Meta-Learning Approaches for Regression, Classification and Graph Representation Learning Haitz Sáez de Ocáriz Borde, Katherine Collins, and Ryan Crowley

Motivation

- Deep learning is often data-hungry
- Meta-learning advantages
 - Make predictions on new tasks with few examples
 - More similar to human learning
 - Increases generalization capacity
 - "Learning to learn"

Methods

Model-Agnostic Meta-Learning (MAML)

- Framework applicable to regression, classification, and **RL**¹
- Loss function includes 1st and 2nd order derivatives

$$\theta_i \leftarrow \theta - \alpha \nabla_\theta L_{T_i}(f_\theta)$$

Equation 1: MAML Task-specific update

 $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L_{T_i}(f_{\theta'_i})$ $T_i \sim p(T)$

Equation 2: MAML Meta-update

MAML + Cosine Annealing (CA)

- Proposed in compendium of MAML advances²
- Adjusts learning rate scheduling for meta-optimizer

Reptile

- MAML variant³, similar to First Order MAML¹
- Performs only Stochastic Gradient Descent (SGD)
- Less computationally expensive than MAML

 $\theta \leftarrow \theta + \beta (U_T^k(\theta) - \theta)$

Equation 3: Reptile Update

Notation

- θ = prior parameters, θ' = task-specific parameters
- T = task, K = number of observations per task
- k = number of gradient steps for unseen task

T₁

Calculate 2nd Order Gradients

Figure 2: MAML Framework

Figure 3: k-Shot **Evaluation**

	Pre-Update	1 Gradient Step	5 Gradient Steps
MAML	4.24 (+/- 0.54)	1.11 (+/- 0.26)	0.31 (+/- 0.03)
MAML + CA	4.30 (+/- 0.41)	2.36 (+/- 0.34)	1.63 (+/- 0.18)
Reptile	4.27 (+/- 0.50)	0.97 (+/- 0.16)	0.16 (+/- 0.04)

Can we handle out-of-distribution functions? Noise?

Figure 6: MAML Sine Wave Adaptation Under Data Shifts Key Takeaways

References

Sinusoidal Regression

Pushing MAML's Limits

Can we scale to sine waves in multiple dimensions?

Table 1: Meta-Learning Algorithm Comparison for Multi-Dim (D = 20) Sine Regression (MSE Loss)

• MAML replicated, compared to Reptile and MAML + CA • High variability in MAML depending on seeds Scales to multidimensional output • Struggles with distribution shifts

Extension to Graphs

representation learning?

- Compare GNN types for meta-learning

Figure 8: QM9 Molecule (PyMOL⁶)

Key Takeaways

Classification

Can we learn to classify images and graphs of novel classes from few examples?

- Same algorithm, updated loss and neural network
- CNN for Omniglot
- GNN classification for Enzymes TUDataset

Discussion

Additional MAML Limitations

- Prohibitively slow in low compute settings

Future Work

- Investigate ensemble methods for meta-learning

Can we extend these meta-learning frameworks to graph

• Equivariant Message Passing GNNs⁵ for improved performance

 $\mathbf{x}_i, \bigoplus a(\mathbf{x}_i, \mathbf{x}_j)\psi(\mathbf{x}_j)$ $\mathbf{h}_i = \phi \left(\mathbf{x}_i, \bigoplus \psi(\mathbf{x}_i, \mathbf{x}_j) \right)$

Figure 7: The flavors of GNN layers. Figure from Bronstein 2021⁴

	Pre-Update	1 Gradient Step	5 Gradient Steps
onvolutional	3514.3 (+/- 557692.8)	153.8 (+/- 42812.9)	17.8 (+/- 1898.6)
Attention	156.2 (+/- 3363.1)	25.4 (+/- 474.1)	1.8 (+/- 4.7)
ariant Message Passing	658.1 (+/- 1057556.7)	0.4 (+/- 0.5)	1e-6 (+/- 2e-11)

Table 2: Meta-Learning for QM9 Graph Regression (MSE Loss)

• Meta-learning algorithms are applicable to Graph Representation Learning • More general graph layers improve meta-learning performance • Equivariant Message Passing allows modeling of intermolecular forces

Figure 10: Protein Structure (PyMOL)

Requires extensive tuning to perform well on real-world tasks Implementation hurdles around second-order derivatives

Explore additional improvements to MAML (MAML++²)

