shaded areas –
95% confidence interval, dashed dark line – mean baseline (DE) performance.

Additionally, annealed NCL-DE tends to exhibit more variability across runs than other
strategies, as evidenced by large confidence intervals for most decay values. This may in part be
caused by the large initial λ value allowing more randomness to be introduced throughout the
training. However, it further emphasises NCL-DE is highly sensitive to hyperparameter choice.
While results indicate that, in theory, it is possible to improve over standard DE performance
and increase predictor diversity as measured by disagreement using this method, it may be hard
to apply in practice.

4.4 Discussion

The methods examined in this chapter, NCL-DE and CE-DE, were originally suggested for
improving ID calibration (as measured by ECE) and ID accuracy by Shui et al. (2018) and Opitz
et al. (2016) respectively. While the approaches are different, both methods are constructed to
explicitly increase the diversity of individual predictors in the ensemble.

We have shown that under appropriate conditions and well-selected hyperparameters diver-
sification can be achieved. This is illustrated by the consistent increase in mean disagreement
between predictor pairs – a metric measuring function space diversity. However, the goal is not
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to diversify blindly – high, but not useful diversity could be achieved by simply randomising
predictions. As discussed in Section 4.3, excess diversification can be detrimental in terms of
both accuracy and calibration. Particularly, explicit diversity regularisation like NCL-DE and
CE-DE optimises for diversity on the ID training data, matching the goal of diversity for OOD
samples imperfectly. Thus over-regularisation affects ID data the most, sometimes causing no
accuracy drop but inducing high ECE values on the standard test set (e.g. λ = 4−1 in Fig. 4.6b),
often due to the overall confidence level being reduced. While it is desirable for shifted data –
and leads to shifted ECE improvement in the example mentioned – ID miscalibration is intro-
duced, particularly for highly accurate predictors, such as models for MNIST and CIFAR10.
Evaluating ID data is often models’ primary use case and thus such behaviour is undesirable.

This further emphasises the need to select appropriate hyperparameters when using NCL-
DE or CE-DE. When the ideal hyperparameter settings for each problem are used (as per
Section 4.2) each regularisation strategy tested improves over the traditional DE in terms of
calibration under dataset shift. This effect is summarised in Table 4.1, where we report the
mean ranks (1 – best, 7 – worst) each method achieves across all levels of dataset shift and the
three calibration metrics (ECE, NLL and Brier score). The mean rank of both methods, using
either constant or annealed weighting, is lower than that of DE for all datasets examined.

Dataset Single MC
Dropout DE NCL-DE

(const.)
NCL-DE
(anneal.)

CE-DE
(const.)

CE-DE
(anneal.)

MNIST 6.24 3.18 4.79 4.63 3.52 3.73 1.92
CIFAR10 7 5.8 4.4 3.4 3.13 1.73 2.53
CIFAR100 7 6 4.87 3.87 1.27 2 3

Table 4.1 Mean method ranks across calibration metrics (ECE, Brier score and NLL), all data
shift types and intensities. Values compared as means for 3 runs. NCL-DE and CE-DE use
the best hyperparameter settings, as per Section 4.2. "const." indicates constant regularisation
scaling, "anneal." – annealed scaling.

Notably, the best hyperparameter settings are somewhat consistent across the datasets,
particularly for constant-weighted regularisation. For CE-DE the best results are achieved for
λ = 0.1 on both the CIFAR datasets and λ = 0.125 for MNIST. NCL-DE achieves the best
performance for λ = 3 on MNIST and CIFAR10 and λ = 1 for CIFAR100. This suggests that
despite the sensitivity to hyperparameters, the optimal range of values is relatively consistent.

However, as shown by Fig. 4.3, these parameter settings are not always the best for ID
data. Indeed, if the hyperparameters for NCL-DE and CE-DE are instead selected by the
performance on a validation set, the outlook is different. Table 4.2 summarises the mean
ranks in this case, with ECE used as a heuristic for selection. DEs are no longer consistently
outperformed by their variations with constant regularisation scaling. This is due to the lowest
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regularisation terms tested being selected in both cases, making the performance on shifted data
near-indistinguishable from that of DEs. The annealed versions of NCL-DE and CE-DE still
consistently perform better than DEs, however, this can be partially attributed to the limited
range of values tested. As in Section 4.3, we select from d ∈ [0.9,0.92,0.94,0.96,0.98] for
a fixed initial λ , constraining the choices to only methods with strong initial regularisation.
When NLL or Brier score is used to select methods via their validation performance, the overall
results are improved, however, no strategy can recover the best settings.

Dataset Single MC
Dropout DE NCL-DE

(const.)
NCL-DE
(anneal.)

CE-DE
(const.)

CE-DE
(anneal.)

MNIST 6.39 3.06 4.18 4.86 3.38 4.08 2.05
CIFAR10 7 5.67 3.33 3.6 2.53 4 1.87
CIFAR100 7 6 4.6 3.4 1.07 3 2.93

Table 4.2 Mean method ranks across calibration metrics (ECE, Brier score and NLL), all
data shift types and intensities when NCL-DE and CE-DE use hyperparameters selected by
validation ECE. Values compared as means for 3 runs. "const." indicates constant regularisation
scaling, "anneal." – annealed scaling.

Despite poor performance for shifted data, selecting hyperparameters via their validation
ECE allows us to confirm results reported by the original works proposing the respective
methods. Under this selection strategy slight but consistent improvements in the ID test set
accuracy and ECE values can be observed (detailed values provided in Appendix B, Table B.1).

