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Abstract

With advances in technology, data is being transmitted at growing rates. The efficiency by
which we handle this data is fundamental to continuing the productivity of the technology
industry. Traditional compression methods rely upon eradicating redundancies in data and
mapping frequent patterns to shorter messages. The key question of compression is how to
find such patterns. For specific tasks, compression methods have been very successful (e.g.
JPEG for images), but these methods are often hand-crafted and medium-specific.

This work extends a probabilistic compression method called Index Relative Entropy Coding
(iREC), proposed by Flamich et al. [2021]. This method compresses the data by sending a
random sample from a posterior distribution that models the data, using the prior distribution
that is shared with the receiver. It can be applied to any data modelled with a generative
distribution, so has wide applications unlike medium-specific methods. In this work, we
conduct investigations and give new insights into the hyper-parameter settings of iREC.

Sometimes the posterior distributions modelling the data are intractable and approximations
are necessary which introduce a performance gap. Previous work with iREC used varia-
tional inference to approximate the posterior with a factorised Gaussian distribution. We
propose two new target distributions to approximate the posterior; a mixture of deltas and a
mixture of Gaussians. These approximations are more expressive than a factorised Gaussian,
and better suited to approximate complex posterior distributions with multi-modality and
correlations. The posteriors of probabilistic models are often complex, so we consider the
task of communicating multiple weights from the posterior of a regression model to perform
inference on unseen data. We demonstrate that our proposed target distributions lead to better
approximations of the posterior. The resulting models have better uncertainty calibration on
the test data and smaller compression sizes when compressed with iREC. Lastly, we propose
two new additions to the iREC method: (1) a method for training the posterior distribution of
the data to yield a specific compression size and, (2) a method to update the prior distribution,
based on the sequence of transmitted samples, that improves both the compression size and
quality.
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Chapter 1

Introduction

To sustain the rapid advancements in technology, our methods for handling data efficiently
must stand up against the growing rates of data creation and transmission. This is increasingly
important within Machine Learning, due to the strong trend of increasing models sizes [Brown
et al., 2020]. To enable widespread adoption of machine learning models on less powerful
devices like smartphones, models need to be communicated efficiently and take on smaller
memory footprints. Therefore, a memory efficient representation of the model is key for its
practicality in everyday use.

Standard model compression methods typically rely on a 3 step process: weight pruning,
quantization and coding [Han et al., 2015]. Pruning and quantization can effectively reduce
the footprint of the network. By having fewer weights, and lower precision for each weight,
the empirical distribution over the weights has smaller entropy. Shannon [1948] showed that
this is directly linked to the optimal compression efficiency. These standard compression
methods rely heavily on hyper-parameter tuning to yield good performance and are not trivial
to apply to arbitrary architecture.

In this work, we examine and extend an alternative approach proposed by Flamich et al.
[2021], called Index Relative Entropy Coding (iREC). With this method, instead of communi-
cating a deterministic setting of weights, we model the weights in a probabilistic fashion and
communicate a random sample of the weights. That is, after observing a data-set D we learn
the posterior of the weights and send a sample w∼ p(w |D). To do this, we draw samples
from a shared prior distribution and transmit a sample that has high probability under the
posterior. Since we can take any model and place a prior over its weights, this method is
easily applied unlike the standard methods which require more engineering. The compression
cost of this method is the relative entropy between the posterior and the prior. Hinton and
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Van Camp [1993], in their ‘Bits-back’ argument, showed that this is the optimal compression
size for communicating samples from a posterior when drawing samples from the prior. The
previous work with iREC, from Flamich et al. [2021], used variational inference to learn the
posterior distribution, we show that using exact samples from the true posterior improves
performance and compression.

Furthermore, by using this compression method we can transmit multiple samples from the
posterior distribution and perform inference. In situations where the wrong decision can
be extremely costly (e.g. autonomous driving), having poor uncertainty calibration can be
catastrophic. This necessitates the need for models which capture uncertainty to be stored
and transmitted efficiently. Our method provides an easy way to compress Bayesian models.
As such, we focus on the task of transmitting weights from a posterior distribution of a
regression model. A key determinant of success is ensuring that the weight samples are
representative of the full posterior distribution, rather than only faithful to local regions (e.g.
specific modes) and so this is focused upon in this work.

1.1 Main Contributions

The key contributions of this work are:

• Extending the current repertoire of target distributions1 that can be used with iREC.
We derive two novel schemes: (1) a mixture of deltas where each mixture element is
an exact sample from the posterior, and (2) a Gaussian kernel density estimate of the
true posterior.

• Applying the iREC in the setting of probabilistic model compression. We discuss the
caveats of this problem setting compared to previous applications since we consider
the transmission of multiple samples from the posterior.

• A novel method for optimising the auxiliary variables’ prior variances, and discovering
scenarios in which the optimised variances are not suitable.

• A comprehensive dive into the limitations of iREC, and demonstration of how the
performance is sensitive to the hyper-parameter settings.

• Proposing methods to improve iREC; including explicit compression sizes and dynamic
proposals. Thorough experimentation is left to future work.

1The target distribution are typically approximations to the posterior distribution which is often intractable.
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1.2 Thesis Outline

The thesis is organised as follows:

• Chapter 2 outlines the relevant source coding theory and describes how to encode
integers efficiently - which is fundamental to our compression method. We link the
Minimal Description Length Principle to Bayesian modelling and provide intuition for
why using exact samples should improve the performance of our compressed models.

• Chapter 3 presents Index Relative Entropy Coding and our novel target distributions.
We give a detailed description and examine the hyper-parameter choices. We also raise
concerns over the proposed method, in particular, compression speed and mode bias.

• Chapter 4 explains the methodology for our experiments; the choice of data-sets,
models and training procedures. We examine the results from each experiment, linking
our findings to the investigations conducted in Chapter 3.

• Chapter 5 begins with a high-level overview of the current methods used for model
compression. Subsequently, we draw inspiration from these to propose improvements
to iREC.

• Chapter 6 concludes our work by discussing the significance and limitations of our
method - specifically the next steps required to make it fully functional in a production
setting.



Chapter 2

Background

2.1 Information Theory Foundations

This section lays out the information theory necessary to digest the thesis. First we explain
two results: Shannon’s Source Coding Theorem and the Kraft-McMillan Inequality. These
results tell us what the optimal average codelength is, and how long the codelengths for each
symbol should be to achieve this. Afterwards, we detail a practical method for encoding
integers. The method involves the use of entropy coding methods with an appropriate Zeta
distribution; an efficient encoding of integers is vital for our proposed model compression
method.

2.1.1 Foundations of Source Coding

We define the information source as a random variable X governed by a generating distribution
P(X). Imagine a sequence of symbols (data) S1, ...,SN that are the outcomes of the random
variable X . To communicate this data, the sender must map the sequence of symbols to a
sequence of binary digits (bits) such that the receiver can decode and recreate the original
symbols. With compression, the aim is to perform this mapping by minimising the number
of bits transmitted to the receiver. Naively, one might index each symbol and map the index
to a unique binary sequence, the following example shows that this is sub-optimal:
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Example:
Suppose an 8-sided die has probabilities for each number given by
{1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64}. How should you use binary digits to communicate

the outcome of a throw of this die?
There are many ways to index the outcomes, for example C (1) = 000,C (2) =
001,C (3) = 010,C (4) = 100, ... etc. Regardless of the dice throw, this method results
in 3 bits need to communicate the outcome. Due to the non-uniformity in probabilities,
we can do better:
Instead consider the following messages for each outcome:
1,01,001,0001,000011,000010,000001,000000. The average codelength is 2
bits compared to the 3 bits for the naive method - a 33% reduction in size. In fact, the
codelength is equal to the entropy of the distribution of the die and we will see later
this is optimal.

Intuitively, more frequent events will be transmitted more often, so should be given shorter
codelengths. A keen-eyed reader might ask: why not encode the 2 most probable events
with codes 0,1 then the 4 next most probable with codes 00,01,10,11 and so on? If we
send multiple outcomes using one long string of binary digits this idea breaks down, since
we cannot uniquely decode each outcome. A code is uniquely decodable if any sequence
of codes can be decoded into one unique sequence of messages. When discussing optimal
codelength, we do so in the setting of transmitting a (potentially) infinite stream of messages.
Given this, Shannon [1948] proved tight bounds on how well we can do:

Theorem 1. (Shannon’s Source Coding Theorem as in MacKay [2003])
N i.i.d. random variables each with entropy H[X ] can be compressed into more than N×H[X ]

bits with negligible risk of information loss, as N −→ ∞; conversely if they are compressed
into fewer than N×H[X ] bits it is virtually certain that information will be lost.

This theorem declares that, when transmitting an infinite stream of data, it is impossible to
compress the data such that the codelength is less than the entropy of the source X without
losing information. On the other hand, we can achieve a codelength arbitrarily close to the
entropy with negligible information loss. Therefore, the optimal codelength we can achieve
is given by the entropy and it is possible to get arbitrarily close to this. Methods achieving
close to this bound are referred to as entropy coding methods - notable examples are Huffman
Coding [Huffman, 1952] and Arithmetic coding [Witten et al., 1987].
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Whilst this provides a target for the optimal codelength, how should we go about achieving
it? The Kraft-McMillan Inequality states how long the codelength of each symbol needs to
be depending on how often they occur. We present the theorem as stated in Cover [1999], but
for the case where we encode our messages with binary digits.

Theorem 2. For any set of symbols S1, ...,SN that can be encoded with binary digits into
a uniquely decodable code, the codelengths of each symbol, l1, ..., lN , must satisfy the
inequality:

N

∑
i=1

2−li ≤ 1. (2.1)

Conversely, given a set of codeword lengths satisfying this inequality, it is possible to
construct a uniquely decodable code.

This theorem tells us how to decide the codelengths for each symbol but we still have a wide
array of possible codes to choose from. A convenient set of uniquely decodable codes are
known as prefix codes. A symbol code is a prefix code when no codeword is a prefix of any
other codeword [MacKay, 2003].

Example:
{00,01,10,11} is a prefix code as none of the codewords are prefixes for any other.
{0,010} is not a prefix code since 0 is the prefix for 010.

Kraft proved that if the inequality in Theorem 2 is satisfied, there exists a prefix code with
the given lengths. This means that for any problem, there exists an optimal set of codewords
that are also prefix codes. Huffman coding [Huffman, 1952] is an entropy coding method
that is an optimal prefix code, it provides an algorithm for how to construct the code based
on the probability distribution generating the data. For a detailed explanation see Cover
[1999].

2.1.2 Encoding Integers with the Zeta Distribution

The main method we propose in this thesis involves the transmission of integers. In general,
the distribution of these integers is unknown, so we must find a general distribution for
integers that gives good coding efficiency, regardless of the true distribution of the integers.
Such a distribution can be used with an entropy coding method like Huffman coding to send
integers efficiently.
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The Zeta distribution is a discrete probability distribution over integers k ∈N with probability
mass function given by

fs(k) = k−s/ζ (s). (2.2)

Here s is a parameter of the distribution and ζ is the Riemann-zeta function defined

ζ (s) =
∞

∑
n=1

n−s =
1
1s +

1
2s +

1
3s + · · · , if Re(s)> 1 (2.3)

where Re(s) denotes the real-part of the complex number s ∈ C. We require Re(s)> 1 to
ensure the summation in Equation (2.3) converges (for s = 1 we get the infamous divergent
Harmonic Series). The Zeta distribution concerns s ∈ (1,∞), so the mass function decays as
k grows and the rate of this decay is given by s. To see that Equation (2.2) defines a valid
probability mass function note that

∞

∑
k=1

k−s/ζ (s) =
∑

∞
k=1 k−s

∑
∞
n=1 n−s = 1. (2.4)

Furthermore, the decaying properties of the Zeta distribution mean we expect larger integers
to occur less frequently. A plot of the distribution is given in Figure 2.1.

1 2 3 4 5 6 7 8 9 10
k

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y

s = 2
s = 3
s = 4
s = 5

Fig. 2.1 Plot of the Zeta distribution for a variety of s values. Here we find that as s gets
larger the decay in probability mass becomes more extreme and so larger integers are deemed
less probable.
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Suppose the sender wishes to transmit a potentially infinite stream of integers N1,N2, ...

from source Θ. We assume the only shared knowledge between the sender and receiver is
E[logΘ] (this information can be transmitted along with the integers with minimal cost). In
this case, we want to encode the integers with a method that gives us some assurances of the
expected codelength. The following proposition shows that we can bound the entropy of the
distribution of Θ:

Proposition 1. (Taken from Appendix B Li and El Gamal [2018]) Let Θ = {1,2,3, ...} be a
random variable, then

H(Θ)≤ E[logΘ]+ log(E[logΘ]+1)+1. (2.5)

Furthermore, the proof of the proposition gives a recipe for achieving an expected coding
rate, which is given by the upper bound in Equation (2.5):

Proof. (Taken from Appendix B Li and El Gamal [2018]) Let q(θ) = cθ−λ where λ =

1+1/E[logΘ], and c > 0 such that ∑
∞
θ=1 q(θ) = 1. Note that

∞

∑
θ=1

θ
−λ ≤ 1+

∫
∞

1
θ
−λ dθ = 1+

1
λ −1

and therefore

H(Θ)≤
∞

∑
θ=1

pΘ(θ) log
1

q(θ)

=
∞

∑
θ=1

pΘ(θ)(λ logθ − logc)

= λE[logΘ]+ log

(
∞

∑
θ=1

θ
−λ

)

≤ λE[logΘ]+ log
(

1+
1

λ −1

)
= E[logΘ]+ log(E[logΘ]+1)+1.

The distribution in the proof used to encode Θ, q(θ), is precisely the Zeta distribution
with parameter s = 1 + 1

E[logΘ] . Therefore, using the correct Zeta distribution with an
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entropy coding method, like Huffman coding, yields a prefix code over the integers that is
asymptotically optimal1.

2.1.3 Minimum Description Length Principle

Occam’s Razor is a familiar heuristic that tells us, out of all possible models, we should
prefer the model that provides the simplest explanation of the data. The MDL principle
[Barron et al., 1998] formalises this and states that the best model Hi in some set of models
H is the one that minimises the quantity

L (H)+L (D |H), (2.6)

where L (H) is the length in bits required to describe H and L (D |H) is the length in bits
of the description of the data when encoded using the model H. The first term can be thought
of as a model complexity term, with the second a data-fit term. Later, we will see this is
related to Bayesian modelling.

2.2 Probabilistic Modelling

In this section, we introduce Variational Inference, Markov chain Monte Carlo, and link
the MDL Principle to Bayesian modelling. Later, we demonstrate how to trade-off model
fit and compressibility by using a β -objective function that directly relates to the MDL
principle.

2.2.1 Modelling Uncertainty

Given a data-set D = {X ,Y} composed of inputs X = {x1, ...,xn} and targets Y = {y1, ...,yn},
we want to train a model M with weights w to correctly predict the target at each input.
Rather than learning a specific deterministic value for the weights, we place a prior p(w)

over the weights to factor in our initial beliefs on their values. After observing the data D ,
we update our belief in the weights using Bayes’ rule:

p(w |D) =
p(D | w)p(w)

p(D)
. (2.7)

1This means that the ratio of the expected codelength and the optimal codelength is bounded by a constant
and converges to 1 as the entropy tends to infinity (see Elias [1975] for more details)



2.2 Probabilistic Modelling 10

This distribution describes the probability of each weight setting having generated the data-
set D , given how likely we thought their values were initially. Given this, we can make
inferences on unseen data X⋆,Y ⋆ by marginalising over all possible weight values:

p(Y ⋆ | X⋆,D) =
∫

p(Y ⋆ | X⋆,w)p(w |D)dw. (2.8)

This gives a distribution over the potential targets, meaning our uncertainty in the model
parameters is represented in uncertainty in predictions.

