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ABSTRACT

Graph Neural Networks (GNNs) offer a principled way of tackling machine learning
tasks over graph structures. Despite their great success, they demonstrate some patho-
logical issues. For example, their performance tends to suffer as more layers are added
(oversmoothing), and they tend to perform worse in heterophilic graphs, in which nodes
of different types tend to be connected (heterophily problem). Topological approaches
involving cellular sheaves, giving rise to Sheaf Neural Networks (SNNs), have shown to
be very promising in tackling these two issues. Building upon the recent success of SNNs
and the wide adoption of attention-based architectures, we propose Attention-based
Sheaf Neural Networks, a generalised attention mechanism that operates over cellular
sheaves. We show that this type of construction generalizes popular attention-based
GNN models to cellular sheaves and demonstrate that theoretically and empirically,
these models help tackle the issues related to oversmoothing and heterophily. Our new
models, Sheaf Attention Networks and Attentive Neural Sheaf Diffusion demonstrate
great promise on a wide range of synthetic and real-world benchmarks. Overall, this
work provides an exciting connection between attention mechanisms and algebraic
topology, and hope it will help promote the further adoption and research of Sheaf
Neural Networks.
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CHAPTER 1

INTRODUCTION

An expert is a person who has made
all the mistakes that can be made in
a very narrow field.

Niels Bohr (1885-1962)

Traditional Neural Networks are myopic creatures, treating their inputs in isolation.
One way to tackle this shortsightedness is through Graph Neural Networks (GNNs)
(Scarselli et al., 2008). GNNs have taken the machine learning world by storm, with
their main competitive advantage being that they are able to exploit the graph’s local
neighbourhood structure in the computations. This approach has shown incredible
results in many different tasks, ranging from computational drug discovery to social
network recommendations.

The Graph Neural Network botanical garden is however not devoid of weeds.
Two phenomena are often associated to GNN architectures: oversmoothing and the
heterophily problem. The former refers to the fact that building very deep neural
networks often leads to poor performance. The latter instead is related to the fact that
GNNs are commonly built with the inductive bias that neighbouring nodes are likely
to be similar.

Oversmoothing is problematic because important information related to a specific
node may be found in nodes which happen to be separated by many edges. GNN
layers however operate locally with neighbouring nodes and one would need to stack
many layers to be able to gather information from distant interactions. Unfortunately,
due to oversmoothing, the signal quickly becomes too smooth to be useful.
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Being able to work in heterophilic settings is vital in a wide variety of domains. For
example in protein networks, amino acids tend to form links with other amino acids
of different types. Another instance is identifying fraudulent behaviour, as fraudster
nodes will often try to resemble benign nodes. Ideally a GNN model should be able to
function both in heterophilic and homophilic settings.

These issues have been shown to be closely related to the overly-simple graph
topology which GNNs operate over (Bodnar et al., 2022). Loosely speaking, topological
spaces have a notion of neighbourhood, but not distance (metric spaces) or direction
(vector spaces). Although graphs are commonly treated as combinatorial structures,
they are topological objects as well, with their notion of neighbourhood being naturally
defined via the edge structure.

One way in which we can augment the topology over a graph is through the notion
of a sheaf (Hatcher, 2005). Sheaves are complex objects which give a canonical way of
attaching and keeping track of data attached to points over topological spaces. We
are interested in a discrete type of sheaf known as a Cellular Sheaf (Hansen, 2020;
Hansen and Gebhart, 2020; Hansen and Ghrist, 2021), which operates over a discrete
topological space known as a Cell Complex (which a graph is a special case of).

A GNN which operates over a Cellular Sheaf is known as a Sheaf Neural Network
(SNN) (Bodnar et al., 2022; Hansen and Gebhart, 2020). SNNs have been found both
theoretically and empirically to outperform a wide range of GNN models, especially
when it comes to the aformentioned problems of oversmoothing and heterophily.

One major breakthrough in machine learning is that of an attention mechanism
(Vaswani et al., 2017). Attention mechanisms are used to learn which objects the
neural network should pay the most attention to in the computation. Unsurpisingly,
a GNN which computes the convolutions weighted by an attention mechanism, the
Graph Attention Network (GAT) (Velickovic et al., 2017), is now a widely popularised
technique.

In this thesis, motivated by the great success of attention mechanisms, we embark
on an adventurous journey to develop and study attention mechanisms over sheaves.
We show that attention-based sheaf neural networks generalise and outperform popular
attention-based GNNs and achieve competitive results inline with state-of-the-art GNN
models, not only on standard benchmarks but also on ones related designed to measure
heterophily and oversmoothing issues.
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1.1 Contributions

The contributions of this thesis are the following:
• A systematic overview of Graph Neural Networks, Cellular Sheaf theory and

Sheaf Neural Networks. We present Sheaves and Sheaf Neural Networks in a
principled way by connecting them directly to traditional GNN literature.

• The formulation of attention mechanisms over cellular sheaves and of the Attentive
Sheaf Diffusion (ASD) Partial Differential Equation (PDE). In particular, we
show that the ASD PDE is a sheaf generalisation of the Graph Neural Diffusion
(GRAND) (Chamberlain et al., 2021) model.

• Sheaf Attention Networks, a direct sheaf generalisation of Graph Attention
Networks (GATs) (Velickovic et al., 2017) to cellular sheaves. We show that
GATs arise when the underlying sheaf is trivial, in the other words with very
simple “geometry”.

• Attentive Neural Sheaf Diffusion, a diffusion type of neural network which operates
over cellular sheaves leveraging an attention mechanism.

• A thorough evaluation of the newly proposed sheaf attention mechanisms. We
show that the new models achieve impressive oversmoothing and heterophily
performance when compared to state-of-the-art models.

We hope that the contributions of this work spark further interest in sheaf neural
networks as it is an incredibly elegant and beautiful area of research, which leverages
abstract mathematical concepts and applies them to real-world tasks.

1.2 Outline

Chapter 2 In chapter 2 we discuss the necessary background, which is heavy in
both breadth and depth. The chapter starts with an overview of the relevant Graph
Neural Network research, modern approaches and issues. Next, we go over Cellular
Sheaf theory by building bridges to graph theory when possible to aid with intuition.
Finally these two seemingly unrelated topics are tied together via the introduction of
Sheaf Neural Networks and their extremely modern literature.

Chapter 3 In chapter 3, we start by formalising an attention mechanism which
operates over cellular sheaves. We use this to build an attentive sheaf diffusion partial
differential equation. The discretisation of this equation leads to the Sheaf Attention
Network (SAN) and Attentive Neural Sheaf Diffusion (ANSD) models. The theoretical
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properties of these models are discussed. The models are evaluated on a wide range of
benchmarks, both synthetic and real-world.

Chapter 4 In chapter 4, we conclude with a summary of the findings. We importantly
also discuss potential exciting future directions with applications to chemistry and
other potential computational speed-ups motivated by differential geometry.



CHAPTER 2

BACKGROUND

Young man, in mathematics you
don’t understand things. You just
get used to them.

John von Neumann (1903-1957)

In this chapter we discuss the necessary background, which spans multiple, seemingly
unrelated, topics. The aim is to tie them together in a cohesive manner. To set the
scene, we start by introducing Graph Neural Networks (GNNs) with popular models
which will serve as guidance and intuition. This is followed with a slight detour to the
world of cellular sheaf theory, a field of algebraic topology (Hatcher, 2005). Finally, it
is then tied together with the introduction of Sheaf Neural Networks (SNNs) (Bodnar
et al., 2022; Hansen and Gebhart, 2020), a type of graph neural network which operates
over a cellular sheaf.

2.1 Why should we use geometry?

This interlude aims to motivate why we should approach machine learning tasks
from a purely geometric perspective in the first place. At a glance, this may be in fact
not be so clear. After all, machine learning has flourished as an empirical discipline,
breaking records and solving challenging problems in the most diverse of disciplines.
What is there to be gained from tackling machine learning from a more geometric
perspective?
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The Erlangen Programme in 1872 proposed to study geometries through their
symmetry transformations, formalised through the use of group theory. This was an
effort to unify the many, seemingly unrelated, geometries at the time. The repercussions
of this new approach to geometry were profound and not only to mathematics. For
example Noether’s theorem relates the close relationship between the symmetries of a
physical system and its conversation laws. Symmetry is omnipresent in the sciences
and, in many ways, defines what we as humans perceive as perfection.

The machine learning world seems to be in a similar situation, with a plethora of
architectures which all are seemingly unrelated. In a similar spirit to the Erlangen
Programme, Geometric Deep Learning (GDL) (Bronstein et al., 2021, 2017) aims
to unify the various deep learning architectures. To do this GDL derives, from first
principles, various modern machine learning architectures by examining their group
invariant and equivariant properties. Studying machine learning architectures through
the lens of the GDL blueprint (Bronstein et al., 2021) allows research to be more guided
and systematised.

Consider the canonical task of image classification between cats and dogs. If we
shift or rotate the image we expect the classifier to maintain the same prediction,
more formally we expect the classifier to be invariant to these specific transformations.
From a goup theoretic perspective, in this case shifts and rotations of the image signal
are considered symmetries of the domain (Bronstein et al., 2021). Applying these
transformations does not change the nature of the object.

More formally, consider a signal space Ω, a label space Y and a group of symmetries
G of the underlying domain. A model f : Ω → Y is called G-invariant if for all g ∈ G
and x ∈ Ω we have f(x) = f(gx), in other words the output of the model is unaffacted
by the underlying symmetries of the domain.

Remark. By group we intend the notion of a group in the algebraic sense (Hamer-
mesh, 2005). For the sake of the discussion it is sufficient to consider this as a set
with a group operation which takes two elements in the set and outputs a third
element from the set (with some additional convenient properties). The group
operation may be thought of as a way to compose two symmetries to retrieve a
third symmetry.

Similarly, we have a notion of equivariance. For example, in a segmentation task,
we would like the model to modify the output in accordance with the group symmetry
g. In other words, a model f is G-equivariant if for all g ∈ G and x ∈ Ω we have
f(gx) = gf(x).
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Example. A Convolutional Neural Network (CNN) is shift-invariant, however it
is not rotation-invariant. It is common to perform data augmentation, artificially
adding rotated images to the training set, in hope that the model learns the
invariance from the data. Learning invariance from the data is however very
expensive and difficult, compared to encoding it directly in the first place in the
model.

Tackling learning problems from the point of view of invariance and equivariance
is an effective way of doing dimensionality reduction. This makes high dimensional
problems much more tractable and motivates the effectiveness of a lot of models, such
as CNNs, in their specific domains in which they shine. This symmetry ideology is the
driving force of the project. We wish to build models which are geometrically grounded
to reap the aforementioned benefits which come from this physics-inspired approach.

2.2 Graph Neural Networks

There exist a vast variety of real-world datasets which come with a graph-structure.
Consider for example: social networks, protein-interaction networks and control-flow
graphs to name a few. The connectivity information which is stored in the form of the
edges of a graph is often extremely important and discarding it for a machine learning
task often results in a drastic loss in performance. Graph neural networks aim to
tackle this problem in a principled way, by generalising neural networks to arbitrarily
structured graphs.

