
First-Order Approximations for Efficient Meta-Learning
B. King, A. Black, A. J. McLeay

Introduction

References
[1] Finn, C. et al. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. International
Conference on Machine Learning, 1126–1135
[2] Nichol, A., et al. (2018). On first-order meta-learning algorithms. ArXiv Preprint ArXiv:1803.02999.
[3] Zhao, B. (2021). Basics of few-shot learning with optimization-based meta-learning. In boyangzhao.github.io.
https://boyangzhao.github.io/posts/few_shot_learning

Figure 2: Using different optimisers for the rapid-learning updates on the sinusoid regression
experiment from the original paper [1]. This concerns how 𝜑𝑘 is found in (1). Whilst ADAM
improved learning, like [1], including momentum made learning more unstable and Reptile
performed best when the momentum coefficient was near zero. Lastly, overfitting on the test task
can be seen after about 20 ADAM inner-loop iterations when trained for many meta iterations.

Following on from the promising performance of the Model Agnostic
Meta Learning (MAML) algorithm [1], Reptile was written as a strong
approximator for MAML that retains its performance whilst boasting
much improved algorithmic complexity. This project seeks to replicate
the experiments of the Reptile paper [2] and extend them into more
complex contexts.

Extensions to Few-Shot Regression

Vase ScoreboardCrate Mixing Bowl Nematode

Mixing
Bowl

Mixing
Bowl

Mixing
Bowl

Mixing
Bowl

Scoreboard

We can mathematically justify Reptile (and, as it happens, MAML) by
thinking in terms of inner products of gradients after k inner-loop
update steps: [2]

Figure 5: Example 5-way classifier: 1-shot images (top row) and test images (bottom row).

Omniglot Accuracy

Algorithm 1-shot 5-way

Reptile 97.7%

Reptile + Pretrain 97.7%

Reptile (SGD) 97.4%

Reptile [2] 97.7%

FOMAML 87.5%

FOMAML [1] 98.3%

Figure 6: Initializing weights from a pretrained classifier provides Reptile with an early, but
unsustained, training advantage. Adopting SGD (instead of ADAM) for the inner-loop leads
to momentarily suboptimal exploration but ultimately comparable performance.

Mini-Imagenet Accuracy

Algorithm 1-shot 5-way 5-shot 5-way 10-shot 5-way

Reptile 51.6% 67.4% 72.6%

Reptile + Pretrain 49.4% - -

Reptile [2] 50.0% 66.0% -

Figure 3: Results from a 2D version of the 1D few-shot regression sine wave example in
the Reptile paper. The input space is scaled from 50 to 10K points, and the minibatch size
is scaled from 10 to 20. The amplitude is fixed at 2.0 and the phase is varied from 0 to
2π. An SGD optimiser is used. After 1000 meta iterations an initialisation is learned that
enables the 'bowl' shape of the function to be modelled. After 2000 epochs the learned
initialisation enables the 'tails' of the function to also be modelled.

Image Classification: Results and Extensions

Before
training

2000
meta iters

1000
meta iters

Ground
truth

(1)

(2)

(3)

Conclusions
Figure 4: Results from adding an additional Fourier series function to the 1D few-shot
regression sine wave example. The amplitude is randomly sampled from 0.1 to 5, the
phase from 0 to 2π, and the function from the sine and Fourier series functions. The model
learns an initialisation (in blue) that captures key differences between the two functions
after 256 inner steps, despite the size of the network not being increased.

After 256
inner iters

1) On 1D sinusoid regression, an ADAM inner-loop optimiser achieves
lowest MSE but with less stability due to momentum.

2) Reptile learns few-shot approximations to 2D sine waves as well
as mixtures of 1D function families (Fourier series and sine waves).

3) Reptile performs comparably to MAML [1] on few-shot image
classification. Pretraining elevates Reptile performance during early
training iterations, but does not produce a sustained advantage.
However we did not extensively tune pretraining hyperparameters and
further research could develop a more rigorous pretraining protocol.

After 256
inner iters

After 0 SGD steps
(initialisation)

pred after 0
pred after 256
true
trainx

pred after 0
pred after 256
true
trainx

Inner-Loop Optimiser Comparisons