For many models, performing the marginalisation in Equation (2.8) is intractable, so other
methods are needed to help make these inferences. We can write Equation (2.8) as the
following expectation:

p(Y ⋆ | X⋆,D) = Ep(w|D) [p(Y
⋆ | X⋆,w)] . (2.9)

Therefore, we can use a Monte Carlo estimate

p(Y ⋆ | X⋆,D)≈ 1
K

K

∑
k=1

p(Y ⋆ | X⋆,wk) , where wk ∼ p(w |D). (2.10)

With enough samples, this approximation converges to the true predictive posterior. The prob-
lem is we often cannot trivially sample from p(w |D). We consider two different methods
for dealing with this: (1) Variational Inference (VI) which approximates the true posterior,
and (2) Markov chain Monte Carlo which aims to sample from the true posterior.

2.2.2 Variational Inference

Variational Inference (VI) [Hinton and Van Camp, 1993] approximates the posterior distri-
bution of the weights of a model p(w | D) using a distribution qφ (w) parametrised by φ .
The Kullback–Leibler divergence (KL) (also referred to as the relative entropy) between the
two distributions, KL

[
qφ (w)∥p(w |D)

]
, measures the similarity between qφ and p. Thus,

given some parametrised distribution qφ (w), we wish to find the parameters φ minimising
the quantity

KL
[
qφ (w)∥p(w |D)

]
=
∫

qφ (w) log
qφ (w)

p(w |D)
dw (2.11)

= log p(D)+
∫

qφ (w) log
qφ (w)

p(w)
dw−

∫
qφ (w) log p(w |D) dw.

(2.12)
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The first term in Equation (2.12) is the model evidence which is often intractable. It is
straightforward to show that the KL is non-negative using Jensen’s inequality2, so we can
find a lower bound to the model evidence, named the Evidence Lower Bound (ELBO),

log p(D)≥
∫

qφ (w) log p(w |D) dw−
∫

qφ (w) log
qφ (w)

p(w)
dw (2.13)

= Eqφ (w) [log p(D | w)]−KL
[
qφ (w)∥p(w)

]
= ELBO. (2.14)

By maximising the ELBO, we minimise the KL between p(w | D) and qφ (w) given in
Equation (2.11). The first term in the ELBO is the log-likelihood of the data conditioned on
the model parameters, which measures how well the model explains the data, and the second
term is the KL between the variational posterior and the prior, which can be interpreted as
the complexity in the model.

Regardless of how we select qφ , models like neural networks cause Equation (2.14) to be
intractable, and Monte Carlo estimates coupled with gradient-based optimisation are used to
optimise φ . We can draw weight samples w(i) ∼ qφ (w) and approximate the ELBO as

ELBO≈
I

∑
i=1

log p(D | w(i))− logqφ (w(i))+ log p(w(i)). (2.15)

To differentiate this quantity, we need to propagate gradients through the random sample
w(i) ∼ qφ (w). The reparameterisation trick introduced by Kingma and Welling [2013],
allows for gradients to be easily computed with respect to parameters φ , by reparameterising
the random variable w as the output of a differentiable transformation of some auxiliary
noise,

w = gφ (ε) with ε ∼ p(ε). (2.16)

For example, a diagonal Gaussian with parameters φ = {µ,σ} can be sampled as
follows:

w(i) = µ +σ ⊙ ε (2.17)

where ε ∼N (0,I) and ⊙ is the element-wise product.

For Bayesian Neural Networks (BNNs), the typical training method is Bayes-By-Backprop
[Blundell et al., 2015], which formulates the ELBO for use with minibaches of the data.

2Jensen’s inequality states that E[ f (x)]≥ f (E[x]) if f is a convex function.
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Later, Kingma et al. [2015] discovered that sampling the activations rather than the weights
results in a lower variance gradient estimator for the ELBO.

Linking VI to MDL Principle:
Hinton and Van Camp [1993] with their ‘Bits-back Argument’ established a link
between VI and the MDL principle. One can view the negative ELBO as the description
length:

NEGATIVE ELBO =−Eqφ (w)[log p(D | w)]︸ ︷︷ ︸
L (D |H)

+KL
[
qφ (w)∥p(w)

]︸ ︷︷ ︸
L (H)

. (2.18)

The ELBO relates to the objective used in Bayesian model comparison, so we can
make an equivalence between being Bayesian about our model selection and choosing
models that will compress well. Further, Equation (2.18) shows the optimal com-
pression size of the model L (H), is given by KL

[
qφ (w)∥p(w)

]
. Since this fact was

derived by Hinton and Van Camp [1993] in their Bits-back Argument, methods that
(asymptotically) achieve this compression size are refereed to as ‘Bits-back’ efficient.
This however is a misnomer, in many cases the methods do not actually utilise or
follow the bits-back argument; they simply approach the postulated coding efficiency.
True Bits-back methods require the transmission of negative information which is not
convenient for algorithmic implementation.

We have shown how to train probabilistic models with VI and linked the ELBO to the
MDL principle. Whilst these methods are common in the Machine Learning literature,
the quality of the results depend heavily on the variational approximation. Getting closer
to the true posterior should yield models with larger ELBOs, improving the data-fit and
compressibility.

2.2.3 Markov Chain Monte Carlo

Instead of a variational approximation, we can target the exact posterior by constructing a
Markov chain with p(w |D) as its stationary distribution. To construct these Markov chains
we consider the class of sampling methods called Markov chain Monte Carlo (MCMC).
A Markov chain will yield samples from p(w | D), if it is ergodic and leaves the target
distribution invariant. At a high level, ergodicity means that, independent to our starting
point, our chain eventually converges to the target, and invariance means once we reach
the target, further transitions in our Markov chain don’t lead to it escaping, i.e. our Markov
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chain’s stationary distribution is the target distribution. If our chain satisfies these conditions,
we can use the accepted samples to evaluate the estimate in Equation (2.10) - with enough
samples it should converge to the true predictive.

Typical machine learning applications involve large models evaluated on large data-sets
of high dimensions. Consequently, many of the customary MCMC methods cannot be
practically applied to current deep learning architectures since they can take long to converge
and scale badly with the size of the data-set.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) draws inspiration from physical systems to explore complex
high-dimensional distributions efficiently. In this section, we assume the target distribution is
the posterior over the weights of a model, p(w |D).

Hamiltonian Monte Carlo (HMC) uses the Hamiltonian dynamics of a fictitious physical
system, in which a ball moves around a friction-less surface, to sample from p(w |D). If we
imagine this surface to live in R3 with coordinates {x,y,z}, then the position of the ball is
given by the x,y co-ordinates, and its height is given by z. The weights w are defined to be
the position of the ball, and as we move around the weight space, the ball will move around
the surface. Assume the ball has mass M and momentum r, then its kinetic energy is given
by K(r) = 1

2M rT r. The potential energy depends on the ball’s height h which relates to its
position on the surface, w. Therefore it is given by U(w) ∝ h. The core idea in HMC is that
we can write the posterior on the weights as

p(w |D) ∝ p(w,D) (2.19)

=
1

Zp
exp(−U(w)). (2.20)

So the potential energy of the ball can be expressed as

U(w) =− log p(D | w)− log p(w). (2.21)

By inversely relating the height of the ball to the posterior probability of its position (weights)
p(w | D), we can make an equivalence between the motion of the ball and exploring the
posterior distribution of the weights. Furthermore, we can consider the momentum of the
ball (with mass 1) given by the rate of change of the ball’s position,

r =
dw
dτ

. (2.22)
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The acceleration of the ball is the rate of change of momentum. This is given by the force
exerted on the ball, which is the negative gradient of the potential energy,

dr
dτ

=−dU(w)

dw
. (2.23)

We can define the joint distribution p(w,r) in terms of the Hamiltonian, H(w,r), which is
the total energy of the system

H(w,r) = K(r)+U(w) (2.24)

∝− log p(w,r). (2.25)

With these equations, we can simulate the ball rolling around the physical system by consid-
ering its Hamiltonian dynamics,

dw
dτ

=
∂H
∂r

(2.26)

dr
dτ

=−∂H
∂w

. (2.27)

By the conservation of energy, H stays constant throughout time, and it can be shown using
Liouville’s Theorem3 that Hamiltonian systems preserve volume in phase space. These
properties imply that Hamiltonian dynamics will leave the distribution p(w,r) invariant.
Since the value of the Hamiltonian H remains constant, the Markov chain will not be ergodic,
it will stick to the same probability contours that correspond to a single value of the total
energy in the system. Therefore, to sample ergodically we need to change the value of the
Hamiltonian. This can be done by making movements in the phase space whilst ensuring we
leave p(w,r) invariant. Gibbs sampling the momentum term r accomplishes this and is trivial
to do,§ since the conditional distribution p(r | w) is a Gaussian due to the independence of r
and w. So we can sample from p(w,r), discarding the sampled momentum r, to obtain a
sample from p(w |D).

In continuous time this method gives us a way to make large movements in the sample
space without needing to reject any samples. To practically apply this method however,
we need to discretize the time domain - the typical method being leapfrog discretization.
These discretizations introduce residual errors, and a Metropolis step is used to account for
this.

3For an explanation of the theorem see Bishop [2006].
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2.2.4 Trading Model Fit and Compressibility

Referring to the link between the ELBO and the MDL principle, we see that by weighting
the KL divergence term, we can impose a trade-off between the model’s data fit and its
complexity - directly relating to its compressibility. To do this we adopt the β -ELBO loss
akin to the β -VAE proposed by Higgins et al. [2017]. This is given explicitly as

β -ELBO = Eqφ (w) [log p(D | w)]−βKL
[
qφ (w)∥p(w)

]
. (2.28)

It can be convenient to instead train with an alternative objective, whereby we raise the
likelihood of the data given the model by the exponent 1/β

Eqφ (w)

[
log p(D | w)1/β

]
−KL

[
qφ (w)∥p(w)

]
. (2.29)

This expression has the same functional derivative as the standard β -ELBO; (proof in
Appendix A). With these two training objectives, we can implicitly control the compressibility
of our variational models by placing more or less emphasis on the model complexity.

When using MCMC to perform inference, we would like to impose an analogous trade-off.
Fortunately, we can augment the potential energy term in Equation (2.21) used by HMC
in a similar fashion to the alternative training loss in Equation (2.29). We set the potential
energy

Ũ(w) =− log p(D | w)1/β − log p(w). (2.30)

If the likelihood is Gaussian, there is a more practical way to write the potential energy
that is less obtrusive for established HMC implementations. Suppose we have a data-set
D = {xn,yn}N

n=1 and model M , whose output at point x using weights w is given by Fw(x).
Then for a known noise term σ , we define the Gaussian likelihood as

p(y | x,w) = N (y |Fw(x),σ2). (2.31)

We can write the log-likelihood term raised to 1/β as

log p(y | w)1/β =
1
β

log p(y | w)

=
1
β

logN (yn |Fw(x),σ2)

∝− 1
2βσ2 (Fw(x)− y)2

∝ logN (y;Fw(x),βσ
2).

(2.32)
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Since the final quantity is proportional to the log-likelihood raised to 1/β , their derivatives
will coincide. Therefore, to make the trade-off between data-fit and compressibility, we can
implement HMC with the potential energy function

Û(w) =− log p̂(D | w)− log p(w) (2.33)

where p̂(y | x,w) = N (y;Fw(x),βσ2).

In conclusion, we have shown how to use both VI and HMC to perform inference over
probabilistic models. Specifically, by using alternative β training objectives, we can implic-
itly control their compression size.



Chapter 3

Relative Entropy Coding

In this section, we focus on the Index Relative Entropy Coding (iREC) compression method
from Flamich et al. [2021]. We propose new target distributions for iREC that utilise exact
samples from the true posteriors. Our proposed target distributions are much more flexible
than the factorised Gaussian distribution that is currently used. This allows them to better
approximate complex posterior distributions which should result in improved compresssion
efficiency. After, we analyse the iREC hyper-parameters by conducting small demonstrative
tests and highlight some limitations of the method. All the algorithms presented in this
chapter were either taken or adapted from Flamich et al. [2021].

3.1 Introduction

Relative Entropy Coding (REC), introduced by Flamich et al. [2021], is a class of compression
algorithms that communicate a random sample from a target distribution q using a proposal
distribution p. Explicitly, the sender wishes to send a sample z from a target distribution
denoted q(z) (unknown to the receiver), using a shared coding distribution p(z) and a shared
source of randomness (e.g. a random number generator). Algorithms that output a random
variable z ∼ q(z) with communication cost close to the relative entropy between q and p,
KL[q(z)∥p(z)], are termed REC algorithms.

Previous work with REC algorithms focused on sending single samples from the latent space
of a VAE to compress images. In this thesis, we focus on sending sets of compressed samples
w1, ...,wN from a trained Bayesian model M and using these to make predictions. To fully
capture the uncertainty modelled by M , our compressed samples must be representative of
the posterior distribution over the weights. The caveats of sending multiple samples rather
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than a single sample are discussed later in this chapter, and it is useful for the reader to keep
this difference in mind. Furthermore, since these compression schemes work for any target
and coding distribution, we choose to denote our sample with z.

The question beckons: why is such a class of algorithms useful? Suppose we want to send
a sample from a prior over the weights of a model, p(w) = N (w | 0,I). With the standard
entropy coding methods described in Section 2.1.1, we know the expected codelength is
lower bounded by the Shannon entropy. Since w is a Gaussian, its Shannon entropy1 is
infinite and so the expected codelength would be infinite. Instead, if we used a REC algorithm
with q(w) = p(w) = N (w | 0,I) then to send a sample of the weights, we simply need to
communicate to the receiver that they have to draw a sample from p, this incurs an O(1)
cost. In both cases, the receiver needs to know p(w), but using a REC algorithm makes
compressing a sample from q(w) much cheaper. This shows that encoding a random sample
from the target distribution can be far cheaper than communicating a specific sample with
entropy coding and motivates the need for REC algorithms. This benefit is even stronger in
our case of sending multiple weight samples w1,w2, ... to perform inference. Since we are
using the compressed samples to make a Monte Carlo estimate of the predictive distribution,
refer back to Equation (2.10), it is unnecessary to send specific samples. Rather, we simply
want the set of compressed samples to be representative of the posterior distribution over the
weights, ensuring sensible uncertainty calibration in our predictions. This further motivates
the use of REC algorithms for compressing probabilistic models.

3.2 Index Coding

Index coding (iREC) [Flamich et al., 2021] is a REC algorithm that leverages pseudo-random
number generators to provide the shared source of randomness between the sender and
receiver. The sender and receiver agree upon a prior (coding) distribution p(z) and random
number generator to draw equivalent samples from p(z). To communicate z∼ q(z | x) the
sender draws a sequence of samples from the coding (prior) distribution z1,z2, ...∼ p(z) and
chooses a sample zi to communicate to the receiver. Since the sender and receiver share
the pseudo-random number generator, the sender simply has to transmit the index i and the
receiver draws i samples z1,z2, ...,zi ∼ p(z) to decode zi.

1Note that this is different to its differential entropy.
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3.2.1 Choosing the sample

The iREC method uses an importance sampling procedure proposed by Havasi et al. [2018]
to draw samples from q(z). The procedure is as follows: using the shared pseudo-number
generator draw M = ⌈exp(KL[q(z)∥p(z)])⌉ samples from p(z). Create a categorical distri-
bution Q̃ over these samples by setting the probability mass proportional to the importance
weights Q̃(zi) ∝

q(zi)
p(zi)

, and draw a sample from Q̃. This sample corresponds to a specific zi

and the sender can easily transmit its index i to the receiver (Algorithm 1). The receiver then
simply draws the ith sample zi from p(zi) (Algorithm 2). Since we can encode any number
0≤ i < M with KL[q(z)∥p(z)] nats, this method satisfies the coding efficiency to be classed
a REC algorithm.