Formally, a graph G = (V,E) is a tuple consisting of a set of nodes V and a set
of edges E. We can represent each node in the graph with a d-dimensional feature
vector xv and group all the n= |V | feature vectors into a n×d matrix X = H(0). It is
convenient to represent the set of edges E into an n×n adjacency matrix A. An entry
Aij for nodes vi and vj in the adjacency matrix is 1 if there exists an edge e= vi → vj

in E and 0 otherwise.
Example. Consider a social network graph. The nodes represent users in the
social network and the edges could represent, for instance, a friendship relationship
between two users (nodes). A feature vector for a user could include information
about how many friends the user has, the time the user has been on the platform
and many other different quantities.

Similarly to how neural networks are composed of layers, graph neural networks
are composed of of graph neural network layers. The main difference is that while a
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neural network takes as input a vector and ouputs a vector, a graph neural network
operates over the entire graph, producing (latent) feature vectors for each node.

Definition 2.2.1. The l-th GNN layer f (l) takes as input the graph’s (latent) feature
matrix at the previous layer H(l−1) and adjacency matrix A. It outputs a new
latent feature matrix H(l):

H(l) = f (l)
(
H(l−1),A

)
(2.1)

In the case of a multi-layer GNN, the first layer l = 1, takes as input H(0) = X,
whereas subsequent layers take as input H(l−1), the latent features produced by the
GNN layer immediately before it.

Another way of interpreting equation 2.1 is at a more local scale, with the idea of
message passing. The intuition of message passing is that many graph neural network
models update the representations of each node by exchanging vector information from
the neighbouring nodes. More concretely a message passing layer l computes for a
node u the latent representation h(l)

u as follows (Bronstein et al., 2021):

h(l)
u = ϕ

h(l−1)
u ,

⊕
v∈Nu

ψ
(
h(l−1)

u ,h(l−1)
v

) (2.2)

where ϕ is a message passing function, ψ is a readout function and ⊕ is a
permutation-invariant aggregation function (such as ∑ or max). In practice ϕ and ψ

are usually chosen to be MLPs, but they may have different structures.
The form in equation 2.2 is very interpretable. To update the representation of

node u, we consider the neighbourhood and the current representation of node u.
We aggregate the neighbourhood information (transformed by ψ) via a permutation
invariant function ⊕ (such as ∑ or max). We finally pass the representation of node u
alongside the aggregated neighbourhood information to ϕ to compute the final updated
representation. The permutation invariant aggregation function guarantees that the
output does not depend on how the nodes are ordered.

2.2.1 Graph Convolutional Networks

The task of generalising successful neural network architectures to graphs is an
arduous one. Many GNN models have been proposed which operate based on the
principle of convolutions, similar to the very successful Convolutional Neural Network
(CNN) model. In particular, many of these techniques rely on the concept of a spectral
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graph convolution from spectral graph theory (Bruna et al., 2013; Henaff et al., 2015).
Possibly the most popular model is the Graph Convolutional Network (GCN) (Kipf
and Welling, 2016), whose propagation rule form may be thought of as coming from
spectral graph convolutions with some simplifications introduced for computational
speedups and accuracy benefits.

Consider the naive propagation rule which implements equation 2.1 the following
way:

f (l)
(
H(l−1),A

)
= σ

(
AH(l−1)W(l)

)
(2.3)

where σ is a non-linear activation function (e.g. ReLU) and W(l) is the weight
matrix for layer l with dimension fl−1 × fl where fl is the dimension of the feature
vector at layer l. This naive model has two main flaws. The calculation AH(l−1) results
in a new feature matrix in which each feature vector is now the sum of all the nodes
in the 1-hop neighbourhood, but importantly not of the node itself (if the adjacency
matrix does not contain self-loops). Secondly, depending on the eigenvalues of A, this
operation may not preserve scale of the feature vectors and therefore make training
the network unstable.

Kipf and Welling (2016) address both of these flaws with the GCN model. The
self-loop issue is remedied by artificially introducing self-loops by augmenting the
adjacency matrix Â = A+ I. The scaling problem is instead addressed via symmetric
normalisation via D̂

− 1
2 ÂD̂

− 1
2 , where D̂ is the diagonal node degree matrix of Â.

Definition 2.2.2. The GCN layer from Kipf and Welling (2016) implements equation
2.1 the following way:

H(l) = σ

(
D̂

− 1
2 ÂD̂

− 1
2 H(l−1)W(l)

)
(2.4)

where σ is a non-linear activation function (e.g. ReLU), Â = A+I, D̂ is the diagonal
node degree matrix of Â and W(l) is a weight matrix.

This update propagation is local (due to the adjacency matrix), meaning that each
latent feature vector is updated as a function of its local neighbourhood, weighted by
a weight matrix and then symmetrically normalised. This kind of model has proven to
be extremely powerful in a myriad of tasks. The weight matrix W(l) at each layer is
learnt from the data through back-propagation, by minimising some loss function (e.g.
cross-entropy loss).
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Remark. It is perhaps easier to interpret equation 2.4 based on how it updates each
individual vector from h(l−1)

i to h(l)
i , through its message passing form. Consider

how it updates a feature vector hi for node vi:

h(l)
i = σ

∑
j∈Ni

1
cij

h(l−1)
j W(l)

 (2.5)

where cij is the normalisation factor which arises from symmetric normalisation.
The sum is over all of the j feature vectors in the 1-hop neighbourhood of vi

(including the feature vector of vi due to the addition of self-loops). Each feature
vector is also updated by the weight matrix W(l) and then passed through the
non-linear activation function σ.

2.2.2 Graph Attention Networks

Attention mechanisms have been responsible for a lot of very significant break-
throughs in machine learning (Bahdanau et al., 2014; Vaswani et al., 2017). They solve
a fundamental issue which comes with data of varied size, namely: which part of the
data is most relevant to our task. This paradigm-shift has been fundamental for tasks
related to natural language, such as learning sentence embeddings (Lin et al., 2017)
and machine reading (Cheng et al., 2016). Unsurprisingly, one of the most popular
GNN models is one that generalises an attention mechanism to graphs: the Graph
Attention Network (GAT) Velickovic et al. (2017).

Remark. Perhaps one of the most important breakthroughs in the machine learning
world (especially in natural language processing) has been the proposal of the
Transformer (Vaswani et al., 2017). The Transformer and GAT models happen
to be close cousins. One may in fact imagine a transformer as a graph attention
network operating over a fully connected graph (Joshi, 2020).

The core component of the GAT layer is a shared attentional mechanism a that
performs self-attention on the nodes. a : Rd ×Rd → R is a function which computes
raw attention coefficients:

eij = a(Whi,Whj) (2.6)

where eij measures how much importance the features of node j have towards node
i. To preserve the graph structure, masked attention is performed, which has the effect
of assigning eij = 0 if vj is not in the neighbourhood of vi (vj ̸∈ Ni). The raw attention
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coefficients eij are then turned into a probability mass function (PMF) with a softmax
function:

αij = exp(eij)∑
k∈Ni

exp(eik) (2.7)

The form in equation 2.7 is such that 0 ≤ αij ≤ 1 and ∑
k∈Ni

αik = 1, meaning that

they form a PMF over the edges of node vi. Setting σ to LeakyReLU and a weight
vector a ∈ R2d, we retrieve the expanded attention coefficient form from Velickovic
et al. (2017).

Definition 2.2.3. The GAT layer from Velickovic et al. (2017) computes attention
coefficients as follows:

αij =
exp

(
LeakyReLU

(
aT [Whi||Whj ]

))
∑

k∈Ni

exp(LeakyReLU(aT [Whi||Whk])) (2.8)

where a ∈ R2d and W are learnable weights and || denotes vector concatenation.

Remark. Brody et al. (2021) show with their GATv2 model that it is possible to
slightly modify the the way that the eijs are computed in the original GAT model
to gain expressive power, maintaining the same computational complexity. The two
mechanisms side by side are as follows:

GAT (Velickovic et al., 2017): eij = LeakyReLU
(
aT [Whi||Whj ]

)
(2.9)

GATv2 (Brody et al., 2021): eij = aT (LeakyReLU(W[hi||hj ])) (2.10)

The original GAT attention is limited as the ranking of the attention scores is
independent of the query node (called static attention). The GATv2 model fixes this
short-coming, allowing for dynamic attention, which is provably more expressive
than its static counterpart (Brody et al., 2021).

Once the attention coefficients are computed, we can finally define how the nodes
are updated. Very similarly to how a GCN operates, we simply compute a weighted
sum over the neighbours, this time weighted by the attention coefficients:

h(l)
i = σ

∑
j∈Ni

α
(l)
ij W(l)h(l−1)

j

 (2.11)
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where α(l)
ij is the attention coefficient for the edge e= vi → vj at layer l. Note the

close similarity between the GAT and GCN message passing forms. The only difference
is that while GCNs compute the coefficient cij which is a function of the degrees of
nodes i and j, GATs learn the coefficient αij via a self attention mechanism. This
hints to the fact that GATs are strictly more expressive than GCNs.

Remark. For regularisation purposes, it is common to employ a multi-head attention
mechanism, where multiple attention mechanisms are employed in parallel and then
aggregated. This takes the following form:

h(l)
i =

K∥∥∥∥
k=1

σ

∑
j∈Ni

α
(l,k)
ij W(l)

k h(l−1)
j

 (2.12)

where
∥∥∥ concatenates theK separate attention heads, α(l,k)

ij is the attention coefficient
of the k-th head at layer l and W(l)

k is the weight for the k-th head at layer l.

2.2.3 Graph Neural Diffusion

One interesting perspective on GNNs is that they can be treated as a discretisation
of a continuous diffusion process. In particular, the Graph Neural Diffusion (GRAND)
(Chamberlain et al., 2021) model studies the following (heat) diffusion equation over a
graph:

∂X(t)
∂t

= ∇· [G(X(t), t)∇X(t)] (2.13)

where ∇· and ∇ are (discrete) divergence and gradient operators over a graph
respectively and G is some kind of matrix transformation of the features. The gradient
is defined over two nodes connected by an edge such that (∇X(t))ij = xj −xi and can
be thought as a discrete graph version of the standard vector calculus definition. The
divergence over a graph instead is defined as the sum of all the neighbouring node
features: (∇·X(t))i = ∑

j∈Ni

xj .

In GRAND, G is chosen to be an n×n attention matrix Λ(X(t), t), with n being
the number of nodes in the graph. We will dissect the precise structure of Λ(X(t), t) in
the next chapter, but for now all that is required for the discussion is to know that
Λ(X(t), t) is intuitively a way to neatly “group” all the attention coefficients computed
as in the GAT model. In particular, the attention matrix is row-stochastic, meaning
that each row forms a probability mass function (PMF).
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Removing the time-dependence (for simplicity) G = Λ(X(t), t) = Λ(X(t)) in equation
2.13, we get the following linear Partial Differential Equation (PDE):

∂X(t)
∂t

= (Λ− I)X(t) (2.14)

This particular PDE is a classical linear PDE and has as solution:

X(t) = X(0)e(Λ−I)t (2.15)

where importantly, one can imagine this as a continuous version of the GAT model.
This PDE can then be used to compute the latent node features via:

X(T ) = X(0)+
T∫

0

∂X(t)
∂t

dt (2.16)

with initial condition X(0) = ϕ(Xin) where ϕ is some transformation of the input
node features. The key takeaway here is that many GNN models are diffusion models
over graphs, which may be thought of as discretisations of some underlying PDE.
Experimentally, Chamberlain et al. (2021) show that this model is more robust to
oversmoothing.