In addition to exploring NCL-DE and CE-DE performance under dataset shift, we also
started with the hypothesis that using a large regularisation weight in the initial stages of
training and gradually annealing it throughout training can improve final calibration. This is
corroborated by the results for the MNIST dataset – we note a significant improvement when
annealing is used. It is further illustrated by the ranks reported in Table 4.1. However, here we
also see that the trend does not hold in the larger datasets, where more natural corruptions are
applied. While NCL appears to be improved by the annealing, constant-weight CE-DE performs
better than the alternative. Despite this, we have also shown NCL-DE is quite sensitive to the
annealing term and the overall result can vary significantly across runs. We can thus neither
confirm nor reject our hypothesis. We suggest it might be a promising strategy, particularly for
NCL-DE, although it can also increase the variability.

Furthermore, Table 4.1 suggests CE-DE is the preferred strategy in most cases. The cross-
entropy based diversity definition did not require any adaptation to the multi-output setting and
may be more suitable for diversifying classification ensembles. However, we have shown that
both methods have the potential to improve DE calibration, although more robust strategies for
selecting hyperparameter values are needed.





Chapter 5

Calibration in Mixtures of Experts

The MoE paradigm has fallen somewhat out of use within the machine learning community
as deep learning’s popularity has increased. However, some recent work has utilised related
methods. In particular, MoE-inspired layers using sparse gating to select a subset of experts to
pass the input through, are used to boost model capacity and performance. Shazeer et al. (2017)
and Riquelme et al. (2021) report state-of-the-art accuracy alongside reduced computational
cost in models employing such strategies, illustrating their potential. However, the impact
of employing MoEs has not been, to our knowledge, extensively studied in the context of
calibration. In this chapter, we conduct such analysis for ID and shifted data, using the
evaluation framework established in earlier chapters. We also investigate strategies to improve
MoE model calibration by using Bayesian gating networks.

5.1 Why Study Mixtures of Experts?

We believe the study of MoE calibration is important and highly related to the improvements
achievable via DE diversification, as examined in Chapter 4. Due to (explicit or implicit)
expert localisation, MoE training typically produces highly diverse ensembles. Thus benefits
of varied predictions are fully available in this setting, without the need for explicit diversity
quantification and regularisation. However, it also emphasises the role of the gating network,
as simply averaging network predictions has the potential to negatively affect the ensemble’s
accuracy. On the other hand, if the gating collapses to selecting a single expert for each sample
we might run into miscalibration due to the over-confidence of individual experts.

Employing a gating network can in theory improve an ensemble’s performance. This can be
seen in Table 5.1 which illustrates the difference between ensemble and oracle accuracy (Lee
et al., 2016). The latter corresponds to accuracy when the network prediction with the lowest
loss is picked as the ensemble output, illustrating how often at least one predictor in the
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ensemble is correct. The results are given for both DEs and an equivalently sized set of
explicitly localised networks (trained on subsets of data selected by class).

MNIST CIFAR10 CIFAR100

DE Ensemble Accuracy 98.97 93.6 72.99
DE Oracle Accuracy 99.51 97.73 85.24
Localised Ensemble Accuracy 40.58 54.25 57
Localised Oracle Accuracy 99.76 98.72 86.18

Table 5.1 Ensemble (predictions – means of individual outputs) and oracle (predictions – best
individual outputs) accuracy for DEs and an equivalent number of explicitly localised experts.

DE oracle accuracy being higher than ensemble accuracy is expected. Although a DE can
classify a sample correctly without individual predictors being right (e.g. when the highest
probability is assigned to a different class by each predictor, but the second-highest always
corresponds to the ground-truth class), it is not common. However, the difference between
ensemble and oracle accuracy on the CIFAR datasets is quite large, suggesting that even DEs
might benefit from appropriate gating, at least in terms of predictive performance.

In addition to this, we note that using localised experts consistently increases the oracle
accuracy, although mean prediction accuracy falls with specialisation. It was also observed
by Lee et al. (2016), who propose using multiple-choice learning to achieve implicit localisation.
This, however, does not provide a reliable way of producing accurate ensemble predictions. We
propose MoEs might serve as effective alternatives by training the gating network alongside
localised experts.

5.2 Mixture of Experts Model Architecture

We focus on MoE models where both the experts and the gating predictor are DNNs. The
base predictors described in Section 3.4 are used as experts, together with a selection of gating
network architectures.

The first option for gating network design is simply re-using the same type of network as
the one chosen for experts (referred to as Exp. gating). It limits the design decisions required,
does not introduce any additional variables and ensures the network is well-suited to the input
data. In addition to this, we examine the effect of using a relatively small gating network, with
approx. 15 000 parameters (compared to nearly 300 000 parameters in a ResNet-20). The
network has a simple convolutional architecture (Fig. 5.1, referred to as Conv. gating), making
it well-suited for the image data used. We also include a simple multi-layer perceptron gating
network. Referred to as MLP gating, it takes the flattened pixel values as input and has a single
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ReLU activated hidden layer of 100 units followed by batch normalisation. While this network
has a large number of parameters, it offers the most generic architecture option.
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Fig. 5.1 Custom gating network architecture used in MoE experimentation. Conv. refers to a
convolutional layer, BN – to batch normalisation, FC – a fully connected layer.

As per the general MoE setup, for a sample xxx and a mixture of M experts with individual
outputs ooom(xxx) and gating weights ggg(xxx), the ensemble prediction is

ōoo(xxx) =
M

∑
m=1

g(xxx)m ·ooom(xxx). (5.1)

As mentioned in Section 2.5, the gating network is typically implemented with a final softmax
layer, ensuring the entries sum to one. The ensemble prediction is thus a weighted mean of
individual outputs.

5.3 Training Mixtures of Experts

To experiment with MoEs, we need to establish a training procedure. While the typical
early strategies for MoE use the expectation-maximization (EM) algorithm (Masoudnia and
Ebrahimpour, 2014) for training, recent advances in deep learning allow backpropagation based
training to be used efficiently.