Algorithm 1: iREC Encoder. Here we use R∼ to denote samples generated using the
pseudo random number with shared seed R.
Data: p(z),q(z)
Result: zi, i
M← ⌈exp(KL[q(z)∥p(z)])⌉;
z1, ...,zM

R∼ p(z);
for m = 1 : M do

wm← q(zm)
p(zm)

end
for m = 1 : M do

Q̃(zm)← wm
∑

K
k=1 wk

end
zi ∼ Q(z);
return zi, i;

Algorithm 2: iREC Decoder. The receiver simply draws samples until the i-th index.
Data: p(z), i
Result: zi

z1, ...,zi
R∼ p(z);

return zi
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3.2.2 Why should this work?

If we draw infinitely many samples from p(z), under reasonable conditions2, the categorical
distribution Q̃(z) should converge to q(z). To achieve our desired codelength we only draw
M = ⌈exp(KL[q(z)∥p(z)])⌉ samples. Therefore the categorical distribution Q̃ will be biased.
The amount of bias determines the efficacy of the method - if Q̃ is too biased then our samples
won’t be representative of q(z) and the method breaks down. Theorem 1.2 from Chatterjee
and Diaconis [2017], specifically the special case defined Havasi et al. [2018], determines
the extent of the bias:

Theorem 3. (Taken from Havasi et al. [2018])
Let p, q, be distributions over z. Let t ≥ 0 and Q̃ be a discrete distribution constructed
by drawing M = ⌈exp(KL[q(z)∥p(z)])⌉ samples {zi}M

m=1 from p and defining Q̃(zi) :=
q(zi)
p(zi)

/∑
M
m=1

q(zm)
p(zm)

. Furthermore, let f (z) be a measurable function and ∥ f∥q =
√

Eq[ f 2] be
its 2-norm under q. Then it holds that

P
(∣∣∣EQ̃[ f ]−Eq[ f ]

∣∣∣≥ 2∥ f∥qρ

1−ρ

)
≤ 2ρ (3.1)

where

ρ =

(
e−t/4 +2

√
P
(

log
(

q(z)
p(z)

)
> KL [q(z)∥p(z)]+

t
2

))1/2

. (3.2)

The quantity
∣∣∣EQ̃[ f ]−Eqφ

[ f ]
∣∣∣ in Equation (3.1) is the bias of estimating the expectation

of function f with proxy distribution Q̃. Therefore, this theorem tells us that, with high
probability, the bias from using our method is bounded since e−t/4 decays with t and
log q(z)

p(z) is concentrated around its expectation Eq[log q(z)
p(z) ] = KL[q(z)∥p(z)]. In practice we

choose to draw KL[q(z)∥p(z)](1+ ε) samples where ε ≥ 0. In this case, ρ grows with the
quantity

P
(

log
(

q(z)
p(z)

)
> KL[q(z)∥p(z)](1+ ε)+

t
2

)
, (3.3)

so drawing more samples makes the bound tighter3 - reducing the bias.

2By this we mean that both q and p are continuous, and their importance weights are infinite for all values
of z.

3Drawing more samples reduces the probability in Equation (3.3) making ρ and therefore the bias smaller.
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3.2.3 Greedy Selection

Another way of dealing with this bias is to greedily pick the sample zi with the largest
importance sampling weight, rather that creating and sampling from Q̃ (this method is
detailed in Algorithm 3). This invokes a bias-variance trade-off, where the selected samples
are biased to the modes of the target distribution - reducing their variance as a result. It is
important to distinguish between the two biases: (1) the bias described in Theorem 3 and (2)
the mode bias from greedily selecting the samples. To measure the first bias, note that we
can write the relative entropy as the expectation

KL [q(z)∥p(q)] = Eq

[
log

q(z)
p(z)

]
. (3.4)

Then we can approximate this quantity using samples compressed with our iREC scheme
and analyse the bias-variance of the estimates. In Figure 3.1, we compress samples from a
1D Gaussian by sampling from a standard Gaussian using the importance sample method
and greedy selection. Here, the Greedy selection method decreases the bias for the esti-
mate of Equation (3.4) but also has smaller variance - even smaller than when using true
samples. Whilst the Greedy selection method biases our samples to the mode, there are far
fewer samples that would be highly unlikely under the true distribution q (see the samples
of the left tail). Overall, as the difference between q and p grows, using the Greedy se-
lection method is worth this trade-off, and so we chose to use this method in our investigations.
Algorithm 3: iREC Encoder w/ Greedy Selection.
Data: p(z),q(z)
Result: zi, i
M← ⌈exp(KL[q(z)∥p(z)])⌉;
z1, ...,zM

R∼ p(z);
for m = 1 : M do

wm← q(zm)
p(zm)

end
zi← argmaxm wm;
return zi, i
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Fig. 3.1 Example comparing Importance Sampling to Greedy Selection. Here we can see
that Greedy Selection improves the heuristic measure for bias, but in doing so reduces the
sample variance.

3.3 Auxiliary Variable Method

For most problems, sampling M = ⌈exp(KL[q(z)∥p(z)])⌉ random variables is infeasible
since M grows exponentially with the relative entropy. To deal with this Flamich et al. [2021]
propose breaking up the sample z into auxiliary variables, a1, ...,aK , such that z = f (a1:K).
Since the joint distribution of the auxiliary variables factorises, q(a1:k) = ∏

k
i=1 q(ai | a1:i−1),

each auxiliary variable ak ∼ q(ak | a1:k−1) can be sequentially transmitted using the iREC
method with shared coding distribution p(ak). This method incurs a communication cost
of KL[q(ak | a1:k−1)∥p(ak)] nats to transmit the auxiliary variables ak. Now the sender and
receiver must agree to K shared sources of randomness and prior distributions p(ak), and a
function f such that z = f (a1:K). The sender transmits an index for each auxiliary variable
and the receiver decodes each auxiliary variable to compute the desired sample z = f (a1:K).
So long as4

K

∑
k=1

KL [q(ak | a1:k−1)∥p(ak)] = KL[q(z)∥p(z)], (3.5)

the expected codelength of using the auxiliary variable method will coincide with that of
transmitting a random sample z∼ q(z) with the standard iREC method. Flamich et al. [2021]
prove that the auxiliary target distributions which satisfy Equation (3.5) must be of the

4Here we set KL [q(x | y)∥p(x)] = Ex,y∼q(x,y)

[
log q(x|y)

p(x)

]
as in Cover [1999].
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form
q(a1:k) :=

∫
p(a1:k | z)q(z)dz, for k ∈ {1 . . .K} (3.6)

where
p(a1:k | z) =

p(z | a1:k) p(a1:k)

p(z)
. (3.7)

This gives us a recipe for ‘building a sample’ of z ∼ q(z) from the auxiliary variables
a1:K .

Encoding the first auxiliary variable is simple: first compute q(a1) and then perform the iREC
method using shared coding distribution p(a1). Encoding the subsequent auxiliary variables
is more involved since there are dependencies due to the constraint that z= f (a1:k). Therefore
we need to find the conditional distribution for each auxiliary variable, q(ak | a1:k−1), and
use these as the target distributions. Each auxiliary variable target distribution should adjust
based on the previously sampled trajectory of auxiliary variables a1:k−1. The adjustment
needs to ensure that final trajectory can reach a sample z∼ q(z). We can recursively find the
necessary conditional distributions as follows5:

q(ak | a1:k−1) =
∫

q(ak | a1:k−1,z)q(z | a1:k−1)dz

=
∫

p(ak | a1:k−1,z)q(z | a1:k−1)dz

q(z | a1:k) =
q(z,ak | a1:k−1)

q(ak | a1:k−1)
=

p(ak | a1:k−1,z)q(z | a1:k−1)

q(ak | a1:k−1)
.

(3.8)

With these equations we can implement iREC for each auxiliary variable and the decoder
can recreate a random sample z ∼ q(z) by decoding each ak and computing z = f (a1:K).
Like previously, there is a bias from our importance sampling scheme. Now the bias occurs
for each auxiliary variable ak, thus accumulates across the trajectory. Consequently, we
choose again to greedily select the trial sample with the largest log importance weight, that

is, ak = argmax
a(i)k

q(a(i)k |a
(i)
1:k−1)

p(a(i)k )
(this method is detailed in Algorithm 4).

3.4 Target Distributions

This thesis concerns sending samples6 from a posterior distribution p(z | x). Previous work
with iREC used a factorised Gaussian approximation as the target. In this thesis, we propose

5The second equality for q(ak | a1:k−1) is implied by Equation (3.6).
6Specifically we focus on sending weights of a model, but since these compression methods are not medium

specific we choose to present them in general terms.
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Algorithm 4: iREC Encoder w/ Greedy Selection using auxiliary variables. The
iREC(·, ·) function performs the greedy selection described in Algorithm 3.
Data: q(z), p(a1:K)
Result: S = (i1, ..., iK)
S←{()} q0(z)← q(z); for k = 1 : K do

q(ak | a1:k−1)←
∫

p(ak | a1:k−1,z)qk−1(z) dz;
ak, ik← iREC(q(ak | a1:k−1), p(ak));
S.append(ik)

end
return S

two new target distributions that use exact samples from the true posterior: a mixture of deltas
and a mixture of Gaussians. These distributions can capture more complex structures like
multimodality and correlation. Below we define the equations necessary to implement iREC
with the difference schemes, with full derivations for the novel schemes given in Appendix
A.2.

3.4.1 Factored Gaussian Scheme

Like we discussed in Section 2.2, often the posterior over the weights is intractable and so we
approximate it with Variational Inference (VI). Commonly in VI, p(z | x) is approximated
using a factorised Gaussian q(z) = N (z | ν ,ρ) with prior p(z) = N (z | 0,σ2I).

To compress samples z ∼ q(z) using the auxiliary variable iREC scheme, we can choose
auxiliary variables such that z = ∑

K
k=1 ak with ak ∼N (ak | 0,σ2

k I) where σ = ∑
K
k=1 σ2

k . Due
to the stability of Gaussians under addition, we already know that the auxiliary variable
targets will be Gaussians, and so the factorised Gaussian makes for a convenient target
distribution.

Let sk = ∑
K
i=k+1 σ2

k and bk = ∑
k
i=1 ai, since z = ∑

K
k=1 ak it follows from the formulae for

products of Gaussians (see Appendix A.2 in Rasmussen [2003]) that

p(ak | a1:k−1,z) = N

(
ak

∣∣∣ (z−bk−1)
σ2

k

s2
k−1

,
s2

kσ2
k

s2
k−1

I

)
. (3.9)

Assume that q(z | a1:k−1) = N (z | νk−1,ρk−1), since Equation (3.8) concerns products and
integrals of Gaussians, it follows that

q(ak | a1:k−1) = N

(
ak

∣∣∣ (νk−1−bk−1)
σ2

k

s2
k−1

,
s2

kσ2
k

s2
k−1

I+
σ4

k

s4
k−1

ρ
2
k−1

)
(3.10)
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and

q(z | a1:k) = N
(

z | c(k),C(k)
)
, (3.11)

where

C(k) =

(
σ2

k

s2
k−1s2

k
I+ρ

−1
k−1

)
, and c(k) = C(k)

(
σ2

k

s2
k−1s2

k

(
bk−1 + s2

kak
))

. (3.12)

The Gaussian in Equation (3.11) adjusts the distribution over z to take into account the current
trajectory a1:k−1. The mean of the Gaussian in Equation (3.10) directs the sampling scheme
to choose the ak that best makes up the remaining distance the trajectory needs to travel to
reach q(z | a1:k−1), νk−1−bk−1, weighted according to how much variance ak contributes,
σ2

k /s2
k−1. The variance of the target is additive, taking into account the variance of z and

the variance of ak relative to the other auxiliary variables. We refer to using iREC with a
factorised Gaussian target as the FG-Scheme.

Since the factorised Gaussian approximation minimises KL[q(z)∥p(z | x)] through the ELBO,
it is mode-seeking [Bishop, 2006]. This means it is unable to capture multimodality which
can occur with complex posteriors of BNNs. In addition, by assuming the factorisation, the
approximation cannot model correlations. We will see later in the results that these issues
cause poor uncertainty calibration in a model’s predictions.

3.4.2 Mixture of Deltas

Instead of using a variational approximation, we propose sampling directly from the true
posterior p(z | x) and forming a mixture of deltas. This approximation is much more flexible,
and with enough samples directly converges to the true posterior.

Formally, we draw samples7 from z1, ...,zD ∼ p(z | x) and form the mixture of deltas

q(z) =
1
D

D

∑
i=1

δzi(z). (3.13)

7If we cannot sample from p(z | x), we can use HMC as described in Section 2.2.
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The recursive relations corresponding to Equation (3.8) are given by

q(ak | a1:k−1) =
D

∑
i=1

p(a1:k−1 | zi)

∑
D
j=1 p(a1:k−1 | z j)

p(ak | a1:k−1,zi) (3.14)

q(z | a1:k−1) =
D

∑
i=1

δzi(z)
p(a1:k−1 | zi)

∑
D
j=1 p(a1:k−1 | z j)

. (3.15)

Set p(z) = N (z | 0,σ2I) and assume that z = ∑
K
k=1 ak where ak ∼N (ak | 0,σ2

k I). In this
case, the auxiliary variables take on different targets than the distribution for z which is
a mixture of deltas. Equation (3.9) implies that q(ak | a1:k−1) is a mixture of Gaussians.
These update equations mean that the auxiliary variables target a mixture of Gaussians
where each mixing weight p(a1:k−1 | zi) determines how probable sample zi is under the
current trajectory a1:k−1. Further, each component is a Gaussian which directs the auxiliary
variables toward each sample zi, again weighted by how much variance the auxiliary variable
ak contributes to the trajectory a1:K . Note, the formulae above are undefined for the final
auxiliary variable aK , later in Section 3.4.4 we discuss how to deal with this.

This approximation is able to capture multimodality by having clusters of delta masses at
each mode. Furthermore, it can model correlations as there is no restriction on where the
delta masses can lie, they are simply drawn from p(z | x). Altogether, this target should be
a much more faithful approximation of p(z | x). We refer to using iREC with a mixture of
deltas target as the MOD-Scheme.

3.4.3 Mixture of Gaussians

For complex posterior distributions, a mixture of deltas may not be a sufficient approximation.
As such, we propose using a kernel density estimate. Specifically, we form a mixture of
Gaussians with equal mixing weights and isotropic noise denoted σ2

KDE,

q(z) =
1
D

D

∑
d=1

N (z | zd,σ
2
KDEI). (3.16)
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The component means zd are exact samples from the true posterior8. It can be shown that
that

q(ak | a1:k−1) =
D

∑
d=1

λ
−1
d

(k−1)

∑
D
j=1 λ

−1
j

(k−1)
N

(
ak

∣∣∣ σ2
k

s2
k−1

(c(k−1)
d −bk−1),

s2
kσ2

k

s2
k−1

I+
σ4

k

s4
k−1

C(k−1)
d

)
,

(3.17)

q(z | a1:k) =
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
N (z | c(k)d ,C(k)

d ), (3.18)

where

λ
−1
d

(k)
= N (bk;zd,(s2

k +σ
2
KDE)I) (3.19)

C(k)
d =

(
1
s2

k
+

1
σ2

KDE

)−1

I (3.20)

c(k)d = C(k)
d

(
bk

s2
k
+

zd

σ2
KDE

)
. (3.21)

Looking closely, these equations are a combination of those derived for the FG-Scheme and
the MOD-Scheme. Each auxiliary variable targets a mixture of Gaussians, where the mixing
weights relate to how likely the trajectory is to reach the specific sample zd . Unlike the
MOD-Scheme, where the only update to the distribution of z was to alter the mixing weights,
in this case, both the mixing weights and the Gaussian components themselves update upon
observing the trajectory a1:k−1. So rather than simply targeting each zd , they target a mixture
with component means c(k)d which are updated depending on a1:k−1. This demonstrates that
the mixture of Gaussians is a more flexible target than the mixture of deltas, but also has
many more parameters to maintain. We refer to using iREC with a Gaussian kernal density
estimate as the KDE-Scheme.

