Conditional Neural Processes (CNPs) meta-learn a mapping from context sets D_C to predictive distributions at target locations x_T, $p_\theta(y_T|x_T; D_C)$, using neural networks.

Desirable Properties
1. Data-efficient (using meta-learning)
2. Fast predictions at test time: $O(n + m)$ for predicting at m target locations with n context observations
3. Good uncertainty representation (by modelling stochastic processes)
4. Data-driven expressivity (using deep learning)

Model Architecture
![Model Architecture Diagram]

Maximum Likelihood Training
Minimize using gradient descent:

$$
\mathcal{L}(\theta) = -\mathbb{E}_{D_C, D_T \sim D} \left[\sum_{(x_T, y_T) \in D_T} \log p_\theta(y_T|x_T; D_C) \right]
$$

References