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Abstract

Machine learning has recently shown much potential for causal inference tasks in several
important fields. Of particular interest is the estimation of individual-level treatment effects
in the context of precision medicine, which can provide clinicians with crucial information
for the design and issuance of patient-specific treatment plans. This implies answering
questions of the type: “Will chemotherapy increase the life expectancy of this oncologic
patient?” However, to effectively integrate machine learning models in the medical setting,
they must also be interpretable, so that clinicians can understand and validate their decisions.
Surprisingly, little attention has been paid to the intersection of the two fields – individual
treatment effect estimation and interpretability – and the only works that explicitly consider
it frame the problem as interpreting a standard supervised learning setting, ignoring the
idiosyncrasies of the treatment effect estimation problem.

The present work proposes a framework for interpreting the Conditional Average Treatment
Effect (CATE) estimation problem. By examining the unique features of the CATE setting,
our method allows identification of the information that is of the utmost importance in the
design of personalized policies: the predictive covariates. Furthermore, the solid theoretical
formalization of the framework enables an extensive characterization of patients at the
individual level, for instance, by additionally disentangling the prognostic and irrelevant
covariates and uncovering the specific features that make a treatment more or less efficacious
for an individual compared to the average population.

The proposed framework is extensively evaluated in both synthetic and real-world experi-
ments. We present use-cases to provide practitioners with specific guidelines on using the
framework, for example, by identifying which covariates determine the increase in cognitive
test scores for premature children that join a health development program. Finally, we
characterize four popular CATE estimators based on their ability to disentangle the predic-
tive covariates. We do so in several synthetic datasets inspired by the drug development
setting, thus providing insights on design choices by outlining the estimators’ virtues and
limitations in various scenarios. We therefore show how our method can serve as a tool for
model selection, which is naturally challenging in causal inference tasks.
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Chapter 1

Introduction

Inferring the causal effect of interventions is a fundamental problem in many domains,
including economics, education, and healthcare. Much recent work focuses on the last of
these, particularly on assisting in the design of personalized plans in the context of precision
medicine. For instance, a clinician might be interested in which medication will cause better
outcomes for a specific patient. Deciding on personalized interventions of this kind involves
tailoring treatments to patients, which requires estimating individual-level causal effects
based on the information at hand. This can be framed as estimating the Conditional Average
Treatment Effect (CATE)1.

In medicine, prospective experiments like Randomized Control Trials (RCTs) are the de
facto gold standard for causal inference, allowing evaluation of the treatment effectiveness
across a population by randomly allocating it. However, fully randomized studies are often
infeasible, prohibitively expensive, or even face some ethical issues (Schafer, 1982). Further-
more, their focus on specific questions usually does not provide a complete characterization
of the population heterogeneity, which makes them unsuitable for estimating individual-level
treatment effects. Real-world observational datasets have become a tempting shortcut, mainly
due to the widespread accumulation of data in the form of Electronic Health Records (EHRs).
EHRs contain large amounts of clinical information about heterogeneous patients and their
responses to treatments, which data-driven machine learning (ML) methods can use to
support clinical decision-making (Bica et al., 2021). Using ML for estimating individual-level
treatment effects has become a thriving area of research and has been proven to provide
clinicians with actionable intelligence for making treatment decisions, such as clinical risk
assessment (Alaa and van der Schaar, 2018c; McCauley and Darbar, 2016) or treatment
response prediction (Athreya et al., 2019).

1sometimes also referred to as Individualized Treatment Effect (ITE).
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Introduction

In general, the more data available, the more accurate estimation an ML algorithm can
make. However, the simple pursuit of predictive accuracy is insufficient in clinical practice,
where understanding the model should also be guaranteed. With the increasing availability
of EHRs, Neural Networks (NNs) and other Deep Learning (DL) methods have achieved
great success in the healthcare domain, including in CATE estimation. However, typical DL
models are not interpretable – meaning that they do not inherently explain their predictions –
which impedes their adoption in clinical decision-making. For example, in a study funded by
Cost-Effective Healthcare, a DL model was considered too risky to predict the mortality of
patients with pneumonia because it could not be understood, despite its remarkable accuracy
(Caruana et al., 2015; Cooper et al., 2005). Therefore, to adequately integrate these ML
algorithms in the medical setting, clinicians must be able to understand and trust their
decisions. In other words, they must be able to interpret the models.

There has been much progress made independently in both the CATE and interpretability
fields, but the literature at their intersection is sparse at best. Moreover, the only studies
that explicitly consider interpretability in the CATE context frame the problem as explaining
a standard supervised learning setting. Nonetheless, we argue that an “A+B solution”
is insufficient, and that the unique features of the CATE estimation problem should be
considered in the context of interpreting models.

The present work builds on the conviction that, to interpret CATE estimation effectively,
the idiosyncrasies of the problem must be taken into account. Under this premise, we develop
a framework where we unify both fields, and we give guidelines on how to employ it from the
perspective of a clinical practitioner. We additionally show the potential of the framework
in an extensive qualitative and quantitative evaluation in both synthetic and real-world
experiments.

1.1 Thesis Contributions

The main contributions of this thesis are as follows:

1. A review of existing machine learning methods for CATE estimation, particularly of a
family of non-parametric regression approaches. The various methods are gathered in
a taxonomy that characterizes them by their strategies at estimating individual-level
treatment effects.

2. A re-axiomatization of the properties of four well-known saliency methods in the context
of interpreting CATE. We outline which saliency methods satisfy which properties, and
we provide guidelines on how they can be employed to support clinical decision-making,
all this in a unified notation that links to the CATE setting.

2



1.2 Thesis Outline

3. A novel framework for interpreting CATE estimation, highlighting how the problem
differs from the standard supervised learning paradigm and previous research on the
topic. We demonstrate how saliency methods can be utilized in this context, given
their interpretability mechanisms and the outlined properties, and we evaluate them
quantitatively and qualitatively in both synthetic and real-world experiments.

4. A comprehensive comparison of four popular CATE estimators based on their ability to
discover predictive covariates – which we relate to the problem of interpreting CATE.
We characterize the estimators in a range of synthetic datasets inspired by the drug
development setting.

1.2 Thesis Outline

The structure of this thesis is as follows:

Chapter 2 provides the theoretical background necessary to understand the methods and
ideas presented in the rest of the thesis. We cover the problem of estimating CATE, and we
give a brief introduction to the field of interpretability. We then review the sparse literature
on interpretability for CATE estimation, highlighting its weaknesses and misspecifications
and how our framework differs from it.

Chapter 3 presents four well-known saliency methods employed in traditional machine
learning interpretability. We describe them in a unified notation that links to the CATE
setting.

Chapter 4 introduces the proposed framework. We first formalize the problem of
interpreting CATE and outline how the saliency methods from Chapter 3 can help accomplish
our goal. We next describe four CATE estimators, later compared in Chapter 5, and we
propose an extension to their original architectures, which we justify by empirical evaluations.
Finally, we further illustrate how saliency methods are practical for interpreting CATE by
identifying a set of desirable properties that can support clinical decision-making.

Chapter 5 extensively evaluates the proposed framework. We first set a CATE estimator
and compare the saliency methods quantitatively and qualitatively, additionally giving
guidelines on how they can be used to assist in the clinical setting, both in synthetic and
real-world experiments. We then fix a saliency method and evaluate the CATE estimators
considered in Chapter 4 based on their ability to disentangle the predictive features. We do
so in a range of synthetic datasets inspired by the drug development setting.

Chapter 6 provides some final thoughts and directions for future work.
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Chapter 2

Background Theory

This chapter presents the theoretical underpinnings of the proposed method. Our framework
attempts to intersect two vast machine learning fields: treatment effect estimation and
interpretability. Section 2.1 begins with an introduction to the CATE setting and to its main
challenges, leading to a description of a common framework to conceptualize the problem and
a taxonomy that contextualizes the considered models. Next, Section 2.2 introduces the reader
to the field of interpretability. We go through some of its definitions, its taxonomy, and its
relevance in the domain of healthcare. Finally, Section 2.3 reviews the sparse literature in the
intersection of interpretability and CATE. We identify the limitations and misspecifications
of the current approaches, which further motivate the development of our framework.

2.1 The CATE estimation problem

The Treatment Effect (TE) is the difference between outcomes under different treatments.
The present work focuses on drawing inferences about individual-level TEs, as opposed to
simply estimating the Average Treatment Effect (ATE) for the whole population. This is of
the utmost importance in the domain of healthcare, where a clinician might be interested in
how prescribing a medication will influence or determine an outcome for a particular patient.
In this context, treatment guidelines based on the average patient are insufficient, and the
need to account for the specific features of the individual arises. This can be achieved by
estimating the Conditional Average Treatment Effect (CATE).

This section first reviews the challenges of the CATE estimation problem, and presents a
standard framework to conceptualize it. We next explain how CATE can be computed using
machine learning, and we show how different approaches relate to each other in a proposed
taxonomy.

5



Background Theory

2.1.1 The challenges of CATE estimation

The CATE estimation involves computing the treatment effect for a specific individual. In
this sense, we might want to predict the increase in the life expectancy of an oncologic
patient after administering chemotherapy, given by the difference between the individual’s life
expectancy under the two possible scenarios, namely the treated and the untreated. However,
the available EHRs used to fit the ML-based estimators usually contain just the observed
outcomes. The fact that we do not have access to the counterfactual outcomes1 is often
referred to in the causality literature as the fundamental problem of causal inference, and it
is one of the reasons why the CATE estimation problem is fundamentally different from the
standard supervised learning paradigm (Alaa and van der Schaar, 2018b; Imbens and Rubin,
2015).

Another inherent challenge of learning from observational data is the existence of con-
founders. Confounders are variables that determine both the treatment assignment and the
outcome. For example, in the clinical setting the patient’s age determines the treatment
applied – e.g., younger patients receiving surgery while older patients painkillers – and the
outcome itself – e.g., younger patients showing a better recovery rate. Confounders can
introduce a spurious, non-causal behavior in the treatment effect (Johansson et al., 2020).
For instance, if we compute the treatment effect simply by averaging the recovery rate across
the “painkillers” group and the “surgery” group, we might conclude that surgery is a more
effective treatment because most of the patients in that group are young patients. Table 2.1
exemplifies this phenomenon with the Simpson’s paradox (Julious and Mullee, 1994). Here,
painkillers have a higher recovery rate for both young and old patients, but when combining
the groups surgery turns out to be the better treatment. The effect of the age is mistakenly
counted into the effect of the treatment on the outcome, thus generating a spurious effect.

Surgery Painkillers
Old 25/40 = 62.5% 120/180 = 66.7%

Young 140/160 = 87.5% 18/20 = 90%
Total 165/200 = 82.5% 138/200 = 69%

Table 2.1 Example of a spurious behavior generated by a confounder with the Simpson’s paradox (Julious and
Mullee, 1994). Here, age is a confounder affecting the outcome (recovery rate) and the treatment assignment
(surgery or painkillers). If we estimate the ˆATE: 165/200-138/200=13.5%, it erroneously draws that surgery
is more effective than painkillers. This is because most patient of the “surgery” group are young (160/200)
compared to the “painkillers” group (20/200), and young people have a higher recovery rate regardless of
treatment.

Moreover, the existence of confounders means that treatments are not assigned at random.
This is mostly due to the clinicians introducing bias into the data from their decision-making

1Counterfactual outcomes answer questions of the type “What would have happened if the patient had
(not) been treated?”

6



2.1 The CATE estimation problem

process, e.g., by administering different treatments depending on the patient’s age. This
selection bias implies having unbalanced patient representativeness in different regions of
the covariate space, thus decreasing the accuracy of predicting the counterfactuals in those
regions. In other words, selection bias implies different covariate distributions in the treatment
groups, resulting in the estimator performing poorly for the “painkillers” group if trained in
the “surgery” group and vice versa. Figure 2.1 illustrates this phenomenon.

10 20 30 40 50 60 70 80 90
Age

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

Treatment
Surgery
Painkillers

Fig. 2.1 Example of selection bias induced by the confounder “Age”. We illustrate the covariate shift between
the two treatment distributions, “Painkillers” and “Surgery”.

Several approaches have been proposed to frame and solve the challenges above. We now
introduce one of the most popular ones: the Neyman-Rubin framework.

2.1.2 The Neyman-Rubin Potential Outcomes framework

The present work conceptualizes the CATE estimation problem using the Neyman-Rubin
potential outcomes framework (Rubin, 2005), also known as the Rubin Causal Model.

We assume an observational dataset D = {(Yi, Xi, Wi)}n
i=1 with (Yi, Xi, Wi) i.i.d.∼ P,

where Y ∈ Y is a binary or continuous outcome of interest (e.g., one-year risk of stroke),
Xi ∈ X ⊂ Rd is a vector with the patient’s covariates (e.g., age, wealth status, cholesterol
level), and Wi ∈ {0, 1} is a binary treatment (e.g., {0: placebo, 1: drug}) assigned according
to a propensity score π(x) = P(W = 1 | X = x). The two potential outcomes (POs)
represent the outcome under the application of the treatment Y

(1)
i and when the treatment

is not applied Y
(0)

i (Figure 2.2).
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Xi

Wi = 0

Wi = 1 Yi (1)
  

Yi (0)
  

Fig. 2.2 Illustration of the Neyman-Rubin potential outcomes framework. A patient Xi receives a treatment
Wi = w with w ∈ {0, 1}, and we observe only the (factual) outcome Y

(w)
i .

Due to the aforementioned fundamental problem of causal inference, we only have access
to the factual (i.e., observed) outcome, so that

Yi = WiY
(1)

i + (1 − Wi) Y
(0)

i . (2.1)

The CATE is defined as the expected difference between the two POs conditioned on the
covariates X = x2:

τ(x) := E
[
Y (1) − Y (0) | X = x

]
. (2.2)

We say that the CATE is identifiable if it is possible to obtain a consistent estimate of
Equation (2.2) from data (Imbens and Wooldridge, 2009; Pearl et al., 2009). For this to
happen, the following assumptions3 must hold:

Assumption 1. Consistency. If an individual is assigned treatment w, we observe the
associated potential outcome Y = Y (w).

Assumption 2. Stable Unit Treatment Value Assumption (SUTVA). The potential outcomes
for any individual are independent of the treatment assigned to other individuals, and there
are no other versions of this treatment that lead to different potential outcomes.

Assumption 3. Ignorability. There are no hidden confounders, the potential outcomes are
independent of the treatment assignment given the covariates, i.e., Y (0), Y (1) ⊥ W | X.

Assumption 4. Positivity. The treatment assignment is not deterministic, that is, each
individual has a non-zero probability of belonging both to the control and the treated groups,
i.e., 0 < π(x) < 1, ∀x ∈ X .