Note: consider drawing only one sample zd equal to the mode of p(z | x). In this case,
the equations for the KDE-Scheme collapse down to those for the FG-Scheme, whereby
the only difference is our Gaussian is more constrained in that it is isotropic rather
simply factorised. This is a good sanity check to ensure that the update equations are
sensible.

8These are the same samples we would be using to form the mixture of deltas for the MOD-Scheme.
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3.4.4 Choosing the Final Auxiliary

For the final auxiliary variable, the update equations given above may be undefined. Therefore,
for all schemes we choose to select the final sample by completing the sum z = ∑

K−1
k=1 ak +aK

and selecting the aK that maximises the importance weights p(z | x)/p(z) = p(x | x). Since
we can always compute the likelihood this method is simple to implement even in cases where
the posterior is intractable. However, doing this increases bias to the modes. Alternatively,
we could simply not send the final auxiliary variable, which you can interpret as adding small
noise onto z, but this would cause issues when we have few auxiliary variables as the noise
would be large relative to the variance of z.

3.5 Visualising the Trajectories

To see the differences using iREC with a factorised target and a more flexible target, example
trajectories are plotted for both the FG-Scheme and the MOD-Scheme in Figure 3.2. Here,
p(ak) = N (ak | 0, 1

K I) where K is the total number of auxiliary variables. Later we discuss
how the sender should choose the auxiliary variable variances. The FG-Scheme targets a
factorised Gaussian approximation that minimises KL [q(z)∥p(z | x)]. Due to correlations in
the true posterior, the approximation is a small target contained within the posterior. This has
2 effects: (1) the smaller target means the relative entropy between the q(z) and p(z) is larger,
so we require more auxiliary variables - increasing the codelength to compress a sample.
And (2) the scheme is unable to target the correlated part of the distribution which is easier to
reach with samples from p. The trajectories in this plot have trouble reaching higher density
regions of the target, but by using the parameter ε we could draw more samples to improve
the quality of the compressed sample. However, this introduces an overhead in the codelength.
Altogether, the MOD-Scheme requires fewer auxiliary variables which corresponds to a more
efficient encoding, but also reaches the true target more effectively. Whilst this is only one run
(using the same random seed) it is illustrative of the main differences between the schemes,
and demonstrates some benefits of using exact samples from the posterior.
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Fig. 3.2 Example comparing the FG-Scheme and MOD-Scheme. Since the factorised Gaussian
variational approximation cannot capture correlations, the FG-Scheme fails to reach the target
distribution and in turn the trajectory lands in a place with very low density. In contrast the
MOD-Scheme has a trajectory that takes it close to the tip of the correlated edge and so the
final compressed sample is more representative of the true target.

3.6 Practical Considerations

Each of the 3 proposed schemes has its own advantages and disadvantages. From a compu-
tational standpoint, the methods using exact samples (MOG-Scheme and KDE-Scheme) may
require HMC to get samples from p(z | x) which can be expensive compared to simply
training a factorised Gaussian with VI using the ELBO. Furthermore, they involve storing
many more objects in the computer’s memory: for each empirical sample, zd , we must store
the Gaussian distribution it induces into the mixture density of q(ak | a1:k−1). In contrast,
just one Gaussian needs to be maintained for the FG-Scheme. Whilst not a key aspect
of this thesis, the computational cost is significant enough to deserve consideration, and
could result in only the FG-Scheme being feasible for extremely high dimensional prob-
lems. We compare the runtimes of the FG-Scheme and MOD-Scheme when compressing
samples. To ensure that the test is fair, we consider the targets qd(z) = N (z | ⊮d,Id) and
priors pd(z) = N (z | 0d,Id) for dimension d ∈ {1,5,10,25,50,75,100}, this means both
schemes target the same distribution. The relative entropies for each dimension are given by
KL[qd(z)∥pd(z)] = d/2, so this test shows how both methods scale with the compression
size. Finally, for the MOD-Scheme, the receiver must determine how many samples from
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the true target they must use - each additional sample increases the memory usage and
contributes to the computational complexity but gives a more refined approximation of the
target. Therefore we compare how using 1,10,100 and 1000 empirical samples to form our
mixture of deltas affects the runtime. Figure 3.3 shows with 1 exact sample the MOD-Scheme
is the fastest. A single delta distribution results with q(ak | a1:k−1) being a single isotropic
Gaussian which has fewer parameters than the factorised Gaussian used in the FG-Scheme.
A single delta is a very poor approximation of the true posterior, so we would typically use
many more samples to form the approximation. With 10 or more samples, the runtime is
much slower for the MOD-Scheme since now a mixture of Gaussian need to be stored and
maintained for q(ak | a1:k−1), which has many more parameters than a single factorised
Gaussian. Finally, both methods have significantly longer runtimes as the dimension and
relative entropy increases.
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Fig. 3.3 Example comparing Importance Sampling to Greedy Selection. Here we can see
that Greedy Selection improves the heuristic measure for bias, but in doing so reduces the
sample variance.
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3.7 Optimising the Prior Variances

For each auxiliary variable we draw exp(KL [q(ak | a1:k−1)∥p(ak)]) samples from the prior,
if this value is too large then implementing the scheme is impractical. To this end, we
fix a hyper-parameter Ω and aim to keep the relative entropies of each auxiliary variable
close to this value, i.e. KL [q(ak | a1:k−1)∥p(ak)] ≈ Ω. Since we require the sum of the
relative entropies to equal the total relative entropy over z, as to not increase the codelength
(Equation (3.5)), we use K = ⌈KL [q(z)∥p(z)]/Ω⌉ auxiliary variables in total. To keep the
relative entropies close to Ω, one can optimise the variance terms for the priors of each
auxiliary variable.

In previous work, Flamich et al. [2021] optimised the variance according to the objec-
tive

argmin
σ2

k

[
KL [q(ak | a1:k−1)∥p(ak)]−Ω

]2
+

[(
K̂L−KL [q(ak | a1:k−1)∥p(ak)]

)
− (K− k−1)Ω

]2
.

(3.22)

where, K̂L = KL [q(z)∥p(z)]−∑
k
i=1 KL [q(ai | a1:i−1)∥p(ai)], is the remaining KL.

The first term in Equation (3.22) ensures the relative entropy of ak stays close to Ω and the
second term ensures the remaining KL is large enough to ensure the auxiliary varibles have
relative entropies close to Ω.

3.7.1 Our proposed optimisation method

Rather than optimise the auxiliary variances independently and in sequence according to
Equation (3.22), as in Flamich et al. [2021], we propose a joint optimisation over all the
auxiliary variances. We optimise the objective

argmin
σ1:K

K

∑
k=1

[
KL [q(ak | a1:k−1)∥p(ak)]−Ω

]2
+[(

K̂L−KL [q(ak | a1:k−1)∥p(ak)]
)
− (K− k−1)Ω

]2
.

(3.23)

To ensure the variances sum to the desired amount, we optimise logits and pass them through
a softmax function to ensure they sum to 1. Then we multiply the post softmax values by σ2

where p(z) = N (z | 0,σ2I). We found this method of optimisation to be more stable and
yield smoother variances plots, likely due to the softmax in the optimisation process.
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3.7.2 Caveats of Optimising the Variances

Flamich et al. [2021] found, on image compression problems using VAEs, a power law
approximating the remaining variable σ2−∑

k−1
j=1 σ2

j by (K+1−k)−0.79 was a good estimate
of the optimal variances. The power law intuitively makes a lot of sense: by allocating more
variance in the first few auxiliary variables, the trajectory can point in the general direction at
the start, with smaller steps at the end to make micro-adjustments. We find however, the best
settings for the variances are problem-specific; with different target and coding distributions,
the optimisation gave markedly different results and sometimes wasn’t even optimal.

To demonstrate this, we compress samples with the MOD-Scheme on two problems with very
different characteristics: the first involves a large target far from the prior and the second with
a small target well contained within the prior. We compress 1000 samples for each problem,
with optimised variances and uniform variances9 as a benchmark. We then compute the mean
log probability of each compressed sample under the target for the different problems.

One crucial finding, shown in Table 3.1, is that without sub-sampling the compressed
samples, the optimised variance performance catastrophically fails on the problem with a
small target. The optimised variances place much more variance in the first few auxiliary
variables (following an exponential decay as was reported by Flamich et al. [2021]), which
means if the initial samples to choose from are poor, there is not enough variance in the
final few auxiliary variables to reach the target. However, if the first few auxiliary variables
were high quality, taking us close to the target, having smaller variance in the final samples
allows for the trajectory to make micro-adjustments, reaching a high-density area within
the target. For distant targets, this is almost a non-issue, since each auxiliary variable will
be chosen to lie close to the straight line from the prior to the mode, and the probability
of overshooting the target is virtually zero. When sub-sampling half of the samples, the
optimised variances begin to perform much better on the small target problem. In Figure 3.4,
we plot trajectories for the compressed samples. This plot shows the optimised variances can
make finer adjustments, whereas the uniform variances take similar size steps. When they
overshoot the target, it is harder to make small corrective steps. For the distant target, the
uniform variances outperform the optimised ones. In Figure 3.5, we plot the mean trajectory
and find that the uniform variances get much closer to the target. The reason for this is that
uniform variances maximise the expected euclidean distance of the trajectory - we prove
this in Appendix A.3. Ideally, the receiver would use a correctly calibrated prior, so that
the samples can easily reach the target. This may be impractical as the sender and receiver
must agree to the priors a priori. Therefore, the users of our compression method, should

9By uniform, we simply divide the variance of p(z) amongst each auxiliary variable equally.
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analyse the relationship between the target and prior to determine how to set the auxiliary
prior variances. In our subsequent experiments, the target distributions will be posteriors
on weights of Bayesian models, and close to the prior. Thus, we can safely use optimised
variances without concern about reaching the target modes.

Table 3.1 Table showing the mean log probabilities of the compressed samples on two
problems; one with a small target well contained in the prior, and the other with the target
distribution place further away from the prior. In this table, ‘Optimised’ refers to optimising
the auxiliary prior variances according to Equation (3.23), and ‘Uniform’ simply refers
to selecting each auxiliary prior variance to be equal across all auxiliary variables. The
‘Uniform’ variances serve as a baseline since it is the simplest choice one could make.

Problem Optimised Optimised w/ Sub-sampling Uniform Uniform w/ Sub-sampling
Small Target within Prior -10076 6.5 -941.3 -105.4

Distant Target -399.7 -236.0 -358.2 -209.0
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Fig. 3.4 Plot of trajectories for both the ‘optimised’ and ‘uniform’ variances of auxiliary
variables. It’s clear in this plot that the uniform variances often overshoot the target and are
unable to refine onto the target, compared to the ‘optimised’ variances which can, due to the
decaying variances. We also indicate the mean of the prior distribution with an unlabelled
point to help visualise how the first auxiliary variable is chosen.
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Fig. 3.5 Here we show the trajectory when using both ‘optimised’ and ‘uniform’ variances
for the auxiliary variables after averaging over 1000 compressed samples. The ‘uniform’
variances on average reach further than the ‘optimised’ variances which is to be expected
as we prove they maximise the expected euclidean distance for the compressed sample.
We use identical targets placed equidistant from the prior distribution to help visualise the
difference in distance travelled by the auxiliary variables. We also label the mean of the
prior distribution to help see that the uniform variances result in taking equal-sized steps,
compared to the optimised variances which take large steps initially and subsequently reduce
the step size.

Note: Since the optimal variances are problem-specific, we cannot apply a specific
rule like in Flamich et al. [2021]. Hence, the sender and receiver must communicate
the variances. To send the variance for each auxiliary variable is far too expensive,
and so we chose to approximate the variances with an exponential function of the
form f (x) = aexp(−bx)+ c. We can then optimise the parameters a,b,c ∈ R and
communicate these to the receiver. To see that the approximation is reasonable,
consider the plot in Figure 3.6. As the relative entropy of the problem grows, the
overhead in communicating these parameters becomes negligible, but it does increase
the cost of communication considerably for simple problems. In these cases, it may be
more reasonable to use uniform variances and draw more samples by increasing ε or
use sub-sampling.
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Fig. 3.6 Plot showing the fit of our approximate optimised variances versus the exact opti-
mised variances. This plot shows that the approximation is very close, and requires us to
send 3 additional parameters rather than sending all the σ2

k s.

3.8 Beam-search

At selection time, we cannot ensure the greedily selected auxiliary variable will pair well
with the subsequent choices, and throwing away all other candidate samples is wasteful. To
remedy this, we implement a beam-search over the potential auxiliary variable trajectory.
Formally, we aim to maintain the set of B trajectories a1:k with the lowest bias. At each
step, we combine the current top B trajectories with each of the M trial samples for ak, and
select the top B according to their joint importance weights q(a1,...,ak)

p(a1,...,ak)
. The algorithm for the

encoder is shown in Algorithm 5 and decoder in Algorithm 6.

Using a beam-search should result in the final compressed sample z having a larger value for
q(z)
p(z) than the simple greedy scheme. Whilst the beam-search reduces the bias incurred by
the importance sampling scheme, there are several downsides. First, the mode bias issues
we encountered previously are exaggerated, meaning if we want the samples to accurately
represent uncertainty, beam-search may be detrimental since the variance in the final samples
will decrease. Furthermore, there is a significant increase in the computational demands
when running the beam-search, see Figure 3.7, where we consider the same problem set
up as in Section 3.6 and test the FG-Scheme with numerous beam-widths. Note that the
MOD-Scheme and KDE-Scheme would fare even worse in this comparison since they have
more computational demands themselves. Overall, the sender must be careful in their
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deployment of the beam-search not to under represent uncertainty in their compressed
samples and also to balance the computational costs incurred by this method.
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Fig. 3.7 Plot of runtimes using the FG-Scheme with various beam-searches. The computa-
tionally complexity grows significantly with each additional beam-width due to many more
distributions must be maintained at each step of the algorithm.
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Algorithm 5: iREC Encoder w/ Beam-search.
Data: q(z)
Result: (i1, ..., iK)
S0←{()}
K←

⌈
KL[q(z)∥p(z)]

Ω

⌉
M← ⌈exp(Ω(1+ ε)⌉
for k = 1 : K do

ak1, ...,akM
R∼ p(ak)

Ŝk← Sk−1×{1, ...,M}

Sk← argtopB
( j1,..., jk)∈Ŝk

{
q
(

a1 j1
,...,ak jk

)
p
(

a1 j1
,...,ak jk

)
}

end

(i1, ..., iK)← argmax
( j1,..., jK)∈ŜK

{
q
(

f
(

a1 j1
,...,aKjK

))
(

f
(

a1 j1
,...,aKjK

))
}

return (i1, ..., iK)

Algorithm 6: iREC Decoder w/ Beam-search.
Data: (i1, ..., iK)
Result: z
M← ⌈exp(Ω(1+ ε)⌉
for k = 1 : K do

ak1, ...,akM
R∼ p(ak)

end
z← f (a1i1

, ...,aKiK
)

return z

3.9 Choosing Ω

The sender must determine the hyper-parameter Ω, which determines how much of the
relative entropy is divided between each auxiliary variable. A small value of Ω leads to
more biased samples, but using a large value for Ω causes the computational issues which
motivated the need for the auxiliary variable method in Section 3.3 - drawing the required
number of samples is infeasible. In Figure 3.8, the trajectory using Ω = 1 is very noisy as
the scheme has very few samples to pick from for each auxiliary variable. With Ω = 10 there
are ⌈exp(10)⌉ many samples from p(ak) to select from, so choosing samples that form a
trajectory straight toward the target mode is more probable; yielding a smoother line. This



3.9 Choosing Ω 38

simple example suggests using larger values of Ω is preferred, but as the dimension and
the relative entropy of the problem grows, this becomes computationally infeasible due to
memory constraints. As such, we strike a balance by using Ω = 5 similarly to Flamich et al.
[2021].
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Fig. 3.8 Example comparing differences in the choice of Ω, with larger values the trajectory
is smoother and the samples can get closer to the mode - the trade-off is too much memory
requirements if the relative entropy is large.