Remark. This duality between PDEs and discrete models is a similar concept to
the popular Neural Ordinary Differential Equations method (Chen et al., 2018).
Consider the common residual-type of connection, found for example in Recurrent
Neural Networks (Rumelhart et al., 1985):

ht+1 = ht +f(ht, θt) (2.17)

We can treat this as a Euler discretisation of the following ordinary differential
equation (ODE):

dh(t)
dt

= f(h(t), t,θ) (2.18)

and leverage the arsenal developed during the centuries of mathematics spent
studying ODEs to our advantage.

2.2.4 Oversmoothing and Heterophily

Graph Neural Networks are extremely powerful and widespread, yet popular ar-
chitectures suffer from unideal behaviour under certain conditions. Two of the key
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pitfalls we will study and attempt to remediate are: oversmoothing and the heterophily
problem.

The issue of oversmoothing is a very significant one. In representation learning,
there is the general sentiment that deeper models with more layers are able to more
efficiently learn complicated nested representations. Each layer in some sense is able
to learn a more general abstraction. This instead in popular GNN architectures is not
the case, in fact stacking too many layers drastically reduces the performance and is
related to the signal smoothing-out rapidly as more layers are added.

This is also especially problematic for the realm of message-passing GNNs. If two
nodes are n-hops away, then one would require a GNN with n layers for the information
to reach each-other. Unfortunately as n grows, the signal becomes more and more
smooth (even exponentially fast (Di Giovanni et al., 2022)) and the training process is
usually dramatically unsuccessful.

Example. Figure 2.1 shows the accuracy on the Cora dataset as more GCN layers
are added. As we add more and more layers, we see a sharp decline in the accuracy
of the model on the test set due to oversmoothing.
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Fig. 2.1 Accuracy on the cora dataset as more GCN layers are added.

Another flaw is what is known as the heterophily problem, the fact that GNNs may
tend to perform worse in graphs that are more heterophilic. A highly heterophilic (low
homophily) graph is one in which neighbouring nodes tend to have different classes.
Many GNN models are built with a homophilic inductive bias (GCNs for instance),
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meaning that by design they tend to function better in homophilic datasets. While this
inductive bias is useful in many cases, having a more flexible model would be ideal.

Example. A typical social network may be considered homophilic as users connected
to each other are likely to share similar interests. However, consider the task of
identifying fraudsters in a bank transaction network. Fraudsters are more likely to
connect to accomplices rather than other fradusters, suggesting a more heterophilic
relationship (Pandit et al., 2007).

While these two issues at a glance may seem wildly unrelated, it turns out that they
are intimately connected (Bodnar et al., 2022; Yan et al., 2021). For instance, through
cellular sheaf theory, Bodnar et al. (2022) show that both these phenomena can be
viewed and addressed from a purely geometric lense. We will discuss in great detail in
the next chapter what exactly cellular sheaf theory is. For now the key takeaway is
that GNNs are not doomed to these issues if we approach the problem from the right
angle.

Example. Figure 2.2 shows the accuracy of a GCN on a synthetic benchmark (see
appendix B.2 for details) in which we vary the node homophily level h. The node
homophily level 0 ≤ h≤ 1 measures the probability that two nodes are connected
if they belong to the same class. We see a trend where the accuracy of the GCN
tends to be lower when the node homophily h is lower.
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Fig. 2.2 Accuracy of a GCN on a synthetic benchmark with varying node homophily
level. Low h means low homophily (high heterophily), high h means high homophily
(low heterophily).
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Summary

In our journey so far we have encountered popular Graph Neural Network architecures
and touched upon the important relationship between PDEs and GNNs, namely that
a lot of models arise as discretisations of some underlying PDE. We also discussed
pathologies of GNNs such as the oversmoothing and heterophily problems.
We will now take a detour to the world of algebraic topology, to present Cellular
Sheaves, machinery which we will need to introduce Sheaf Neural Networks.

2.3 Cellular Sheaf Theory

Graphs are wonderful mathematical objects that allow us to specify pairwise
relationships (edges) between its constituent objects (nodes). Crucially, the knowledge
of these connection patterns often gives us much more information about the system
as a whole. However, in many cases, simply knowing the existence of a relationship
discards a lot of information related to the nature of that specific relationship.

Sheaves are a mathematically rigorous solution to this problem, allowing one to
attach data to spaces. The theory of sheaves is a very rich and complex one, which roots
itself in algebraic topology and algebraic geometry. We will handle a restricted version
of this topological beast, namely cellular sheaves. The term “cellular” comes from the
fact that these types of sheaves are restricted to cell complexes (a type of topological
space), although we will be mostly working with graphs, which are a special case of a
cell complex (a 1-dimensional cell complex). For further discussion on topology and
cellular complexes see appendix A.1.

Definition 2.3.1. A cellular sheaf (G,F) on an undirected graph G= (V,E) consists
of:

• A vector space F(v) for each v ∈ V ,
• A vector space F(e) for each e ∈ E,
• A linear map Fv⊴e : F(v) → F(e) for each incident node-edge pair v ⊴ e.

The vector spaces of the node and edges are called stalks, while the linear maps are
called restriction maps. The sheaf F bundles the stalks and restriction maps together.
The underlying graph specifies the nodes and edges, while the sheaf specifies a network
of linear transformations over the underlying nodes and edges (see figure 2.3).
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Fig. 2.3 A diagrammatic representation of a sheaf (G,F) for a single edge. The node
stalks F(v) and F(u) and the edge stalk F(e) are isomorphic to R2. We can transport
features between stalks via the restriction maps Fv⊴e and Fu⊴e and their adjoints
FT

v⊴e and FT
u⊴e.

A sheaf adds a considerable amount of information to the graph. It is therefore
natural to want to compress this into a more manageable form. Formally this is
done via homological algebra, a sophisticated modern tool which is used to study the
compression of information in vector spaces and sequences of linear maps. We will be
only scratching the surface, mostly by borrowing notation and terminology.

We start by grouping the node and edge stalks into two different structures. The
space which is formed by the node stalks is called the space of 0-cochains, while the
space formed by edge stalks is called the space of 1-cochains.

Definition 2.3.2. Given a sheaf (G,F), we define the space of 0-cochains C0(G,F) as
the direct sum over the node stalks C0(G,F) :=⊕

v∈V F(v). Similarly, the space of
1-cochains C1(G,F) as the direct sum over the edge stalks C1(G,F) :=⊕

e∈E F(e).

We call an element x ∈ C0(G,F) a 0-cochain. We can interpret it as a choice
of data xv ∈ F(v) for every node in the graph, where x is the concatenation of the
individual vectors xv in all the node stalks F(v). Similarly, a 1-cochain y ∈ C1(G,F)
is a choice of data for every edge in the graph. Building the spaces C0(G,F) and
C1(G,F) allows us to construct a linear co-boundary map δ : C0(G,F) → C1(G,F)
from 0-cochains to 1-cochains. From an opinion dynamics perspective (Hansen and
Ghrist, 2021), the node stalks may be thought of as the private space of opinions and
the edge stalks as the space in which these opinions are shared in a public discourse
space. The co-boundary map δ then measures the disagreement between all the nodes
over the edge spaces, which will depend on the restriction maps.

Definition 2.3.3. Given some arbitrary orientation for each edge e= u→ v ∈E, we
define the co-boundary map δ : C0(G,F) → C1(G,F) as δ(x)e = Fv⊴exv −Fu⊴exu.
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Here x ∈ C0(G,F) is a 0-cochain and xv ∈ F(v) is the vector of x at the node stalk
F(v).

The choice of orientation is not important as we are fundamentally interested in
the kernel of δ, which is invariant under this choice. Continuing with the opinions
dynamic analogy, if δ measures the total disagreement between nodes, then the kernel
of δ gives us the subspace of 0-cochains that perfectly “agree” over the edges.

Remark. The kernel of a linear map is the linear subspace which contains all of
elements in the domain which are mapped to the zero vector. If a 0-cochain x is in
the kernel of δ, then δx = 0 and this is only the case if for every edge e= u→ v ∈E,
δ(x)e = Fv⊴exv − Fu⊴exu = 0 imposing Fv⊴exv = Fu⊴exu. In other words, all of
the nodes agree over their respective edge discourse space.

If one considers the sheaf as inducing a global constraint satisfaction problem, then
an element of the kernel of δ is a solution. The set of solutions forms a vector space
known as the zeroth cohomology or the space of global sections.

Definition 2.3.4. Given a sheaf (G,F), the zeroth cohomology or the space of global
sections of F is defined as:

H0(G,F) = kerδ ⊂ C0(G,F) (2.19)

2.3.1 Sheaf Laplacians

Having discussed the basic machinery that surrounds cellular sheaves, we can now
introduce the concept of a sheaf Laplacian. We introduce this object by relating it to
the graph Laplacian.

Given an incidence matrix B, the graph Laplacian L is given by L = BBT . This
object may be viewed as a matrix-form of the discretisation of the well-known Laplacian,
named after the French mathematician Pierre-Simon de Laplace (1749–1827). We now
wish to construct the sheaf Laplacian, which generalises the idea of a graph Laplacian
to cellular sheaves. This extension is straightforward if one considers δ as a sheaf
generalisation of the transposed incidence matrix BT .

Remark. The element Bve of the |V | × |E| incidence matrix for a vertex v ∈ V

and edge e = vi → vj ∈ E has a value of 1 if v = vi, −1 if v = vj and 0 otherwise.
For a sheaf with stalks isomorphic to R and identity restriction maps (a trivial
sheaf), then we have that δ = BT . Removing the restrictions on stalk dimension and
identity restriction maps, δ acts as a block-matrix which generalises BT to sheaves.
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Definition 2.3.5. The sheaf Laplacian of a sheaf is a map LF :C0(G,F) →C0(G,F)
defined as LF = δ⊤δ.

The sheaf Laplacian is a symmetric positive semi-definite (by construction) block
matrix. The diagonal blocks are LFv,v =∑

v⊴e F⊤
v⊴eFv⊴e, while the off-diagonal blocks

are LFv,u = −F⊤
v⊴eFu⊴e.

LF =


∑

v1⊴e FT
v1⊴eFv1⊴e . . . −FT

v1⊴eFvn⊴e
... . . . ...

−FT
vn⊴eFv1⊴e . . .

∑
vn⊴e FT

vn⊴eFvn⊴e

 (2.20)

A particularly interesting edge-case for the sheaf Laplacian is when all of the stalks
are 1-dimensional and the restriction maps are identity maps. We call such a sheaf
trivial.

Definition 2.3.6. A sheaf (G,F) is called trivial when the stalks are all of dimension
1 and the restriction maps are all identity maps such that Fv⊴e = 1.

Lemma 2.3.7. When a sheaf (G,F) is trivial, then the sheaf Laplacian LF becomes
the well-known graph Laplacian LG.