2From now on we drop index i for patient.
3Note that the validity of the ignorability assumption cannot be assessed from data, and must be determined

by domain knowledge and understanding of the causal relationships between the variables.
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2.1 The CATE estimation problem

Given identifiability, Equation (2.2) can be rewritten as:

τ(x) = E
[
Y (1) − Y (0) | X = x

]
= E

[
Y (1) | X = x

]
− E

[
Y (0) | X = x

]
= E

[
Y (1) | X = x, W = 1

]
− E

[
Y (0) | X = x, W = 0

]
(2.3)

= E [Y | X = x, W = 1] − E [Y | X = x, W = 0] (2.4)
= µ1 (x) − µ0 (x) , (2.5)

where Equality (2.3) is due to the ignorability assumption, and Equality (2.4) follows from
the consistency and the SUTVA assumptions. Equality (2.5) shows that the CATE can be
expressed with the difference between the response surface under treatment, µ1 (x), and
under control, µ0 (x), defined as

µw (x) := E
[
Y (w) | X = x

]
. (2.6)

Note that the positivity assumption guarantees that, for each patient X = x, it is possible
to observe samples from the two Y (w) – although in practice we only observe one – and,
therefore, that we can estimate the surfaces µw from data.

In conclusion, if assumptions 1-4 hold, the CATE can be calculated using standard machine
learning algorithms trained with observational data under the Neyman-Rubin framework. A
plethora of methods has been proposed in the literature to this end. The present work focuses
on the so-called meta-learners, a family of non-parametric regression models introduced
below.

2.1.3 Meta-learners for CATE estimation

Formally, non-parametric regression approaches model the outcome surface Y as a function
of the treatment assignment W , the covariates X, and some unobservable noise ϵ, which we
assume to be additive Gaussian. This leads to the expression:

Y = f (X, W ) + ε, with ε ∼ N
(
0, σ2

)
, (2.7)

where f (X, W ) = E [Y | X, W ]. Given this framework, several meta-learners have been
proposed to estimate CATE.

First introduced by Kunzel et al. (Künzel et al., 2019), these meta-learners allow
decomposition of the problem of estimating CATE into regression tasks that can be solved
using standard supervised learning techniques, such as tree ensembles (Athey and Imbens,
2016; Lu et al., 2018; Powers et al., 2018) and Neural Networks (Johansson et al., 2020; Shalit

9



Background Theory

et al., 2017). Here we follow the taxonomy proposed in (Curth and van der Schaar, 2021b),
differentiating between direct and indirect meta-learners.

Direct meta-learners

A direct meta-learner targets τ(x) directly in a two-step fashion, first obtaining some nuisance
parameters η = (µ0(x), µ1(x), π(x)) from observational data and then estimating τ̂(x) by
regressing a pseudo-outcome Ỹη̂ (based on η̂) on the covariates X. For pseudo-outcome Ỹη̂ it
holds that E

[
Ỹη | X = x

]
= τ(x), that is, it is an unbiased CATE estimator if η is known.

Different strategies estimate different nuisance parameters in the first step, including
the propensity score π(x) and/or the POs response surfaces µw(x). Kennedy’s DR-learner
(Kennedy, 2020) first obtains separately π̂(x) and the two response surfaces µ̂w(x), and then
regresses a pseudo-outcome that is unbiased if any of the them is correctly predicted. The
X-learner (Künzel et al., 2019) computes two group-specific estimators, τ̂1(x) and τ̂0(x), and
combines them with a weighting function to estimate the global τ̂(x) . In (Curth and van der
Schaar, 2021a), the authors also introduce two simplified versions of the DR-learner, namely
the RA-learner and the PW-learner, which exclusively estimate the response surfaces and
the propensity score in their first step, respectively. We provide details on the DR- and the
X-learner in Section 4.2.

Indirect meta-learners

Unlike previous work (e.g., (Künzel et al., 2019)), we define as indirect meta-learner any
estimator that first fits the POs response surfaces µ̂w(x) and then computes CATE by
their difference τ̂(x) = µ̂1(x) − µ̂0(x). This way, we consider a broader classification
than that underlying Kunzel’s S- and T-learners. Notably, we include multi-task learning
methods, representation learning methods, and disentangled representation methods; which
are traditionally classified in separate categories, e.g., in (Caron et al., 2020; Yao et al., 2020).

Multi-task learning methods conceptualize CATE estimation as a multi-task learning
problem. They use a neural architecture with shared layers for the treated and control groups,
on top of which private layers are set for each group separately. There are several exciting
extensions to the multi-task paradigm based on the Bayesian framework, for instance, in the
form of multi-task Gaussian processes (Alaa and van der Schaar, 2017). The probabilistic
treatment of the problem allows accounting for uncertainty, providing measures of confidence
for the POs and CATE estimates, which are of the utmost importance in the context of
precision medicine. We also include (Alaa et al., 2017)’s DCN-PD in this category, which
employs Monte-Carlo propensity-dropout at inference, alleviating the selection bias problem
and tracking individualized uncertainty measures.
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Representation learning methods (Bengio et al., 2013; Shalit et al., 2017) formally
involve jointly learning a representation Φ : X → S and two regression heads hw : S → Y,
each fit with the corresponding treatment/control group data in the latent space. For instance,
Shalit’s TARNet (Shalit et al., 2017) minimizes a weighted sum of the factual loss by training
this neural architecture in an end-to-end fashion. DragonNet (Shi et al., 2019) additionally
predicts the propensity score to enforce the representation space to keep covariates relevant
for treatment assignment, and learns the hypothesis of both groups on top of it. Specifically,
representation learning methods have become a popular approach to combat the selection
bias challenge. Recall that selection bias implies having different covariate distributions in
the treated and control groups. This covariate shift can be framed as a domain adaptation
problem (Mansour et al., 2009). In this sense, some methods attempt to enforce a balanced
representation where the two distributions look similar by minimizing an Integral Probability
Metric (IPM) measure of distance between them. This is the case of the CFR (Shalit et al.,
2017), the RCFR (Johansson et al., 2018), and ACE (Yao et al., 2019).

However, the aforementioned representation learning methods do not differentiate between
covariates that are purely predictive of outcome Y , treatment W , or both (i.e., confounders).
Therefore, balancing all covariates in the representation space could counterproductively
induce additional bias since some of them determine the treatment assignment. Disentan-
gled representation methods attempt to solve this problem by learning to decompose
the representations of confounders and non-cofounders. Therefore, they allow minimizing
exclusively the distance between the distribution of covariates that only affect the outcome
Y , so that we do not discard information about treatment assignment. Prominent examples
of disentangled representation methods are Hassanpour et al.’s DR-CFR (Hassanpour and
Greiner, 2019b) and Wu et al.’s DeR-CFR (Wu et al., 2020). Additionally, Curth and VdS’s
SNet (Curth and van der Schaar, 2021a) further adds two extra representations for predictive
covariates that affect a single potential outcome, namely Y (0) and Y (1), thus accounting for
the heterogeneity of treatment effectiveness across groups.

It is easy to spot similarities between the indirect CATE estimation approaches (Figure
2.3). The reality is that they are many times complementary, and a single meta-learner could
use techniques from the three domains (multi-task learning, representation learning, and
disentangled representation learning). In fact, SNet has been shown to generalize some of
the models mentioned above, including TARNet, DragonNet, DeR-CFR, and TNet (i.e., NN-
based T-learner). Section 4.2.4 revisits these features in detail, pointing out their relevance
to our specific problem.

This section has detailed the problem and challenges of estimating individual-level
treatment effects. It has also reviewed several approaches to estimate CATE accurately,
presenting a family of non-parametric regression models. However, if the goal is designing
treatment policies for personalized medicine, we argue that it is at least equally important to
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Fig. 2.3 Model architectures of four well-known indirect CATE estimators. TNet simply fits each POs surface
with a NN. TARNet, DragonNet and DR-CFR first use a shared representation and estimate the POs and/or
the propensity score with private layers. DR-CFR considers a disentangled representation of the shared layers
by decomposing them in three representations. TARNet, DragonNet and DR-CFR clearly follow a multi-task
learning approach. All estimators compute CATE by the difference of the estimated POs surfaces, which
further supports that the four should be considered in the same category of indirect meta-learners. Adapted
from (Curth and van der Schaar, 2021a)

Category Strategy Examples

Direct
Estimates µw DR-learner, RA-learner
Estimates π DR-learner, PW-learner
Other X-learner

Indirect

T-learners TNet
Multi-task learning DCN-PD, TARNet, DragonNet, CFR, ACE, DR-CFR, SNet
Representation learning TARNet, DragonNet, CFR, ACE, DR-CFR, DeR-CFR, SNet
Disentangled representation learning DR-CFR, DeR-CFR, SNet

Table 2.2 Summary of some meta-learner approaches. Note that one estimator can belong to different
categories.

assess whether an algorithm leads to the correct interpretation of the drivers of the underlying
treatment effect heterogeneity. The following section introduces the reader to the field of
interpretability, describing a set of methods that could shed light on this matter and laying
the foundations for our proposed framework.

2.2 Machine Learning Interpretability

ML has been successfully deployed in a wide range of domains, including healthcare, finance,
autonomous driving, and speech recognition. A clear example is the family of meta-learners
described in Section 2.1.3, with a direct application in clinical decision-making, drug discovery,
and precision medicine. This often means that decisions that humans used to make are now
made automatically by these algorithms.

In order to ensure the reliability of such decisions, humans need to understand how and
why they are made (Moraffah et al., 2020). However, ML models are generally black-boxes,
meaning that they do not inherently explain their decisions. This is particularly problematic
given the impending regulation on the need for explanatory systems like the European Union’s
“Right to Explanation” (Goodman and Flaxman, 2017), which states that an applicant has
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the so-called right to be informed and could require a list of all the factors that influence a
model’s decision. Moreover, research on the topic has uncovered racially-biased ML systems
applied to criminal risk assessment (Angwin et al., 2016) and evidenced the fallibility of
Deep Neural Networks when minimally perturbing their inputs (Goodfellow et al., 2014;
Moosavi-Dezfooli et al., 2016). Therefore, understanding the decisions of ML models can
help identify their weaknesses and sources of bias, which is a path towards increasing their
safety. The field that researches in this direction is the Machine Learning Interpretability.

This section briefly introduces the reader to the field of interpretability. We review
some of its definitions, as well as a typical taxonomy. Finally, we justify the importance
of interpretability in the domain of healthcare, and, more specifically, in the context of
precision medicine. Note that this section does not aspire to be an exhaustive review of the
interpretability field. Conversely, the goal here is to give some background to contextualize
our problem and to establish the basis for our proposed method.

2.2.1 Definition

There has been a growing interest4 in the interpretability field due to the impressive perfor-
mance of non-interpretable models in high-stakes decision-making, where not explaining the
algorithm’s reasoning presents evident dangers (Adadi and Berrada, 2018). However, despite
the apparent relevance and enthusiasm, there is no consensus among the research community
on what we mean by interpretability. Notably, Miller (Miller, 2019) defines it as “the degree
to which a human can understand a cause of a decision.” Kim et al. (Kim et al., 2016), on
the other hand, suggest that interpretability is the degree to which humans can consistently
predict the model’s decision. Doshi-Velez et al. (Doshi-Velez and Kim, 2017) understand
interpretability as the ability to present information in intelligible terms.

In the present work, we are more aligned with Gilpin’s (Gilpin et al., 2018) goal-oriented
conception of interpretability: “The goal of interpretability is to describe the internals of a
system in a way that is understandable to humans.” In this sense, by interpreting a model
here we mean answering the question: “Why does this particular input lead to that particular
output?” or, framing in terms of our problem: “Why does this particular patient lead to
that particular treatment effect?”.

2.2.2 Taxonomy

We follow the taxonomy of traditional interpretable models introduced in (Moraffah et al.,
2020) and divide these algorithms into two categories: (1) inherently interpretable models,
and (2) post-hoc model interpretability.

4+40,000 related publications since 2015 according to Google Scholar.
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Inherently interpretable models These models either embed explanations as part of
their architecture or are constrained to enhance their simplicity, hence their intelligibility.
Notable interpretable models are the decision trees, whose predictions can be explained by
tracing back the conditions on their nodes; rule-based models, which infer predictions by
understandable if. . . then. . . rules; linear regressions, whose weights have a straightforward
connection with feature importance; and disentangled representations, which break down
features into independent latent variables that are highly correlated with meaningful patterns
(e.g., PCA (Jolliffe, 2005) or deep latent-variable models such as VAE (Kingma and Welling,
2013)).

Post-hoc interpretability Post-hoc interpretability aims to explain the decisions of a
black-box model after training. A prominent family of post-hoc interpretability methods is
saliency methods, which explain a model’s decision by highlighting the input features that
are most relevant for issuing the prediction. According to (Crabbé and van der Schaar, 2021),
saliency methods can be gradient-based (e.g., DeepLIFT (Shrikumar et al., 2017), Integrated
Gradients (Sundararajan et al., 2017)), perturbation-based, attention-based, or have their
own mechanism for computing feature importance (e.g., LIME (Ribeiro et al., 2016), SHAP
(Lundberg and Lee, 2017)). Other post-hoc interpretability methods include example-based
explanations and feature visualization, which generally deal with image inputs. Furthermore,
black-box models can be explained by using base interpretable models, such as decision trees,
rule-based models, or linear regression. In this sense, an inherently interpretable model is
trained to approximate the behavior of a more complex black-box, like a NN (Boz, 2002).

There is a separate category of interpretability methods that has gained much interest
recently: causal interpretability 5. This framework, first introduced by Pearl (Pearl, 2018),
outlines the problem of interpretability by understanding the causal-effect relations of a
model, not just the correlations captured by traditional interpretability techniques. It is
therefore not to be confused with our problem at hand, which is studying how (traditional)
interpretability applies to CATE estimation, which is a causal inference problem by nature.
Causal interpretability, on the other hand, conceives the problem of interpreting a model
from a causality framework.

Having defined what we mean by interpretability and its general taxonomy, the following
section examines its relevance in the context of our problem: the clinical setting.

5We refer the interested reader to two comprehensive surveys on causal interpretability: (Moraffah et al.,
2020) and (Xu et al., 2020).
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2.2.3 Interpretability in Healthcare

The healthcare domain is arguably one of the most challenging applications of machine
learning. The medical field contemplates additional risks and responsibilities that other fields
do not consider when incorporating ML systems. Notably, in clinical decision-making lives
may be at stake, which raises ethical concerns about using these systems if they are not reliable
(Jiang et al., 2017). Moreover, in clinical decision support we are confronted with unknown,
incomplete, noisy, erroneous, and inaccurate datasets in arbitrarily high-dimensional spaces
(Holzinger et al., 2014). This problem is even more critical in personalized medicine, since it
requires the fusion of these various heterogeneous data sources to predict treatment effects at
the individual level. We argue that to integrate machine learning algorithms in this context
effectively, the clinician must have the possibility to understand how and why the model has
made a decision. Simply put: the clinician must be able to interpret the model.