Chapter 4

Experiments

In the previous chapters, we discussed why compressing samples from the true posterior
should yield better performance than using a variational approximation. In this section we
confirm this in practice on a variety of problems. At a high level, our problem setting is a
regression task, where the sender has observed data D and trained a model M . Once the
model is trained, the sender will implement the iREC compression algorithm and send multi-
ple compressed samples w1, ...,wN ∼ q(w | D) to the receiver. The receiver subsequently
decodes the samples and uses them to make predictions on the regression data. First, we
explain how we make predictions and measure performance. Then we discuss the problem-
specific methodology and analyse the results. Specific hyper-parameters for training, such as
the learning rates or number of samples for HMC can be found in Appendix B.

4.1 Making Predictions and Measuring the Data-fit

Bayesian models make predictions by marginalising over all possible settings for the model
weights. For many posterior distributions this is infeasible, and so MCMC estimates are used.
As such, we compress multiple samples from our posterior and combine the predictions,
using each sample to approximate the marginalisation. To form the predictive distribution,
we can define the model as a function of the weights M [w]. Then for a set of weights
w1, ...,wN , and test points {xt ,yt}T

t=1, we compute the set of predictions {M [wi](xt)}T
t=1

for each weight setting wi. For each input-output pair {xt ,yt}, we consider the set of all
predictions {M [wi](xt)}N

i=1 and form the following mixture of Gaussians:

g(yt) =
1
N

N

∑
i=1

N (yt |M [wi](xt),σ
2), (4.1)
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where σ2 is assumed to be the known additive noise in the data. To evaluate the performance,
we consider the density of the target yt under its corresponding GMM, i.e. g(yt). For each
target we get a likelihood, and our predictive likelihood over the whole test-set is simply the
product of each likelihood. In practice, log probabilities were considered so we simply sum
the log-likelihoods,

log-likelihood =
T

∑
t=1

loggt(yt), (4.2)

and this is the metric we use to compare the performance of our transmitted samples unless
stated otherwise.

4.2 Measuring the Compression

In Section 2.1.2, we described how to use the Zeta distribution to compress integers in the
case where their underlying distribution is unknown. With iREC, we send integers whose
underlying distribution is unknown, and the only information we have is that the largest value
they can take is M = ⌈exp(KL [q(w)∥p(w)]⌉. Therefore, we can apply the method described
in Section 2.1.2 to encode the integers for our setting. Recall that the sender and receiver
needed access to E[logΘ] to create the correct Zeta distribution for encoding and decoding.
In our case, we instead require that the sender and receiver both know the value of M so they
can set up the corresponding Zeta distribution - communicating M can be done1 with O(1)
cost. Given the decoder knows M, it follows that our integer to transmit Θ lies in the set
{1, ...,M}, so

logΘ≤ logM ≤ KL [q(w)∥p(w)]+1. (4.3)

This means that
E [logΘ]≤ KL [q(w)∥p(w)]+1, (4.4)

and so using the Zeta distribution with parameter s = 1+ 1
KL[q(w)∥p(w)] yields an average

coding efficiency for transmitting Θ of

E[logΘ]+ log(E[logΘ]+1)+1≤ KL [q(w)∥p(w)]+1+ log(KL [q(w)∥p(w)]+2)+1
(4.5)

= KL [q(w)∥p(w)]+ log(KL [q(w)∥p(w)]+2)+O(1).
(4.6)

1We can send this value with a lower precision (8 or 16 bits) and so this is a cheap piece of additional
information to transmit as opposed to sending a specific length of our codewords which would be much more
expensive.
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Therefore, combining this with sending the O(1) message containing the value for M, we
get an expected codelength bounded by2,

Avg. Codelength≤ KL [q(w)∥p(w)]+ log(KL [q(w)∥p(w)]+2)+O(1). (4.7)

Implementing the auxiliary scheme incurs a small overhead introduced when dividing the
relative entropy between K = M/Ω many auxiliaries and so K×Ω may not be exactly equal
to M. As the relative entropy gets larger this discrepancy becomes negligible, and we can
use Equation (4.7) as a measure of our average compression efficiency to send a sample
w ∼ q(w) with iREC. For the subsequent results, we report the expected codelength per
sample to make all the compression sizes across the problems comparable.

4.3 Bayesian Linear Regression

4.3.1 Problem Setting

Consider the problem of compressing samples from the posterior distribution of Bayesian
linear regression model. In this model, we assume the regression output yn ∈ R is generated
given the feature input xn ∈ RD by

yn = wT xn + εn, (4.8)

where εn ∼N (0,σ2) with known noise σ2 and w is a vector of regression coefficients.
By placing a Gaussian prior on the weights such that w ∼N (w | 0,α−1I), the posterior
distribution becomes a Gaussian p(w |D) = N (m,V) where

V =
(
XT Xσ

−2 +αI
)−1

m = VXT yσ
−2,

(4.9)

here X is a matrix with rows Xn = [xn 1] and y = (y1, ...,yN)
T . Using this posterior we can

draw samples and form both a mixture of deltas and a kernel density estimate to compress
samples with the MOD-Scheme and KDE-Scheme respectively. The FG-Scheme targets a
factorised Gaussian, so we approximate the correlated Gaussian posterior by

q(w) =
D

∏
d=1

N (wd | νd,ρd) = N (w | ν ,ρ). (4.10)

2In the case where we use the de-biasing parameter ε we can simply replace the relative entropy in
Equation (4.7) by KL [q(w)∥p(w)] (1+ ε).
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We choose the parameters to minimise the relative entropy given by

KL [q(w)∥p(w |D)] =
1
2

[
log

|V|
|diag(ρ)|

−D trace(V−1 diag(ρ))+(m−ν)T V−1(m−ν)

]
(4.11)

where diag(ρ) is the diagonal matrix with entries given by ρ , and trace(A) is the sum of the
diagonal entries of matrix A. From Equation (4.11) it’s clear the value for ν which minimises
the expression is simply m. For ρ , we differentiate the expression to obtain

dKL [q(w)∥p(w |D)]

ddiag(ρ)
=−diag(ρ)−1 +diag(V−1), (4.12)

which is at zero for ρ = diag(V−1).

With these posterior distributions, the sender can compress samples from both p(w |D) and
q(w) using the corresponding iREC compression schemes.

4.3.2 Generating the Data-set

Our data-set is generated by sampling a setting of the weights ŵ∼ p(w) = N (w | 0,I) and
input targets x∼N (x | 0,I). We then compute the regression target

y = ŵT x+σε, (4.13)

where ε =N (0,1) and σ is a specific noise term that we vary depending on the dimension of
the problem we consider. Rather than viewing the dimensionality in terms of the dimension
of x ∈ RN , we report the dimension of the weight-space, since we are concerned with
compressing samples from p(w |D). The dimension is therefore given by N +1 since we
have a weight for each component of x, plus a bias term. For 2D, we chose σ = 0.01,
and for all others σ = 0.1. This is because linear regression is a very easy task in lower
dimensions and so we need to set up the problem in such a way to still preserve uncertainty
over predictions. We use a 50:50 training and test split, with the number of total data-points
equal to 2×D where w ∈ RD. This ensures the problem leads to the model having significant
uncertainty in its predictions and correlations its posterior p(w | D). If we use too many
training points or have too small signal noise, the posterior will collapse onto a delta mass
and not make for an interesting compression problem. After computing p(w |D), we find
the factorised Gaussian approximation to the posterior derived above, denoted q(w), and
use this to compress samples with the FG-Scheme. Then, we draw 50 empirical samples
from p(w |D) and use these to form the mixture of deltas so that we can compress samples
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with the MOD-Scheme. For each problem we consider ε ∈ [−0.3,0.4], this varies how many
samples we draw per auxiliary variable which directly relates to the compression size of each
sample. The decimal value of ε represents the overhead in compression size in comparison
to the optimal value which is given the relative entropy3. Since our data was generated with
a sample from the prior, the posterior is close-by. Consequently, we don’t encounter issues
reaching the mode as mentioned in Chapter 3, and can implement the optimised variances
routine. Additionally, we use Ω = 5 and a beam-search with B = 5. After compressing
multiple samples, we construct the predictions detailed in Section 4.1 and measure the coding
efficiency and log-likelihood.

4.3.3 Results

First, we present the results on the 2D problem, with the training and test-set results shown
in Figure 4.3. For this problem, samples from the true posterior outperform the samples
from the factored Gaussian variational approximation on both the training and test-sets. On
the training-set, for every given compression rate, the MOD-Scheme samples outperform the
FG-Scheme samples. For both schemes, the test-set performance begins to degrade as we
relax the constraints on the compression size by increasing ε . This empirically demonstrates
the concerns raised in Chapter 3, specifically that due to our choice of greedily picking
the auxiliary samples and further implementing a beam-search, our samples are biased to
the mode. In Figures 4.1 and 4.2, we plot example trajectories for both schemes on this
problem with different compression budgets. With a large compression allowance, virtually
all the compressed samples lie on the mode, meaning they under-represent the uncertainty
in the posterior distribution. This results in degradation in the test-set performance but
asymptotically increasing training-set performance as the models begin overfitting the training
data. This demonstrates the extra care the sender must take on this task, since reaching the
mode is sub-optimal when your predictions need to represent uncertainty.

3i.e. if ε = 0.2 then we have an overhead of 20%.
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Fig. 4.1 Plot of the trajectory of MOD-Scheme on 2D linear regression task with a large and
small compression allowance. The solid lines depict the trajectory of auxiliary variables used
to compress a sample. The markers show each additional auxiliary variable, and the black
marker shows the final position of the compressed sample.
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Fig. 4.2 Plot of the trajectory of FG-Scheme on 2D linear regression task with a large and
small compression allowance. The solid lines depict the trajectory of auxiliary variables used
to compress a sample. The markers show each additional auxiliary variable, and the black
marker shows the final position of the compressed sample.
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Fig. 4.3 Plot depicting the performance of Bayesian linear regression models on a 2D problem.
We plot the performance of uncompressed samples from the true posterior and approximate
posterior and compare these to compressed samples. Given enough overhead through the
bias reducing parameter ε , our compressed samples experience mode bias which results in
overfitting on the training set and worse test-set performance.

As we increase the dimensionality of the problem, two things occur: (1) more correlations
appear in the resulting Gaussian posterior p(w |D) and (2) the relative entropies increase
so the compression task becomes harder. We can examine the differences between the two
schemes by considering a 10D problem and plotting some sample trajectories in Figures
4.6 and 4.7. From these plots, it’s clear that the factorised Gaussian approximation is a
poor representation of the true posterior, the targets are far too small and so our predictions
will be overconfident. It even looks like the approximation is isotropic, but examining
the posterior covariance matrix proves this to not be the case. These examples translate to
performance on the data-set, in Figure 4.4, the drop-off in performance between samples from
the true posterior and the variational approximation is much greater. Also, the FG-Scheme
compressed samples perform better with fewer nats per sample (small values for ε). With few
nats, the compressed samples have much more noise compared to true samples, and since the
variational approximation is poor and underrepresents the uncertainty, adding noise to the
samples is beneficial. This is further supported by a steep degradation in the performance as
the nats per sample increases. The largest compression size yields performance similar to
uncompressed samples from the factorised Gaussian.
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Since the compression task gets harder as the dimension grows, the schemes need larger com-
pression sizes to experience mode biasing. Despite this, on the 10D problem both schemes
experience overfitting when the nats per sample is large enough. Increasing the dimension
to 25D in Figure 4.5, the MOD-Scheme stops overfitting on the training set. The posterior
distribution is higher dimensional and much harder to compress samples from, so landing
directly on the mode is less probable. Furthermore, the performance gap between using true
samples and the variational approximation widens compared to the 10D problem. Having
more dimensions creates more correlations and so the approximation gets cruder.

Overall, these results demonstrate the MOD-Scheme is outperforming the FG-Scheme in the
Pareto sense: for every fixed compression size, the test-set performance is better, and for
every fixed test-set performance, the compression rate is higher. We give more examples of
results in Appendix B, and note the trends discussed above were common amongst all our
tested problems.
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Fig. 4.4 Plot depicting the performance of Bayesian linear regression models on a 10D
problem. We plot the performance of uncompressed samples from the true posterior and
approximate posterior and compare these to compressed samples. Since this task is harder
and the true posterior more correlated, the MOD-Scheme performs much better on the test-set.
The FG-Scheme gets worse with more nats since it gets closer to the poor factorised Gaussian
approximation.
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Fig. 4.5 Plot depicting the performance of Bayesian linear regression models on a 25D
problem. We plot the performance of uncompressed samples from the true posterior and
approximate posterior and compare these to compressed samples. Since this task is harder
and the true posterior more correlated, the MOD-Scheme performs much better on the test-set.
The FG-Scheme gets worse with more nats since it gets closer to the poor factorised Gaussian
approximation.
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Fig. 4.6 Plot of the trajectory of a subset of the weights communicated using the MOD-Scheme
for the 10D linear regression task. The solid lines depict the trajectory of auxiliary variables
used to compress a sample. The markers show each additional auxiliary variable, and the
black marker shows the final position of the compressed sample.
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Fig. 4.7 Plot of the trajectory of a subset of the weights communicated using the FG-Scheme
for the 10D linear regression task. The solid lines depict the trajectory of auxiliary variables
used to compress a sample. The markers show each additional auxiliary variable, and the
black marker shows the final position of the compressed sample.
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4.4 BNN Regression - Toy Problem

4.4.1 Defining the problem

Now consider using a Bayesian Neural Network on a regression task. Define the output
of the neural network with weights w at input feature x by Fw(x). Further, we make the
assumption that the conditional distribution p(y | x) is Gaussian, where the mean is given by
the output of the Neural Network at x and that the noise is known to be σ2, this results in the
likelihood

p(yn | xn,w,σ2) = N (yn |Fw(x),σ2). (4.14)

We place the same Gaussian prior over the weights as for the Bayesian Linear Regression
setting,

p(w | α) =
N

∏
n=1

N (w | 0,α−1I). (4.15)

The likelihood over the full data-set is defined

p(D | w,σ2) =
N

∏
n=1

N (yn |Fw(x),σ2). (4.16)

The posterior distribution over the weights w is

p(w |D ,α,σ) ∝ p(D | w,σ2)p(w | α). (4.17)

Due to non-linearities in the neural network, the function Fw(x) depends non-linearly on
w, therefore the posterior distribution is intractable. As discussed in Section 2.2, we can
perform inference using Variational Inference or with Markov chain Monte Carlo using
Hamiltonian Monte Carlo. Moreover, the β training objectives allow us to trade-off data fit
and model compressibility. We learn a factorised Gaussian approximation qφ (w) with VI and
apply the FG-Scheme to compress samples from it. Using HMC, we draw a set of samples
from p(w |D) and use these to form our mixture of deltas; this then lets us implement the
MOD-Scheme to compress samples of w.