Proof. Observe the matrix structure in equation 2.20 and consider a trivial sheaf.
With a trivial sheaf, the diagonal entry LFv,v will count how many 1-hop neighbours
node v has. This is because FT

v1⊴eFv1⊴e = 1 if the edge exists and 0 otherwise and
we are summing over the neighbourhood of the node. Instead, the off-diagonal
entry LFv,u will be −1 when there exists an edge e= v → u ∈ E and 0 otherwise.
This is precisely the structure of the graph Laplacian, which can be thought of as
LG = DG −AG, where DG is the diagonal degree matrix and AG is the adjacency
matrix.

Lemma 2.3.7 is intuitively extremely important and acts as a bridge between
(spectral) graph theory and (spectral) cellular sheaf theory. In essence it tells us that
sheaf Laplacians generalise graph Laplacians.

It is common to normalise the Laplacian matrix to bound its spectrum, giving rise
to the normalised sheaf Laplacian ∆F .

Definition 2.3.8. The normalised sheaf Laplacian ∆F is defined as ∆F =
D− 1

2 LFD− 1
2 where D is the block-diagonal of LF .
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Harmonic signals x ∈ C0(G,F) are signals which perfectly agree with the structure
of the sheaf Laplacian, such that LFx = 0. There is a strong connection between the
signals which agree with the sheaf Laplacian LF and signals which agree with the
co-boundary operator δ (global sections). In fact, the central theorem of discrete Hodge
theory states that the space of harmonic signals coincides with the global sections of
the sheaf, in other words that kerLF =H0(G,F).

Theorem 2.3.9. (Hodge theorem) Given a sheaf (G,F), ker(LF ) =H0(G,F).

Proof. Recall that by definition LF = δ⊤δ. Thus kerLF = kerδ⊤δ = kerδ =
H0(G,F), where the last step is by definition of the global sections of a sheaf.

The proof of the Hodge theorem seems almost trivial when working with sheaves
over graphs, but stems from much deeper results over cell complexes. This result is
useful in practice as it allows us to understand the kernel of the sheaf Laplacian as
elements which satisfy the constraint satisfaction problem induced by δ.

2.3.2 O(d)-bundles and Connection Laplacians

In our work, we make the simplification that all the stalks are of dimension d,
meaning that all of the restriction maps are d×d matrices. It is often interesting to
impose restriction on the restriction maps, for example it is particularly convenient to
restrict the maps to be orthogonal, or more formally part of the orthogonal Lie group
O(d).

Definition 2.3.10. The orthogonal (Lie) group of dimension d, denoted O(d), is the
group of d×d orthogonal matrices together with matrix multiplication.

Example. A matrix Q ∈ O(d) is such that QT Q = I and is guaranteed to have a
determinant of ±1. Orthogonal matrices can be thought of as rotations as they
have a unit determinant. For instance all elements of O(2) may be written as:

−cos(θ) sin(θ)
sin(θ) cos(θ)

 (2.21)

The remarkable observation is that while this matrix has 4 entries, it actually only
has 1 free parameter in the form of the rotation angle θ. It is worth mentioning
that if we restrict the determinant to be +1 (not ±1), then we retrieve the special
orthogonal group SO(d).



21 Background

When all the restriction maps are part of the orthogonal group, ie. Fv⊴e ∈O(d),
then the sheaf is called a discrete O(d)-bundle, a discrete analogy of vector bundles
from differential geometry (Tu, 2011). A vector bundle is a precise formulation of how
to parameterise a family of vector spaces over points on a manifold. A connection over
a vector bundle allows one to define the notion of parallel transport on the bundle.
Parallel transport is a mechanism to “connect” nearby vector spaces over the manifold.

In our discretisation, the graph acts as the manifold and the sheaf Laplacian then
specifies the way in which the nodes are connected together, with the restriction maps.
Since the maps are all orthogonal, the vectors are rotated across the graph (see figure
2.4). For this reason, the sheaf Laplacian in the case of O(d) restriction maps is also
called the connection Laplacian (Singer and Wu, 2012), due to its relationship with
connections and parallel transport.

Fig. 2.4 Parallel transport on a graph embedded on a sphere. The green vector is
transported through the stalks via the path F(u) → F(v) → F(w), guided by the
appropriate orthogonal restriction maps (connections). Since the green vector at the
stalk F(u) is different from the red vector obtained after parallel transport, we say the
transport is path-dependent.

Orthogonal restriction maps are advantageous because orthogonal matrices have
fewer free parameters, making them more efficient to work with. The Lie group O(d)
has a d(d− 1)/2-dimensional manifold structure (compared to the d2-dimensional
general linear group describing all invertible matrices). When d= 2, for instance, 2×2
rotation matrices have only one free parameter (the rotation angle).
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Summary

We introduced cellular sheaves and motivated their introduction by relating the
sheaf Laplacian to the graph Laplacian. We further discussed how imposing the
restriction maps to be orthogonal relates sheaves to vector bundles. We are now
finally ready to introduce the notion of a Sheaf Neural Network.

2.4 Sheaf Diffusion

Having defined a sheaf Laplacian, it is natural to study the linear dynamical system
which it induces. We will later discretise this dynamical system to retrieve the notion
of a Sheaf Neural Network.

Definition 2.4.1. For α > 0 and a 0-cochain x ∈ C0(G,F) we define the sheaf heat
equation:

∂x(t)
∂t = −αLFx(t) (2.22)

The dynamics of the diffusion of the sheaf heat equation tend to push the opinion of
an individual xv(t) ∈ F(v) to increase in “agreement” with its neighbours as t increases.
As t→ ∞ this agreement becomes exact and the original signal x(0) is projected onto
the harmonic space, becoming a harmonic signal. This agreement is dependent on the
structure of the sheaf and, as a consequence, the sheaf Laplacian.

Theorem 2.4.2. (Hansen and Ghrist, 2021) Solutions x(t) of the sheaf heat equation
(2.22), in the limit t → ∞ converge to the orthogonal projection of the starting
signal x(0) onto H0(G,F).

Proof. See appendix A.2.
This result implies that, in the time limit, sheaf diffusion can be seen as a global

synchronization process. Recall that the 0-cochains which are in the space of global
sectionsH0(G,F) are those signals that are solutions to the global constraint satisfaction
problem induced by the sheaf. As t→ ∞ we orthogonally project the starting signal
x(0) onto the space of global sections. Note that if H0(G,F) is trivial, meaning that
only the 0 vector is in the space of global sections, then all x(0) will converge to 0.
This suggests that having a non-trivial kernel is more desirable and interesting.
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Remark. In particular, the solution to equation 2.22 is:

x(t) = exp(−tαLF )x(0) (2.23)

meaning that this process converges exponentially quickly to the orthogonal projec-
tion onto H0(G,F). The rate of convergence is related to the spectrum of the sheaf
Laplacian (Hansen and Ghrist, 2019).

2.4.1 Neural Sheaf Diffusion

Consider a graph G= (V,E) where each node v ∈ V has a d-dimensional feature
vector xv ∈ F(v). We construct an nd-dimensional vector x ∈ C0(G,F) by column-
stacking the individual vectors xv. Allowing for f feature channels, we produce the
feature matrix X ∈ R(nd)×f . The columns of X are vectors in C0(G,F), one for each
of the f channels. Bodnar et al. (2022) study a sheaf diffusion equation similar to
equation 2.22:

Definition 2.4.3. We define the normalised sheaf heat equation over graph features:

X(0) = X, ∂

∂t
X(t) = −∆FX(t) (2.24)

where X ∈ R(nd)×f is the graph’s feature matrix and ∆F is the normalised sheaf
Laplacian.

The partial differential equation (PDE) in equation 2.4.1 has as initial condition
X(0) the feature matrix X ∈ R(nd)×f . The same convergence result in theorem 2.4.2
holds as well for this particular PDE up to a D− 1

2 normalisation.
Consider an Euler discretisation with unit time step (τ = 1) of equation :

X(t+1)−X(t)
τ

= −∆FX(t) (2.25)

X(t+1) = X(t)−∆FX(t) (2.26)
X(t+1) = (I−∆F )X(t) (2.27)

We can equip equation 2.27 with weight matrices W1 ∈ Rd×d and W2 ∈ Rf1×f2 and
a non-linearity σ to derive the Sheaf Convolutional Network (SCN) model proposed by
Hansen and Gebhart (2020).
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Definition 2.4.4. The Sheaf Convolutional Network (SCN) model (Hansen and
Gebhart, 2020) takes the form:

X̂ = σ ((Ind −∆F )(In ⊗W1)XtW2) (2.28)

where W1 ∈Rd×d and W2 ∈Rf1×f2 are weight matrices, σ is a non-linear activation
function, f1 and f2 are the input and output channels respectively, and ⊗ is the
Kronecker product.

It is natural to call this model a Sheaf Convolutional Network as when the sheaf is
trivial we recover the Graph Convolutional Network model.

Theorem 2.4.5. The Graph Convolutional Network (GCN) is a special case of the
Sheaf Convolutional Network (SCN), which arises when the underlying sheaf (G,F)
is trivial.

Proof. Using LF = DF −AF , we can re-write the normalised sheaf Laplacian as
∆F = D− 1

2LFD− 1
2 = D− 1

2 (DF −AF )D− 1
2 = I−D− 1

2 AFD− 1
2 and substitute that

in the SCN equation:

X̂ = σ ((Ind −∆F )(In ⊗W1)XW2) (2.29)

= σ
((

Ind −
(

Ind −D− 1
2 AFD− 1

2

))
(In ⊗W1)XW2

)
(2.30)

= σ
(

D− 1
2 AFD− 1

2 (In ⊗W1)XW2

)
(2.31)

When the sheaf (G,F) is trivial then, with lemma 2.3.7, we know that the sheaf
Laplacian LF is the graph Laplacian LG. On top of this, the adjacency matrices
and diagonal degree matrices match, ie. DF = DG and AF = AG. Furthermore,
when the sheaf is trivial (d=1), W1 ∈ Rd×d becomes a scalar factor and can be
dropped. We therefore retrieve the GCN equation:

X̂ = σ
(

D− 1
2 AFD− 1

2 (In ⊗W1)XW2

)
(2.32)

= σ
(

D− 1
2 AGD− 1

2 XW2

)
(2.33)
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While interesting from a theoretical perspective, the SCN model in equation 2.27
from Hansen and Gebhart (2020) is not practical as it assumes that the sheaf is known
a-priori. Bodnar et al. (2022) instead propose a Neural Sheaf Diffusion (NSD) model
with a sheaf F(t) which now evolves over time. The model from Bodnar et al. (2022)
takes the form:

Xt+1 = Xt −σ
(
∆F(t)

(
In ⊗Wt

1
)

XtWt
2
)

(2.34)

with a crucial difference being that now the d×d restriction maps Fv⊴e:=(v,u) are
learnt via a parametric function Φ : Rd×2 → Rd×d such that Fv⊴e:=(v,u) = Φ(xv,xu).
In practice, Φ(xv,xu) = σ (W[xu||xv]). The output vector is then reshaped into a
matrix, potentially enforcing specific structure of the restriction maps (orthogonality
for example). It is crucial that the function Φ is asymmetric, allowing to learn
asymmetric restriction maps as this gives the model more expressivity and modelling
capacity.