Interpretability can help understand how diverse and heterogeneous data may contribute
to a relevant prediction at the patient level. In (Tonekaboni et al., 2019), the authors
surveyed 10 clinicians with varying years of experience to identify the specific aspects of
interpretability that could build trust in ML. They unanimously agreed that knowing the
subset of features that defines the model’s outcome is crucial in the clinician’s decision-making,
allowing them to compare the model’s decision to their clinical judgment, especially in a
discrepancy. Furthermore, they underlined the utility of feature importance measures for
specific patients, as opposed to only at the population level.

These findings further motivate the present work, since our goal is to understand why a
machine learning model recommends a particular treatment for a specific patient. Therefore,
it seems sensible to tackle the problem by using interpretability methods that measure feature
importance at the patient level. This will be the topic of Chapter 3. In the next section, we
review the sparse literature on interpretability for CATE estimation, and we comment on
how our approach differs from it.

2.3 Interpretability for CATE estimation

The ML literature at the intersection of CATE estimation and interpretability is currently
sparse at best. Following the taxonomy in Section 2.2.2, a straightforward approach towards
interpreting CATE uses inherently interpretable models for its estimation. Although simple,
their implicit mechanisms for explaining the model’s decisions have raised notable popularity
among linear regression (Abrevaya et al., 2015; Hahn et al., 2018) and decision trees (Foster
et al., 2011) for estimating treatment effects.
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Nonetheless, such approaches can come at the cost of lower estimation accuracy compared
to other methods. Notably, Neural Networks are the state–of–the–art in CATE estimation,
principally by their representation learning approaches (Curth and van der Schaar, 2021a;
Hassanpour and Greiner, 2019a; Shalit et al., 2017). NNs depend on an uninterpretable
representation space, which implies that their decisions can only be explained by post-hoc
interpretability.

The only work that explicitly considers the problem of interpreting CATE from the
post-hoc perspective is (Kim and Bastani, 2019). The authors propose explaining a NN-based
CATE estimator using a two-stage algorithm, fitting an inherently interpretable model on top
of the already-trained POs regression surfaces. Specifically, they first learn an uninterpretable
function f∗ to estimate the POs surfaces hw : S → Y from the representation space Φ : X → S,
which they define as the oracle model f∗(X, W ) = hW (Φ(X)). In the second step, they use
a supervised learning algorithm A to learn an interpretable model f̂ (e.g., a linear regression)
that approximates f∗. Formally:

f̂ = A ({(Xi, Wi, f∗ (Xi, Wi))}) , (2.8)

where (Xi, Wi) ∼ p(X, W ). They choose p(X, W ) to be the RCT distribution, where
treatments W are independent of the covariates X and are thus assigned randomly. Finally,
they estimate CATE as τ̂(x) = f̂(x, 1) − f̂(x, 0).

However, we argue that the authors in (Kim and Bastani, 2019) do not consider the unique
characteristics of CATE estimation in the context of interpreting models, and they frame the
problem identically to explaining a standard supervised learning black-box. We believe that,
unlike in a standard prediction setting, it is not most important to interpret how the patient’s
covariates influence the POs. Instead, we should focus on finding interpretations of the
difference between (potential) outcomes under different treatments, which is the treatment
effect itself – a feature that (Kim and Bastani, 2019) overlooks.

A way of characterizing this difference is by identifying which covariates affect both POs
(and are thus discarded when computing the CATE) and which ones affect only one PO,
accounting for treatment heterogeneity across groups. One therefore distinguishes between
two types of covariates that determine the two components of patient responses, namely the
prognostic and the predictive biomarkers (Ballman, 2015). We describe them next.

2.3.1 Disentangling predictive and prognostic biomarkers

The term biomarker relates to a measurement variable that is associated with a disease
outcome (Ballman, 2015). We will use the word biomarker interchangeably with covariate in
the present work, referring to the patient’s features.
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We differentiate between prognostic and predictive biomarkers. On the one hand, prognos-
tic biomarkers are clinical and biological features that affect the patient’s outcome irrespective
of the treatment received (Ballman, 2015). This means that prognostic features equally
influence both the treated and control groups, so their information is lost when computing
the treatment effect. Typical examples of prognostic biomarkers are gender, histology, or age.
They are mainly used to guide aspects of clinical trial planning like patient stratification
(Sechidis et al., 2018). On the other hand, a biomarker is predictive if it affects the treatment
effect, outlining the potential benefit of the patient receiving a treatment. Therefore, pre-
dictive covariates account for the heterogeneity across the control and the treated groups.
An example of a predictive biomarker is somatic mutations in oncologic diagnoses (Nalejska
et al., 2014). In practice, biomarkers almost always have some degree of prognostic and
predictive value but will likely be dominated by one or another. Figure 2.4 shows idealized
examples of purely prognostic and purely predictive biomarkers.

Fig. 2.4 Experiment A shows an idealized example of a purely prognostic biomarker. The biomarker-positive
patients present a better survival rate than the biomarker-negative patients, regardless of the treatment
assignment (i.e., both treated and control group experiment an improvement in the survival ratio of the
same magnitude). Experiment B illustrates an idealized example of a purely predictive biomarker. Here only
the positive-biomarker treated group increases the surviving proportion. The patients in the control group
present the same survival rate when they are biomarker-positive and biomarker-negative. Figure adapted
from (Ballman, 2015).

The distinction between predictive and prognostic covariates can be ambiguous if expressed
just with words. We now further clarify their difference with an example. Let us assume the
additive data generation process:

Y = X1 + X2 + X5 + W (X3 + X4 + X5) + ϵ.
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Here, X1 and X2 are prognostic biomarkers – affecting the outcome Y regardless of the
treatment W – while X3 and X4 are purely predictive – and only affect the treated population
W = 1. X5 is both predictive and prognostic. This is clear if we explicitly compute the
difference between the POs: Y (1) − Y (0) = X3 + X4 + X5, where the prognostic features
cancel and only the predictive remain.

Recent ML literature has reported trends on declaring prognostic biomarkers as predictive
and vice versa (Lipkovich et al., 2017; Sechidis et al., 2018). In drug discovery, mistakenly
assuming a prognostic biomarker to be predictive may overestimate the benefits of a treatment
for a subset of a population, resulting in financial and ethical consequences (Sechidis et al.,
2018). To avoid this, a number of approaches attempt to uncover the predictive covariates by
computing variable importance with some heuristics. For instance, the authors in (Svensson
and Hermansson, 2021) propose several tree-based models for estimating CATE, and calculate
the feature importance based on the Gini index. Our approach differs from theirs in that it can
be applied to Neural Networks, which are state-of-the-art in CATE estimation. Furthermore,
the theoretical formalization of our framework additionally allows finding prognostic and
non-informative covariates and uncovering the covariates responsible for shifting from the
general ATE to a patient-specific CATE, among other features.

We detail these features in Chapter 4, together with our proposed method. Before
that, the next chapter introduces the set of tools that will allow us to interpret the CATE
estimators: the saliency methods.
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Chapter 3

Saliency methods for CATE
interpretability

In the previous chapter, we discussed how individual-level feature importance has a decisive
weight in the clinician’s decision-making process, and we supported this with insights from
human experts. Moreover, we argued that interpretability methods based on feature attribu-
tion can become a powerful tool for discovering predictive biomarkers, which are the true
drivers of the treatment effect and thus of the utmost relevance for personalized medicine. We
believe these two reasons are enough to base our framework on this group of interpretability
methods.

To this end, this chapter focuses on saliency methods. Section 2.2.2 introduced saliency
methods as a family of post-hoc interpretability techniques that explain the prediction of a
model by highlighting the input features that are most relevant for issuing the prediction. In
the CATE setting, input features correspond to patient’s covariates, so that saliency methods
allow identifying the covariates on which the CATE estimator relies to obtain the treatment
effect.

We next introduce four well-know saliency methods, namely LIME (Ribeiro et al., 2016),
DeepLIFT (Shrikumar et al., 2016), Integrated Gradients (Sundararajan et al., 2017), and
SHAP (Lundberg and Lee, 2017). We do so by describing them with a unified notation,
which also links to the one used in the Neyman-Rubin framework (Section 2.1.2).

Notation We assume a patient with covariates X = x ∈ Rd who receives a treatment
W = w, so that we only have access to the observed outcome Y = y. We attempt to estimate
the CATE τ with a black-box estimator τ̂ . A saliency method will attribute an importance
score ac(τ̂ , x) to each covariate c ∈ [d] contained in the vector x.
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3.1 LIME

Local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) is a pioneering
work in machine learning interpretability. The authors propose an explanation technique
based on a surrogate model that learns an interpretable model locally around a prediction of
a black-box. The method works in a model-agnostic fashion, meaning that it can be used to
explain any type of model.

In our setting, LIME computes the feature importance of a patient with covariates x

by testing how giving variations of the data to the black-box CATE estimator, τ̂ , affects
its predictions. This is achieved by fitting a weighted, interpretable model g in the dataset
comprising the perturbed samples z, which locally approximates τ̂ . The authors argue that
the explanation ensures both interpretability and local fidelity. Formally, the saliency is
obtained as

a1(τ̂ , x), . . . , ad(τ̂ , x) = arg min
g∈G

L (τ̂ , g, πx) + Ω(g), (3.1)

where g is an interpretable model from class G (e.g., linear models, decision trees), L is
a fidelity function that measures how close is the explanation to the black-box prediction,
and Ω measures the complexity of g (e.g., the number of features, depth of decision tree).
The proximity measure πx defines how close the perturbed samples z are to the instance of
interest x.

Specifically, the steps for computing an explanation with LIME are the following:

1. LIME first generates a new dataset made by the instance of interest x and the perturbed
samples z, together with their corresponding black-box predictions.

2. The new samples are weighted according to their proximity to x by πx.

3. The weighted, interpretable model g is trained on the new dataset.

4. The explanation is computed with Equation (3.1).

Figure 3.1 shows a toy example to present intuition for the method. Although model-
agnostic and straightforward to use, LIME presents several drawbacks. Notably, the choice of
the perturbed neighborhood can have a significant impact on the explanation, making them
sometimes unreliable (Laugel et al., 2018).

3.2 DeepLIFT

Deep Learning Important FeaTures (DeepLIFT) (Shrikumar et al., 2016) is a gradient-based
interpretability method that decomposes a prediction of a Neural Network by back-propagating
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Fig. 3.1 Toy example of a LIME explanation. τ̂ is a binary black-box CATE estimator with a non-linear
decision boundary, represented by the pink and light blue background. The bold red cross is the instance
patient x that we want to explain. LIME samples instances z by perturbing x, gets their black-box predictions
τ̂(z), and weights them by their proximity to x – represented here by size. The gray line is the linear decision
boundary for the interpretable model g, which explains τ̂ locally but not globally. Figure adapted from
(Ribeiro et al., 2016).

the contributions of all the neurons to the input features. In this sense, unlike LIME,
DeepLIFT is not model-agnostic. It was notably one of the first methods that introduced
the concept of “baseline,” framing the problem of feature importance as a difference from a
reference.

We re-formulate the DeepLIFT framework presented in (Ancona et al., 2017) with our
notation. Formally, DeepLIFT assigns to each neuron i an attribution representing the relative
impact of activating it at a patient x compared to the activation for a baseline patient x̄.
Starting at the output layer L, the method first assigns a relevance r

(L)
1 = τ̂(x) − τ̂(x̄) to the

output neuron1. Then it runs a forward pass, computing the reference values z̄ji = w
(l+1,l)
ji x̄

(l)
i

for all hidden units, using the baseline x̄ as input and recording the activations. Finally, it
proceeds backwards layer by layer, assigning a relevance r

(l)
i to each neuron i of each layer l.

It does so by applying the recursive rule:

r
(l)
i =

∑
j

zji − z̄ji∑
i′ zji′ −

∑
i′ z̄ji′

r
(l+1)
j , (3.2)

where zji = w
(l+1,l)
ji x

(l)
i . The feature importance for covariate c is thus defined at the input

layer:
ac(τ̂ , x) = r(1)

c . (3.3)

The recursive algorithm in Equation (3.2) was used in the original paper, and is known as the
“Rescale rule.” We do not consider the “Reveal Cancel rule” (Shrikumar et al., 2017) here.

1In Section 2.1.3, CATE estimation was framed as a regression or binary classification problem, which
consider a single neuron in the output layer. The original notation of DeepLIFT does contemplate the case of
multi-output classification.
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The existence of a baseline allows back-propagating the signal even when the gradients
saturate, and it avoids artifacts caused by discontinuous gradients. However, the choice of
the baseline is sometimes critical (Sturmfels et al., 2020). Some guidelines on defining it can
be found in the original paper (Shrikumar et al., 2016) and the Distill article (Sturmfels
et al., 2020)2.

3.3 Integrated Gradients

Similar to DeepLIFT, Integrated Gradients (IG) (Sundararajan et al., 2017) is a gradient-
based method specifically designed to interpret Neural Networks. IG frames the feature
attribution problem from an axiomatic approach. The authors argue that sensitivity and
implementation invariance are two fundamental axioms that should be satisfied by any
interpretability methods, and they build IG under this premise.

Formally, IG defines the importance values of a feature as follows:

ac(τ̂ , x) = (xc − x̄c) ×
∫ 1

0

∂τ̂ (x̄ + α × (x − x̄))
∂xc

dα, (3.4)

where x̄ is the baseline patient and x̄c the corresponding baseline value for covariate c.
Equation (3.4) shows how IG computes the importance of covariate c by accumulating the
gradients along a straight-line path from the baseline x̄ to patient x. The integral can be
approximated via a discrete summation. In (Sotoudeh and Thakur, 2019), the authors show
that computing the Riemann sum using the trapezoidal rule can produce significantly better
results than other heuristics.

IG belongs to a broader group of attribution methods called Path Methods. Each Path
Method differs in how it monotonically interpolates between the two points, x and x̄, yielding
different attribution methods for different (non-straight) paths. In fact, Path Methods are
the only methods that satisfy some desirable properties, formally defined in (Friedman, 2004).
The idiosyncrasy of IG is that it is the only Path Method that is additionally symmetry-
preserving, meaning that it always gives the same importance to features that play the same
role in the network.

2The article discusses different ways of choosing a baseline for Integrated Gradients, which is analogous to
DeepLIFT.
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3.4 SHAP

3.4 SHAP

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) is a model-agnostic
interpretability method that explains individual predictions by means of feature importance.
SHAP computes Shapley values (Datta et al., 2016; Shapley, 1953) from coalitional game
theory, identifying a patient’s covariates with players that act in a coalition and attributing
them a score based on their contribution to the “payout”, that is, to the CATE.

