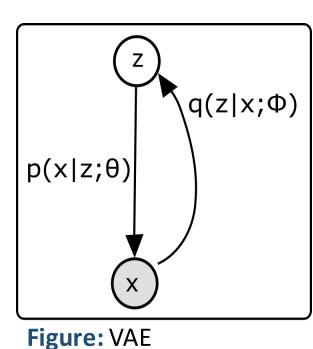


UNIVERSITY OF CAMBRIDGE DEPARTMENT OF ENGINEERING


Towards a Neural Statistician

Introduction

The **neural statistician** is a network that computes summary statistics of unordered sets of data. To do so, it extends the variational including (VAE) by autoencoder latent context variable c, shared among items in a dataset.

The Neural Statistician

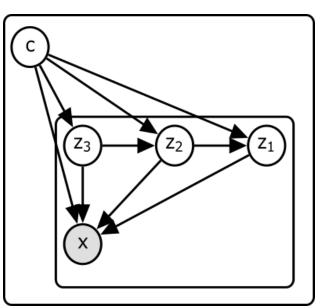
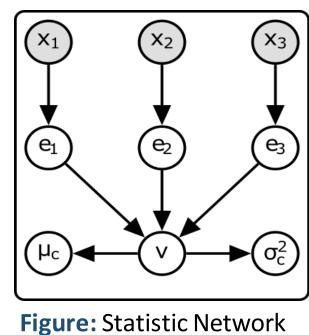



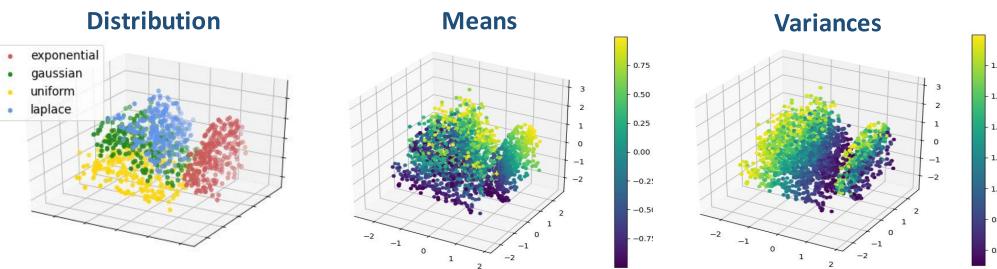
Figure: Full model

Probabilistic model: $p(D) = \int p(c) \prod_{x \in D} \int p(x|c, z_{1:L}; \theta) p(z_L|c; \theta) \prod_{i=1}^{L-1} p(z_i|z_{i+1}|c; \theta) d_{z_{1:L}} dc$ L - 1Approximate posterior: $q(c, z_{1:L}|D; \phi) = q(c|D; \phi) \prod_{x \in D} q(z_L|x, c; \phi) \prod_{i=1}^{L-1} q(z_i|z_{i+1}, c, x; \phi)$ **ELBO:** $\mathcal{L}_D = \mathbb{E}_{q(c|D;\phi)} \left[\sum_{x \in D} \mathbb{E}_{q(z|c,x;\phi)} \log p(x|z;\theta) - D_{KL} (q(z|c,x;\phi) || p(z|c;\theta)) \right]$ $-D_{KL}(q(c|D;\phi)||p(c))$ $\mathcal{L}_D =$ Reconstruction Term - Context Divergence – Latent Divergence

Components

Shared encoder (optional): $x \mapsto h$

Statistic Network: $q(c|D;\phi): \{h_1, h_2, \ldots, h_m\} \mapsto \mu_{c|D}, \sigma_{c|D}^2$


Inference Network: $q(z|x,c;\phi):h,c\mapsto \mu_{z|x,c},\sigma_{z|x,c}^2$

Latent Decoder Network: $p(z|c;\theta): c \mapsto \mu_{z|c}, \sigma_{z|c}^2$

Observation Decoder Network: $p(x|c, z; \theta) : c, z \mapsto \mu_{x|c,z}, \sigma_{x|c,z}^2$

Experiments: Overview

- 1. Visualising the context.
- 2. Conditional sampling: Unlike training, use the mean of c instead of sampling c.
- 3. Specific tasks: Transfer learning, few-shot classification and summarising datasets.

Figure: Each point is the mean of the approximate posterior over the context, coloured by distribution (left), means (middle) and variance (right).

1628 classes of hand-written characters with 20 examples per class. Each class is divided into datasets of size 5. Transfer learning to unseen classes by training the model on a subset of OMNIGLOT'S 1628 classes.