Fixing the class of restriction maps allows for different separation properties. In
the most general case, one can learn general linear maps. This is the most powerful
setting, but most prone to overfitting and harder to train due to the spectrum being
potentially unbounded. Strictly diagonal restriction maps reduce the number of learnt
parameters, but have the limitation that the stalk dimensions now cannot mix (as the
non-diagonal terms are all 0).

A convenient middle ground is when the maps are orthogonal, giving rise to a discrete
O(d)-vector bundle. Since all the eigenvalues of orthogonal maps are ±1, stacking
multiple layers does not result in exploding or vanishing gradients. Furthermore,
Bodnar et al. (2022) prove that orthogonal maps are the most efficient, in terms of
separation power, when it comes to stalk width d.

Remark. While Bodnar et al. (2022) suggest to learn the sheaf with a parametric
function Φ, which is fitted with standard gradient-based methods, Barbero et al.
(2022) instead propose to directly compute the (orthogonal) restriction maps from the
data basing themselves in Riemannian geometry. The graph is treated as a manifold
and the restriction maps are then constructed to optimally align the tangent space of
neighbouring nodes in the graph. This technique is computationally advantageous,
at the cost of removing the added flexibility which comes from parameterising the
restriction maps with Φ.

Sheaf neural networks are particularly interesting because they theoretically and
empirically are geared to tackle issues related to oversmoothing and heterophily (Bodnar
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et al., 2022). It is for this very reason that we wish to expand upon the current literature
on SNNs: Sheaf Neural Networks are both elegant theoretically, and have shown very
promising empirical results.

Summary

We started the chapter by discussing different relevant types of GNNs and some
of their pitfalls. We then took a detour to the world of Cellular Sheaf theory to
introduce the required machinery for our model of interest. We brought all of the
concepts together to introduce the notion of Sheaf Neural Networks. We are now
well-equipped to tackle the goal of the project: developing attention-based sheaf
neural networks.



CHAPTER 3

ATTENTION MECHANISMS OVER SHEAVES

There are two possible outcomes: if
the result confirms the hypothesis,
then you’ve made a measurement. If
the result is contrary to the
hypothesis, then you’ve made a
discovery.

Enrico Fermi (1901-1954)

In this chapter we set off with the ambitious goal of developing an attention
mechanism over cellular sheaves. One of the main challenges consists in motivating the
chosen structure of the attention mechanism. To do this in a principled manner, we
construct an attentive sheaf diffusion PDE and show how it relates to existing GNN
literature.

The discretisation of the aformentioned PDE leads to two models of interest: the
Sheaf Attention Network (SAN) and Attentive Neural Sheaf Diffusion (ANSD). We
prove interesting theoretical properties of these models and empirically show that they
address issues of oversmoothing and heterophily present in, for example, GANs. The
motivation is that, similarly to neural sheaf diffusion, we can leverage the more complex
sheaf geometry to create more expressive attention-based models.
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3.1 Attentive Sheaf Diffusion

We start by defining the notion of an attention matrix Λ⊙AG over a graph, which
we then generalise to a sheaf with arbitrary stalk dimension d. An attention matrix
has two fundamental properties, first each entry is greater than 0 and second that each
row sums to 1, making it a row-wise stochastic matrix. This is simply a tool which we
can use to summarise the attention information into a single algebraic structure.

Another desire is that our attention matrix respects the edge structure of the graph.
This is done with the operation ⊙AG, where ⊙ represents element-wise multiplication.
Recall the graph adjacency matrix AG has value for entry uv: 1 if the edge e= u→ v

exists and 0 otherwise (including potentially self-loops). This operation therefore has
the effect of setting all entries in the attention matrix which do not respect the graph
structure to 0 and leaving the rest untouched.

Example. Consider a (directed) graph with 3 nodes a,b and c with edges a→ b and
b→ c (adding self-loops). The operation Λ⊙AG then has the structure (denoting
entry uv of Λ by αuv:

Λ⊙AG =


αaa αab αac

αba αbb αbc

αca αcb αcc

⊙


1 1 0
0 1 1
0 0 1

=


αaa αab 0
0 αbb αbc

0 0 αcc

 (3.1)

Crucially, we have the following row-stochasticity constraints: αaa +αab = 1, αbb +
αbc = 1, and αcc = 1 and that every entry uv is positive αuv ≥ 0. Note that the
positivity constraints alongside the row-sum-to-one constraints also mean that all
αuv ≤ 1.

The structure of the attention matrix follows how the attention matrix is computed
for the GAT model, where we make the tacit assumption that the sheaf is trivial. To
generalise it to d-dimensional stalks we introduce the following structure Λ⊗1d ⊙AF

where ⊗ is the Kronecker product and 1d is a d×d matrix with each entry 1. We also
promote the graph adjacency matrix to the sheaf adjacency matrix, where now the
entries are the restriction maps connecting two neighbouring nodes.

Example. The operation Λ ⊗ 1d ⊙ AF remains intuitive. Consider the same (di-
rected) graph as before with nodes a,b and c and edges e1 = a→ b and e2 = b→ c

(with self loops). This time remaining general with d-dimensional stalks. The result
of Λ⊗1d is a block matrix where now the entry Λuv becomes a d×d matrix with
each element being αuv. We denote this d×d matrix with all entries being αuv as
αuv, in other words αuv = αuv1d.
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Λ⊗1d ⊙AF =


αaa αab αac

αba αbb αbc

αca αcb αcc

⊗1d ⊙


FT

a⊴ea
Fa⊴ea FT

b⊴e1
Fa⊴e1 0d

0d FT
b⊴eb

Fb⊴eb
FT

c⊴e2Fb⊴e2

0d 0d FT
c⊴ec

Fa⊴ec


(3.2)

=


αaa αab αac

αba αbb αbc

αca αcb αcc

⊙


FT

a⊴ea
Fa⊴ea FT

b⊴e1
Fa⊴e1 0d

0d FT
b⊴eb

Fb⊴eb
FT

c⊴e2Fb⊴e2

0d 0d FT
c⊴ec

Fa⊴ec


(3.3)

=


αaaFT

a⊴ea
Fa⊴ea αabFT

b⊴e1
Fa⊴e1 0d

0d αbbFT
b⊴eb

Fb⊴eb
αbcFT

c⊴e2Fb⊴e2

0d 0d αccFT
c⊴ec

Fa⊴ec

 (3.4)

(3.5)

where in the last step we scalar multiply by αuv instead of αuv as we are effectively
multiplying each element of the adjacency matrix entry by αuv as all the elements
of αuv are αuv. The same row-stochasticity constraints on the attention coefficients
apply as before.
When d= 1 we recover the original trivial sheaf operation described in the previous
section. When d is arbitrary, the attention coefficient structure is the same, but
they now multiply d×d restriction maps instead of scalars.

The way through which we compute the attention coefficients αuv follows exactly
how it is done in GAT, although when the stalks are higher dimensional, we input all
the feature channels instead of the feature vector. In our experiments we implement
the GATv2 attention mechanism as it is provably more powerful and empirically
outperforms the GAT attention mechanism. Just like in GAT we employ multiple
attention heads as a form of regularisation, which empirically tends to perform better.
The multiple attention heads are then aggregated by taking their mean. Figure 3.1
shows the attention-based transport (with a single attention head) more clearly.
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Fig. 3.1 Diagram of the sheaf transport weighted by the attention mechanism (with a
single attention head). Transporting a vector from stalk F(v1) to F(v2) is weighted by
αv1v2 , for example. Crucially, the attention weights from each node are constrained
such that they form a PMF. When the sheaf is trivial, we recover the GAT attention
mechanism.

With this new attention machinery over sheaves we have developed, we can now
define an attention sheaf diffusion PDE over a graph.

Definition 3.1.1. We define our attention sheaf diffusion equation over graph
features:

X(0) = X, ∂

∂t
X(t) = (Λ(X(t))⊗1d ⊙AF − I)X(t) (3.6)

where X ∈ R(nd)×f is the graph’s feature matrix, AF is the sheaf adjacency matrix,
Λ(X(t)) is the feature-and-time dependent attention matrix, ⊙ denotes element-wise
multiplication and 1d denotes a d×d matrix where all entries are 1.

It is common to want to analyse the convergence properties of time-dependent
PDEs as t → ∞. This particular PDE is complicated to study and for this reason
we need to make some simplifications to treat it mathematically. One particular
complexity comes from the Λ(X(t)) term as it is time-dependent. When studying the
PDE, we therefore make the simplification that Λ(X(t)) remains fixed at X(0) such
that Λ(X(t)) = Λ(X(0)) = Λ (simply denoted by Λ for convenience).
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We start by showing that the PDE converges when the underlying sheaf is trivial.
We do this by demonstrating that the attentive sheaf diffusion PDE is equivalent to
the GRAND model when the sheaf is trivial.

Lemma 3.1.2. Given a trivial sheaf (G,F) with connected graph G (and augmented
with self-loops), the linear PDE:

X(0) = X, ∂

∂t
X(t) = (Λ⊗1d ⊙AF − I)X(t) (3.7)

converges in the time limit t→ ∞ to the f -dimensional mean vector µ of the initial
features X(0).

Proof. As the sheaf is trivial then we can re-write (preserving the initial condition)
and using the fact that for a trivial sheaf AF = AG:

∂

∂t
X(t) = (Λ⊗1d ⊙AF − I)X(t) (3.8)

= (Λ⊙AF − I)X(t) (3.9)
= −(I−Λ⊙AF )X(t) (3.10)
= −(I−Λ⊙AG)X(t) (3.11)

which is the same form of the GRAND model studied by (Di Giovanni et al., 2022).
We can use lemma A.2.2 (see appendix) to complete the proof.

Effectively, what we have just shown is that when the sheaf is trivial, the PDE
converges in the time limit to the mean vector of the node features. This result comes
from the fact that with a trivial sheaf the attentive sheaf PDE collapses to the GRAND
model. This result is another way to motivate our attention mechanism and to ground
our model in previous work. Effectively, our model is a sheaf generalisation of GRAND.

If we restrict the restriction maps to be diagonal matrices, then for stalk width d > 1
effectively it would be equivalent to having d independent GRAND models, one for each
stalk dimension. Instead, since we work with orthogonal restriction maps, the stalk
dimensions are not independent anymore and are able to interact with each-other in
non-trivial ways. This hints to the fact that the attentive sheaf PDE is more expressive
than the GRAND model.

We now study the convergence of the PDE for higher stalk dimensions d > 1.
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Theorem 3.1.3. Consider a sheaf (G,F) with connected graph G (and augmented
with self-loops), and with all restriction Fv⊴e maps as regular matrices. The linear
PDE:

X(0) = X, ∂

∂t
X(t) = (Λ⊗1d ⊙AF − I)X(t) (3.12)

then converges to the f -dimensional mean vector µd for each stalk dimension over
the node stalks.

Proof. We call a matrix A regular, when for all i and j there exists an n such
that (An)ij . If the restriction maps are all regular, then the sheaf adjacency matrix
(composed of these restriction maps) must be regular as well.
Consider all the stalks to be d-dimensional, then the nd×nd sheaf Adjacency matrix
is a (positively) weighted graph adjacency matrix of a graph with nd nodes and
1-dimensional stalks. In some sense, the additional stalk width could be thought
of as as adding virtual nodes to the graph. Our PDE then becomes the PDE in
lemma 3.1.2, meaning that it converges to the mean vector µ of the initial features.
Since the initial features are over d-dimensional stalks now, the PDE converges over
each stalk dimension to its corresponding mean vector µd.