Shapley values measure the contribution of covariate c from patient x by measuring the
effect of removing the rest of covariates in all possible coalitions. Let us assume that we only
have access to a subset covariates S ⊂ [d] to estimate CATE; that is, we assume that we
have removed the subset S̄ = [d]\S. The appropriate way to simulate the effect of removing
covariates from S̄ is by computing the marginal expectation (Janzing et al., 2020):

τ̂(x, S) = EX∼D [τ̂ (xS , XS̄)] , (3.5)

where τ̂(x, S) denotes the predicted CATE if we only keep the subset S of covariates from
x. The covariates from S are removed by marginalization with the empirical distribution
induced by the dataset D. Since the Shapley values consider all possible coallitions, the
saliency is computed as

ac(τ̂ , x) =
∑

S⊂[d]\{c}

1

d

(
d − 1
|S|

) [τ̂(x, S ∪ {c}) − τ̂(x, S)] . (3.6)

From Equation (3.6), the Shapley values for a patient x can be interpreted as the average
shift created by adding covariate xc to a random subset of covariates S that does not contain
xc.

However, computing exactly Equation (3.6) involves 2d evaluations of the black-box model
per patient in D, which is intractable for big, high-dimensional datasets. In (Lundberg and
Lee, 2017), the authors propose KernelSHAP, a kernel-based estimation of Shapley values
inspired by local surrogate models like LIME (Section 3.1). This approach involves solving
the optimization problem

a1(τ̂ , x), . . . , ad(τ̂ , x) = arg min
r1,...,rd

 ∑
S⊂[d]

πx(S)
(

τ̂(x, S) − τ̂(x, ∅) −
∑
c∈S

rc

)2
 (3.7)

πx(S) = d − 1(
d

|S|

)
|S|(d − |S|)

,
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with τ̂(x, ∅) = EX∼D[τ̂(X)]. Note that τ̂(x, ∅) is equivalent to the Average Treatment Effect
(ATE), and can be seen as an implicit baseline of SHAP. In this sense, SHAP quantifies how
much the patient’s covariates contribute to pushing the model’s output from the general ATE
to the patient-specific CATE. Equation (3.7) is given by recovering the Shapley values from
the regression formulation of LIME in Equation (3.1), setting Ω(g) = 0. The optimization
problem is solved approximately by randomly drawing sets S according to the density πx

over the subsets of [d].

The popularity of SHAP and of all methods that compute Shapley values is justified by
their solid theoretical basis, being the unique methods that satisfy some desirable properties.
In fact, Integrated Gradients (Section 3.3) also corresponds to a cost-sharing method called
the Aumann-Shapley values (Aumann and Shapley, 1974). SHAP, on the other hand, is based
on the Shapley-Shubik method (Shapley and Shubik, 1971), which is equivalent to averaging
over multiple paths in the previously mentioned Path Methods. We refer the interested reader
to (Sundararajan and Najmi, 2019), where the authors review the differences between some
of the many operationalizations of the Shapley values in the context of feature importance.

This chapter described the theoretical details of four well-known saliency methods and
how they relate to the CATE estimation problem. The next chapter shows how these methods
can be effectively used to assist clinical decision-making under our proposed framework.
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Chapter 4

Discovering predictive covariates
with saliency methods

In this chapter, we detail our solution to interpreting CATE estimation. First, Section 4.1
formalizes the problem, and explains how saliency methods can be utilized to solve it. Next,
in Section 4.2 we describe the considered CATE estimators that we aim to interpret. We
implemented the models from scratch, additionally extending one of the state-of-the-art
approaches from the CATE literature. Finally, in Section 4.3 we further justify the suitability
of the saliency methods by highlighting how their elegant properties are desirable in the
CATE setting.

4.1 Notation and Problem Definition

Let us consider a patient with covariates X = x ∈ Rd under the Neyman-Rubin framework
(Section 2.1.2), and a black-box model τ̂ that estimates the corresponding CATE τ . Note
that the potential outcome regression surfaces can always be written as

µw(x) = µ0(x) + wτ(x), (4.1)

i.e., they share a dependence on the baseline function µ0(x), while only τ(x) determines what
is different between expected outcomes in the treated and the control group. In medicine, one
distinguishes between two types of covariates that determine the two components of patient
responses, namely the prognostic and the predictive covariates (Section 2.3.1). Prognostic
covariates affect the outcome regardless of treatment, thus entering µ0(x). The drivers of
treatment heterogeneity are then the predictive covariates, shaping the differential responses
to the treatment W = w and consequently determining τ . Predictive covariates are thus
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Discovering predictive covariates with saliency methods

information of the highest interest in precision medicine, so we argue that identifying them is
the most critical goal in interpreting the CATE estimation problem.

To this end, we use the saliency methods presented in Chapter 3. By measuring the
importance of the patient’s covariates, saliency methods become a powerful tool for identifying
the most relevant features for estimating the CATE. In an experimental setting with (1)
a sufficiently powerful model and (2) enough training data, these features are, indeed, the
predictive covariates.

Saliency methods can therefore disentangle the true drivers of the treatment effect for a
specific patient, which is of the utmost value when designing personalized policies. Section
4.3 further validates the utility of these methods by showing how their elegant properties
acquire a specific meaning in the CATE context, which can additionally support clinical
decision-making.

4.2 Considered CATE estimators

This section describes the considered models that we aim to interpret. We select two indirect
and two direct meta-learners instantiated with Neural Networks, namely TNet and SNet and
XNet and DRNet.

4.2.1 TNet

TNet is the simplest indirect, NN-based meta-learner. It refers to the implementation of
Kunzel’s T-learner (Künzel et al., 2019) using feed-forward networks. Formally, TNet fits a
separate network for each regression task, namely the PO surface for the treated, µ1, and the
control, µ0, group. The two networks are trained using the general loss function

LF + λ
∑

W ∈{0,1}
R (ΘµW ) , (4.2)

where LF = ∑n
i=1 l (Yi, µWi(Xi)) is an arbitrary factual loss (e.g., cross-entropy, MSE), and

R(·) is an L2-regularizer for the network’s weights, denoted as ΘµW with W ∈ {0, 1}. Once
the two POs surfaces are estimated, TNet obtains the CATE by their difference:

τ̂(x) = µ̂1(x) − µ̂0(x). (4.3)

In this sense, TNet fits the response variable Y in Equation (2.7) by assuming that the
response surfaces µw are group-specific, and thus depend on different conditional means
fw (·) and error terms εw. This implies preserving distributional differences induced by
selection bias across the two groups, and allows considering different degrees of sparsity and
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4.2 Considered CATE estimators

smoothness that vary with W when regressing Y against X and result in a complex CATE
τ (Caron et al., 2020). TNet can be a good choice in a quasi-asymptotical setting (i.e., when
the sample size tends to infinity) with a complex τ since it can estimate arbitrarily different
regression surfaces, as formally derived in (Alaa and van der Schaar, 2018b).

However, this is not usually the case with real-world data. In the presence of group
imbalance (e.g., in EHRs), splitting the sample involves leaving fewer observations for
estimating µw in the smaller group. Additionally, it is a common assumption that the control
and treated groups share distributional characteristics (Ballman, 2015; Curth and van der
Schaar, 2021b), resulting in similar regression tasks, µ0 and µ1, and a relatively simple τ . In
this case, TNet underperforms other approaches that do share data between regressions.

Algorithm 1 TNet
Input: X, Y, W
Output: τ̂

1: µ̂0 = NN1
(
Y (0) ∼ X0

)
◃ Estimate POs surfaces

2: µ̂1 = NN2
(
Y (1) ∼ X1

)
3: τ̂(x) = µ̂1(x) − µ̂0(x) ◃ Estimate CATE

4.2.2 XNet

XNet is a NN-based implementation of the X-learner (Künzel et al., 2019), which targets
CATE directly through a multi-stage estimation procedure. It follows the three-step process
detailed below.

The first step estimates the two POs surfaces, µ̂0 and µ̂1, by fitting an arbitrary indirect
meta-learner. For simplicity, we use the TNet, described in Section 4.2.1.

In the second step, we obtain the imputed treatment effects D̃ by computing the difference
between the observed outcomes Y and the outcomes estimated with the corresponding
regression surface µ̂w. Formally:

D̃1 = Y (1) − µ̂0 (X) if W = 1 (4.4)

D̃0 = µ̂1 (X) − Y (0) if W = 0, (4.5)

for the treated and control group, respectively. Note that if µ̂0 = µ0 and µ̂1 = µ1 then
τ(x) = E

[
D̃1 | X = x

]
= E

[
D̃0 | X = x

]
, that is, D̃ is an unbiased estimator of τ when µ0

and µ1 are known. Next, we estimate the group-specific CATEs, τ̂0 and τ̂1, in two separate
non-parametric pseudo-outcome regressions, using the imputed treatment effects as the
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response variable and the covariates X as regressors:

D̃1 = τ1 (X) + η1 if W = 1 (4.6)

D̃0 = τ0 (X) + η0 if W = 0, (4.7)

with ηW ∼ N
(
0, σ2). These two regressions are also instantiated with NNs.

Finally, the third step estimates the global CATE by the weighted average

τ̂(x) = g(x)τ̂0(x) + (1 − g(x))τ̂1(x). (4.8)

As suggested by (Künzel et al., 2019), we choose the propensity score as the weighting
function, i.e., g(x) = π(x). This requires estimating π̂(x) with a separate NN trained with a
cross-entropy loss.

Algorithm 2 XNet
Input: X, Y, W, g
Output: τ̂

1: µ̂0 = NN1
(
Y (0) ∼ X0

)
◃ Estimate response surfaces

2: µ̂1 = NN2
(
Y (1) ∼ X1

)
3: D̃1 = Y (1) − µ̂0

(
X1) ◃ Compute imputed treatment effects

4: D̃0 = µ̂1
(
X0)− Y (0)

5: τ̂1 = NN3
(
D̃1 ∼ X1

)
◃ Estimate group-specific CATEs

6: τ̂0 = NN4
(
D̃0 ∼ X0

)
7: τ̂(x) = g(x)τ̂0(x) + (1 − g(x))τ̂1(x) ◃ Average estimates

XNet solves the two problems that we identified in TNet for real-world datasets. First, it
can provably adapt to structural properties of τ , such as sparsity and smoothness (Künzel
et al., 2019). Secondly, it is particularly effective when one treatment group is much larger
than the other since it uses information from the treated group to derive estimators for the
control group, and vice versa.

4.2.3 DRNet

The DRNet is a NN-based doubly-robust CATE estimator, introduced by Kennedy (Kennedy,
2020). It first estimates the POs surfaces and the propensity score separately, and then
targets the CATE directly in a two-stage fashion.
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4.2 Considered CATE estimators

The first step estimates the nuisance parameters η̂, here the propensity score and the
POs surfaces. We achieve this analogously to in XNet, using a TNet to obtain µ̂0 and µ̂1,
and a separate NN for π̂ trained with a cross-entropy loss.

The second step involves the pseudo-outcome regression. The DRNet regresses the pseuso-
outcome Ỹη̂, based on the estimated nuisance parameters η̂ = (µ̂0(x), µ̂1(x), π̂(x)), on the
covariates X by following

Ỹη̂ =
(

W

π̂(X) − (1 − W )
1 − π̂(X)

)
Y +

[(
1 − W

π̂(X)

)
µ̂1(X) −

(
1 − 1 − W

1 − π̂(X)

)
µ̂0(X)

]
. (4.9)

The expression in Equation (4.9) is based on the doubly-robust augmented inverse propensity
weighted (AIPW) estimator (Robins and Rotnitzky, 1995). The pseudo-outcome Ỹη has the
advantage of being an unbiased CATE estimator (i.e., E

[
Ỹη | X = x

]
= τ(x)) if either the

propensity score or the outcome surfaces are correctly predicted.

Algorithm 3 DRNet
Input: X, Y, W
Output: τ̂

1: µ̂0 = NN1
(
Y (0) ∼ X0

)
◃ Estimate nuisance parameters

2: µ̂1 = NN2
(
Y (1) ∼ X1

)
3: π̂ = NN3 (W ∼ X)

4: Ỹη̂ = AIPW_transform (Y, W, π̂, µ̂0, µ̂1) ◃ AIPW transformation

5: τ̂ = NN4
(
Ỹη̂ ∼ X

)
◃ Estimate CATE

4.2.4 SNet

We use a modified version of (Curth and van der Schaar, 2021a)’s SNet. We re-implement
their architecture and extend it by enforcing a balanced representation, such that the induced
treated and control group distributions look similar. We show how this extension is useful
for our experiments compared to standard SNet in Appendix B.1.

Let us briefly describe the SNet architecture (Curth and van der Schaar, 2021a). Formally,
representation learning approaches involve jointly learning a representation Φ : X → S and
two regression heads hw : S → Y , each fit with the corresponding treated/control group data
in the representation space. SNet additionally considers a third head to predict the propensity
score hπ : S → Z, with Z ∈ [0, 1]. Note, however, that not all covariates X are useful to
predict the potential outcomes and/or the propensity score. Figure 4.1b illustrates that there
are at least five types of covariates depending on how they affect the treatment assignment
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W , the observed outcome Y , and the two separate potential outcomes Y (0) and Y (1). SNet
explicitly models these factors by learning five disentangled representations, and it estimates
the POs surfaces and the propensity score by conditioning only on the relevant ones (Figure
4.1a). The model is instantiated with NNs and trained end-to-end, allowing for learning
complex non-linear representations and regression heads with significant flexibility. In this
sense, SNet builds on ideas from the three domains presented in Section 2.1.3: multi-task
learning, representation learning, and disentangled representation learning.

µ̂0

µ̂1

π̂

D

(a) (b)

Fig. 4.1 (a) SNet architecture (Curth and van der Schaar, 2021a). SNet is based on five disentangled
representation layers – for the five assumed types of covariates – and three regression heads – for the POs and
the propensity score. (b) Assumed graphical model representing the underlying factors of X. XO determines
the outcome Y , XW the treatment assignment W , XC confounds both Y and W , and XY 0 and XY 1 affect
the POs Y 0 and Y 1, respectively. Selection bias is induced by XW and XC .

These features are best seen in SNet’s loss function:

J (h0, h1, hπ, ΦO, ΦC , ΦW , ΦY 0 , ΦY 1) = 1
n

{ n∑
i=1

L [h0(ΦO (Xi), ΦC (Xi) , ΦY 0 (Xi)) , Yi]︸ ︷︷ ︸
Factual loss h0

+ L [h1(ΦO (Xi), ΦC (Xi) , ΦY 1 (Xi)) , Yi]︸ ︷︷ ︸
Factual loss h1

+ CrossEntropy [hπ(ΦW (Xi), ΦC (Xi)) , Wi]
}

︸ ︷︷ ︸
Propensity loss

+ α · RO (ΦO, ΦC , ΦW , ΦY 0 , ΦY 1)︸ ︷︷ ︸
Orthogonalization loss

+ β · RI (ΦO, ΦY 0 , ΦY 1)︸ ︷︷ ︸
Imbalance loss

(4.10)

+ λ · R (h0, h1, hπ, ΦO, ΦC , ΦW , ΦY 0 , ΦY 1)︸ ︷︷ ︸
L2-regularization

,

which includes our modification to the original architecture: the imbalance loss. We now
detail each of these components separately.
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Factual losses These terms try to accomplish low-error predictions by a standard su-
pervised learning objective (e.g., MSE, cross-entropy) using observed (factual) data. Each
head is trained separately with the corresponding samples from the treated or control group,
e.g., (Xi, Wi = 1, Yi) is only used to update h1. Note that the inputs for these regression
networks are the outputs ΦO, ΦC and ΦY W from the representation networks. This way, the
outcome estimation is conditioned only on covariates that are purely predictive of outcome
XO, confounders XC , and the group-specific covariates XY 0 and XY 1 (see Figure 4.1b for
the graphical model). Note that XY 0 and XY 1 are equivalent to the predictive covariates that
we are interested in, so enforcing their disentanglement is a critical step in their identification.