We aim to utilise the implicit expert localisation offered by training the gating network
alongside the experts, rather than explicitly dividing the dataset. This allows for degenerate
gating to develop – the gating network always giving a high weight to the same network,
emulating training a single predictor, or always weighting all networks equally, emulating a
DE. However, it does not require domain knowledge and presents the most universal approach.

We conduct end-to-end training, using a single optimiser for the experts and the gating
network, with all parameters updated together. We consider two loss functions: the overall
ensemble loss

LENS(xxx,yyy) = CE(yyy, ōoo(xxx)) (5.2)
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and the weighted sum of individual network losses,

LSUM(xxx,yyy) =
M

∑
m=1

g(xxx)m ·CE(yyy,ooom(xxx)). (5.3)

While LENS optimises the overall objective directly, LSUM brings the training procedure
closer to that of DEs, with expert training being independent aside from the scaling effect of the
gating outputs. The latter has also been more widely applied for MoE training, with Jacobs et al.
(1991) pointing out it might serve better than the ensemble loss in encouraging localisation.

Load balancing of the gating network is a known issue that arises in such MoE setups (Eigen
et al., 2013; Shazeer et al., 2017). As mentioned before, end-to-end training can sometimes
induce gating behaviour where all samples are allocated to a small subset of experts. This
causes ineffective utilisation of the model, as some of the predictors are not trained. To avoid
this we adopt the strategy suggested by Shazeer et al. (2017) and add a batch-wise importance
loss term LI to the overall loss during training. For a batch of samples X , it is computed as

LI = wI ·CV(Importance(X))2, where Importance(X) = ∑
xxx∈X

ggg(xxx). (5.4)

Here wI is a tunable hyperparameter (set to 0.1 after a grid search) and CV refers to the
coefficient of variation. Minimising LI encourages similar cumulative weights to be assigned to
all experts for each batch. The effect of applying it during end-to-end training of a MoE model
with 5 experts on the CIFAR10 dataset is illustrated in Fig. 5.2.
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Fig. 5.2 Mean gating weight assigned to experts across the CIFAR10 test set in a trained MoE
with 5 ResNet-20 models and Conv. gating. For the figure on the left, the model was trained
using LENS only; scaled importance loss was included to generate the results on the right.

The gating network of the model not utilising LI learns to use only two experts (Fig. 5.2a),
with localisation shown by one being favoured for a given class. When LI is used, the overall
allocation is much more even (Fig. 5.2b), however, localisation is maintained, with the weight
distribution for samples from a single class differing significantly from the overall result.
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We also briefly investigated the hypothesis that balanced gating can be induced by ensuring
appropriate network initialisation, bringing the initial gating distribution closer to uniform.
However, the load balancing problem is self-reinforcing – networks with training emphasised
by large gating weights are trained faster and perform better and the gating network is trained
to favour them. Thus even small random deviations eventually lead to imbalanced gating and
using an explicit balancing term is more effective.

5.4 Baseline Mixture of Experts Calibration

Throughout this chapter, we focus on two of the three datasets used earlier, MNIST (under
rotation shift only) and CIFAR10. The decision is made due to computational constraints
and to allow for a more thorough analysis. Additionally, in Chapter 4 we saw the majority of
trends are consistent across datasets, thus we deem the results sufficiently illustrative. Methods
are also no longer compared to MC Dropout, as we primarily investigate how MoE models
compare to DEs.
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Fig. 5.3 A comparison of baseline methods with MoEs trained with LENS or LSUM and using
different gating networks on ID MNIST test images. Bar heights indicate the metric value.
Dark lines show the 95% confidence interval as obtained from 3 independent runs.

On ID MNIST data (Fig. 5.3) for all MoE methods the accuracy level remains similar to
that of both DEs and a single network – likely due to the simplicity of the dataset investigated.
However, the diversity of the MoE ensembles, as measured by disagreement, is very high. This
illustrates the extensive localisation induced throughout training, and the importance of the
gating network – correct overall predictions are given even when network pairs disagree on 80%
of the samples. A similar increase in diversity due to localisation can be seen for ID CIFAR10
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data, as illustrated by Fig. 5.5. However, here we also observe a somewhat concerning drop in
ID accuracy, with all MoE models under-performing even when compared to a single model –
we discuss this in more detail in Section 5.4.1
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Fig. 5.4 A comparison of baseline methods with MoEs trained with LENS or LSUM and using
different gating networks on rotated MNIST test images. The x-axis labels denote rotation
in degrees, bar heights – the metric value. Dark lines show the 95% confidence interval as
obtained from 3 independent runs.

A general trend, persistent across datasets (seen for MNIST in Fig. 5.3 and Fig. 5.4 and for
CIFAR10 in Fig. 5.5) and both ID and shifted data, is poor calibration of MoE models. In terms
of NLL, ECE and Brier score the models tend to be equivalent to – or worse than – a single
predictor. The models produced are often more over-confident than a single network. This is
in part explained by localisation. Due to the use of gating throughout training, the networks
are effectively trained on an implicitly selected subset of data, which stabilises as the experts
and the gating network improve. This leads to exaggerated overconfidence in their predictions
as the effect of other samples is reduced by low gating weights. However, the gating network
is also a DNN prone to overconfidence (with mean confidence over the ID MNIST test set
of 95.5% and 90.6% over the 60◦ rotated set, as averaged across the different MoE settings).
Typically a single expert is assigned a high score at prediction time for a given sample, allowing
the overconfidence to propagate.