To summarise, when the sheaf is trivial, the PDE converges to the mean vector µ

of the initial features X(0). Instead, when we work with arbitrary regular restriction
maps, the PDE converges to the mean vector over each stalk dimension µd. While the
regularity assumption on the restriction maps may seem a bit restrictive at first, it
actually helps to directly compare to the trivial sheaf case as we have converge to the
same type of structure: the mean vector of the features.

For the trivial sheaf form (equivalent to GRAND), over-smoothing occurs, as also
pointed out by Di Giovanni et al. (2022). Instead, our sheaf model is able to leverage
the additional stalk width to maintain the additional information without smoothing
the signal. This is an analogous argument to the one presented in Bodnar et al. (2022)
where they show that graph heat diffusion is prone to over-smoothing, while sheaf heat
diffusion is not under specific conditions.

3.2 Sheaf Attention Networks

Having formalised and studied the attentive sheaf diffusion PDE, we now wish to
construct discrete GNN layers out of it. To do this, we consider an Euler discretisation
with unit time-step (τ = 1) of equation 3.6:
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X(t+1)−X(t)
τ

= (Λ(X(t))⊗1d ⊙AF − I)X(t) (3.13)

X(t+1) = X(t)+(Λ(X(t))⊗1d ⊙AF − I)X(t) (3.14)
X(t+1) = (Λ(X(t))⊗1d ⊙AF )X(t) (3.15)

We can equip equation 3.15 with weight matrices W1 ∈ Rd×d and W2 ∈ Rft−1×ft

and a non-linearity σ to derive our new Sheaf Attention Network (SAN) layer. The
weigh matrices are distinct for each layer but we suppress that from the notation for
convenience from here onwards.

Definition 3.2.1. The Sheaf Attention Network (SAN) layer takes the form:

Xt = σ ((Λ(Xt−1)⊗1d ⊙AF )(In ⊗W1)Xt−1W2) (3.16)

where W1 ∈Rd×d and W2 ∈Rft−1×ft are weight matrices, σ is a non-linear activation
function, ft−1 and ft are the input and output channels respectively, and Λ(Xt−1)
is the attention matrix.

Note that by setting σ to an identity mapping and the weight matrices to identity
matrices, we recover a direct discrete form of the attentive sheaf diffusion PDE. This
suggests that the SAN model is at least as expressive as a direct discretisation, but
potentially more given the right choice of σ and weight matrices.

We start by showing that our novel SAN model is a generalisation of the GAT
model. In particular, the GAT model is recovered when the sheaf is trivial.

Theorem 3.2.2. The Graph Attention Network (GAT) is a special case of the Sheaf
Attention Network (SAN), which arises when the underlying sheaf (G,F) is trivial.

Proof. Recall from lemma 2.3.7 that when the sheaf is trivial, the sheaf Laplacian is
the graph Laplacian. When the sheaf is trivial d= 1, therefore W1 ∈ Rd×d becomes
a scalar (as d= 1) and ⊗1d becomes multiplication by 1, so we can drop both terms.
This allows us to write equation 3.16 as:

Xt = σ ((Λ(Xt−1)⊗1d ⊙AF )(In ⊗W1)Xt−1W2) (3.17)
= σ ((Λ(Xt−1)⊙AG)Xt−1W2) (3.18)
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The graph adjacency matrix has for entry u,v, 1 if the edge e= u→ v exists and 0
otherwise (including potentially self-loops). The operation Λ(Xt−1)⊙AG therefore
has the effect of making sure that the attention matrix respects the edge structure
of the graph - just like in the GAT model. If we take entry u,v to be αu,v, then we
recover the GAT message passing form:

X(t)
i = σ

∑
j∈Ni

αijX
(t−1)
j W2

 (3.19)

The fact that a trivial sheaf recovers the GAT model from SAN hints to the
additional expressiveness of the SAN model. A trivial sheaf, with d= 1 and identity
restriction maps may be thought of as such when all restriction maps belong to SO(1),
the special orthogonal group of dimension 1. This is because the only element in
SO(1) is the element 1, imposed from the fact that the determinant must be 1 and the
determinant of a 1×1 matrix is the number itself.

Now consider restriction maps part of the orthogonal group O(1) instead of special
orthogonal group SO(1). We have that the group elements of O(1) are the set {1,−1}
instead of the much more restrictive group SO(1) with group element simply {1}. By
allowing for signed restriction maps, we recover the signed GAT model (Huang et al.,
2019), which is able to give either positive or negative attention weights to edges.

One can imagine an O(d)-SAN model as a generalisation of a signed GAT, where
now the restriction maps model higher dimensional rotations, which can be “positive”
or “negative” with respect to multiple axes based on the rotation angles.

For these reasons, in all our experiments we make the restriction that all of the
restriction maps are elements of the d-dimensional orthogonal group, i.e. Fv⊴e ∈O(d),
effectively learning an O(d)-vector bundle.

There are several advantages which come from using strictly orthogonal maps,
Bodnar et al. (2022) for example show that orthogonal maps are more efficient with
the stalk dimension than general or diagonal linear maps. Another advantage is that
effectively an orthogonal linear map, as previously discussed, is d(d− 1)/2-dimensional
instead of d2-dimensional in the general case. This means that we are in practice
learning less parameters which helps with overfitting. Additionally, orthogonal maps,
having a determinant of ±1, make stacking many layers easier to train due to the fact
that these maps are not responsible for vanishing or exploding gradients.

Encoding signed messages (using rotation angles of orthogonal maps for example)
is crucial in settings of low homophily (Yan et al., 2021). From an opinion dynamics
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perspective, a negatively signed message may be thought of as modelling a node’s
opinion which contradicts another node’s opinion. As one can imagine, this behaviour
is related to low homophily, where two nodes are more likely nodes to “disagree” on
their class. We therefore expect this higher-dimensional disagreement in the form of
higher-dimensional orthogonal restriction maps to be very advantageous in heterophilic
settings.

3.3 Attentive Neural Sheaf Diffusion

The previous parameterisation, as we showed, can be thought of as a direct gener-
alisation of the GAT model to sheaves. We now introduce another family of neural
models which instead more similarly resembles the neural sheaf diffusion model by
Bodnar et al. (2022). This is done in an attempt to more directly compare the sheaf
attention mechanism structure to the neural sheaf diffusion models.

Consider the following Euler discretisation with unit time-step (τ = 1) of equation
3.6:

X(t+1)−X(t)
τ

= (Λ(X(t))⊗1d ⊙AF − I)X(t) (3.20)

X(t+1) = X(t)+(Λ(X(t))⊗1d ⊙AF − I)X(t) (3.21)

We can equip the right-most term in equation 3.15 with weight matrices W1 ∈Rd×d

and W2 ∈ Rft−1×ft and a non-linearity σ to derive our new Attentive Neural Sheaf
Diffusion (ANSD) model. This is similar to the SAN model, but with a more residual
parameterisation.

Definition 3.3.1. The Attentive Neural Sheaf Diffusion (ANSD) layer takes the
form:

Xt = Xt−1 +σ ((Λ(Xt−1)⊗1d ⊙AF − I)(In ⊗W1)Xt−1W2) (3.22)

where W1 ∈Rd×d and W2 ∈Rft−1×ft are weight matrices, σ is a non-linear activation
function, ft−1 and ft are the input and output channels respectively, and Λ(Xt−1)
is the attention matrix.
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Remark. One training trick which we use (also used by Bodnar et al. (2022)) is to
learn a d-dimensional vector ε ∈ [−1,1]d such that:

Xt = (1+ε)Xt−1 +σ ((Λ(Xt−1)⊗1d ⊙AF − I)(In ⊗W1)Xt−1W2) (3.23)

which allows the model to adjust the relative weighting of each stalk dimension.
The ANSD model is different to the SAN model as it uses a type of residual param-

eterisation, where the feature updates are of the form ht = ht +f(ht, θt). Empirically,
this type of construction outperforms the previously introduced parameterisation of the
Sheaf Attention Network. Theoretically, this increased performance has been motivated
from the spectral perspective of being able to act as both a high-pass and low-pass
filter Di Giovanni et al. (2022). In particular, without a residual connection the model
may be dominated by the low frequency signals over the graph as more layers are
added, contributing to oversmoothing.

Summary

We have presented an Attentive Sheaf Diffusion PDE and proposed two separate
discretisations and parameterisations leading to the Sheaf Attention Network and
Attentive Neural Sheaf Diffusion models. The SAN model is a generalisation of
GATs to sheaves, while the ANSD model is an attentive cousin of Neural Sheaf
Diffusion. In the next part of the chapter we will evaluate these two models in depth,
highlighting both strengths and limitations.

3.4 Evaluation

In this section we evaluate extensively the ANSD and SAN models. In our experi-
ments, we focus on the direct comparison of our sheaf attention mechanisms to GAT
and the original Neural Sheaf Diffusion model. In particular, we show that the sheaf
attention mechanisms greatly outperform GAT, especially when it comes to the issues of
over-smoothing and heterophily. On top of this, sheaf attention mechanisms show very
competitive results with state-of-the-art models. Our evaluation includes applications
to molecules and a discussion of the limitations. Appendix B contains supplementary
information useful for the experimental section, including dataset information and
hyper-parameter search space details useful to reproduce the results.

Figure 3.2 shows the general pipeline used in the experiments. First the node
features are passed through an MLP ϕ which effectively increases the dimensionality
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to the stalk width for each feature channel. For example, if the original node features
are n-dimensional and the stalk dimension is d, ϕ augments the feature vectors to
nd-dimensional vector spaces. Next, we learn the attention coefficients and the d×d

restriction maps. The former are used to construct the attention matrix Λ, while the
latter are used to construct the sheaf adjacency matrix AF . Finally, we use the SAN
or ANSD parameterisation to predict the latent features and evaluate our models.

Fig. 3.2 General pipeline used in our experiments. First we map the feature vectors
to higher-dimensional stalks via an MLP ϕ. Next, we learn attention coefficients and
restriction maps. We then use either the SAN or ANSD parameterisation to make
predictions and evaluate our models.
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Table 3.1 Accuracy ± stdev for various node classification datasets. The SAN and
ANSD accuracies are reported with varying stalk dimension d, ranging from 2 to
16. These accuracies are to be compared with respect to the baseline GAT accuracy.
The top three models for each dataset are coloured by First, Second and Third,
respectively.