Propensity loss Here we aim to minimize the error of predicting the propensity score π

by using a cross-entropy loss based on the representations that embed information about
treatment assignment, ΦW and ΦC . By minimizing this term, we ensure that learning ΦW

and ΦC allows predicting W (or, equivalently, the propensity score π).

Orthogonalization loss Without loss of generality, Curth et al. (Curth and van der Schaar,
2021a) assume that the observed covariates X can be decomposed into five kinds of factors XW ,
XC , XO, XY 0 , XY 1 under an unknown joint distribution P(X) = P(XW , XC , XO, XY 0 , XY 1)
that follows from the graphical model in Figure 4.1b. In this setting, XW only affects treat-
ment assignment W , XO only the outcome Y , XC confounds both W and Y , and XY 0 and
XY 1 contribute to only one potential outcome, namely the control Y 0 and the treated Y 1, re-
spectively. Therefore, W follows the distribution P(W | XW , XC), Y follows P(Y | XC , XO),
and Y 0 and Y 1 follow P(Y 0 | XC , XO, XY 0) and P(Y 1 | XC , XO, XY 1). The goal of the
orthogonalization term is disentangling these five separate representations while ensuring
their identifiability.

To this end, SNet uses an orthogonalization term inspired by Wu et al. (Wu et al., 2020)
and Kuang et al. (Kuang et al., 2017) which enforces that each covariate only affects one of
the five representations, thus guaranteeing identifiability1. The contribution of a covariate
j in representation Φk – with k ∈ {1, 2, 3, 4, 5}, namely the five possible representations
– is approximated by W̄Φk,j = ∑

u

∣∣∣W 1,Φk
j,u

∣∣∣, where W 1,Φk
j,u is the first weight matrix in

representation Φk of covariate j, whose weights are summed up. The orthogonalization
term simply computes all possible cross-products W̄Φk,j × W̄Φl,j between the five different
representations. This way, the regularization term RO penalizes whenever a covariate enters
two representations, enforcing their specialization.

1Since the representations and the regression functions are learned jointly, identifiability is not guaranteed
otherwise.
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Imbalance loss One of the challenges of estimating CATE from observational data is the
selection bias induced by the clinician’s decision-making process, which implies the treated
and control populations showing different covariate distributions (details in Section 2.1.1).
We extend SNet’s original architecture by adding an imbalance loss term that attempts to
alleviate this problem. Building on ideas from unsupervised domain adaptation (Mansour
et al., 2009), several approaches propose enforcing a balanced representation by minimizing
an Integral Probability Metric (IPM) (Müller, 1997; Sriperumbudur et al., 2012) distance
between the two distributions. This can be understood as estimating the POs surfaces and/or
the propensity score under a constraint that encourages better generalization across the
treated and control groups. For two probability density functions p, q defined over R ⊆ Rd

and for a family F of functions f , the general expression of an IPM follows

IPMF (p, q) := sup
f∈F

∣∣∣∣∫
R

f(r)(p(r) − q(r))dr

∣∣∣∣ . (4.11)

In our experiments, we consider the family of norm-1 reproducing kernel Hilbert space (RKHS)
functions, which leads to the kernel-based Maximum Mean Discrepancy (MMD) (Gretton
et al., 2009) denoted as MMD(p, q). Another common choice in CATE estimation is the
Wasserstein distance (Villani, 2009). Let us denote ΦIC and ΦIT the representations of the
covariate distributions for the control and treated groups, respectively, i.e., IC = {i : Wi = 0}
and IT = {i : Wi = 1}. We obtain an unbiased estimation of the squared MMD distance
between ΦIC and ΦIT by

MMD2
k(ΦIC , ΦIT ) =

1
m(m − 1)

m∑
i=1

m∑
j ̸=i

k (xi, xj) − 2
mn

m∑
i=1

n∑
j=1

k
(
xi, x′

j

)
+ 1

n(n − 1)

n∑
i=1

n∑
j ̸=i

k
(
x′

i, x′
j

)
, (4.12)

with x1, . . . , xm ∼ ΦIC , x′
1, . . . , x′

n ∼ ΦIT (Appendix A.1). We choose the differentiable
Gaussian RBF as kernel k to ensure that the MMD is compatible with gradient-based
learning:

k (xi, xj) = exp
(

− ∥xi − xj∥2

2σ2

)
. (4.13)

We set σ = 1 in our experiments. The full imbalance term minimizes the squared MMD
distance between the control and treated groups distributions for the representations of XO,
XY 0 and XY 1 :

RI = MMD2
(
{ΦO (Xi)}i:Wi=0 , {ΦO (Xi)}i:Wi=1

)
+ MMD2

(
{ΦY 0 (Xi)}i:Wi=0 , {ΦY 0 (Xi)}i:Wi=1

)
+ MMD2

(
{ΦY 1 (Xi)}i:Wi=0 , {ΦY 1 (Xi)}i:Wi=1

)
. (4.14)
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Note that we only consider the representation of covariates that affect the outcome and the
POs: XO, XY 0 , and XY 1 2. Artificially balancing the distributions for all covariates X – like
in (Johansson et al., 2020; Shalit et al., 2017) – can counterproductively induce additional
selection bias since some of the covariates (XW and XC) embed information about treatment
assignment. Therefore, the disentanglement allows us to ensure that we do not erroneously
discard treatment assignment information when minimizing the loss. Curth et al. (Curth
and van der Schaar, 2021a) note that these representations do not have to be invertible for
causal identification – which was initially stated by (Shalit et al., 2017) – as long as they
preserve all identifying conditional independence relationships, i.e., W ⊥ X | Φ(X).

We have now described in detail the considered CATE estimators. The following section
shows how we can interpret them using a set of desirable properties from the saliency methods
introduced in Chapter 3.

4.3 Guidelines on saliency methods for interpreting CATE

Here we propose a comprehensive qualitative comparison of the saliency methods presented
in Chapter 3, namely, LIME, DeepLIFT, Integrated Gradients, and SHAP. We do so by
considering a set of properties that we believe are desirable in the problem of discovering
predictive covariates, and we identify which interpretability methods satisfy which properties.
We frame each of these properties in the CATE setting, and we show how they can support
the clinical decision-making process. The properties are mainly derived from the works at
(Aas et al., 2019; Ancona et al., 2017; Datta et al., 2016; Friedman, 2004; Janzing et al., 2020;
Sundararajan and Najmi, 2019; Sundararajan et al., 2017).

Baseline. Although not a property per se, we believe that defining a baseline is desirable
when measuring the importance of features. Humans assign blame to a cause by implicitly
considering the absence of the cause as a baseline; that is, we perform attributions by
counterfactual thinking (Roese, 1997) . In this sense, by considering feature importance as a
difference-from-reference, the saliency method indeed mimics the way humans reason, making
it more comprehensive and user-friendly.

DeepLIFT and Integrated Gradients allow the practitioner to select the baseline input
x̄. For our problem at hand, we choose the average patient x̄ = EX∼D[X]. Note, however,
that the average patient does not necessarily correspond to the average treatment effect
(ATE). This is only guaranteed with linear models, which we already identify as interpretable.
Conversely, SHAP does implicitly use as baseline the ATE (details in Section 3.4), so that it
quantifies how much the patient’s covariates contribute to shifting from the general ATE to
the patient-specific CATE. This phenomenon is best explained with the next property.

2Note that XO is independent of treatment assignment due to the collider structure at Y : XO → Y ←W .
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Completeness. Summing the attributions of all covariates gives the shift between the
CATE at the patient of interest x and a baseline b:

d∑
c=1

ac(τ̂ , x) = τ̂(x) − b. (4.15)

This is particularly relevant in SHAP, where b = EX∼D[τ̂(X)]. This means that the
completeness property in SHAP allows measuring how much each covariate xc of patient x

pushes the treatment effect from the ATE to the patient-specific CATE. This can help a
clinician understand how a treatment influences an individual compared to how it affects
the general population, thus discovering patient’s idiosyncrasies that could help design
personalized policies. We call this phenomenon ATE-Completeness. Other methods that
satisfy completeness are DeepLIFT and Integrated Gradients, where b is the CATE for a
chosen baseline patient x̄; that is, b = τ̂(x̄) . We refer to this variation of the property
as Baseline-Completeness. In fact, Integrated Gradients can be made ATE-complete by
taking an expectation over the baseline with the “expected gradient”, as demonstrated in
(Erion et al., 2021); however, we do not explore this further in our experiments. Note that
completeness implies the sensitivity3 axiom in Integrated Gradients (Section 3.3). This
property has also been called Summation to Delta (Shrikumar et al., 2016) and Efficiency in
the context of game-theory (Lundberg and Lee, 2017; Roth, 1988).

LIME’s local accuracy formalisation is similar to the completeness property but without
considering a baseline:

d∑
c=1

ac(τ̂ , x) = τ̂(x), (4.16)

although it does not guarantee sensitivity. This means that, if the intepretable model
approximates well locally the black-box predictions, LIME can reconstruct the estimated
CATE τ̂ by adding up the contributions of all covariates.

Dummy. The covariates that do not affect the CATE model are given zero contribution.
If τ̂ does not depend on covariate c, then ac(τ̂ , x) = 0 for all x ∈ X . This allows detecting co-
variates that are non-informative for the CATE estimation. DeepLIFT, Integrated Gradients,
and SHAP satisfy this property.

Linearity4. The saliency method is linear with respect to the CATE model τ̂ . If the
CATE model is expressed in terms of the estimated potential outcomes τ̂ = µ̂1 − µ̂0, we can
write:

ac(τ̂ , x) = ac (µ̂1, x) − ac (µ̂0, x) . (4.17)
3Sensitivity implies that for every input x and baseline x̄ that differ in one covariate c and have different

CATE, τ̂(x) and τ̂(x̄), the differing feature c should be given a non-zero attribution ac(τ̂ , x) ̸= 0.
4Note that linearity cannot be applied to direct meta-learners since they target the CATE directly and do

not estimate the POs surfaces.
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4.3 Guidelines on saliency methods for interpreting CATE

This formulation intuitively renders the distinction between prognostic and predictive covari-
ates. If c is a prognostic covariate, one expects ac (µ̂1, x) = ac (µ̂0, x) ̸= 0 so that ac(τ̂ , x) = 0,
which means that c is not a driver of treatment effect heterogeneity. On the other hand, if c

is a predictive covariate, one expects ac (µ̂1, x) ≠ ac (µ̂0, x) so that ac(τ̂ , x) ̸= 0. This implies
that c is indeed relevant to explain the treatment effect heterogeneity. DeepLIFT, Integrated
Gradients, and SHAP satisfy linearity.

Symmetry-Preserving. If c and c′ are two symmetric5 covariates, the saliency method
assigns them the same attribution ac(τ̂ , x) = ac′(τ̂ , x) for all x that have identical values and
identical baselines for them, i.e., xc = xc′ and x̄c = x̄c′ . This means that if two covariates
contribute equally to the estimation of CATE, they always receive the same attribution.
Integrated Gradients and SHAP satisfy symmetry-preserving.

Affine Scale Invariance (ASI). The attributions are invariant under a simultaneous
affine transformation of the CATE τ̂ and the covariates c ∈ [d]. That is, for any a, b, if
τ̂1 (x1, . . . , xd) = τ̂2 (x1, . . . , (xc − a) /b, . . . , xd), then for all covariates c we have ac (x, τ̂1) =
ac ((x1, . . . , a ∗ xc + b, . . . , xd) , τ̂2). This property implies that the zero point and the units of
a covariate do not determine its importance. For instance, whether a patient’s height is given
in feet and inches or centimeters, the covariate receives the same attribution. Integrated
Gradients and SHAP satisfy ASI.

Implementation Invariance. Feature attribution is only determined by the function-
ality of the CATE estimator, not by its specific implementation. Therefore, two functionally
equivalent estimators, whose outputs are equal for all inputs despite having different im-
plementations, should assign the same attributions. Although not directly related to the
CATE setting, we believe this property is desirable for any attribution method. Integrated
Gradients and SHAP are implementation invariant.

Table 4.1 summarizes the properties, outlining which saliency methods satisfy which.
Note, however, that there are other factors that also influence the choice of the method. For
instance, in terms of the algorithmic complexity, LIME is particularly slow since it retrains
an interpretable model for each considered sample. Moreover, although an approximation
of the Shapley values, the computation of SHAP is expensive for many instances since it
still scales exponentially. On the other hand, Integrated Gradients only require some calls to
the gradient operator of a Neural Network, which makes the method comparatively faster.
Finally, DeepLIFT can be seen as an approximation of Integrated Gradients (Ancona et al.,
2017), although, in practice, the differences in the execution times are not significant.

5Two input variables are symmetric w.r.t a function if swapping them does not change the function, i.e., if
f(x1, x2) = f(x2, x1) for all values of x1 and x2 then they are symmetric w.r.t f .
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Discovering predictive covariates with saliency methods

Baseline ATE Baseline Dummy Linear Symmetry ASI Impl.
Complete Complete Preserving Invariant

LIME
DeepLIFT X X X X

IG X X∗ X X X X X X

SHAP X X X X X X X

Table 4.1 Summary of properties of the saliency methods. We do not include LIME’s local accuracy since
it does not imply any particularly relevant feature for CATE estimation, and is generally used just as a
consistency check. * IG is not ATE-complete by definition but can be made so by computing the Expected
Gradients (Erion et al., 2021).

What’s next?

We have now defined the considered CATE estimators and the saliency methods’ properties.
Now, how can we apply our framework to the problem of interpreting CATE?

• We can train any CATE estimator – TNet, XNet, DRNet, or SNet – on observational
data and discover the predictive covariates of a separate patient x by identifying the
largest attributions in the CATE saliency {ac(τ̂ , x)}d

c=1.

• We can characterize a population by aggregating the individual feature importance of
several patients to obtain global saliencies.

• We can detect the prognostic and the irrelevant covariates by comparing the POs
surfaces’ saliencies, {ac(µ̂0, x)}d

c=1 and {ac(µ̂1, x)}d
c=1, in indirect CATE estimators

(TNet and SNet).

• We can implicitly estimate the ATE for a population and explain how it differs from
the CATE for a specific patient τ̂(x) based on the feature attributions {ac(τ̂ , x)}d

c=1,
thanks to the ATE-Completeness property in SHAP.