Unseen Classes						Unseen Task														
Ψ	U	Ì	J	W	Ŵ	W	θ	6	Û	Ψ	6	Ď	0	0	0	۵	٥	Ð	0	D
ள	ണ)	ണ	ണ	സ	3	Cΰ	(nu	07	107	2						2	24	14	2
\triangleleft	\langle	ľ	\checkmark	V	J	Ś	3	5	2	V	9	9	q	q	٩	9	q	Р	9	Q,
3	Э		3	3	Ę	3	3	Ę	Э	3	5	5	5	5	5	\mathcal{F}	ţ?	5	5	5
۵	<u>م</u>		۵	ጽ	ል	0	۵	А	۵	۵	3	3	3	3	3	3	3	3	3	3

randomly sampled.

Figure: Input faces

Trevor Clark, Lucia Lopez Rivilla, Ryan Anderson

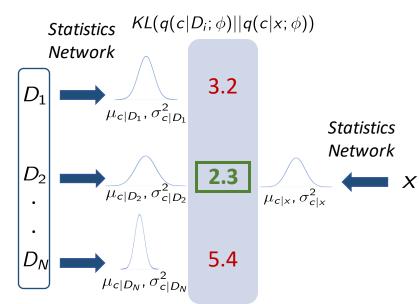
Synthetic 1-D Distributions

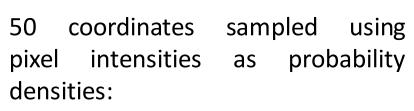
Datasets consist of 200 samples from either an Exponential, Gaussian, Uniform or Laplacian distribution with equal probability.

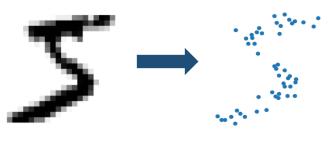
OMNIGLOT - Transfer Learning

Figure: Generated samples (black) conditioned on unseen input classes (white) from OMNIGLOT (left) and MNIST (right).

YouTube Faces


Dataset: Images of 1595 faces. Each epoch, 5 images of each person in the training set are


Proof of concept for generating faces.


Faces conditioned on input

Generated faces from sampled contexts

Trained on OMNIGLOT, test image *x* is classified to a seen dataset:

T-sample summary of a dataset: $S^* = \arg\min_{S \subset D} KL(q(c|D;\phi)||q(c|S;\phi))$

"Sensible" Summaries?

coordinates sampled, 20-200 sample summaries.

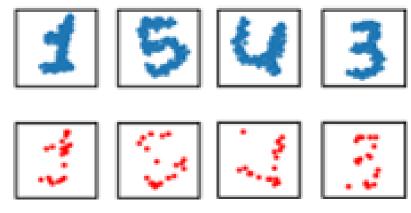
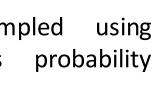
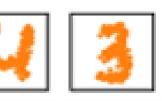
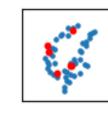


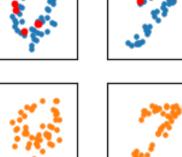
Figure: Orange points are samples conditioned on the blue points. Red points are 20-sample summaries.

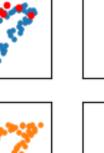
The model is: - Dataset hungry.


[1] H. Edwards and A. J. Storkey, "Towards a neural statistician," ArXiv, vol. abs/1606.02185,2017.


K-Shot Classification


Table: The K-shot classification results for our replication and the Neural Statistician paper.


	Meth	Method			
Test Dataset	K-shot	K-way	Paper	Ours	
MNIST	1	10	78.6	64.9	
MNIST	5	10	93.2	84.7	
OMNIGLOT	1	5	98.1	92.4	
OMNIGLOT	5	5	99.5	97.8	
OMNIGLOT	1	20	93.2	79.4	
OMNIGLOT	5	20	98.1	92.9	


Spatial MNIST

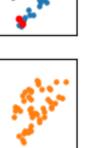


Figure: Orange points are samples conditioned on the blue points. Red points are 6-sample summaries.

Alternative Sampling

Sampling using *mean* of observation decoder.

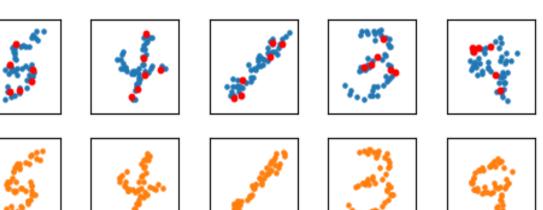


Figure: Orange points are samples conditioned on the blue points. Red points are 6-sample summaries.

Strengths/Weaknesses

+ Unsupervised, data efficient, parameter efficient, capable of few-shot learning.

References