Texas Wisconsin Cornell Citeseer Pubmed Cora
Homophily level 0.11 0.21 0.30 0.74 0.80 0.81
#Nodes 183 251 183 3,327 18,717 2,708
#Edges 295 466 280 4,676 44,327 5,278
#Classes 5 5 5 7 3 6
GAT 52.16±6.63 49.41±4.09 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

SAN (d= 2) 84.86±4.86 87.06±4.90 84.59±5.55 75.89±1.64 89.08±0.37 86.48±1.06
SAN (d= 4) 86.22±4.90 88.24±2.77 84.59±4.69 76.34±1.56 89.01±0.42 86.84±1.35
SAN (d= 8) 85.14±3.68 87.25±4.32 84.32±6.60 76.33±1.72 89.12±0.36 87.04±0.91
SAN (d= 16) 83.51±5.33 87.84±4.00 84.86±6.42 76.30±1.87 OOM 86.80±1.00

ANSD (d= 2) 83.24±4.65 86.86±1.97 85.14±5.16 76.30±1.88 88.88±0.47 86.96±1.49
ANSD (d= 4) 85.68±4.37 87.84±5.10 84.32±5.10 76.58±1.78 89.00±0.40 87.10±1.35
ANSD (d= 8) 84.05±2.82 87.65±4.48 82.97±5.41 76.79±1.38 89.03±0.42 86.86±1.26
ANSD (d= 16) 81.35±7.30 87.45±2.35 85.14±5.70 76.64±1.12 OOM 86.70±0.98

3.4.1 Stalk Width

We start by evaluating the effect increasing the stalk width has on accuracy. Stalk
width is a trade-off between higher expressive power and the risk of over-fitting due
to the additional dimensionality of the restriction maps. We evaluate on the datasets
the GAT model was originally evaluated on: Citeseer, Pubmed and Cora which are all
highly homophilic. We additionally also evaluate on Texas, Wisconsin and Cornell to
include more heterophilic benchmarks. Further details on these datasets may be found
in appendix B.1.1.

As we have shown, the GAT model is a special case of the SAN model, which is
recovered with a trivial sheaf. We empirically verify whether the higher stalk dimension
is beneficial and results in higher accuracy on the aformentioned datasets.

Table 3.1 shows the results obtained by varying the the stalk dimension. On the
highly heterophilic datasets (Texas, Wisconsin and Cornell) SAN and ANSD greatly
outperform the GAT model. On the more homophilic datasets, the GAT model becomes
more competitive, although the sheaf attention models still seem to be superior.

A stalk width of d = 4 seems to be a very competitive middle ground and tends
to outperform d = 2. Going beyond d = 4 is also viable although the performance
sometimes is significantly worsened. We attribute this to overfitting due to the higher
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number of parameters. On top of this, the datasets we evaluate on (especially the
3 most heterophilic ones) are relatively small which may amplify the overfitting and
further hinder the performance of larger stalk widths. Another drawback of a large
stalk width is the additional memory costs which may become problematic, as seen
with Pubmed and d= 16.

The sheaf dimension mechanisms seem to outperform the GAT model overall. The
fact that they do so even with a small stalk width d implies that in practice we do
not need much additional overhead (introduced by high stalk dimensionality). These
results are very much aligned with the work by Bodnar et al. (2022) which shows that
d > 1 is necessary for higher performance in heterophilic settings.

3.4.2 Oversmoothing

After having found evidence that the additional stalk width indeed does help
empirically, we now turn our eye to the oversmoothing issue. We follow the analysis
structure done by Yan et al. (2021) by evaluating our sheaf attention models on Cora,
Citeseer, Cornell and Chameleon with layers increasing in powers of 2 from 2 to 64.

The GNN models evaluated are divided in three classes:
1. Classical: GCN Kipf and Welling (2016), and GAT Velickovic et al. (2017).
2. Models for heterophilic settings: GGCN Yan et al. (2021), Geom-GCN Pei et al.

(2020), H2GCN Zhu et al. (2020), and GPRGNN Chien et al. (2020).
3. Models which address over-smoothing: GCNII Chen et al. (2020a), and PairNorm

Zhao and Akoglu (2019).
The models are evaluated from 2 to 64 layers. The results in the table are taken

from Yan et al. (2021) and we evaluate our models on the same splits utilised in their
evaluation for consistency.

Table 3.2 shows the oversmoothing results. We see how models which are not
designed for oversmoothing exhibit various issues, ranging from accuracy dropping
rapidly (GCN and Geom-GCN), to memory issues (H2GCN), to numerical instability
(GAT).

We find that our sheaf attention mechanism models perform very competitively
when compared to state of the art techniques such as GCNII. This is a very exciting
result as it shows that sheaf attention mechanisms can go much deeper than traditional
ones such as GAT. Not only do they maintain their performance as layers are added,
they achieve very high performance in general whilst doing so. We attribute this to
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Table 3.2 Accuracy ± stdev for various node classification datasets. Accuracy is
reported from 2 to 64 layers increasing in powers of 2. The “best” results corresponds
to the number of layers which resulted in the highest accurracy. “OOM” stands for
out of memory, whilst “INS” stands for numerical instability. The top three models for
each dataset and layer count are coloured by First, Second and Third, respectively.

Layers 2 4 8 16 32 64 Best

Cora (h=0.81)
SAN (ours) 86.90±1.31 86.84±0.97 86.68±1.13 86.54±0.89 86.62±1.39 86.26±1.09 2
ANSD (ours) 86.98±1.07 87.08±1.26 86.80±1.15 86.84±1.24 86.56±0.75 86.76±1.49 4
GGCN 87.00±1.15 87.48±1.32 87.63±1.33 87.51±1.19 87.95±1.05 87.28±1.41 32
GPRGNN 87.93±1.11 87.95±1.18 87.87±1.41 87.26±1.51 87.18±1.29 87.32±1.21 4
H2GCN* 87.87±1.20 86.10±1.51 86.18±2.10 OOM OOM OOM 2
GCNII* 85.35±1.56 85.35±1.48 86.38±0.98 87.12±1.11 87.95±1.23 88.37±1.25 64
PairNorm 85.79±1.01 85.07±0.91 84.65±1.09 82.21±2.84 60.32±8.28 44.39±5.60 2
Geom-GCN* 85.35±1.57 21.01±2.61 13.98±1.48 13.98±1.48 13.98±1.48 13.98±1.48 2
GCN 86.98±1.27 83.24±1.56 31.03±3.08 31.05±2.36 30.76±3.43 31.89±2.08 2
GAT 87.30±1.10 86.50±1.20 84.97±1.24 INS INS INS 2

Citeseer (h=0.74)
SAN (ours) 76.27±1.76 76.30±1.80 76.62±1.70 76.18±1.47 76.07±2.18 75.99±1.84 8
ANSD (ours) 76.99±1.74 76.86±1.71 76.61±1.51 76.69±1.56 76.22±1.47 76.44±1.30 2
GGCN 76.83±1.82 76.77±1.48 76.91±1.56 76.88±1.56 76.97±1.52 76.65±1.38 10
GPRGNN 77.13±1.67 77.05±1.43 77.09±1.62 76.00±1.64 74.97±1.47 74.41±1.65 2
H2GCN* 76.90±1.80 76.09±1.54 74.10±1.83 OOM OOM OOM 1
GCNII* 75.42±1.78 75.29±1.90 76.00±1.66 76.96±1.38 77.33±1.48 77.18±1.47 32
PairNorm 73.59±1.47 72.62±1.97 72.32±1.58 59.71±15.97 27.21±10.95 23.82±6.64 2
Geom-GCN* 78.02±1.15 23.01±1.95 7.23±0.87 7.23±0.87 7.23±0.87 7.23±0.87 2
GCN 76.50±1.36 64.33±8.27 24.18±1.71 23.07±2.95 25.3±1.77 24.73±1.66 2
GAT 76.55±1.23 75.33±1.39 66.57±5.08 INS INS INS 2

Cornell (h=0.3)
SAN (ours) 82.70±6.64 84.59±4.69 85.68±4.53 84.32±6.82 83.51±7.20 78.65±10.29 8
ANSD (ours) 84.86±6.07 84.32±5.10 84.86±5.95 84.59±6.51 83.24±3.97 82.43±8.90 8
GGCN 83.78±6.73 83.78±6.16 84.86±5.69 83.78±6.73 83.78±6.51 84.32±5.90 6
GPRGNN 76.76±8.22 77.57±7.46 80.27±8.11 78.38±6.04 74.59±7.66 70.00±5.73 8
H2GCN* 81.89±5.98 82.70±6.27 80.27±6.63 OOM OOM OOM 1
GCNII* 67.57±11.34 64.59±9.63 73.24±5.91 77.84±3.97 75.41±5.47 73.78±4.37 16
PairNorm 50.27±7.17 53.51±8.00 58.38±5.01 58.38±3.01 58.92±3.15 58.92±3.15 32
Geom-GCN* 60.54±3.67 23.78±11.64 12.97±2.91 12.97±2.91 12.97±2.91 12.97±2.91 2
GCN 60.54±5.30 59.19±3.30 58.92±3.15 58.92±3.15 58.92±3.15 58.92±3.15 2
GAT 61.89±5.05 58.38±4.05 58.38±3.86 INS INS INS 2

Chameleon (h=0.23)
SAN (ours) 65.88±2.10 65.99±1.28 68.16±2.18 68.62±2.81 67.61±2.80 OOM 16
ANSD (ours) 65.35±1.26 67.11±1.88 66.69±2.30 67.39±1.84 66.91±1.61 OOM 16
GGCN 70.77±1.42 69.58±2.68 70.33±1.70 70.44±1.82 70.29±1.62 70.20±1.95 5
GPRGNN 46.58±1.771 45.72±3.45 41.16±5.79 39.58±7.85 35.42±8.52 36.38±2.40 2
H2GCN* 59.06±1.85 60.11±2.15 OOM OOM OOM OOM 4
GCNII* 61.07±4.10 63.86±3.04 62.89±1.18 60.20±2.10 56.97±1.81 55.99±2.27 4
PairNorm 62.74±2.82 59.01±2.80 54.12±2.24 46.38±2.23 46.78±2.26 46.27±3.24 2
Geom-GCN* 60.00±2.81 19.17±1.66 19.58±1.73 19.58±1.73 19.58±1.73 19.58±1.73 2
GCN 64.82±2.24 53.11±4.44 35.15±3.14 35.39±3.23 35.20±3.25 35.50±3.08 2
GAT 60.26±2.50 48.71±2.96 35.09±3.55 INS INS INS 2
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the more complex geometry of the underlying sheaf. Our sheaf models leverage the
additional stalk width to mitigate the smoothing of the signal.

One very satisfying trend is that our attentive sheaf models perform extremely
well on the Cornell and Chameleon datasets, which are particularly heterophilic. This
suggests that while the other models are designed either for oversmoothing or for
heterophily, our models are particularly well suited for both tasks at once.

3.4.3 Heterophily

Heterophily: Synthetic Benchmark

To compare in a controlled environment the perfomance between GAT and the sheaf
attention mechanisms in heterophilic settings, we devise a synthetic benchmark. We
generate graphs with 3 classes and sample edges with a progressively higher homophilic
probability h. The feature vectors are 3-dimensional and each dimension is sampled
from an independent Gaussian distribution.

Figure 3.3 shows the results of this process for the most heterophilic (h= 0.0) and
the most homophilic graphs generated (h= 0.9). The full spectrum of synthetic graphs,
alongside further generation details, may be found in appendix B.2.

h = 0.0

(a) Least heterophilic synthetic graph
with node homophily h = 0.0.

h = 0.9

(b) Most heterophilic synthetic graph
with node homophily h = 0.9.

Fig. 3.3 Example of the two edge-case synthetic graphs generated, one with the lowest
homophily level h = 0.0 (a) and the other with the highest homophily level h = 0.9
(b). High homophily results in a graph which has very clearly distinguishable classes,
whilst low homophily results in a much more visually noisy graph in comparison.

