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Figure 2: Using different optimisers for the rapid-learning updates on the sinusoid regression 
experiment from the original paper [1]. This concerns how 𝜑𝑘 is found in (1). Whilst ADAM 
improved learning, like [1], including momentum made learning more unstable and Reptile 
performed best when the momentum coefficient was near zero. Lastly, overfitting on the test task 
can be seen after about 20 ADAM inner-loop iterations when trained for many meta iterations.

Following on from the promising performance of the Model Agnostic 
Meta Learning (MAML) algorithm [1], Reptile was written as a strong 
approximator for MAML that retains its performance whilst boasting 
much improved algorithmic complexity. This project seeks to replicate 
the experiments of the Reptile paper [2] and extend them into more 
complex contexts.

Extensions to Few-Shot Regression
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We can mathematically justify Reptile (and, as it happens, MAML) by 
thinking in terms of inner products of gradients after k inner-loop 
update steps: [2]

Figure 5: Example 5-way classifier: 1-shot images (top row) and test images (bottom row).

Omniglot Accuracy

Algorithm    1-shot 5-way

Reptile 97.7%

Reptile + Pretrain 97.7%

Reptile (SGD) 97.4%

Reptile [2] 97.7%

FOMAML 87.5%

FOMAML [1] 98.3%

Figure 6: Initializing weights from a pretrained classifier provides Reptile with an early, but 
unsustained, training advantage. Adopting SGD (instead of ADAM) for the inner-loop leads 
to momentarily suboptimal exploration but ultimately comparable performance.

Mini-Imagenet Accuracy

Algorithm 1-shot 5-way 5-shot 5-way 10-shot 5-way

Reptile 51.6% 67.4% 72.6%

Reptile + Pretrain 49.4% - -

Reptile [2] 50.0% 66.0% -

Figure 3: Results from a 2D version of the 1D few-shot regression sine wave example in 
the Reptile paper. The input space is scaled from 50 to 10K points, and the minibatch size 
is scaled from 10 to 20. The amplitude is fixed at 2.0 and the phase is varied from 0 to 
2π. An SGD optimiser is used. After 1000 meta iterations an initialisation is learned that 
enables the 'bowl' shape of the function to be modelled. After 2000 epochs the learned 
initialisation enables the 'tails' of the function to also be modelled. 

Image Classification: Results and Extensions
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Conclusions
Figure 4: Results from adding an additional Fourier series function to the 1D few-shot 
regression sine wave example. The amplitude is randomly sampled from 0.1 to 5, the 
phase from 0 to 2π, and the function from the sine and Fourier series functions. The model 
learns an initialisation (in blue) that captures key differences between the two functions 
after 256 inner steps, despite the size of the network not being increased.
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1) On 1D sinusoid regression, an ADAM inner-loop optimiser achieves 
lowest MSE but with less stability due to momentum.

2) Reptile learns few-shot approximations to 2D sine waves as well 
as mixtures of 1D function families (Fourier series and sine waves).

3) Reptile performs comparably to MAML [1] on few-shot image 
classification. Pretraining elevates Reptile performance during early 
training iterations, but does not produce a sustained advantage. 
However we did not extensively tune pretraining hyperparameters and 
further research could develop a more rigorous pretraining protocol.
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Inner-Loop Optimiser Comparisons