• We can attribute the difference between the CATE for a particular patient τ̂(x) and
the CATE for the average patient τ̂(x̄) to specific features by applying the Baseline-
Completeness property of IG and DeepLIFT.

• We can guarantee the robustness of the estimated attributions by their solid theoretical
formalization in the form of properties like Implementation Invariance, Symmetry
Preserving, ASI, or Dummy.

We extensively investigate these features in the next chapter.
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Chapter 5

Experimental Validation

This chapter provides an extensive evaluation of the framework presented in Chapter 4. First,
in Section 5.2 we further compare the saliency methods, now quantitatively, and we illustrate
their practicality by interpreting two examples of CATE estimation problems, one consisting
on real-world data. Next, in Section 5.3 we fix a saliency method and compare the models
described in Section 4.2 based on their ability to disentangle the predictive features. We do
so in a range of synthetic datasets that are inspired by the drug development setting.

5.1 Implementation Details

We implement the CATE estimators using similar specifications as in (Curth and van der
Schaar, 2021a; Shalit et al., 2017). We use fully-connected layers with exponential linear
units (ELU) as non-linear activation functions. In TNet, we set 2 layers with 200 neurons
and 100 neurons for each regression head and an output layer with a single neuron, which
includes a sigmoidal function if the output is binary. The first stage for DRNet and XNet
estimates the POs surfaces using a TNet with that same characteristics. We also set 2 layers
with 200 and 100 neurons for the second stage, both for estimating the propensity score –
with an additional sigmoid activation – and for regressing the specific pseudo-outcomes. For
SNet, we consider two scenarios: when there is selection bias – so we include representations
ΦC and ΦW and the propensity head – and when there is not, so we exclude them. For the
first scenario, we set 1 layer for each shared representation, with 50 neurons for ΦO, ΦY 0 and
ΦY 1 , and 100 neurons for ΦW and ΦC . For the second scenario, we also set 1 layer for each
shared representation, now with 50 neurons for ΦY 0 and ΦY 1 , and 100 neurons for ΦO. The
regression heads in both cases use 1 layer with 100 neurons. We consider selection bias in
simulations with the Twins dataset (Section 5.2.4) and with DGP7 in Section 5.3.2.
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These specifications ensure that each estimated function (µ̂w, π̂, τ̂) has access to the same
amount of layers and neurons, and therefore that each architecture can represent equally
complex functions. We train the models for (max.) 10.000 epochs with Adam (Kingma and
Welling, 2013), learning rate lr=0.0001, mini-batches of size 300, early stopping based on
a 30% validation, and a patience of 10 epochs. We set an L2-penalty λ = 0.01/100 and an
orthogonalization penalty α = 0.1 for all models. We tune the imbalance penalty β and set
it to β = 1 (Appendix B.1). Note that the imbalance loss term is only considered in the
selection bias scenario. All models are implemented from scratch in PyTorch (Paszke et al.,
2019).

We now specify the design choices for the saliency methods. In LIME, we use a linear
regression as interpretable model g. For the proximity function πx we choose the euclidean
distance between the original and the perturbed samples and we pass it through an exponential
kernel with σ = 2. We measure LIME’s complexity term Ω with the number of non-zero
features, and we train g with 1,000 samples obtained by perturbing features of the instance of
interest, selected uniformly at random. Besides, DeepLIFT attributions are computed with
the Rescale rule, and we approximate the attributions for Integrated Gradients using 1,000
steps of a Riemann sum based on the trapezoidal rule. Finally, KernelSHAP is approximated
with 1,000 steps. We choose the number of steps/samples for LIME, Integrated Gradients
and SHAP based on consistency checks (Appendix B.2).

5.2 On the suitability of saliency methods for interpreting
CATE

We first compare the saliency methods by assessing the fidelity of their importance scores in
Section 5.2.2. To make sure that errors and virtues are attributed to the saliency method and
not to the model, we need (1) a sufficiently powerful model, (2) enough training data, and
(3) a well-defined data generation process (DGP). We choose SNet as the CATE estimator to
fulfill the first requirement, which we demonstrate in Section 5.3.2 to be the most accurate of
the considered models on average for simple outcome surfaces. Requirements (2) and (3) are
satisfied by designing our own DGP, so that we can query it unlimitedly and have access to
its ground truth saliency.

Next, Sections 5.2.3 and 5.2.4 provide the reader with guidelines on how to use the
saliency methods based on the properties described in Section 4.3. We illustrate this with
two use-cases: a semi-synthetic dataset – where we simulate the (potential) outcomes based
on real covariates – and a real-world one.
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5.2 On the suitability of saliency methods for interpreting CATE

5.2.1 Datasets and Metrics

An inherent property of causal inference datasets is that counterfactual outcomes are never
observed, which implies that we do not have access to the true CATE to evaluate a proposed
estimator. The standard solution is to use synthetic data where the POs for all possible
treatments are available. We do so in a fully-synthetic dataset to compare the saliency
methods (Section 5.2.2) and in our modified version of the IHDP dataset for our first use-case
(Section 5.2.3) . An exception to this is the Twins dataset, where we do have access to the
two POs and therefore to the ground truth treatment effect. We use Twins for our second
use-case (Section 5.2.4).

Fully-synthetic dataset We compare LIME, DeepLIFT, Integrated Gradients, and SHAP
quantitatively in Section 5.2.2. We do so in the fairly simple DGP:

Y = 5X1 + 10X2 + 5X3 + 3X4 + W

(
X5 + 1

2X6

)
+ ϵ,

with ϵ ∼ N(0, 0.1). We consider uncorrelated covariates sampled from a multivariate Gaussian
distribution, and no irrelevant features (i.e., all covariates are either predictive or prognostic).
We set a small number of features so that each mistake has a more significant impact on
average.

Modified IHDP Dataset The Infant Health and Development Program (IHDP) dataset
has frequently been used to evaluate ML approaches to causal effect estimation (Hill, 2011;
Johansson et al., 2020). The original data comes from a randomized study of the impact of
early educational and follow-up interventions to enhance the cognitive, behavioral, and health
status of premature infants (Brooks-Gunn et al., 1992). Each observation represents a single
child in terms of 25 covariates (6 continuous and 19 binary) of their birth and their mother.
We use the data prepared by Hill (Hill, 2011), where she removed a subset of the original
population, namely all treated children with non-white mothers, leaving a complete dataset
with 747 subjects. The data used by Hill presents both confounding and lack of overlap, and
none of the covariates has a purely predictive effect, which is not ideal for evaluating the
saliency methods. Therefore, we keep the covariates information but assume an RCT instead,
where all individuals have the same probability of being in the treated and the control group
(i.e., π(x) = 0.5, ∀x ∈ X ), and assign the treatment as W ∼ Bern (0.5). We then synthesize
the outcome according to an additive DGP on the covariate set. In our experiments, we
consider the arbitrary response surface

Y = 2X1+3X2−5X3+3X5+5
9∑

j=7
Xj−5X2

13−3X15−2X16+W

(
X11 + 1

2X12 + X2
18 + 1

4X25

)
+ϵ
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with ϵ ∼ N(0, 0.1), where the difference between predictive and prognostic information is
clear (details in Appendix C.3). Y can be understood as a continuous metric representing the
cognitive test score (e.g., Intelligence Quotient). Note that here we not only have access to the
ground truth CATE but also to the true saliencies, that is, which covariates are prognostic,
predictive, or irrelevant. The full description is given in Table C.1 in Appendix C.1.

Twins Dataset The Twins dataset (Louizos et al., 2017) is derived from all births in the
USA between 1989-1991 (Almond et al., 2005). Among these births, the authors of the dataset
focused on the twins. They defined the treatment W = 1 as being the heavier twin and thus
W = 0 as being the lighter twin, and the 1-year mortality as the binary outcome. For each
twin pair, 30 covariates are obtained relating to their parents, the pregnancy, and the birth.
In our setting, we only choose twins that are the same sex and that weight less than 2kg,
while ensuring no missing covariates. The final cohort comprises 11,400 pairs of twins. This
way, for each twin pair, we observe both the case W = 0 (lighter twin) and W = 1 (heavier
twin); therefore, we have access to the ground truth of the CATE. In order to simulate
an observational study, we selectively observe one of the two twins, using the covariate
information and inducing selection bias. The process follows: W | X ∼ Bern (σ (Xw + n))
where w ∼ U

(
(−0.1, 0.1)39×1) and n ∼ N (0, 0.1). We use 39 covariates since we one-hot-

encode three of the original features. The full description is given in Table C.2 in Appendix
C.2.

Metrics We evaluate the fidelity of the feature attributions with the Area Under the
Receiver Operating curve (AUROC). The ROC curve allows evaluating the discrimination
power of a binary classifier as its threshold is varied, plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold settings. We extend the ROC curve
to our setup by considering each feature attribution as a binary prediction and comparing
it to a binarized ground truth feature importance (i.e., 0: prognostic/irrelevant feature,
1: predictive feature). Therefore, given a matrix with a set of patients and their feature
attributions, we construct the ROC curve by looking at all the samples together – all features
of all patients – and computing the TPRs and FPRs for various thresholds (micro-averaging).
The AUROC is then computed approximating the integral of the area under the ROC curve
with the trapezoidal rule. The higher the AUROC, the better. Note that to measure the
AUROC we need the ground truth saliencies, which is only possible in synthetic datasets.
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5.2 On the suitability of saliency methods for interpreting CATE

5.2.2 Comparing saliency methods quantitatively

This section compares LIME, DeepLIFT, Integrated Gradients, and SHAP based on the
fidelity of their feature attributions – which should give the predictive features the largest
importance. We guarantee that SNet is well trained by using a reasonable amount of 5,000
samples from the proposed fully-synthetic dataset. This is to ensure that we indeed measure
the performance of the saliency method and not the estimator’s. We evaluate the saliency
methods using the AUROC metric in an independent test set of 1,000 synthetic samples from
the same dataset.

Figure 5.1 shows the results. All saliency methods perform very well in terms of the
AUROC score, which is not surprising given the simplicity of the DGP. We can conclude
that, if we use a sufficiently powerful CATE estimator and enough training data to fit it, the
relevant features discovered by the saliency methods are usually the predictive features.
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Fig. 5.1 Quantitative comparison of saliency methods. The closer the ROC curve to the top-left corner and
the higher the AUROC, the better.

5.2.3 Infant Health and Development Program (IHDP)

We train SNet in a subset of the IHDP data, using the original covariates as inputs and our
simulated responses as (observed) outcomes. The subset comprises 90% of the dataset, and
we ensure a balanced representativeness of individuals from both treatment groups. We then
compute the saliencies of a randomly selected patient from the remaining 10% of the data. To
make this example as natural and intuitive as possible, we keep the names from the covariates
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of the original IHDP experiment (see Table C.1 in Appendix C.1). Note, however, that the
simulated response surface is arbitrary and does not aspire to mimic a realistic setting.

Figure 5.2 shows the attributions obtained with the four saliency methods. DeepLIFT,
IG, and SHAP successfully disentangle the predictive features: whether the mother went
to high school (X11), whether she went to university (X12), whether she received prenatal
care (X18), and whether the data instance was collected by the University of Washington
(X25). A practitioner could then conclude, for example, that prenatal care is a driver of
treatment-effect heterogeneity. This means that children whose mothers received prenatal
care increased their cognitive test scores after the IHDP interventions compared to children
that did not join the program, despite (their mothers) receiving prenatal care. Therefore, if
a mother received prenatal care, it would be beneficial for her premature children to join a
program similar to the IHDP to increase their cognitive test scores.

0.0 0.1 0.2 0.3 0.4 0.5

| Normalized Feature Importance |

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

LIME

0.0 0.1 0.2 0.3 0.4 0.5

| Normalized Feature Importance |

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

DeepLIFT

0.0 0.1 0.2 0.3 0.4 0.5

| Normalized Feature Importance |

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

Integrated Gradients

0.0 0.1 0.2 0.3 0.4

| Normalized Feature Importance |

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

SHAP

Fig. 5.2 Absolute values of the normalized feature attribution obtained with LIME, DeepLIFT, IG and SHAP
for the considered child. Predictive features are highlighted in darker blue. Normalization is performed by
min-max scaling, and it allows comparison across methods.

LIME, however, can only discover two of the predictive features. This phenomenon
suggests that, although LIME performed well when interpreting a well-trained estimator
(Section 5.2.2), it is a less robust saliency method when the data is scarcer – which is
the case of the IHDP dataset with 747 individuals. The lack of fidelity of LIME can be
further verified by testing its local accuracy ∑d

c=1 ac(τ̂ , x) = τ̂(x). Here, the sum of the
raw, unnormalized attributions results in ∑25

c=1 ac(τ̂ , x) = 0.116, which is far from SNet’s
prediction τ̂(x) = 0.139.

We illustrate the utility of the linearity property with Figure 5.3 using Integrated Gradients.
Here we do not normalize or compute the absolute value of the feature attributions. Conversely,
we visualize how each covariate influences the estimator’s prediction for the child compared
to the prediction for the baseline child x̄ = EX∼D[X]. By comparing the saliencies for µ̂0

and µ̂1, we can identify the prognostic and irrelevant covariates for child x. For instance,
the birth weight (X1), the number of weeks born preterm (X2), and whether the mother
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5.2 On the suitability of saliency methods for interpreting CATE

smoked during pregnancy (X15), among others, are purely prognostic since they affect equally
both POs surfaces, which implies that they influence the child’s cognitive score regardless of
him/her joining the program. For the considered child, the mother did smoke (i.e., x15 = 1),
which decreases the cognitive test scores compared to the average child – whose mother does
not smoke (i.e., x̄15 = 0). An example of an irrelevant feature is the mother’s age (X6),
which is given a close-to-zero attribution for both POs surfaces. Finally, predictive features
only affect µ̂1 and thus remain in the CATE τ̂ ’s saliency. Looking at the effect’s sign, the
considered child presents values that are harmful for the test scores in all predictive covariates.
Specifically, the mother did not graduate from high school (x11 = 0), did not graduate from
university (x12 = 0), did not receive any prenatal care (x18 = 0), and the data instance was
not collected by the University of Washington (x25 = 0). These values decrease the potential
gain in cognitive test scores compared to the baseline patient, who does fulfill these features
(e.g., the mother graduated from university).
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Fig. 5.3 Feature attributions obtained with Integrated Gradients for the estimated POs surfaces and CATE.
The axis is centered at 0, and the bars measure the influence of each covariate on µ̂0, µ̂1, and τ̂ – for a child
x – compared to the estimations for a baseline x̄, which we choose to be the average child. Blue means a
negative impact and red a positive impact. Note the change in scale in τ̂ ’s plot.