Lastly, we compare the performance of MoE models trained using different loss function
and gating network combinations. Across both datasets, the ensemble loss LENS induces a
higher level of disagreement than LSUM. On MNIST models trained using LSUM tend to have
slightly better calibration than equivalent ones trained using LENS. However, this trend is not
present on CIFAR10. In Fig. 5.5 no consistent differences can be seen for ID or slightly shifted
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Fig. 5.5 A comparison of baseline methods with MoEs trained with LENS or LSUM and using
different gating networks on ID and shifted CIFAR10 data. Box plots summarise the distribu-
tions of metric values across different data shift types. Box boundaries indicate 25th and 75th
percentiles, thick coloured lines – the median, and whiskers show the full range of values.
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data, and the trend is reversed under more intense shifts. This indicates the loss functions are
largely equivalent. However, the difference in diversity is notable. It would be reasonable to
expect LSUM – which emphasises individual expert loss values – to encourage localisation more
than LENS which only uses the ensemble prediction, but the opposite is observed. This might
also be caused by the high gating network confidence levels – the ensemble prediction largely
represents a single expert’s output in later stages of training.

For the CIFAR10 dataset, the MLP gating achieves the best calibration, under both training
losses. It also has a slightly narrower distribution across corruption types (Fig. 5.5 whisker
spread). This becomes more pronounced as dataset shift increases and might be due to the MLP
being less suited to image data and thus exhibiting less overconfidence than the alternatives.
This is further corroborated by the Exp. gating – most suited for the dataset – consistently
resulting in the worst calibration. However, the MLP performs worse on MNIST, causing
some accuracy loss on shifted data and often poorer calibration. This suggests no conclusive
recommendation of a gating architecture can be made and the choice should depend on the
target dataset. Additionally, the Conv. gating network does not consistently perform worse
than alternatives, indicating that simple, low parameter count gating networks can be used with
comparable results.

5.4.1 Challenges for Complex Datasets

As noted earlier, we observe consistent poor MoE accuracy on the CIFAR10 dataset. While
for heavily shifted data the results are generally comparable to or slightly better than that of a
single network (Fig. 5.5, shift intensities 4 and 5), this is not true for ID or slightly shifted data.
The behaviour persists for different loss and gating network combinations. Additionally, an
extensive hyperparameter search using early stopping has been conducted to rule out potential
overfitting and other common problems. The results suggest that as long as a level of implicit
specialisation among experts is maintained, the overall accuracy level remains lowered (with
better results achieved when the gating network favours a single expert from the start, or the
learned gating is uniform, emulating a single predictor and a DE respectively).

Different training strategies, such as alternating training experts and the gating network or
re-training the gating network post-hoc were also trialled, however, no consistent improvement
was observed. This indicates that training full MoE models using modern DNNs as experts is a
challenging task and more advanced techniques might be needed to make the method beneficial
in practice.
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5.5 Bayesian Gating Approaches

While the results in Section 5.4 indicate MoEs are not well-calibrated out-of-the-box, they
motivate further exploration. In particular, we confirm the implicit expert localisation via the
end-to-end joint expert and gating network training is effective and produces highly diverse
networks. The expert sets maintain high oracle accuracy – similar to or exceeding that of DEs.
These qualities suggest that it is possible to construct a gating method leading to well-calibrated
but correct predictions.

We thus hypothesise the calibration of a MoE model depends primarily on the gating
network and if we can improve its calibration, the entire model would benefit. As Bayesian
methods are often used to improve uncertainty estimates (Ovadia et al., 2019), we examine
their use in the gating network. In particular, we study the use of MC Dropout and Laplace
approximation (LA) as alternatives to classic DNNs.

For MC Dropout, as briefly introduced in Section 2.1, we add dropout layers after every
non-final layer in a given gating network. At test time, the gating weights are computed as a
mean of 50 forward pass outputs, consistent with the use of MC Dropout throughout this work.

LA uses a second-order Taylor expansion of the loss L (D ;θ) as a function of network
parameters around a given estimate to approximate p(θ |D) by a Gaussian distribution. In
particular, it can be applied post-hoc, for a maximum-a-posteriori estimate θMAP found by
standard DNN training minimizing the negative log-likelihood of the data (cross-entropy in
classification). The approximation is computed as

p(θ | D)≈ N (θ ;θMAP,Σ) where Σ :=−
(

∇
2
θL (D ;θ)

∣∣
θMAP

)−1
, (5.5)

and we refer to Daxberger et al. (2021) for a detailed derivation.
The Hessian, required for the covariance, is computed as follows:

∇
2
θL (D ;θ)

∣∣
θMAP

=−γ
−2I −

N

∑
n=1

∇
2
θ log p

(
y(n) | xxx(n),θ

)∣∣∣∣∣
θMAP

, (5.6)

assuming a zero-mean Gaussian prior over the weights with homoscedastic variance γ2.
We use the library provided by Daxberger et al. (2021) to produce such post-hoc approxima-

tions for the gating network. In practice, the Hessian matrix is approximated as a generalized
Gauss-Newton matrix (Schraudolph, 2002) and the predictive distribution uses the probit
approximation (MacKay, 1992).

To examine and compare the impact of LA using several gating network architectures within
reasonable computational constraints, we restrict the approximated posterior over weights to
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include only the parameters of the DNN’s last layer, not the entire network. This allows for the
full approximate Hessian matrix for the parameters of interest to be computed, as opposed to
imposing additional assumptions on it (e.g. diagonal form).

5.5.1 Calibration Results

To analyse the impact of dropout rate for gating with MC Dropout and prior variance for gating
with post-hoc LA we restrict the results reported to a single loss function and gating architecture
combination – LENS and Conv. gating. This is done primarily for brevity – experiments were
conducted for all settings, but the insights related to Bayesian gating strategies were found to
be consistent.