4.4.2 Approximating the Relative Entropy

The number of candidate samples a(1)k ,a(2)k , ... ∼ p(ak) used per auxiliary variable for the
MOD-Scheme is given by the relative entropy between the true posterior and the prior divided
by the hyper-parameter Ω. Since the true posterior is intractable, we cannot compute the
relative entropy in closed-form. Furthermore, MCMC estimates using HMC are high variance
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and expensive to compute4. Instead, we fit a Gaussian KDE using a subset of 500 samples
from HMC and compute the relative entropy between the KDE and the prior to determine how
many samples to draw from p(ak). To fit the KDE, we optimise the β -ELBO with respect to
a shared isotropic noise parameter σ2

KDE (ensuring to use the same β as the potential function
in Equation (2.30) when running HMC). Given a subset {wt}T

t=1 of the HMC samples, we
define the KDE

g(w) =
1
T

T

∑
t=1

N (w | wt ,σ
2
KDEI), (4.18)

and train it according to

β -ELBO =
N

∑
n=1

Eg [log p(yn | w,xn)]−βKL(g(w)∥p(w | α)) . (4.19)

In addition to using the KDE to determine how many samples to draw, we can also use it to
compress samples using the KDE-Scheme. Since the KDE approximation is used to compute
relative entropy for both schemes, their corresponding compression efficiency will be the
same.

4.4.3 Data-set and Architecture

For this task, we use a BNN with 1 hidden layer and 3 hidden nodes. We use tanh activation
functions and the input and output sizes are 1. Therefore, both the input data {xn}N

n=1

and the corresponding regression targets {yn}N
n=1 are one dimensional. Similarly to the

previous task, we generate our data-set by sampling a setting of the weights ŵ ∼ p(w) =

N (w;0,I), computing Fŵ(x) and adding the observational signal noise σ2 = 1
100 . To create

our training/test split, we sample two clumps of training points, leaving gaps in-between.
The generated data-set is visualised in Figure 4.8; the ground truth function from the sampled
BNN is showed with the training and test-sets over-layed. The rationale between having
‘gaps’ in our data is that Mean-Field Variational Inference methods are notoriously poor
at dealing with ‘in-between’ uncertainty and this will help demonstrate why using exact
samples from p(w |D) improves performance [Foong et al., 2019].

Finally, to compress the samples we set Ω= 5, ε = 0.2 and used optimised variances. Despite
our BNN having relatively few parameters, we were unable to use a beam-search. We choose
the final sample by greedily selecting the candidate aK which maximises the likelihood of the
data under the compressed model. So for each candidate sample we have to load the weights

4Since we only know the density up to a normalisation constant, the MCMC estimates require the computa-
tion of p(D) which yields a high variance estimator.
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in a neural network and compute a forward pass. This computation gets extremely slow
when combined with a beam-search as we have to compute B×M forward passes where
B is the beam-width and M = ⌈exp(Ω(1+ ε)⌉. This demonstrates that in its current state
our method has trouble being applied to typical models which could have millions or more
parameters.
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Fig. 4.8 Plot showing the training and test-set for our toy problems with BNNs. The ground
truth is a sample from our weight prior, and the training data was created to include gaps to
demonstrate both ‘in-between’ and extrapolation uncertainty.

4.4.4 Results

In Figure 4.9, we give predictive distributions for all three methods when using β = 1.
Here, the uncompressed predictions from samples with HMC and KDE have much more
uncertainty compared to the uncompressed factorised Gaussian samples; particularly in
extrapolation. Furthermore, the predictive distribution using the MOD-Scheme compressed
samples has more uncertainty compared to the KDE-Scheme. As the posterior distribution
gets more complex and higher dimensional, more exact samples may be required for the
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mixture of deltas to capture the shape of the posterior. The Gaussian KDE alleviates some of
these issues by adding a small amount of noise to each delta, making the approximation less
sparse. This results in the scheme being able to target areas ‘in-between’ the exact samples
since they are given probability mass. The MOD-Scheme is unable to target these zones since
they are given no mass whatsoever, resulting in the trajectories being constrained to directly
target the empirical samples, which may be sub-optimal.
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Fig. 4.9 Plot of the predictive distributions for samples using all the different compression
schemes with β = 1. The first row shows the predictive distribution for the true samples,
with the second row being the predictive distribution using samples compressed with the
MOD-Scheme, KDE-Scheme and FG-Scheme respectively. Th reader is encouraged to zoom
into these plots to see the predictive distributions in detail.

In Figures 4.12, 4.13 and 4.14 we plot example trajectories with their corresponding target
distributions (when we trained with β = 1). These posterior distributions are more complex
and potentially multi-modal, so the factorised Gaussian is an extremely poor approxima-
tion. Due to the KL term in the ELBO training objective, regions where q/p is large are
heavily penalised, and so our variational posterior fits to a single mode of the true posterior.
This means alternative explanations of the data are completely ignored, and therefore the
model under-represents uncertainty in its predictions. This helps to explain the confident
predictive distributions we saw in Figure 4.9 and suggests the test-set performance should be
poorer.
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By varying the β in our training objective we can analyse our compressed models’ perfor-
mances against their compression size with results shown in Figure 4.10. On the test-set the
performance of all the methods improves as the compression size increases. In the Bayesian
Linear Regression experiment, varying ε changed the compression size, but our samples were
still targeting the same distributions. In this case, varying β instead results in different target
distributions, so the mode bias issues are less prevalent since we keep ε fixed to a reasonable
value of 0.2. This also shows that if we care about having good uncertainty calibration in our
predictions we should prefer to use more nats through the β training objectives rather than
simply increasing the overhead with ε .

Interestingly, the training set performance of the FG-Scheme is greater than the other methods
for every compression size. This contrasts the linear regression results where the MOD-Scheme
model scored better on both. The reason for this is that the uncompressed HMC samples
perform worse than the factorised Gaussian samples on the training set, shown in Figure 4.11.
We also find, similarly to the previous experiment, that the compressed samples with the
FG-Scheme outperform uncompressed samples from the factorised Gaussian on the test-set -
adding noise increases the model’s uncertainty and so it over-fits less. Additionally, these
results confirm that the KDE-Scheme is adding value compared to the simpler MOD-Scheme.
Both results show an almost identical pattern, with asymptotically improving performance
when using more nats, but the KDE scheme achieves better log-likelihoods at every tested
value. Referring to the predictive distributions in Figure 4.9, the KDE-Scheme has a tighter fit
where data is present but maintains the uncertainty in extrapolation and ‘in-between’ values.
Figure 4.11 does indicate performance drop-off when using true samples from the KDE
compared to the samples from HMC, suggesting that better performance could be achieved
by using a more refined approximation.

Overall, these results demonstrate that as the true posterior distribution becomes more com-
plex, the factorised Gaussian approximation struggles, and methods that target exact samples
from p(w |D), like the MOD-Scheme and the KDE-Scheme, become more necessary.
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Fig. 4.10 Plot of the regression results for compressed models using MOD-Scheme,
KDE-Scheme and FG-Scheme. As we weaken the compression the model performance
increases for all schemes on both the training and test-sets.
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Fig. 4.11 Plot of the regression results for compressed models using Empirical-Scheme,
KDE-Scheme and FG-Scheme compared to using uncompressed samples. Here we plot
against the relative entropy using each method. This shows that as we decrease the value of
β in our training objective, the relative entropy is able to increase and as a result the training
set fit improves.



4.4 BNN Regression - Toy Problem 56

2

0

2

w
1

2

0

2

w
5

2

0

2

w
10

2.5 0.0 2.5
w1

2

0

2

w
13

2.5 0.0 2.5
w5

2.5 0.0 2.5
w10

2.5 0.0 2.5
w13

Fig. 4.12 Plot of the trajectory of MOD-Scheme on toy regression problem using BNNs. Here
we plot a subset of the weights. The solid lines depict the trajectory of auxiliary variables
used to compress a sample. The markers show each additional auxiliary variable, and the
black marker shows the final position of the compressed sample.
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Fig. 4.13 Plot of the trajectory of KDE-Scheme on toy regression problem using BNNs. Here
we plot a subset of the weights. The solid lines depict the trajectory of auxiliary variables
used to compress a sample. The markers show each additional auxiliary variable, and the
black marker shows the final position of the compressed sample.
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Fig. 4.14 Plot of the trajectory of FG-Scheme on toy regression problem using BNNs. Here
we plot a subset of the weights. Compared to the other trajectory plots in Figure 4.12
and Figure 4.13, the target is much smaller and has less variance. The solid lines depict
the trajectory of auxiliary variables used to compress a sample. The markers show each
additional auxiliary variable, and the black marker shows the final position of the compressed
sample.
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4.5 BNN Regression - UCI Energy

This section analyses the performance of compressed samples from BNNs which model
regression on the UCI Energy data-set [Tsanas and Xifara, 2012].

4.5.1 Modelling the noise

For this data-set, unlike the previous ones, we do not know a priori the observation noise
term σ2. One approach would be to model the noise in a heteroscedastic fashion, i.e. make
our model output both a mean and variance conditional on the input. Another method is to
learn homoscedastic noise; a fixed noise σ that is assumed to be equal for all data points.
Since the first method amounts to simply adding a node to the output layer, we instead learn
homoscedastic noise σ and model it in a way that we can compress it along with the model
weights. Specifically, we consider the parameter ρ ∼ p(ρ) =N (ρ | 0,1) and compute

σ = softplus(ρ) = log(1+ exp(ρ)). (4.20)

This function constrains the noise to be positive and is depicted in Figure 4.15. We first
trained MAP estimates on this data-set to find a suitable range of values for the homoscedastic
noise. These yielded σ ∈ [1,3] and so our prior over ρ is flexible enough to yield posteriors
on ρ with significant probability mass in these ranges.

4.5.2 Data-set and Architecture

We create ‘gaps’ in the data-set akin to Foong et al. [2019]. For each dimension of the
inputs {xn}N

n=1, we create a training/test split whereby we sort the points in ascending order
in the specific dimension, and then remove the middle third of the points as test points.
The remaining two-thirds are the training points and so our training set has a ‘gap’ which
allows us to observe the model’s handling of ‘in-between’ uncertainty. In this way, for a D
dimensional input x, we create D training/test splits and perform the regression task on each
split.

Again, we implement a single hidden layer BNN with 3 hidden units and tanh activation
functions. We place isotropic Gaussian priors over the weights p(w) = N (w | 0N ,IN),
meaning we can consider the set of parameters z = {w,ρ} with prior distribution p(z) =
p(w,ρ) = N (0N+1,IN+1) where w ∈ RN . To get uncertainty over our predictions we adapt



4.5 BNN Regression - UCI Energy 60

the methodology given in Section 4.1 by setting

g(yt) =
1
N

N

∑
i=1

N (yt |M [wi](xt),σ
2
i ), (4.21)

where σ2
i = softplus(ρi). For the VI posterior over the parameters z, we will again assume a

factorised Gaussian, so we can compress samples using the FG-Scheme. Also, we run HMC
to target p(z |D). For each split we then create the KDE using sub-samples from the HMC
run to approximate the relative entropy between the true posterior and the prior. Then we can
compress samples using the MOD-Scheme, and the KDE-Scheme which directly targets the
KDE. Unlike the previous test, we will not use a β training loss. By learning the likelihood
noise, and noting that Section 2.2.4 made an equivalence between augmenting the likelihood
noise and training with a β objective, we find that changing β would simply result in the
posterior on ρ adapting to offset the changes. We can still compare the performance when
using β = 1 and in this case we would expect the models compressed using exact samples to
perform better in terms of uncertainty calibration and compression size compared to those
targeting the variational approximation.

To compress the samples, we use the same hyper-parameters as for the toy BNN problem,
namely Ω = 5, ε = 0.2 and optimised variances. Again, we chose not to implement beam-
search for the computational issues discussed previously.
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Fig. 4.15 Plot of the softplus activation function. This is what we use to transform the
parameter ρ into the homoscedastic noise term σ .
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4.5.3 Results

We compress 500 samples for each split and average the results across each split, reporting
standard errors in Figure 4.16. Here we find that the MOD-Scheme and KDE-Scheme signifi-
cantly outperform the FG-Scheme on both test-set log-likelihood and compression efficiency.
The recurring theme in our results is that by targeting the true posterior over the parameters
p(z | D), we can achieve better uncertainty calibration which results in better data-fit on
unseen data-sets. Furthermore, in this test, the compression efficiency for the MOD-Scheme
and KDE-Scheme was better than the FG-Scheme.

Our data-fit results show similar trends to those found in Foong et al. [2019], where the
variational approximation suffers greatly on the test-set. Interestingly, our performance is
better for the factorised Gaussian samples compared to Foong et al. [2019]. Immer et al.
[2021] have noted that Mean-Field Variational Inference models often benefit from using
simpler architecture, which may explain this phenomenon. Another explanation could be that
our models are inferring a posterior on the observation noise σ2 whose mean value is larger
than the noise learnt in the paper. Foong et al. [2019] learn a maximum likelihood estimate
of σ2 but its value is not given, so it is hard to determine which of these explanations is most
likely. These effects are exaggerated when using compressed samples since the compression
method introduces noise into the samples, further increasing the epistemic uncertainty in
predictions. This links to the results found in Section 4.3, where the compressed samples
from the FG-Scheme can often outperform true samples if the variational approximation has
underestimated the uncertainty.

It’s clear that the FG-Scheme samples are overfitting by examining the training-set log-
likelihood, where it far outperforms the other methods, consistent with results from our other
experiments. Furthermore, the standard error bars in Figure 4.16 are much larger for the
FG-Scheme samples since their performance was very different depending on each of the
training/test splits, which is consistent with the results in Foong et al. [2019]. For some of
the splits, overfitting wasn’t an issue. For those specific dimensions, the data in the missing
‘gap’ may not vary drastically from the trend in the observed training data. The difference
in the splits also increased the variance of the compression size; on the data-sets where
the variational approximation overfits, the relative entropy can grow much larger since the
data-fit term in the ELBO can be trained to be very small. As a result, more nats are required
to compress these models which is reflected in the variance of the compression size. This
shows that using true samples also makes the compression size more robust to augmentations
in the data, and the final models are less sensitive to the training methods. Finally, these
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results reveal that, by placing a prior over the learnt noise parameter ρ , we can compress
information relevant to our model that is different to the model weights.

Overall, we have seen that our methods extend to models trained on real-life data-sets. In
accordance with the link between the MDL principle and the ELBO, using exact samples
from the true posterior both improves test-set performance and compression size.
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Fig. 4.16 Plot of training and test-set log-likelihood along with expected coding efficiency
per ensemble member. Here we see that the samples compressed from the variational
approximation have much worse performance on the test-set and require many more nats to
encode.



Chapter 5

Related and Future Works

In this section, we begin by reviewing some common methods for model compression
in machine learning literature. We detail these approaches and contrast them with ours.
Afterwards, we draw upon these ideas for inspiration to improve our method. We propose
two novel methods to improve iREC for model compression: (1) specific coding goals, and
(2) dynamical proposal distributions.

5.1 Related Works

In this thesis, we presented a method for model compression that corresponded to transmitting
a sample from a distribution over the model’s weights. Our method sends a random sample
from the weight posterior rather than a deterministic set of weights. This makes it well-suited
for the task of sending multiple samples from the posterior and performing inference, thus
calibrating the uncertainty in our predictions. The model compression literature, however, is
focused on transmitting a single setting of the weights, and so differs from our work. Since
weight pruning and quantization are the most prominent, we focus on these here.

5.1.1 Weight Pruning and Quantization

By identifying redundancies and removing them, data can be compressed with minimal
distortion. This idea can apply to models, particularly neural networks since they are known
to be over-parameterised in many applications [Alvarez and Salzmann, 2017]. If specific
weights are not useful for making predictions, then removing them will reduce the footprint
of the model without significant impact on its performance.
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This idea has been used to reduce the size of neural networks for many decades, with the
earliest being Biased Weight Decay from Hanson and Pratt [1988]. By appealing to Occam’s
Razor, they aimed to reduce the number of parameters in their neural networks to make
them generalise better. To do this, they added weight decay terms to their loss function and
removed weights that made minimal impact on the performance. Whilst their method was not
originally meant for compression, by reducing the number of weights, fewer parameters need
to be communicated to the receiver. Later, in Optimal Brain Damage, LeCun et al. [1990]
used the Hessian matrix to determine which weights to prune and showed better performance
than in Biased Weight Decay.