Finally, Figure 5.4 shows a force plot with the attributions obtained with SHAP. Here we
can see how the specific covariates’ values shift the output of SNet from SHAP’s baseline
– the Average Treatment Effect (ATE) – to the child-specific CATE τ̂(x). We verify some
of our previous conclusions. The estimated CATE for the considered child is lower than
the estimated ATE; that is, the increase in cognitive test scores is lower than the average
population effect. This is primarily due to the mother not having received prenatal care.
The lack of educational background also severely decreases the effect of participating in the
program, followed by the fact that the data does not come from the University of Washington.
Note that if any of these features was actionable, it would allow designing personalized
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policies for the child to increase the cognitive test scores compared to the average treatment
effect.

Fig. 5.4 Force plot illustrating how the feature attributions shift the SNet’s prediction from ˆATE to the
CATE τ̂(x). Blue means a negative impact and red a positive impact. We indicate the value of the relevant
covariates for x. Here all predictive covariates harm the treatment effect compared to the ATE. Note that
they are all binary covariates.

5.2.4 Twins

There are various reasons why the problem of interpreting CATE is challenging for the
Twins dataset. First, we do not know the underlying expression of the response surface;
therefore, we cannot evaluate if the obtained saliencies are correct. Second, it is highly
probable that no covariate will be purely predictive or purely prognostic, making the analysis
of the saliencies harder. Third, due to the low mortality, the signal for CATE estimation is
weak and noisy. Consequently, here we tackle the problem from the clinicians’ perspective,
without access to the ground truth. Recall that the output is the 1-year mortality. Here
we consider the raw probability from the sigmoid instead of a binary output since it allows
a clearer interpretation. The estimated CATE is thus a continuous value τ̂(x) ∈ [−1, 1],
representing the increase/decrease in the probability of not surviving the first year under the
treatment of “being heavier at birth.” We train SNet in a balanced subset with 90% of the
data and compute the saliencies for a randomly drawn patient from the remaining 10%.

Figure 5.5 shows the saliencies for the estimated POs regressions and the CATE, obtained
with DeepLIFT. Positive attributions imply an increase in the probability of not surviving,
and the opposite for negative attributions, compared to the (baseline) average child x̄. We
identify some degree of prognosticness in covariates X1 (mother’s age), X5 (weight gain during
pregnancy, in pounds), and X6 (weeks of gestation), having similar importance in both POs
surfaces (i.e., in both twins). The considered child (i.e., twin pair) presents a higher weight
gain but a lower number of gestation weeks than the baseline, specifically x5 = 28, x6 = 28
and x̄5 = 25.4, x̄6 = 31.5. Having a higher weight is found to decrease the mortality risk
by DeepLIFT, while a shorter gestation period seems to be harmful to the child, increasing
the risk. Furthermore, the most relevant covariates for the CATE – and thus the covariates
that encode some predictive information – are X1, X5, X6, X2 (month prenatal care began),
and X8 (the number of prenatal visits). We associate the negative feature attribution given
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to the (low) number of gestation weeks (X6) – which decreases the 1-year mortality at the
CATE level – to the fact that it is more harmful to the lighter twin than to the heavier, and
thus the difference of saliencies is negative. The same happens with the weight gain (X5) but
with the opposite effect, meaning that having a higher weight gain than the average child
benefits less the heavier twin than the lighter twin. Very similar conclusions can be drawn
from the rest of the covariates. For instance, the prenatal care (X2) for the considered child
began two months later than for the average child, which results in a positive attribution at
the POs level – increasing the probability of not surviving – but a negative attribution at the
CATE level, since it affects the lighter twin more. Note that if it were not for the linearity
property, interpreting the CATE τ̂ ’s saliency would have been considerably ambiguous.
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Fig. 5.5 Feature attributions obtained with DeepLIFT for the estimated POs surfaces and CATE. The axis is
centered at 0, and the bars measure the influence of each covariate on µ̂0, µ̂1, and τ̂ – for a child x – compared
to the baseline child x̄. Note the change in scale in τ̂ ’s plot.

Finally, Figure 5.6 illustrates how the feature attributions shift the CATE estimation from
the baseline to the child of interest. We consider SHAP and IG, which use the ATE and the
CATE for the average child as baseline, respectively. IG draws similar results to DeepLIFT,
giving the largest attribution to the weeks of gestation (X6), the mother’s age (X1), and the
prenatal care time (X2). Interestingly, SHAP does not give a significant attribution to the
weeks of gestation and ranks as predictive covariates X27 (the mother having a medical risk
factor that is not considered in other covariates) and X29 (having intermediate adequacy of
care). This is due to the methods using different baselines. For both saliency methods, the
specific covariates help to decrease the mortality risk from the baseline to the considered
child.
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Fig. 5.6 Waterfall plot illustrating the shift from the child’s CATE τ̂(x) to the baseline, obtained with (a)
SHAP and (b) Integrated Gradients. We show the values for the most relevant covariates, the estimated
CATE, and the corresponding baseline.

5.3 Characterizing CATE estimators with SHAP

We now change the axis of comparison. We fix SHAP as saliency method and experiment with
various CATE estimators in a set of synthetic datasets. We choose SHAP because it showed
the best performance in terms of the AUROC score in Section 5.2.2. We experiment with
four estimators: TNet, SNet, XNet, and DRNet (see Section 2.1.3 for details). Specifically,
we study how reliable they are in disentangling the predictive features based on the saliencies
obtained with SHAP. Note that synthetic data is required in these experiments since we need
to know the true response surfaces to evaluate if the saliencies are correct.

5.3.1 Datasets and Metrics

Synthetic Datasets We design our DGPs inspired by the drug development setting,
particularly by the works in (Sechidis et al., 2018). The number of covariates is fixed to
d = 20, which is a sensible, common number in these settings (Alemayehu et al., 2018;
Lipkovich et al., 2017; Loh et al., 2019; Zhang et al., 2018). We include many prognostic
covariates with a stronger magnitude than the predictive ones, as well as non-informative
covariates that are neither prognostic nor predictive. Again, this reflects the reality in clinical
trials. We assume fairly challenging scenarios, with fully-separated predictive and prognostic
information and correlated covariates sampled from a multivariate Gaussian. We provide the
details of the DGPs in Appendix C.3.

We show the considered DGPs in Table 5.1. We first assume a Randomized Control Trial
(RCT), with neither covariates that are predictive of treatment assignment nor confounders,
and hence no selection bias to account for (i.e., P(W | X) = P(W )). The DGPs contemplate
scenarios with an enhanced treatment effect for a sub-population, many prognostic covariates
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(DGP2), strong prognostic effects (DGP3), and non-linearities and interactions (DGP4,
DGP5). We additionally experiment with increasing the overall treatment effect in the
population c (DGP6) and with including nc confounders that affect treatment assignment
(DGP7) – and thus induce selection bias. We experiment with different training set sizes.
We simulate 10 runs for each DGP, and we report mean and standard deviation of the
global feature importance given by SHAP for 100 generated test observations. We compute
the global feature importance by naively aggregating the absolute values of the individual
attributions and computing the average.

DGP1 Y = 2 + 3
∑5

j=1 Xj + W [I (X7 > 0 ∩X8 > 0) + I (X20 > 0)] + ϵ

DGP2 Y = 2 + 10
∑12

j=1 Xj + W [I (X13 > 0 ∩X14 > 0) + I (X20 > 0)] + ϵ

DGP3 Y = 2 + 25
∑6

j=1 Xj + W [I (X7 > 0 ∩X8 > 0) + I (X20 > 0)] + ϵ

DGP4 Y = 2 + 3 (X2 + X3 + X4 (X5 + X6X7)) + W
[
I (X8 > 0 ∩X9 > 0) + X10 + X2

11
]

+ ϵ

DGP5 Y = 2 + 5
(
X1 + X2X3 + X2

4 + X5X6X7
)

+ W [I (X8 > 0 ∩X9 > 0 ∩X10 > 0) + X11X12] + ϵ

DGP6 Y = c + 5
∑5

j=1 Xj + W
[
cos(X6) + I (X7 > 0 ∩X8 > 0) + X2

10
]

+ ϵ

DGP7 Y = 2 + 10
∑5+nc

j=1 Xj + W [I (X16 > 0) + I (X17 > 0 ∩X18 > 0 ∩X19 > 0) + I (X20 > 0)] + ϵ

Table 5.1 Considered data generation process (DGP) models. Appendix C.3 gives the details of the simulations.
All DGPs enhance the treatment effect for a sub-population due to the thresholding indicator function in the
predictive component. For all DGPs ϵ ∼ N(0, 0.1).

Metrics We track the expected Precision in Estimation of Heterogeneous Effect (PEHE)
(Hill, 2011):

ϵP EHE =
∫

X
(τ̂(x) − τ(x))2 p(x)dx ≈ 1

n

n∑
i=1

(τ̂(xi) − τ(xi))2 , (5.1)

equivalent to the Mean Squared Error (MSE). We evaluate the ability to disentangle predictive
features by a heuristic true positive rate (TPR)1 (Sechidis et al., 2018):

TPR =

∣∣∣XPred ∩ X̂K̄
Pred

∣∣∣
K

, (5.2)

where XPred is the set of predictive covariates, with size K = |XPred |, and X̂K
Pred is the

set of the top-K covariates returned by the estimator according to their importance ranking.
The TPR thus represents the fraction of predictive biomarkers correctly ranked in the top-K
positions, being K the number of predictive features. Both metrics are computed for the 100
generated test observations. The lower the ϵP EHE and the higher the TPR, the better.

1This heuristic TPR is equivalent to the average R-precision in document retrieval (Manning et al., 2008).
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5.3.2 Simulated drug development settings

Preliminary findings We base our preliminary findings on the (simpler) linear synthetic
datasets: DGP1, DGP2, and DGP3 (Figure 5.7). This way, we study how increasing
the power and/or the number of prognostic covariates affect the ability to disentangle the
predictive features. Figure 5.7 shows the attributed feature importance from each of the
CATE estimators when trained with 2,500 samples. We observe that SNet, DRNet, and
XNet successfully discover the predictive covariates in the three scenarios. TNet, however,
appears to show bias towards prognostic biomarkers, often ranking them as predictive. This
is particularly notable when we substantially increase the prognostic effect in DGP3 (Figure
5.7c). Note that non-informative covariates are never ranked as predictive by any estimator.
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(a) DGP1: Y = 2 + 3
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j=1 Xj + W [I (X7 > 0 ∩ X8 > 0) + I (X20 > 0)] + ϵ
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(b) DGP2: Y = 2 + 10
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j=1 Xj + W [I (X13 > 0 ∩ X14 > 0) + I (X20 > 0)] + ϵ
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(c) DGP3: Y = 2 + 25

∑6
j=1 Xj + W [I (X7 > 0 ∩ X8 > 0) + I (X20 > 0)] + ϵ

Fig. 5.7 Global feature importance given by SHAP for DGP1, DGP2, and DGP3. TNet, SNet, DRNet, and
XNet are trained with 2,500 samples, and the feature importance is given for a separate test set of 100 samples.
We report the mean and standard deviation for 10 simulations of each DGP. We highlight the true predictive
features.

Figure 5.8 (DGP2) and Figure 5.9 (DGP3) conclude that SNet is the most sample-efficient
estimator, achieving low ϵP EHE and high TPR faster with respect to the training set size.
Moreover, all models seem to perform equivalently with 5,000 samples, including TNet, for the
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three scenarios. We verify how TNet’s performance is severely impaired when increasing the
power and/or the number of prognostic covariates, systematically underperforming the rest
of the estimators, particularly with small sample regimes. This is theoretically sound since
TNet does not share information between regression tasks and, therefore, does not account
for similarities between them, which is essential here as they only differ in the predictive
component. We also outline the strong link between the ability of a model to give more
importance to predictive covariates and the performance of the model in terms of the ϵP EHE .
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Fig. 5.8 Performance metrics in DGP2. We train the considered CATE estimators in different sample sizes
and report the mean and standard deviation of ϵP EHE and TPR for a test set with 100 samples over 10
independent simulations.
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Fig. 5.9 Performance metrics for DGP3. Same configuration as in Figure 5.8.

More complex outcome surface Here we include non-linear functions and interactions.
Remarkably, SNet underperforms the rest of estimators for large sample regimes in DGP4
(Figure 5.10), being unable to discover the predictive information and mistakenly confounding
prognostic covariates with predictive (Figure 5.10a). TNet seems to perform relatively well,
and XNet and DRNet achieve a TPR ≈ 1 for 5,000 training samples (Figure 5.10b). Figure
5.11 (DGP5) draws the same conclusions. Since it is the most complex outcome surface,
XNet and DRNet need up to 10,000 samples to show a consistently good performance in
ϵP EHE and TPR. SNet again shows the lowest TPR and highest ϵP EHE for 10,000 training
samples.
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(a) DGP4: Y = 2 + 3 (X2 + X3 + X4 (X5 + X6X7)) + W

[
I (X8 > 0 ∩ X9 > 0) + X10 + X2
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(b) Performance metrics ϵP EHE and TPR.

Fig. 5.10 Results from DGP4. (a) Global feature importance given by SHAP for the CATE estimators when
trained with 2,500 samples. (b) Performance metrics – ϵP EHE and TPR – for different sample sizes.
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Fig. 5.11 Performance metrics for DGP5. Same configuration as in Figure 5.8

Increasing the treatment effect in the population SNet is more robust than the rest
of estimators against a substantial increase in the population treatment effect (Figure 5.12).
All the models experiment an increase in the ϵP EHE and a decrease in the TPR.
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Fig. 5.12 Performance metrics for DGP6. We train the considered CATE estimators with 2,500 samples and
study the effect of increasing the overall treatment effect in the population c.

Including confounders (nc) We experiment with two values for the slope of the logistic
curve that determines the treatment assignment: ξ = 2 (Figure 5.13a) and ξ = 3 (Figure
5.13b). In both scenarios, SNet seems to be very robust to the covariate shift generated
by confounding factors, while the rest of estimators experiment a decrease in TPR and an
increase in ϵP EHE . This can be justified by the enforced balanced representation in SNet,
which attempts to alleviate the selection bias and, therefore, the covariate shift.
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Fig. 5.13 Performance metrics for DGP7. We train the considered CATE estimators with 2,500 samples and
study the effect of increasing the number of confounders nc. We consider two slopes of the logistic curve: (a)
ξ = 2 and (b) ξ = 3.
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It is particularly interesting to check whether the SNet features described in Section 4.2.4
are helpful in practice when selection bias exists. In Figure 5.14a, we verify that the propensity
head successfully discovers the covariates that are predictive of treatment assignment (i.e.,
the confounders X6, X7, X8, X9) for both slopes of the logistic curve. Furthermore, Figure
5.14b illustrates how the disentanglement2 and the imbalance loss successfully enforce a
balanced representation of the factors that determine the outcome, i.e., ΦO. The t-SNE
(Van der Maaten and Hinton, 2008) visualization shows the apparent imbalance between
treatment groups in the original covariate space and the more balanced learned embedding
ΦO. Similar results for ΦY 0 and ΦY 1 can be found in Appendix B.3.
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(a) Saliencies obtained from the propensity head in DGP7 with nc = 4. Here X6, X7, X8, X9 are confounders and
thus determine the treatment assignment. SNet successfully disentangles them as relevant covariates for predicting the
propensity score for ξ = 2 and ξ = 3.
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(b) T-SNE visualizations of treatment and control group for DGP7 with nc = 4 and ξ = 3. The left Figure represents
the units in the original covariate space, while the right Figure shows the representation learned for ΦO by enforcing
balanced representativeness of treatment groups.