Gating Using MC Dropout

The use of MC Dropout in gating networks results in a slight increase in MoE model accuracy,
both for ID and shifted data. The effect is most pronounced for slight rotation on MNIST
(Fig 5.6) and all variations of CIFAR10 (Fig. 5.7). However, for the latter, some training
challenges remain and the ID accuracy achieved remains lower than that of DEs.
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Fig. 5.6 Comparison, for rotated MNIST data, of baseline methods, a simple MoE using LENS
and Conv. gating (Base MoE) and models trained with Conv. gating and MC Dropout with
varied dropout probabilities p. The x-axis labels denote rotation in degrees, bar heights – the
metric value. Lines show the 95% confidence interval as obtained from 3 independent runs.
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In terms of calibration, the different dropout probability values p create a gradual shift
from the poorly calibrated base MoE model using a regular DNN for gating to a calibration
level similar to that of DEs when p = 0.9 is used. The trend can be seen on both MNIST and
CIFAR10, with Fig. 5.6 and Fig. 5.7 showing the respective results. The trend is seen most
clearly in the change in ECE for both datasets.
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Fig. 5.7 Comparison, for CIFAR10 ID and shifted data, of baseline methods, a simple MoE
using LENS and Conv. gating (Base MoE) and models trained with Conv. gating and MC
Dropout with varied dropout probabilities p. Box plots summarise the distributions of metric
values across different data shift types. Box boundaries indicate 25th and 75th percentiles,
thick coloured lines – the median, and whiskers show the full range of values.
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This is in part due to gating networks with high dropout rates inducing softer localisation.
Due to the randomness in the training process, more diverse samples impact a particular expert.
This is directly reflected in network disagreement. While using a dropout rate of p = 0.1 on
the CIFAR dataset induces slightly higher expert diversity, using p = 0.5 and p = 0.9 causes
the diversity to drop, although it remains significantly higher than for DEs. This trend is more
prevalent on the MNIST dataset – we observe a consistent gradual drop in diversity as the
dropout rate is increased, with models using p = 0.9 only slightly more diverse than DEs.

While the MoE models using MC Dropout for gating can offer calibration and accuracy
comparable to that of DEs for shifted data (e.g. p = 0.9, shift intensity 5 in Fig. 5.7 or rotations
90-150 on MNIST), this is not reflected on ID sets. Fig. 5.8 shows the calibration of all MoE
methods is slightly worse than that of DEs on the MNIST dataset, with a similar, although less
distinct, trend seen for the CIFAR10 ID sets.
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Fig. 5.8 Comparison, for ID MNIST test data, of baseline methods, a simple MoE using LENS
and Conv. gating (Base MoE) and models trained with Conv. gating and MC Dropout with
varied dropout probabilities p. Bar height indicates the metric value. Dark lines show the 95%
confidence interval as obtained from 3 independent runs.

Post-hoc Laplace Approximation for Gating

Employing LA with progressively higher prior variance assumed has a similar effect to using
increasingly high dropout rates. The calibration level of the original MoE model is improved,
reaching a level similar to that of DEs without any accuracy reductions. This is illustrated by
the methods with γ2 between 0.1 and 2 on shifted MNIST data (Fig 5.9).

An equivalent effect is observed for MoEs with LA γ2 between 0.1 and 10 on CIFAR10
(Fig. 5.11). However, the method is fundamentally different. Applying LA does not change the
experts or the way they are trained. Thus the disagreement (and diversity) level in the ensemble
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remains constant. The only change comes from the estimated distribution over the gating
network’s weights. As shown in Fig. 5.9 and Fig. 5.11, the method reduces the predictor’s
overconfidence, while maintaining accuracy. Notably, in this section the last metric shown in
visualisations is ensemble prediction confidence, illustrating this statement.
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Fig. 5.9 Comparison, for rotated MNIST data, of baseline methods, a simple MoE using LENS
and Conv. gating (Base MoE) and models using post-hoc Laplace approximation for the Conv.
gating network with varied prior variances. The x-axis labels denote rotation in degrees, bar
heights – the metric value. Dark lines show the 95% confidence interval as obtained from 3
independent runs.
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Fig. 5.10 Comparison, for ID MNIST data, of baseline methods, a simple MoE using LENS
and Conv. gating (Base MoE) and models using post-hoc Laplace approximation for the Conv.
gating network with varied prior variances. Bar height indicates the metric value. Dark lines
show the 95% confidence interval as obtained from 3 independent runs.
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Fig. 5.11 Comparison, for CIFAR10 ID and shifted data, of baseline methods, a simple MoE
using LENS and Conv. gating (Base MoE) and models using post-hoc Laplace approximation
for the Conv. gating network with varied prior variances. Box plots summarise the distributions
of metric values across different data shift types. Box boundaries indicate 25th and 75th
percentiles, thick coloured lines – the median, and whiskers show the full range of values.
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It is now possible to cause an effect similar to over-regularisation discussed in Chapter 4 –
assuming very high prior variance artificially lowers the overall confidence too much. This is
seen particularly clearly for ID data – on MNIST, as shown in Fig. 5.10, calibration metrics for
methods with γ2 = 10 or γ2 = 100 indicate much poorer performance than for other methods.

This effect is less significant on the CIFAR10 dataset, although we do observe a significant
worsening in the ID ECE value when γ2 = 100 as seen in Fig. 5.11. The visualisation here also
gives us an indication of performance variation across different dataset shift types. We note
that using LA with γ2 ∈ [0.1,1,2,10] not only improves the calibration metric median when
compared to the original MoE but also significantly reduces the spread of values. This indicates
utilising Bayesian gating networks allows the MoE to become more robust to different dataset
shifts, a quality highly desirable for practical applications.