Deep Compression proposed by Han et al. [2015] used these ideas directly for compression.
They performed magnitude-based weight pruning by taking the weights of the model whose
values were below a threshold and setting them to zero. Then they systematically retrained
to account for the pruning. To further reduce the size of the networks, they used k-means
clustering to conduct weight-sharing. For a hidden layer with n connections, using b bits to
represent each weight value and quantizing the weights into k clusters results in kb+n log2(k)
bits to transmit per layer, in contrast to nb bits without the weight-sharing. The kb term refers
to the number of bits used for the weight value of each cluster, and the n log(k) is the number
of bits needed to determine which cluster each weight belongs to. In this way, quantization
happens on two levels: (1) reduction in precision in the weights through b and (2) clustering
to reduce the total unique weights in the network. Afterwards, the final quantized weights
are encoded with Huffman coding.

Links to our method

Weight pruning involves manually removing the weights that don’t impact the performance
of the model. With iREC, since we place a prior over the weights, any weight that has no
impact on the performance will have a posterior that collapses onto the prior. Consequently,
these redundant weights do not contribute to the relative entropy of the full posterior and so
cause no increase in the codelength. This shows that our method effectively weight prunes
without us needing to explicitly remove the weights from the model1, and using the β training
objective allows us to control the degree of this. On the other hand, weight-sharing could be
useful as it would reduce the dimension of the target and prior distributions which should
reduce the relative entropy leading to more efficient encodings, but also reduce the runtimes
of our compression algorithms - as we have shown in Section 3.6.

1This means we don’t impact the overall architecture compared to the uncompressed model.
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5.1.2 Probabilistic Methods

The most notable probabilistic method of model compression is Bayesian Compression by
Louizos et al. [2017]. It takes inspiration from the equivalence between Bayesian model
comparison and the Minimum Description Length Principle to help guide weight pruning.
Rather than pruning at the weight level, they prune entire hidden units by using the ELBO
with a specific sparsity inducing prior as their training objective. Furthermore, they look at the
variance in their variational posterior to determine what bit precision to use for encoding each
weight parameter. Weights with high posterior variances are thought to be less informative
and given reduced precision. Whilst probabilistic methods are used to guide pruning and
quantization, this method still yields a deterministic setting for the weights that is then
encoded using the standard methods. Overall, this method uses the connection made in
‘Bits-back’ argument [Hinton and Van Camp, 1993] to help compress the size of the neural
network, but doesn’t aim for the postulated coding efficiency of KL

[
qφ∥p

]
. A method that

does aim for the ‘optimal’ coding efficiency is MIRACLE [Havasi et al., 2018].

MIRACLE

The most closely related method to iREC is MIRACLE [Havasi et al., 2018]. This method
was the first to introduce the importance sampling procedure that we described in Chapter 3.
MIRACLE is a similar but more rudimentary compression method, where the model parame-
ters are split up into chunks and each chunk is compressed using a similar method to iREC. A
nice feature of the MIRACLE method is that a specific coding goal of C nats can be set, and
an adaptive β -ELBO training objective is used to ensure the coding goal is achieved.

Explicitly, a global coding goal of C nats is set, and the weight vector w is split into blocks,
where the number of blocks is determined by K =

⌈
C

Cloc

⌉
, where Cloc is the local coding goal.

The parameter Cloc should remind the reader of the parameter Ω from the iREC scheme
since it determines the number of blocks (auxiliary variables) the scheme will utilise. Each
block is then trained with a β -ELBO objective that is specific to the block. In this way, if the
relative entropy of a specific block exceeds its constraints Cloc, the value of β for that block is
increased to encourage the posterior on the block to lie closer to the prior - reducing the cost
of compressing a sample. Analogously, if the relative entropy is too small, the value of β for
that block can be relaxed to allow the posterior to differ more from the prior. By uniformly
splitting the weights into blocks, only the number of blocks needs to be communicated which
can easily be done using the shared random number generator.

In practice, to compress a sample, a prior is set over the weights and the variational parameters
of the approximate posterior q(w) are trained using a β -ELBO until convergence. Then, one



5.2 Future Works 66

of the K blocks is randomly sampled and encoded like in the iREC scheme with the index
importance sampling scheme. Subsequently, the method involves updating the variational
distribution over the blocks which have not yet been encoded to ensure the global coding
goal is maintained. The model is conditioned on the compressed block and the remaining
blocks are retrained using the block-specific β -ELBO to both ensure the global coding goal
is met and help the model adjust to the compressed sample. Intuitively, conditioning on
the already compressed samples allows for the network to ‘learn’ how to account for poor
samples. Finally, they employ a more rudimentary weight-sharing method than that seen
in Deep Compression. Akin to [Chen et al., 2015], they use a random hashing function
to tie weights together pre-training, resulting in lower-dimensional distributions p(w) and
q(w). This subsequently reduces the per block relative entropy - improving the compression
rate. This method achieves state-of-the-art performance on typical network compression
benchmarks and is bits-back efficient.

One can view MIRACLE as a special case of our method where the auxiliary variables
are the blocks and the function f such that z = f (a1:K) is concatenation. One drawback of
MIRACLE compared to our method is that the receiver needs to know how to piece back
the blocks to recreate the sample. In contrast, for our method, the receiver simply sums
the decoded auxiliary variable samples to recreate the intended weight sample. There are
a several features of MIRACLE that could be useful to improve our method (e.g. explicit
coding goals) and we discuss these later.

5.2 Future Works

Drawing on inspiration from the related works, here we detail some ways in which we could
extend/improve our model compression method. The main issues with our method currently
are the compression speed and the inability to explicitly control the compression size. Here
we detail two possible extensions to tackle both.

5.2.1 Specific Coding Goals

Whilst we can use the β training objective to implicitly set the compression size, it is not
able to set a specific coding goal like in MIRACLE. It is possible to train models with a
variety of β values and choose the one that gives the relative entropy closest to the intended
compression size, but this is a tedious and inelegant solution. Rather than break up posterior
into chunks and enforce local coding goals as in MIRACLE, we propose an alternative
method that has minimal impact on the current iREC workflow. Instead, we rephrase the
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β -ELBO in the following way:

maximise Eqφ (w) [log p(D | w)] (5.1)

subject to KL
[
qφ (w)∥p(w)

]
≤C. (5.2)

This objective would yield the explicit coding threshold of C nats. To make this a trainable
objective we need to rewrite it as a differentiable function on an unconstrained domain. To
do this we can use a logarithmic barrier function:

maximise Eqφ (w) [log p(D | w)]− log
(
C−KL

[
qφ (w)∥p(w)

])
. (5.3)

This objective enforces the constraint that KL
[
qφ (w)∥p(w)

]
≤C and is differentiable. This

objective would be interesting to explore in future works to see if we are able to explicitly set
coding thresholds for our compression algorithms.

5.2.2 Dynamic Proposal Distributions

In Hinton and Van Camp [1993] the optimal compression size of encoding a sample from
distribution q using distribution p is shown to be KL[q(z)∥p(z)]. Our work focused on
improving the approximation to the true posterior, q, while using the prior p as the proposal
distribution. It’s clear that improving the proposal distribution will also have a big impact
and so should be studied in more detail. In the case of sending multiple samples, each
decoded sample gives information to the decoder about q. Therefore they should update their
proposal distribution p accordingly. We illustrate the importance of this with a simple toy
example. From here on we define the first proposal distribution p0 to initially coincide with
the prior used to train the model p. After decoding the samples, we can then make an update
to the proposal by performing a Bayesian update on the proposal parameters. In the case
of Gaussian targets and proposals, this update is exact and so we detail an example of this
below. In this example, we only update the mean as it is a simply illustrative example, but
for more complicated problems, the covariance matrix could similarly be updated.

Consider compressing a 1D Gaussian target with a 1D Gaussian proposal. Specifically, set
q(z) = N (z | ν ,ρ) and consider a proposal with a prior over its mean, that is p(z | µ) =
N (z | µ,σ2) with p(µ) = N (µ | µ0,σ

2
0 ). This means that the sender and receiver agree

to the distributions p(z | µ) and p(µ) beforehand. Marginalising over the mean we get the
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initial proposal distribution2,

p0(z) = N (z | µ0,σ
2 +σ

2
0 ). (5.4)

Now we can perform iREC with q(z) and p0(z). Suppose the random sample ẑ is transmitted
using iREC, then both the sender and receiver can perform the Bayesian update on the mean
as follows:

p(µ | ẑ) = N
(
µ | µ1,σ

2
1
)
, (5.5)

where

σ
2
1 =

(
1

σ2 +
1

σ2
0

)−1

, (5.6)

µ1 =
1

σ2 +σ2
0

[
σ

2
0 ẑ+σ

2
µ0
]
. (5.7)

We can now marginalise over µ with our posterior to compute the new proposal,

p1(z) = N (z | µ1,σ
2 +σ

2
1 ). (5.8)

Since this update is exact, there is no information needed to be transmitted for the decoder
to perform the update. Consequently, the new proposal can be used with the iREC scheme
and this process of updating the proposal can continue. We implement this method on a
1D compression task. We find that the compression size (derived from the relative entropy)
falls rapidly (see Figure 5.2) and converges as the proposals adapt to have their mean co-
incide with the mean of the target (see Figure 5.1). Altogether, the average codelength of
the samples decreases with the number of samples sent, which results in a much smaller
compression size for the full set of compressed samples. Since the compression size reduces,
the relative entropy between the target and proposal is smaller, and so fewer samples need to
be drawn at each step, this reduces the compute needed to compress each additional sample.
Furthermore, the transmitted samples are far closer to the true distribution compared to the
samples compressed with standard iREC. Overall, this demonstrates that the dynamic pro-
posals improve the compression size, sample quality and computational costs of performing
iREC to compress multiple samples. In particular, this method works well with factorised

2In general we would set σ2 and σ2
0 such that they initially coincide with the prior over z, this way we can

fairly compare this new method to the standard iREC scheme.



5.2 Future Works 69

Gaussian posteriors since the Bayesian updates are exact. We leave further exploration and
experimentation to future work.
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Fig. 5.1 The first plot shows how the proposal distribution changes over time, the mean
eventually coincides with the target mean. The second and third plots show the difference
between the compressed samples with the dynamic proposal and a fixed proposal. The
dynamic proposal samples are far less biased than the fixed proposal.
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Fig. 5.2 The first plot shows that the average compression size reduces with each additional
sample since the proposal can change to better suit the target distribution, this directly relates
to a smaller compression size. This plot has fluctuations since the selected sample may not
always lie on the target mode. The second plot shows how the total size of all the compressed
samples grows with a fixed proposal and a dynamic proposal. The dynamic proposal is
much cheaper. The fluctuations in the average compression size have minimal impact on the
overage compression size and so the plot appears mostly smooth.



Chapter 6

Conclusions

This thesis began with an introduction to source coding and probabilistic modelling. We
showed that there is a link between Bayesian model selection and the Minimum Description
Length principle. This motivated us to investigate improving upon the factorised Gaussian
variational approximation that was used in previous work from Flamich et al. [2021] and
Havasi et al. [2018].

In Chapter 3, we described the iREC compression method and gave a detailed analysis of its
hyper-parameters and limitations. We presented 2 novel schemes, namely the MOD-Scheme
and KDE-Scheme, which utilise samples from the true posterior.

In Chapter 4, we tested the compression methods on the task of sending multiple samples
from a posterior of a model. We demonstrated that targeting exact samples results in better
compression size and uncertainty calibration. We also demonstrated that using a β training
objective allows one to trade-off model fit and compressibility.

In Chapter 5, we gave an overview of current model compression methods in the literature
and contrasted these to our method. We then drew inspiration from these to suggest some
ways in which we can improve our method; specifically introducing an explicit coding
threshold and using dynamic proposal distributions.

This thesis focused on improving model compression by using approximations that target
exact samples from the posterior over weights, rather than a variational approximation. This
idea can be applied to compressing samples from any posterior. In particular, we believe
that applying these ideas to the task of image compression, as conducted in Flamich et al.
[2021], should see significant benefits in both image quality for lossy image compression,
and reduced codelength. Furthermore, our methods provide a way to compress high quality
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samples from any generative model, and so it has more general applications outside of those
discussed in this thesis. We simply need to model the data such that a random sample from a
posterior distribution corresponds to a sample from the data distribution. As latent variable
models become more sophisticated, more complex data will be able to be compressed with
REC algorithms.

On a final note, the biggest barrier to applying the compression methods shown in this
thesis to real world problems is the computational cost incurred to compress a sample. As
the number of parameters belonging to the model grows, the speed of the compression
algorithm reduces considerably, and the methods needed to reduce the bias, like beam-
search, exacerbate this. Our method struggles from needing to keep track of many high
dimensional tensors which causes memory allocation issues. Furthermore, since we sample
the auxiliary variables in sequence, is is not trivial to parallelize the compression method.
Both the dynamic proposal and explicit coding threshold ideas from Section 5.2 could help
by reducing the relative entropy, and therefore the number of samples drawn at each step of
the algorithm, but even so, storing multiple very high dimensional tensors in a computer’s
memory is impractical. One way to tackle this would be to split up the parameter space into
chunks, akin to MIRACLE [Havasi et al., 2018], to spread the computational cost across
each chunk. Whilst this would complicate the iREC algorithm, it may be necessary to apply
the method in wider use cases. We believe shifting the focus of future research towards
making better proposals p and reducing the computational requirements is key to make these
compression methods practical in the real world.
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Appendix A

Proofs and Derivations

A.1 β Objective Equivalences

Consider the β -ELBO training objective as a functional over the distribution q(w),

L (1)[q] =
∫

q(w) log p(D | w)+β ·q(w)(log p(w)− logq(w)) dw

=
∫

q(w) log p(D | w)+βq(w) log p(w)−βq(w) logq(w) dw.

We can consider its variation,

L (1)[q+ εη ] =
∫
(q(w)+ εη(w)) log p(D | w)+β (q(w)+ εη(w)) log p(w)

−β (q(w)+ εη(w)) log(q(w)+ εη(w)) dw

where η(w) is an arbitrary function in the same functional space as q(w) and ε ∈ R.

To compute the functional derivative, we first compute the quantity

dL (1)[q+ εη ]

dε
=
∫

η(w) log p(D | w)+βη(w) log p(w)

−βη(w) log(q(w)+ εη(w))−βη(w) dw
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and consider,

dL (1)[q+ εη ]

dε

∣∣∣
ε=0

=
∫

η(w) log p(D | w)+βη(w) log p(w)

−βη(w) log(q(w))−βη(w) dw

=
∫

[log p(D | w)+β log p(w)−β log(q(w))−β ]η(w) dw.

The functional derivative, is defined

δL (1)

δq
= log p(D | w)+β log p(w)−β log(q(w))−β . (A.1)

Often one may want to optimise using a β -ELBO, but without decoupling the unnormalised
posterior term p(D | w)p(w). We show that exponentiating the likelihood term with 1/β

gives an equivalent training objective. We begin by defining the functional

L (2)[q] =
∫

q(w) log p(D | w)1/β +q(w) log p(w)−q(w) logq(w) dw

=
∫ 1

β
q(w) log p(D | w)+q(w) log p(w)−q(w) logq(w) dw.

