

Motivation

Regular feed forward neural networks use **point estimates** of weights _

Prone to Overfitting Early Stopping Classic Common Regularisation Weight Decay **Overly Confident** Issues Methods Non-Robust Dropout

Bayes by Backprop (BBB)

Instead of point estimates, learn probability distribution on the weights -

Regularisation Model Averaging

Exploration

- Exact Bayesian inference is intractable, instead use variational approximation to the posterior
- Find parameters θ of a distribution on the weights $q(w|\theta)$ -

$$egin{aligned} & \mathcal{C} ext{omplexity Cost} & ext{Likelihood Cost} \ & ext{θ^*} &= rg\min_{ heta} \mathcal{F}(\mathcal{D}, heta) = rg\min_{ heta} \operatorname{KL}[q(\mathbf{w}| heta)||P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}| heta)}[\log P(\mathcal{D})|\mathbf{w}] \ &= rg\min_{ heta} \int q(\mathbf{w}| heta)[\log q(\mathbf{w}| heta) - \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})] \ &= rg\min_{ heta} \mathbb{E}_{\mathbf{q}(\mathbf{w}| heta)}[f(\mathbf{w}, heta)] \end{aligned}$$

Generalisation of the Gaussian reparameterisation trick

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\mathbf{q}(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}[\frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta}]$$

Approximation of the exact cost using **Monte Carlo sampling** -

$$\mathcal{F}(\mathcal{D}, heta) pprox \sum_{i=1}^n \log q(\mathbf{w}^{(i)}| heta) - \log P(\mathbf{w}^{(i)}) - \log P(\mathcal{D}|\mathbf{w}^{(i)})$$

Inference performed using an **uncountably infinite neural networks**

$$P(\hat{\mathbf{y}}|\hat{\mathbf{x}}) = \mathbb{E}_{P(\mathbf{w}|\mathcal{D})}[P(\hat{\mathbf{y}}|\hat{\mathbf{x}},\mathbf{w})]$$

Reparameterisation Tricks

$$egin{aligned} w_{i,j} &= \mu_{i,j} + \sigma_{i,j} \epsilon_{i,j} \ \epsilon_{i,j} &> \mathcal{N}(0,1) \end{aligned} egin{aligned} b_{m,j} &= \gamma_{m,j} + \sqrt{\delta_{i,j}} \zeta_{m,j} \ \gamma_{m,j} &= \sum_{i=1} a_{m,i} \mu_{i,i} & \delta_{m,j} = \sum_{i=1} a_{m,i}^2 \sigma_{i,i}^2 & \zeta_{m,j} \sim \mathcal{N}(0,1) \end{aligned}$$
 Blundell et al. [1] Kingma et al. [2]

MPhil in Machine Learning and Machine Intelligence March 2022

Weight Uncertainty in Neural Networks

Yufan Wang (yw575), Max Bronckers (mojb2), Alan Clark (ajc348)

Table 1. Classification errors				
dden Units	DNN	DNN (Dropout)	BNN	
400	2.04 %	1.33 %	1.44 %	
800	1.68 %	1.41 %	1.50 %	
1200	1.66 %	1.52 %	1.36 %	

