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Summary

Motivation

Traditional methods must be re-trained to learn
new classes, which is computationally
expensive.

The Task

Classify unseen classes with a pre-trained
model from a handful of examples.

A Solution
Prototypical Networks, Snell et al. (2017)
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Future Directions

Learnable Metrics: model learns the best
distance metric for the task

Doc2Vec Pre-training: use pretrained models to
improve NLP performance

NLP-Focused architectures: use recurrent
or LSTM layers to improve NLP performance

Accuracy

Results

Table 1: Percentage accuracy of different metrics trained on three different datasets.
Testing was done 5-way with either 1-shot or b-shot.

Omniglot Mini-imagenet Reuters
l-shot b-shot 1-shot b-shot 1-shot b-shot

Snell's Euclidean 9838 99.7 4942 68.20 — —
Squared Euclidean 98.32 0951 4835 6582 24.01 2799
KL Divergence 67.46 7813 3886 4426 2218 3447
Generalized I-div. 7408 8745 2883 4395 2231 3498

Cosine Similarity 72.69 83.30 38.07 46.40 2433 2542
Cosine with Softmax 8224 88.45 39.88 5451 2157 26.31

Hypothesis: Euclidean distance outperforms cosine similarity as it is a Bregman divergence.
Finding: KL divergence and Generalized I-divergence are two Bregman divergences which
are outperformed by cosine similarity.
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Default values fom Snell et al. (2017) are 5-shot 60-way train, 20-way test with 15 query points for each.

Data Glossary
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Mathematical Background

Pseudo-metrics
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Bregman Divergences

The Bregman divergence for generating function ¢
is given by

dg(x,y) = ¢(x) — &(y) — (¥, Vo(y))-

Architecture

| Conv + BN +RelLU

'
@ Max pooling P

Conv + BN ‘ _ _
— 64 3x3 filters in each convolutional layer
() Flattten + Activation | with padding and stride of 1
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