Analogously to the before, consider its variation and compute the functional differential

dL (2)[q+ εη ]

dε
=
∫ 1

β
η(w) log p(D | w)+η(w) log p(w)

−η(w) log(q(w)+ εη(w))−η(w) dw

dL (2)[q+ εη ]

dε

∣∣∣
ε=0

=
∫ [ 1

β
log p(D | w)+ log p(w)− log(q(w))−1

]
η(w) dw.

The functional derivative is given by

δL (2)

δq
=

1
β

log p(D | w)+ log p(w)− log(q(w))−1

=
1
β

δL (1)

δq
,

so training with the objective function L (2)[q] is equivalent to training with the conventional
β -ELBO.
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A.2 Update Scheme Derivations

A.2.1 MOD-Scheme

In our thesis, we propose a new scheme which uses samples from the true posterior. We
directly draw samples from z1, ...,zD ∼ p(z | x) and approximate it with a mixture of
deltas,

q(z) =
1
D

D

∑
i=1

δzi(z). (A.2)

To derive the corresponding update equations in Equation (3.8), we first derive q(z | a1:k).
Substituting q(z) into Equation (3.6) yields,

q(a1:k−1) =
∫

q(a1:k−1 | z)
1
D

D

∑
i=1

δzi(z) dz

=
∫

p(a1:k−1 | z)
1
D

D

∑
i=1

δzi(z) dz

=
1
D

D

∑
i=1

p(a1:k−1 | zi). (A.3)

Using Bayes’ rule we can derive the second recursive equation in Equation (3.8),

q(z | a1:k−1) =
q(a1:k−1 | z)q(z)

q(a1:k−1)

=
p(a1:k−1 | z)q(z)

q(a1:k−1)

=
p(a1:k−1 | z) 1

D ∑
D
i=1 δzi(z)

1
D ∑

D
i=1 p(a1:k−1 | zi)

=
D

∑
i=1

δzi(z)
p(a1:k−1 | zi)

∑
D
j=1 p(a1:k−1 | z j)

. (A.4)



A.2 Update Scheme Derivations 77

Now we are ready to compute the first recursive equation,

q(ak | a1:k−1) =
∫

p(ak | a1:k−1,z)q(z | a1:k−1) dz

=
∫

p(ak | a1:k−1,z)
D

∑
i=1

δzi(z)
p(a1:k−1 | zi)

∑
D
j=1 p(a1:k−1 | z j)

dz

=
D

∑
i=1

p(a1:k−1 | zi)

∑
D
j=1 p(a1:k−1 | z j)

p(ak | a1:k−1,zi). (A.5)

Setting p(z) = N (z | 0,σ2I) and assuming that z = ∑
K
k=1 ak where ak ∼N (ak | 0,σ2

k I), it
follows from Equation (3.9) that q(ak | a1:k−1) is a mixture of Gaussians.

A.2.2 KDE-Scheme

We consider a kernel density estimate using Gaussian kernels, this is equivalent to using a
mixture of Gaussians with uniform mixing weights and equal isotropic noise σ2

KDE. This
results in the approximation,

q(z) =
1
D

D

∑
d=1

N (z;zd,σ
2
KDEI).

Here the means zd are exact samples from the true posterior gotten using HMC.

Using the approximation we have,

q(a1:k) =
∫

p(a1:k | z)q(z)dz

=
1
D

D

∑
d=1

∫
p(a1:k | z)N (z;zd,σ

2
KDEI)dz.

By Bayes’ rule,
p(a1:k | z) ∝ p(z | a1:k)p(a1:k)

and by noticing that

z =
k

∑
i=1

ai +
K

∑
i=k+1

ai := bk +
K

∑
i=k+1

ai

where

bk ∼N

(
bk;0,

k

∑
i=1

σ
2
k I

)
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and
K

∑
i=k+1

ai ∼N

(
K

∑
i=k+1

ai;0,
K

∑
i=k+1

σ
2
i I

)
:= N

(
K

∑
i=k+1

ai;0,s2
kI

)
,

it follows that
p(z | a1:k) = N (z;bk,s2

kI).

Putting this all together,

q(z | a1:k) ∝ p(a1:k | z)q(z)
∝ p(a1:k)N (z;bk,s2

kI)q(z)

= p(a1:k)N (z;bk,s2
kI)

1
D

D

∑
d=1

N (z;zd,σ
2
KDEI)

∝

D

∑
d=1

N (z;bk,s2
kI)N (z;zd,σ

2
KDEI)

=
D

∑
d=1

λ
−1
d

(k)
N (z;c(k)d ,C(k)

d )

where the last line follows from the product of multivariate Gaussian densities. Here we have
that

λ
−1
d

(k)
= N (bk;zd,(s2

k +σ
2
KDE)I)

C(k)
d =

(
1
s2

k
+

1
σ2

KDE

)−1

I

c(k)d = C(k)
d

(
bk

s2
k
+

zd

σ2
KDE

)
.

To find the normalising constant, note that

∫ D

∑
d=1

λ
−1
d

(k)
N (z;c(k)d ,C(k)

d )dz =
D

∑
d=1

λ
−1
d

(k)
,

and so it follows that

q(z | a1:k) =
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
N (z;c(k)d ,C(k)

d ). (A.6)
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To compute the recursive update for the auxiliary variables we can examine the quantity

q(ak | a1:k−1) =
∫

p(ak | a1:k−1,z)q(z | a1:k−1)dz

=
∫

N

(
ak;(z−bk−1)

σ2
k

s2
k−1

,
s2

kσ2
k

s2
k−1

I

)
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
N (z;c(k)d ,C(k)

d )dz

=
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)

∫
N

(
ak;(z−bk−1)

σ2
k

s2
k−1

,
s2

kσ2
k

s2
k−1

I

)
N (z;c(k)d ,C(k)

d )dz.

Considering the first Gaussian density, we can express it as the generative process

ak =
σ2

k

s2
k−1

(z−bk−1)+ ε

√
s2

kσ2
k

s2
k−1

where ε ∼N (0,I) and rearranging yields

z =
s2

k−1

σ2
k

ak +bk−1 + ε

√
s2

ks2
k−1

σ2
k

.

Therefore it follows that

N

(
ak;(z−bk−1)

σ2
k

s2
k−1

,
s2

kσ2
k

s2
k−1

I

)
∝ N

(
z;

s2
k−1

σ2
k

ak +bk−1,
s2

ks2
k−1

σ2
k

I

)
.

Using again the rule for products of Gaussian densities,

N

(
ak;(z−bk−1)

σ2
k

s2
k−1

,
s2

kσ2
k

s2
k−1

I

)
N (z;c(k)d ,C(k)

d )

∝N

(
z;

s2
k−1

σ2
k

ak +bk−1,
s2

ks2
k−1

σ2
k

I

)
N (z;c(k)d ,C(k)

d )

=γ
−1
d N (z;md,Md).



A.2 Update Scheme Derivations 80

Substituting this back in we get

q(ak | a1:k−1) ∝

D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)

∫
N

(
z;

s2
k−1

σ2
k

ak +bk−1,
s2

ks2
k−1

σ2
k

I

)
N (z;c(k)d ,C(k)

d )dz.

=
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)

∫
γ
−1
d N (z;md,Md)dz.

=
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
γ
−1
d .

Note that γ
−1
d is itself a Gaussian pdf of the form

γ
−1
d = N

(
c(k)d ;

s2
k−1

σ2
k

ak +bk−1,
s2

ks2
k−1

σ2
k

I+C(k)
d

)

and again we can write the generative process

c(k)d =
s2

k−1

σ2
k

ak +bk−1 + ε

where ε ∼N

(
0, s2

k−1s2
k

σ2
k

I+C(k)
d

)
. Rearranging this yields

ak =
σ2

k

s2
k−1

(c(k)d −bk−1)+
σ2

k

s2
k−1

ε.

It follows that

γ
−1
d ∝ N

(
ak;

σ2
k

s2
k−1

(c(k)d −bk−1),
s2

kσ2
k

s2
k−1

I+
σ4

k

s4
k−1

C(k)
d

)

and putting this altogether we get

q(ak | a1:k−1) ∝

D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
N

(
ak;

σ2
k

s2
k−1

(c(k)d −bk−1),
s2

kσ2
k

s2
k−1

I+
σ4

k

s4
k−1

C(k)
d

)
.
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Integrating both sides with respect to ak shows that the RHS is normalised, and so we can
conclude:

q(ak | a1:k−1) =
D

∑
d=1

λ
−1
d

(k)

∑
D
j=1 λ

−1
j

(k)
N

(
ak;

σ2
k

s2
k−1

(c(k)d −bk−1),
s2

kσ2
k

s2
k−1

I+
σ4

k

s4
k−1

C(k)
d

)
(A.7)

which is another mixture of Gaussians.

A.3 Uniform Variances Maximise Euclidean Distance

First we show for u≥ 0,
1+u− (u−1)2

2
≤
√

u≤ u+1
2

. (A.8)

For the lower bound, note that for u≥ 0,

(u−1)2 ≥ (
√

u−1)2

which rearranges to give
1
2
(1+u− (u−1)2)≤

√
u.

For the upper bound, when u≥ 0,

0≤ (u−1)2 = u2−2u+1

adding 4u to both sides gives

4u≤ u2 +2u+1 = (u+1)2.

Taking square root on both sides and rearranging gives

√
u≤ 1

2
(u+1)

and so we have shown Equation (A.8).

Suppose we encode w ∈ RN using K auxiliary variables and without loss of generality
assume p(w) = N (w;0,I), then we have that each auxiliary variable ai ∼N (ai;0,σ2

i I)
with ∑

K
i=1 σ2

i = 1.

We want to find which values for σ2
i maximise E(∥w∥). Consider Y = ∥w∥2, and set

U := 1
NY 2 = 1

N ∑
N
j=1 ∑

K
i=1 a2

i j, where a2
i j is the j-th element of the i-th auxiliary. To start note
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the following

E[U ] = E

[
1
N

N

∑
j=1

K

∑
i=1

a2
i j

]

=
1
N

N

∑
j=1

K

∑
i=1

E[a2
i j]

= 1

Var(a2
i j) = E[a2

i j]−E2[a2
i j]

= 2σ
4
i

E[(U−1)2] = Var(U)

= Var

[
1
N

N

∑
j=1

K

∑
i=1

a2
i j

]

=
1

N2
1
N

N

∑
j=1

K

∑
i=1

Var[a2
i j]

=
2
N

K

∑
i=1

σ
4
i .

Now we can substitute U into Equation (A.8) and take expectations to yield

1− 1
N

K

∑
i=1

σ
4
i ≤

1√
N
E[∥w∥]≤ 1. (A.9)

We want to set σ2
i to make this bound as tight as possible. To see this is achieved when

σ2
i = 1/K for all i = 1, ...,K, we have by the Cauchy-Schwartz inequality,

1 =

(
K

∑
i=1

σ
2
i

)
=

(
K

∑
i=1

σ
2
i ·1

)

≤

(
K

∑
i=1

σ
4
i

)(
K

∑
i=1

12

)

= K
K

∑
i=1

σ
4
i
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thus
1
K
≤

K

∑
i=1

σ
4
i .

Since
K

∑
i=1

(
1
K
)2 =

1
K

setting

σ
2
i =

1
K

(A.10)

for all i = 1, ...,K achieves the bound.



Appendix B

Further Results and Model Details

Below we give specific implementation details and some extra results. In particular, note that
we used HMC implementation from Pyro [Bingham et al., 2018] which allows a tune-able
step-size.

B.1 Bayesian Linear Regression

B.1.1 Extra Results
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Fig. B.1 Plot of the performance of samples on a 5D linear regression task.
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Fig. B.2 Plot of the performance of samples on a 50D linear regression task.
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B.1.2 Trajectory Plots

2

0

2

w
1

2

0

2

w
2

2

0

2

w
3

2

0

2

w
4

2

0

2

w
5

2

0

2

w
6

2

0

2

w
7

2

0

2

w
8

2

0

2

w
9

2.5 0.0 2.5
w1

2

0

2

w
10

2.5 0.0 2.5
w2

2.5 0.0 2.5
w3

2.5 0.0 2.5
w4

2.5 0.0 2.5
w5

2.5 0.0 2.5
w6

2.5 0.0 2.5
w7

2.5 0.0 2.5
w8

2.5 0.0 2.5
w9

2.5 0.0 2.5
w10

Fig. B.3 Plot of the trajectory of MOD-Scheme on 10D linear regression task with medium
compression allowance. The reader is encouraged to zoom in to see the trajectories in detail.
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Fig. B.4 Plot of the trajectory of FG-Scheme on 10D linear regression task with medium
compression allowance. The reader is encouraged to zoom in to see the trajectories in detail.
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B.2 BNN Regression - Toy Problem

B.2.1 Implementation Details

HMC

• Total Samples: 1000 samples

• Warmup Samples: 1000 samples

• Steps per sample: 15

• Initial Step Size: 0.001

• Desired Acceptance Rate: 0.8

KDE

• # Samples used from HMC: 500

• Training Objective: optimise isotropic noise for each Gaussian component according
to β -ELBO

• Training Epochs: 10000

• Optimiser: Adam [Kingma and Ba, 2014], learning-rate 0.001

Factored Gaussian

• Training Objective: β -ELBO

• Training Epochs: 10000

• Optimiser: Adam, learning-rate 0.001
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B.2.2 Trajectory Plots

2

0

2

w
1

2

0

2

w
2

2

0

2

w
3

2

0

2

w
4

2

0

2

w
5

2

0

2

w
6

2

0

2

w
7

2

0

2

w
8

2

0

2

w
9

2

0

2

w
10

2

0

2

w
11

2

0

2

w
12

2.5 0.0 2.5
w1

2

0

2

w
13

2.5 0.0 2.5
w2

2.5 0.0 2.5
w3

2.5 0.0 2.5
w4

2.5 0.0 2.5
w5

2.5 0.0 2.5
w6

2.5 0.0 2.5
w7

2.5 0.0 2.5
w8

2.5 0.0 2.5
w9

2.5 0.0 2.5
w10

2.5 0.0 2.5
w11

2.5 0.0 2.5
w12

2.5 0.0 2.5
w13

Fig. B.5 Plot of the trajectory of MOD-Scheme on toy regression problem using BNNs. Here
we plot all the weights against one another. The solid lines depict the trajectory of auxiliary
variables used to compress a sample. The markers show each additional auxiliary variable,
and the black marker shows the final position of the compressed sample. The reader is
encouraged to zoom in to see the trajectories in detail.
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Fig. B.6 Plot of the trajectory of KDE-Scheme on toy regression problem using BNNs. Here
we plot all the weights against one another. The solid lines depict the trajectory of auxiliary
variables used to compress a sample. The markers show each additional auxiliary variable,
and the black marker shows the final position of the compressed sample. The reader is
encouraged to zoom in to see the trajectories in detail.
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Fig. B.7 Plot of the trajectory of FG-Scheme on toy regression problem using BNNs. Here we
plot all the weights against one another. Compared to the other trajectory plots in Figure B.5
and Figure B.6, the target is much smaller and has less variance. The solid lines depict
the trajectory of auxiliary variables used to compress a sample. The markers show each
additional auxiliary variable, and the black marker shows the final position of the compressed
sample. The reader is encouraged to zoom in to see the trajectories in detail.
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B.3 BNN Regression - UCI Energy

B.3.1 Implementation Details

HMC

• Total Samples: 1000 samples

• Warmup Samples: 1000 samples

• Steps per sample: 15

• Initial Step Size: 0.001

• Desired Acceptance Rate: 0.8

KDE

• # Samples used from HMC: 100

• Training Objective: optimise isotropic noise for each Gaussian component according
to β -ELBO

• Training Epochs: 10000

• Optimiser: Adam, learning-rate 0.001

Factored Gaussian

• Training Objective: β -ELBO

• Training Epochs: 10000

• Optimiser: Adam, learning-rate 0.001
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