5.6 Discussion

The experimentation covered in this chapter has provided two main conclusions. First, MoE
models with all components implemented as standard DNNs are inherently poorly calibrated
out-of-the-box. Although end-to-end training of the experts can induce a high level of expert
localisation and leads to very high diversity between the networks, both they and the gating
network suffer from calibration issues. They combine to produce predictions that are sometimes
even more overconfident than those of a single predictor, particularly on shifted data. This
persists across a variety of loss function and gating network architecture combinations.

The second important conclusion is that MoE calibration can be improved to nearly match
DEs by using Bayesian approaches to adjsut the gating weights produced. In particular, using
MC Dropout with a high dropout rate trades off localisation with less extreme gating choices,
leading to models which resemble DEs more closely in terms of the subnetwork accuracy,
but maintain a higher level of diversity. Meanwhile using the LA allows us to control the
confidence level of the gating network while making use of MoE components trained using
standard methods. This allows for improved calibration without accuracy loss, as well as
showing indications of increased robustness to the type of dataset shift. However, it is possible
to choose a distribution that has a spread too wide for a given problem and cause under-
performance for ID data. The prior variance hyperparameter in LA thus requires more careful
tuning than the dropout rate, although it can provide slightly better results.

Despite being able to improve over the calibration of standard MoE models, these methods
are not able to consistently take advantage of the additional diversity in the ensemble and
provide better calibration than DEs under dataset shift. Additionally, we find MoEs are difficult
to train to a high standard for complex datasets. In particular, we are unable to ensure MoEs
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achieve accuracy higher than that of a single predictor on the CIFAR10 dataset without the
gating strategy collapsing to the extremes of always choosing the same expert or producing
uniform weights, emulating single predictors and DEs respectively. Both of these findings
indicate that while MoEs provide a promising source of diversity for improving DE calibration,
further research is needed to determine appropriate training and gating strategies to take
advantage of it.



Chapter 6

Conclusion

In this dissertation, we have thoroughly studied strategies for improving DEs by diversification,
and their impact on calibration. Upon a literature review, we identified two main paradigms.
The first, implicit diversification, relies on introducing additional randomness or certain be-
haviours without specifically optimising for them. The second, explicit diversification, involves
quantifying a desirable behaviour and jointly training for it and predictive performance.

To study the latter, we analysed two explicit diversification strategies: DEs with negative
correlation learning (NCL-DE) and using pairwise predictor cross-entropy as regularisation
(CE-DE). The methods were proposed in earlier works by Shui et al. (2018) and Opitz et al.
(2016) respectively, however, they had not been studied extensively in the context of induced
uncertainty estimates. We investigated their effects on prediction calibration for both ID and
shifted data - a setting recognised as particularly important for studying uncertainty calibration
in recent research (Ovadia et al., 2019).

We found both NCL-DE and CE-DE can improve over baseline DE calibration. However,
the improvements for ID test sets were slight and most benefits were observed in calibration
under dataset shift. As both methods depend on the choice of a scaling parameter λ , this
raised concern over their applicability in practice. We showed that when calibration on an ID
validation set is used as a heuristic for hyperparameter selection, the values chosen are sub-
optimal in the context of dataset shift. This indicates more robust strategies for selecting λ are
needed – expanded on in Section 6.1.2. We also tested a hypothesis that diversity regularisation
introduced by NCL-DE and CE-DE is more significant in the early stages of training by using
annealed regularisation term scaling. However, we were unable to draw definite conclusions
as the empirical evidence obtained suggests it is a promising strategy for NCL-DE but less
effective for CE-DE.

We further proposed traditional ensembling by mixtures of experts (MoE) with all com-
ponents implemented as DNNs can be seen as a form of implicit DE diversification, resulting
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in highly diverse and localised subnetworks. We analysed the out-of-the-box calibration of
such models, under a range of loss function and gating network architecture combinations.
We concluded MoE calibration tends to resemble the performance of a single predictor with
models sometimes exhibiting even more overconfidence on shifted data. We motivate this by
miscalibration of the gating network – the weights often significantly favour a single expert,
which in turn is trained on an implicitly chosen data subset and thus poorly calibrated.

We further proposed using Bayesian gating networks to improve the MoE calibration. In
particular, we showed that using MC Dropout or a final-layer Laplace approximation can bring
the calibration of MoE models to a level similar to that of DEs, especially for shifted data.
However, even using these methods we are unable to fully take advantage of the subnetwork
diversity and improve over DEs.

6.1 Further Work

Our work provides detailed analysis, both in terms of explicit DE diversification via NCL-DE
and CE-DE, and the implicit localisation in MoEs. However, the results are fundamentally
empirical and observational. While they provide valuable insights into the applicability of DE
diversification methods and illustrate the challenges of utilising implicit training data selection
as a source of diversity via MoEs, they offer limited clarity in terms of the underlying principles.
Furthermore, the results are often inconclusive and further research is needed to determine the
true potential of these strategies in improving uncertainty calibration.

6.1.1 Calibration Under Natural Dataset Shift

Our work serves primarily as a proof of concept, with evaluation benchmarks borrowed from
literature, in particular the evaluation framework used by Ovadia et al. (2019). While this
utilises a range of datasets and allows us to showcase the differences between ID calibration
and the trends under dataset shift, all changes in the test data are artificial. Corruptions applied
to CIFAR images mimic possible real-world scenarios, but are still algorithmically generated.

A similar trend persists in most literature studying DNN and DE calibration, with limited
information available on the calibration strategy performance under real-world dataset shift.
This is caused in part by limited dataset availability. Recently Koh et al. (2021) compiled a
variety of datasets representing natural dataset changes, manifesting via domain or subpopula-
tion shift. We believe studying diversified DE calibration under these conditions could provide
valuable insights in terms of their applicability in practice.
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6.1.2 Robust Hyperparameter Selection

In Chapter 4 we noted that calibration on an ID validation set does not generalise well to
calibration under dataset shift. Similar observations were also made by Ovadia et al. (2019)
when discussing methods such as temperature scaling, which lead to excellent ID calibration
but are outperformed by DEs on shifted data.