Fig. 5.14 Testing SNet features in DGP7.

2Figure B.4 in Appendix B.3 shows how SNet successfully disentangles the covariates following the graphical
model in Figure 4.1b.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we introduced a novel framework for interpreting the CATE estimation problem.
The proposed methods allow discovery of the drivers of individual-level treatment effects;
that is, the specific features that determine how a treatment affects a particular subject.
This information is of the utmost relevance in precision medicine, where the goal is designing
personalized policies to provide the clinician – and the patient – with actionable guidelines
on how to benefit the most from a therapy or medication.

After describing the theoretical underpinnings in Chapter 2, Chapter 3 focused on saliency
methods as the interpretability tool for explaining CATE through feature importance. We
considered four well-known saliency methods – LIME, DeepLIFT, Integrated Gradients and
SHAP – and we described them with a unified notation that links to the CATE setting.

Then Chapter 4 formalized what we believe makes interpretability in CATE unique
and, therefore, different from the standard supervised learning paradigm. We argued that,
unlike in the typical prediction setting, here we are not interested in interpreting a single
(potential) outcome but the difference between outcomes under different treatments. We
outlined that the principal aim of interpreting CATE should be disentangling the predictive
covariates, which are responsible for treatment-effect heterogeneity, and we highlighted how
saliency methods could be utilized to accomplish this goal. Next, we detailed the four CATE
estimators that we employed in Chapter 5 to assess the framework’s potential. We additionally
extended a state-of-the-art architecture – SNet – by enforcing a balanced representation of
the treatment groups to alleviate selection bias. Chapter 4 ended with a re-axiomatization
of the elegant properties of the saliency methods by considering their utility in the CATE
context.
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Finally, in Chapter 5, we conducted an extensive evaluation of the framework. We started
by comparing the saliency methods quantitatively and concluding that, given a sufficiently
robust estimator and enough training data, the saliency methods discover the predictive
covariates by identifying the most relevant features for the CATE estimation. We then
illustrated their practicality in a semi-synthetic and a real-world experiments, where we
investigated how their elegant properties can be used to interpret CATE. We also evidenced
a lack of robustness in LIME’s explanations when the CATE estimator was trained in a
small-sample regime. Next, we further demonstrated the applicability of saliency methods
by characterizing four CATE estimators based on their ability to disentangle predictive
features in a range of synthetic experiments inspired by the drug development setting.
We confirmed a consistent underperformance of TNet compared to approaches that share
information between regression tasks. SNet showed systematically better results than the
rest of estimators, demonstrating higher sample efficiency and robustness to selection bias,
but its performance was severely impaired when dealing with highly non-linear regression
surfaces. The direct estimators – XNet and DRNet – exhibited good behavior in the absence
of selection bias and significant population effects, including with non-linear surfaces, but
required more training samples than SNet.

Moreover, we believe that the adopted metrics and DGPs are an implicit contribution
of the proposed framework. Evaluating models in causal inference problems is naturally
challenging due to the absence of counterfactual information, and the proposed metrics and
considered synthetic settings are sufficiently theoretically sound for a preliminary assessment
of a CATE estimator, both from the predictive accuracy and the interpretability perspectives.

6.2 Future work

We believe that the presented framework can help advance the research on interpretability
for CATE estimation; nonetheless, our developments have only scratched the surface of the
problem and its potential. Several research directions could complement the present work.

First, we evaluated a relatively limited number of CATE estimators. A straightforward
extension would further characterize other non-parametric approaches that include features
not considered in our experiments, such as weighting schemes or more complex regularization
techniques. Extending the framework for interpreting settings with multiple treatments is
another exciting next step. The absence of ground truth in real data makes model selection
challenging in the CATE context, and our method provides another axis of comparison
between models based on their interpretability.

Furthermore, although we extensively evaluated the robustness of the framework at
interpreting CATE in synthetic experiments, artificially generated data does not capture the
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complexities of the real world. This was further verified in the Twins experiment, where our
conclusions were less solid, mainly due to the lack of ground truth saliencies. One exciting
extension is learning the underlying response surfaces from real data using AutoML-based
algorithms. For example, AutoPrognosis (Alaa and van der Schaar, 2018a) can discover the
risk equations from EHRs using a Bayesian Optimisation algorithm and a symbolic regression.
In a recent publication (Alaa et al., 2021), the authors demonstrated the great potential of
AutoPrognosis by developing and validating a treatment effect estimator – Adjutorium –
based on the cancer-specific mortality risk equations obtained from the clinical profiles of
nearly one million women. Moreover, integrating data from both RCTs and EHRs is also a
promising avenue for future work, not only for our framework but for the CATE setting in
general.
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Appendix A

Mathematical Derivations

A.1 Maximum Mean Discrepancy empirical estimate

Let p and q be two probability density functions, with i.i.d observations X := {x1, . . . , xm}
and Y := {y1, . . . , yn} on a topological space R, so that x ∼ p and y ∼ q. From the IPM
expression in Equation (4.11), given a class of functions F with f : R → R, we define

IPMF (p, q) := sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)]) . (A.1)

In the MMD, the function class F is the unit ball in a reproducing kernel Hilbert space H.
Therefore:

MMD2(p, q) =
[

sup
∥f∥H≤1

(Ex∼p[f(x)] − Ey∼q[f(y)])
]2

(A.2)

=
[

sup
∥f∥H≤1

⟨µp − µq, f⟩H

]2

(A.3)

= ∥µp − µq∥2
H . (A.4)

Making the expansion:

MMD2(p, q) = ∥µp − µq∥2
H

= ⟨µp, µp⟩H + ⟨µq, µq⟩H − 2 ⟨µp, µq⟩H (A.5)
= Ex,x′∼p

〈
φ(x), φ

(
x′)〉

H + Ey,y′∼q

〈
φ(y), φ

(
y′)〉

H − 2Ex∼p,y∼q⟨φ(x), φ(y)⟩H.

(A.6)
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Mathematical Derivations

Finally, by applying the kernel trick and estimating the population expectations with their
corresponding U-statistics and sample averages (Gretton et al., 2012):

MMD2(p, q) = Ex,x′∼p

[
k
(
x, x′)]+ Ey,y′∼q

[
k
(
y, y′)]− 2Ex∼p,y∼q[k(x, y)] (A.7)

≈ 1
m(m − 1)

m∑
i=1

m∑
j ̸=i

k (xi, xj) + 1
n(n − 1)

n∑
i=1

n∑
j ̸=i

k (yi, yj)

− 2
mn

m∑
i=1

n∑
j=1

k (xi, yj) . (A.8)

This statistic is unbiased following (Serfling, 2009).
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Appendix B

Additional Experiments

B.1 Tuning SNet: imbalance loss term
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Fig. B.1 Tuning penalty β in SNet. Note that with β = 1 the ϵP EHE improves (decreases) on average
compared to not including an imbalance loss (i.e., β = 0) for our experiments. These simulations correspond
to DGP7 in Section 5.3.2 with (a) ξ = 2 and (b) ξ = 3.
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Additional Experiments

B.2 Consistency checks for saliency methods
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Fig. B.2 Consistency checks for selecting the number of step in approximating the IG Riemann sum, the
number of samples drawn for KernelSHAP, and the number of samples to train the interpretable model in
LIME. In IG and SHAP we use the completeness property |

∑d

c=1 ac(τ̂ , x)− τ̂(x) + b |, and for LIME the
local accuracy |

∑d

c=1 ac(τ̂ , x)− τ̂(x) |. This simulation was ran in the IHDP experiment for illustration, but
similar checks were conducted for all the experiments.

B.3 Other results
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Fig. B.3 T-SNE visualizations of the learned embeddings (a) ΦY 0 and (b) ΦY 1 in DGP7.
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B.3 Other results
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Fig. B.4 Contribution of each covariate in the decomposed representations ΦO, ΦC and ΦY 1 for DGP7 with
nc = 4 and ξ = 3. Recall that the contribution of a covariate j in representation Φk is approximated by W̄Φk,j =∑

u

∣∣W 1,Φk
j,u

∣∣, normalized here so that the contribution of all covariates sums to one for each representation.
Note that the disentanglement is successful, having the prognostic covariates XY = {X1, X2, X3, X4, X5} the
largest contribution in representation ΦO, the confounders XC = {X6, X7, X8, X9} in ΦC , and the predictive
covariates XY 1 = {X16, X17, X18, X19, X20} in ΦY 1 . Each contribution is averaged across 10 simulations, but
only the mean is shown for clarity.
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Appendix C

Datasets Details

C.1 IHDP dataset

Number Name Description Type
X1 bw birth weight continuous
X2 b.head head circumference continuous
X3 preterm weeks born preterm continuous
X4 birth.o birth order continuous
X5 nnhealth neonatal health index (Scott et al., 1989) continuous
X6 momage mother’s age continuous
X7 sex sex of child binary
X8 twin twin or not twin binary
X9 b.marr mother’s marital status binary
X10 mom.lths mother did not go to high school binary
X11 mom.hs mother graduated from high school binary
X12 mom.scoll mother graduated from college binary
X13 cig mother smoked during pregnancy binary
X14 first first born binary
X15 booze mother drank binary
X16 drugs mother took drugs binary
X17 work.dur mother worked binary
X18 prenatl received prenatal care binary
X19 ark data collected from University of Arkansas for Medical Sciences binary
X20 ein Albert Einstein College of Medicine binary
X21 har Harvard Medical School binary
X22 mia University of Miami School of Medicine binary
X23 pen University of Pennsylvania School of Medicine binary
X24 tex University of Texas Health Science Center at Dallas binary
X25 was University of Washington School of Medicine binary

Table C.1 Details on the original IHDP dataset. Non-binary covariates are previously min-max scaled,
resulting in continuous values. More information in the original publication (Brooks-Gunn et al., 1992).
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Datasets Details

C.2 Twins dataset

Number Name Description Type
X1 dmage age mother continuous
X2 mpcb month prenatal care began continuous
X3 cigar average number of cigarettes per day continuous
X4 drink average number of drinks per week continuous
X5 wtgain weight gain continuous
X6 gestat weeks of gestation continuous
X7 dmeduc education mother continuous
X8 nprevist number of prenatal visits continuous
X9 dmar married binary
X10 anemia risk factor, Anemia binary
X11 cardiac risk factor, Cardiac binary
X12 lung risk factor, Lung binary
X13 diabetes risk factor, Diabetes binary
X14 herpes risk factor, Herpes binary
X15 hydra risk factor Hydramnios/Oligohidramnios binary
X16 hemo risk factor, Hemoglobinopathy binary
X17 chyper risk factor, Hypertension, chronic binary
X18 phyper risk factor, Hypertension, pregnancy-associated binary
X19 eclamp risk factor, Eclampsia binary
X20 incervix risk factor, Incompetent cervix binary
X21 pre4000 risk factor, Previous infant 4000+ grams binary
X22 dtotord total number of births before twins binary
X23 preterm risk factor, Previous infant pre-term or small binary
X24 renal risk factor, Renal disease binary
X25 rh risk factor, RH sensitization binary
X26 uterine risk factor, Uterine bleeding binary
X27 othermr risk factor, Other Medical Risk Factors binary
X28 adequacy_1 adequate adequacy binary
X29 adequacy_2 intermediate adequacy binary
X30 adequacy_3 inadequate adequacy binary
X31 pldel_1 born in hospital binary
X32 pldel_2 born in birthing center binary
X33 pldel_3 born in clinic or doctor’s office binary
X34 pldel_4 born in a residence binary
X35 pldel_5 born in other place binary
X36 resstatb_1 resident in US binary
X37 resstatb_2 intrastate nonresident binary
X38 resstatb_3 interstate nonresident binary
X39 resstatb_4 foreign resident binary

Table C.2 Details on the Twins dataset. Non-binary covariates are previously min-max scaled, resulting
in continuous values. We obtain the dataset from (Yoon et al., 2018). More information in the original
publication (Almond et al., 2005)
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C.3 Data Generation Processes

All covariates are sampled from a multivariate Gaussian with zero mean and arbitrary
covariance matrix, ensuring Σij < 0.3 between them. Selection bias is induced in exper-
iments with confounders XC and/or with covariates predictive of treatment assignment
XW . Here treatments are assigned as W | X ∼ Bern (σ (ξ · [XC , XW ] w + n)), where
w ∼ N

(
0, I(nc+nw)×1

)
and n ∼ N (0, 0.1). ξ is the slope of the logistic curve. In the RCT

scenario there is not selection bias so treatments are assigned at random: W ∼ Bern(0.5).

73




	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Outline

	2 Background Theory
	2.1 The CATE estimation problem
	2.1.1 The challenges of CATE estimation
	2.1.2 The Neyman-Rubin Potential Outcomes framework
	2.1.3 Meta-learners for CATE estimation

	2.2 Machine Learning Interpretability
	2.2.1 Definition
	2.2.2 Taxonomy
	2.2.3 Interpretability in Healthcare

	2.3 Interpretability for CATE estimation
	2.3.1 Disentangling predictive and prognostic biomarkers


	3 Saliency methods for CATE interpretability
	3.1 LIME
	3.2 DeepLIFT
	3.3 Integrated Gradients
	3.4 SHAP

	4 Discovering predictive covariates with saliency methods
	4.1 Notation and Problem Definition
	4.2 Considered CATE estimators
	4.2.1 TNet
	4.2.2 XNet
	4.2.3 DRNet
	4.2.4 SNet

	4.3 Guidelines on saliency methods for interpreting CATE

	5 Experimental Validation
	5.1 Implementation Details
	5.2 On the suitability of saliency methods for interpreting CATE
	5.2.1 Datasets and Metrics
	5.2.2 Comparing saliency methods quantitatively
	5.2.3 Infant Health and Development Program (IHDP)
	5.2.4 Twins

	5.3 Characterizing CATE estimators with SHAP
	5.3.1 Datasets and Metrics
	5.3.2 Simulated drug development settings


	6 Conclusions
	6.1 Summary
	6.2 Future work

	References
	Appendix A Mathematical Derivations
	A.1 Maximum Mean Discrepancy empirical estimate

	Appendix B Additional Experiments
	B.1 Tuning SNet: imbalance loss term
	B.2 Consistency checks for saliency methods
	B.3 Other results

	Appendix C Datasets Details
	C.1 IHDP dataset
	C.2 Twins dataset
	C.3 Data Generation Processes