The methods examined in this dissertation, in particular, NCL-DE and CE-DE, have been
shown to have the potential to improve over DEs. However, their performance is highly
sensitive to the values of introduced regularisation scaling terms.

To make the methods reliable in practice, further investigation into hyperparameter selection
is required. A potential strategy is choosing by performance on an additional OOD validation set.
Similar methods have been successfully applied when training networks for outlier detection
(e.g. by Hendrycks et al. (2018), who show that using a sample from a general large-scale
dataset works to stand in for OOD data works well for a range of tasks), and thus might be
expected to perform well.

6.1.3 Universal Deep Ensemble Diversification Applicability

Our work focused exclusively on image classification. It is desirable to also explore other
settings and data modalities, such as text or tabular data, as well as deriving more extensive
theoretical motivation for the approaches studied.

While negative correlation learning has been widely applied to regression ensembles to
improve predictive performance, it has not been thoroughly studied in terms of uncertainty
calibration. Similarly, MoE strategies are rarely evaluated or analysed in this context. To verify
if the methods are universally applicable, both further analysis on a wide variety of data types
and tasks, and a theoretical study of the underlying principles are desirable.

6.1.4 Improvements in Mixture of Experts Training

We have pointed out a range of problems encountered when training MoE models for the
relatively complex CIFAR datasets. Simple end-to-end training strategies struggle to realise the
primary premise of ensembling and exceed the predictive performance of a single network.

This calls for a further study of MoE training strategies. We have primarily focused on
implicit localisation, however, explicit localisation of experts coupled with post-hoc gating
training might improve the performance. While we have explored adjusting the gating network
after training the experts, due to time constraints no extensive tuning was performed, and only
a small variety of strategies were tested.



56 Conclusion

6.1.5 Efficient Mixtures of Experts

We have chosen to focus on the classic setting for MoE, where the ensemble prediction is
a weighted average of individual predictor outputs and weights are provided by the gating
network. However, recent work, like that by Shazeer et al. (2017) and Riquelme et al. (2021),
uses gating output to select a subset of experts to be queried. We expect the calibration of MoE
models constructed this way to be roughly equivalent to that of a classic MoE, and observe
such trends when examining small sparsely gated MoEs (see Appendix C for results). However,
sparsity allows the number of experts to be increased without changing the computational cost.
While we did not examine this in favour of fixed ensemble size, it is not clear if and how such
expansion would affect calibration, and further study is required.
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Appendix A

Trends for Different Base Predictor
Architectures on MNIST
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Fig. A.1 Comparison of using MLP and LeNet5 base predictors for MNIST data, covering ID
and rotated test data. The left-hand-side column corresponds to ensembles with MLP base
predictors, right-had-side one – LeNet5. Bar height indicates metric value, grouping along the
x-axis – the dataset evaluated on. Trends observed are consistent across architectures.





Appendix B

Numeric Results for Regularisation
Experiments

This appendix contains numerical results supporting plots and comments in Chapter 4. The
tables cover all datasets used: MNIST, CIFAR10 and CIFAR100.

Arrows next to metric names indicate whether high or low values are desirable. For ID
data, no indication is given for mean disagreement – the preference is ambiguous. Numbers in
parenthesis indicate standard deviation across 3 experiments. Values in bold are best across
different methods or fall within a standard deviation of the best one.

Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement

DE 0.935 (0.0016) 0.05 (0.0014) 0.21 (0.0045) 0.097 (0.0019) 0.091 (0.0012)
NCL-DE (λ=0.01) 0.937 (0.0016) 0.048 (0.001) 0.208 (0.0024) 0.096 (0.0013) 0.091 (0.0005)
NCL-DE (λ=100, d=0.96) 0.92 (0.0014) 0.064 (0.0019) 0.249 (0.0092) 0.12 (0.0039) 0.126 (0.0036)
CE-DE (λ = 4−4) 0.936 (0.0008) 0.05 (0.0005) 0.21 (0.0049) 0.097 (0.0011) 0.091 (0.0019)
CE-DE (λ=2, d=0.9) 0.932 (0.0013) 0.052 (0.0006) 0.215 (0.0029) 0.101 (0.0017) 0.097 (0.0046)

Table B.1 Results for DEs and regularised DE variations, selected by their ECE on the validation
set, for CIFAR10 test data. Values aggregated across all corruption types.

Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement

Single 0.989 (0.0007) 0.013 (0.0007) 0.033 (0.0026) 0.017 (0.0012) -
MC Dropout 0.981 (0.0008) 0.052 (0.0029) 0.09 (0.0055) 0.035 (0.0019) 0.048 (0.0033)
DE 0.991 (0.0002) 0.014 (0.0003) 0.029 (0.001) 0.015 (0.0004) 0.008 (0.0004)
NCL-DE (λ=3) 0.99 (0.0002) 0.023 (0.0055) 0.038 (0.0058) 0.017 (0.0013) 0.037 (0.0186)
NCL-DE (λ=100, d=0.9) 0.99 (0.0006) 0.017 (0.0001) 0.033 (0.0004) 0.016 (0.0003) 0.011 (0.0005)
CE-DE (λ=0.125) 0.99 (0.0001) 0.02 (0.0016) 0.035 (0.0014) 0.016 (0.0002) 0.009 (0.0002)
CE-DE (λ=2, d=0.92) 0.991 (0.0001) 0.019 (0.0004) 0.033 (0.0006) 0.014 (0.0003) 0.01 (0.0002)

Table B.2 Results for baselines and regularised DE variations selected by their performance on
shifted data, on the MNIST test dataset.
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Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement ↑

Single 0.212 (0.0265) 0.466 (0.0267) 5.675 (0.1974) 1.168 (0.0231) -
MC Dropout 0.193 (0.0244) 0.241 (0.0404) 3.468 (0.1919) 0.992 (0.033) 0.626 (0.0234)
DE 0.197 (0.0204) 0.364 (0.0264) 4.835 (0.2615) 1.074 (0.0287) 0.551 (0.0267)
NCL-DE (λ=3) 0.191 (0.0073) 0.333 (0.0227) 4.715 (0.4327) 1.052 (0.0147) 0.645 (0.0179)
NCL-DE (λ=100, d=0.9) 0.188 (0.0207) 0.268 (0.0327) 3.92 (0.1279) 1.013 (0.0234) 0.705 (0.0179)
CE-DE (λ=0.125) 0.2 (0.0274) 0.348 (0.0681) 4.324 (0.0117) 1.062 (0.0624) 0.555 (0.0614)
CE-DE (λ=2, d=0.92) 0.202 (0.0144) 0.231 (0.0472) 3.892 (0.0553) 0.995 (0.0308) 0.738 (0.0414)

Table B.3 Results for baselines and regularised DE variations selected by their performance on
shifted data, for 10-pixel translated MNIST test data.

Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement ↑

Single 0.258 (0.0158) 0.549 (0.0139) 4.294 (0.0739) 1.216 (0.0247) -
MC Dropout 0.242 (0.0049) 0.334 (0.0155) 2.757 (0.0024) 1.005 (0.0088) 0.478 (0.0133)
DE 0.269 (0.0065) 0.443 (0.0086) 3.437 (0.0879) 1.089 (0.0138) 0.333 (0.0092)
NCL-DE (λ=3) 0.27 (0.0087) 0.417 (0.013) 3.388 (0.0922) 1.065 (0.0167) 0.391 (0.0154)
NCL-DE (λ=100, d=0.9) 0.251 (0.0097) 0.42 (0.0082) 3.278 (0.1431) 1.078 (0.0161) 0.371 (0.002)
CE-DE (λ=0.125) 0.263 (0.0054) 0.426 (0.002) 3.156 (0.0562) 1.075 (0.0047) 0.324 (0.0129)
CE-DE (λ=2, d=0.92) 0.266 (0.0012) 0.388 (0.0106) 2.962 (0.0116) 1.035 (0.0132) 0.384 (0.0201)

Table B.4 Results for baselines and regularised DE variations selected by their performance on
shifted data, for 60◦ rotated MNIST test data.

Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement ↑

Single 0.622 (0.0051) 0.29 (0.0081) 2.429 (0.1105) 0.632 (0.0131) 0.0 (0.0)
MC Dropout 0.615 (0.0089) 0.197 (0.0103) 1.435 (0.0873) 0.556 (0.0174) 0.233 (0.0029)
DE 0.664 (0.0072) 0.163 (0.0062) 1.455 (0.0553) 0.482 (0.0104) 0.292 (0.0034)
NCL-DE (λ=3) 0.666 (0.0026) 0.151 (0.002) 1.396 (0.023) 0.474 (0.0033) 0.327 (0.0019)
NCL-DE (λ=100, d=0.96) 0.654 (0.0049) 0.152 (0.0065) 1.262 (0.0302) 0.483 (0.0116) 0.336 (0.0058)
CE-DE (λ=0.1) 0.666 (0.0015) 0.153 (0.0067) 1.275 (0.0261) 0.472 (0.0059) 0.307 (0.009)
CE-DE (λ=2, d=0.94) 0.672 (0.0045) 0.155 (0.0055) 1.343 (0.0411) 0.467 (0.009) 0.302 (0.0061)

Table B.5 Results for baselines and regularised DE variations selected by their performance
on shifted data, for CIFAR10 test data shifted with intensity 4. Values reported as aggregated
across all shift types.

Method Accuracy ↑ ECE ↓ NLL ↓ Brier Score ↓ Mean Disagreement ↑

Single 0.349 (0.0052) 0.371 (0.0062) 4.609 (0.0956) 0.961 (0.0102) 0.0 (0.0)
MC Dropout 0.344 (0.0011) 0.2 (0.0049) 3.425 (0.0526) 0.829 (0.0047) 0.458 (0.0025)
DE 0.406 (0.0007) 0.18 (0.0015) 3.241 (0.0651) 0.764 (0.0008) 0.576 (0.0008)
NCL-DE (λ=1) 0.406 (0.0014) 0.179 (0.002) 3.204 (0.0163) 0.764 (0.0015) 0.59 (0.0018)
NCL-DE (λ=100, d=0.92) 0.412 (0.0039) 0.158 (0.0057) 2.842 (0.0684) 0.742 (0.0064) 0.585 (0.0053)
CE-DE (λ=0.1) 0.405 (0.0033) 0.161 (0.0017) 2.957 (0.0804) 0.751 (0.0031) 0.61 (0.0029)
CE-DE (λ=2, d=0.9) 0.405 (0.002) 0.178 (0.0021) 3.194 (0.0285) 0.763 (0.0025) 0.581 (0.0043)

Table B.6 Results for baselines and regularised DE variations selected by their performance on
shifted data, for CIFAR100 test data shifted with intensity 4. Values reported as aggregated
across all shift types.



Appendix C

Sparse Mixtures of Experts
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Fig. C.1 Comparison of trends for traditional (dense) and sparse MoE predictors using different
gating networks and trained via ensemble loss LENS on MNIST data (ID and rotated test data).
The overall trend of MoE calibration being similar or worse to that of a single network persists
for sparse models. The relative ordering of gating network architecture performance is also
mostly consistent for sparse and dense models.
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