The goal of this synthetic benchmark is to compare the separation power be-
tween GAT and the higher dimensional sheaf attention mechanisms in very controlled
conditions of homophily. Figure 3.4 shows the results on the synthetic benchmark.
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The GAT model seems to significantly struggle with h < 0.7, essentially random
guessing with accuracy close to 1

3 . It is only in very high homophily settings that the
GAT model is able to perform better than random guessing. The SAN and ANSD
models instead have high performance independently of the homophily level. The
variance also remains relatively low, suggesting that they are less prone to initialisation
issues.
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Fig. 3.4 Test accuracy on our synthetic benchmark of 3 classes. Accuracy of 1
3 is

random guessing. The accuracy is plotted as a function of the node homophily level h,
which ranges from 0.0 to 0.9 with a step size of 0.1.

We attribute the increased performance to the higher stalk dimension d and the
fact that the sheaf models are able to learn “negative” relationships by adjusting the
rotation angles. This becomes crucial in heterophilic settings and this is made clear by
the synthetic benchmark.

Heterophily: Real-World Datasets

We now evaluate the sheaf attention models on a wide range of real-world datasets,
with varying levels of node homophily h and compare the performance to a multitude
of different models. In doing so, we remain consistent by using the same benchmarks
used by Bodnar et al. (2022) to evaluate the original NSD model. The datasets are
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real-world datasets which aim to evaluate the performance of models in heterophilic
settings (Pei et al., 2020; Rozemberczki et al., 2021). Further details on these datasets
may be found in appendix B.1.1.

The datasets are ordered based on their node homophily coefficient 0 ≤ h≤ 1, which
is higher for more homophilic datasets. The quantity h is the fraction of edges which
connect nodes of the same class label, known as the edge homophily level.

The results are collected over 10 fixed splits, where 48%, 32%, and 20% of nodes
per class are used for training, validation, and testing, respectively. The reported
score is the test set accuracy, which corresponds to the tuned model with the highest
validation accuracy, to avoid data snooping. The details on how the hyper parameters
were searched may be found in appendix B.3.

Table 3.3 shows the test accuracy results for a wide range of models for the node
classification tasks over 9 data-sets, ordered by homophily level. An important baseline
is the Multi-Layer Perceptron (MLP), whose result is shown on the last row of table
3.3. The MLP has access only to the node features and it provides an idea of how
much useful information GNNs can extract from the graph structure.

The GNN models in table 3.3 may be considered under 3 classes:
1. Classical: GCN Kipf and Welling (2016), GAT Velickovic et al. (2017), and

GraphSAGE Hamilton et al. (2017).
2. Models for heterophilic settings: GGCN Yan et al. (2021), Geom-GCN Pei et al.

(2020), H2GCN Zhu et al. (2020), GPRGNN Chien et al. (2020), FAGCN Bo
et al. (2021), and MixHop Abu-El-Haija et al. (2019).

3. Models which address over-smoothing: GCNII Chen et al. (2020a), and PairNorm
Zhao and Akoglu (2019).

Additionally, also the results from Bodnar et al. (2022) with neural sheaf diffusion
are included as NSD. The three variants denote different types of restriction maps,
namely diagonal (Diag-NSD), orthogonal (O(d)-NSD) and general (Gen-NSD). Another
direct comparison of interest is the GAT model. The sheaf attention models tie concepts
from the NSD and GAT models together, incorporating the cellular sheaf construction
from the former and the attention mechanism for the other. The direct comparison
between these two aforementioned model is therefore crucial.

The results are reported in table 3.3. As expected, the GAT model performs very
poorly on datasets with higher levels of heterophily. For example, in the Texas and
Wisconsin datasets the GAT model is significantly outperformed even by a simple MLP.
It is clear that the GAT model has a strong inductive bias for homophily and therefore
performs very poorly when working in heterophilic settings.
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Table 3.3 Accuracy ± stdev for various node classification datasets and models. The
datasets are sorted by increasing order of homophily. Our technique is denoted Conn-
NSD, while the other Sheaf Diffusion models are Diag-NSD, O(d)-NSD and Gen-NSD.
The top three models for each dataset are coloured by First, Second and Third,
respectively. The first section includes sheaf-based models, while the second includes
other GNN models.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Homophily level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6
SAN (ours) 84.05±5.33 86.47±3.87 37.09±1.18 50.96±1.40 67.46±1.90 84.32±5.64 72.57±1.50 87.12±0.30 85.90±1.85
ANSD (ours) 85.68±4.69 87.45±3.19 37.66±1.40 54.39±1.76 68.38±2.14 84.59±5.93 76.81±1.82 89.21±0.37 87.20±1.03
Diag-NSD 85.67±6.95 88.63±2.75 37.79±1.01 54.78±1.81 68.68±1.73 86.49±7.35 77.14±1.85 89.42±0.43 87.14±1.06
O(d)-NSD 85.95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.04±1.58 84.86±4.71 76.70±1.57 89.49±0.40 86.90±1.13
Gen-NSD 82.97±5.13 89.21±3.84 37.80±1.22 53.17±1.31 67.93±1.58 85.68±6.51 76.32±1.65 89.33±0.35 87.30±1.15

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05
H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20
GPRGNN 78.38±4.36 82.94±4.21 34.63±1.22 31.61±1.24 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18
FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 42.59±0.79 55.22±3.19 79.19±9.79 N/A N/A N/A
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85
GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25
Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57
PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 50.44±2.04 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01
GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04
GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27
GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48
MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 75.69±2.00 87.16±0.37

Instead, the sheaf attention models seem to perform very competitively across
the board and especially in heterophilic settings when compared to a wide variety
of state-of-the-art models. This gives further empirical evidence that the attention
mechanisms, which now act on higher-dimensional non-trivial sheaves, are indeed
useful. In particular, the ANSD model outperforms the GAT on every dataset, with
larger empirical gains as homophily decreases. This result is consistent with the theory
developed in Bodnar et al. (2022), which suggests that higher dimensional stalks are
needed in heterophilic settings.

We also find that the ANSD model tends to outperform the SAN parameterisation.
This may be explained from the theoretical analysis by Di Giovanni et al. (2022), which
suggests that residual parameterisations are better equipped for high frequency signals
over graphs. Overall, these results show how effective the sheaf attention mechanisms
are, achieving competitive performance when compared to state-of-the-art models on a
wide range of domains.
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3.4.4 Molecular Applications

We started the section by proposing a new attention mechanism based on sheaves
and used it to define an attention-based sheaf diffusion equation. We then took two
distinct discretisated parameterisations of this process resulting in Sheaf Attention
Networks (SAN) and Attentive Neural Sheaf Diffusion (ANSD). We evaluated the
SAN and ANSD models on various datasets and synthetic benchmarks to show their
empirical strength. In particular, we showed their effectiveness in tackling issues related
to oversmoothing and heterophily.

In this section we will discuss one potentially useful real-world application of
attention mechanisms over sheaves: molecules. Molecular interactions are extremely
complicated to model. Traditional GNN models struggle due to a variety of factors.
For example, ring structures are very common in chemical compounds and standard
GNN models are ill-equipped to deal with them. Intuitively, message passing is too
local to identify rings correctly and would require very deep GNNs. Unfortunately, we
already discussed how very deep GNNs leads to the phenomenon of oversmoothing.

Example. One example of a pair of problematic molecules is Decalin and Bicyclopen-
til. Figure 3.5 shows the two molecular graphs side by side. The two molecular
graphs are isomorphic according to the Weisfeiler-Lehman graph isomorphism test
(WL test), a procedure which traditional message passing GNNs have been shown to
be as expressive as. The two graphs however are clearly not isomorphic, for instance
Decalin has two rings of length 6, while Bicyclopentil has two rings of length 5.

(a) Decalin (b) Bicyclopentil

Fig. 3.5 Graphs of Decalin and Bicyclopentil molecules, where nodes are carbon
atoms and edges are chemical bonds. The node colours show the stable colouring
reached by the Weisfeiler-Lehman algorithm. The two molecular graphs are erro-
neously considered isomorphic by the WL test, although they are not isomorphic.

These two molecules highlight one of the issues which comes with standard GNNs:
models struggle to leverage larger graph sub-structures such as rings due to the local
nature of message passing. This is problematic in domains like bio-chemistry as ring
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structures are extremely prevalent. There have been many topological approaches
which target this issue such as Message Passing Simplicial Networks (Bodnar et al.,
2021b) (over Simplicial Complexes) and CW Networks (Bodnar et al., 2021a) (over
regular Cell Complexes).

Remark. It is worth mentioning that while traditional message passing GNNs
struggle to count substructures both theoretically and empirically (Chen et al.,
2020b), there are relatively simple schemes which address some of these issues as
well. For instance in our chemical example, one may augment the node feature
vectors with ring size information as a pre-processing step. This would allow the
GNN to use that information to distinguish the two molecular graphs. Of course the
challenge then becomes finding the right quantities to augment the feature vectors
with.

As our molecular benchmark, we evaluate on the ZINC dataset. ZINC is a large
dataset of molecular graphs, the goal is for each grass to regress a molecular property
known as constrained solubility. We follow the experimental setup of suggested by
Dwivedi et al. (2020) in which they establish a general methodology to evaluate graph
neural networks on various datasets, including ZINC. We use a standard smaller version
of ZINC which contains 10,000 molecules in the training set, 1,000 in the validation
set and 1,000 in the test set.

The regression task on ZINC, unlike the other datasets, is an inductive problem.
Our technique however produces latent feature vectors at each node and not a single
output and we must in some way condense all of the node latent vectors into a single
regression output. We again follow the standard procedure suggested by Dwivedi et al.
(2020), where we compute the mean vector over all the latent nodes and then pass
that through an MLP to retrieve a single numerical value (in this case the predicted
constrained solubility of the molecule).

Table 3.4 shows the results on the ZINC datasets for the various models evaluated.
The models are roughly divided into the following categories:

1. Classical: GCN (Kipf and Welling, 2016), GAT (Velickovic et al., 2017), and
GIN (Xu et al., 2018).

2. Residual: GatedGCN (Bresson and Laurent, 2017).
3. Expressivity: PNA (Corso et al., 2020) (aggregation), and DGN (Beaini et al.,

2021) (Laplacian eigenvectors).
4. Topological: CIN (Bodnar et al., 2021a), and GSN (Bouritsas et al., 2022).
We find that our technique surpassed the performance of GCNs and GATs. Having

said this, it falls short of many of the other techniques. The common denominator
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Table 3.4 Mean Average Error (MAE) ± stdev on the ZINC regression task for various
models.

Model ZINC MAE
GCN 0.469±0.002
GAT 0.463±0.002
GatedGCN 0.422±0.006
GIN 0.408±0.008
PNA 0.320±0.032
DGN 0.219±0.010
GSN 0.139±0.007
CIN 0.115±0.003

SAN (ours) 0.434±0.009
ANSD (ours) 0.415±0.011

between the better performing techniques is that they in some way better-equipped to
deal with graph substructures such as cycles. For instance, CIN works by considering
higher-dimensional (regular) Cell Complexes, topological objects which Simplicial
Complexes and graphs are a special case of (see appendix A.1). GSN is also a
topologically inspired technique which can detect substructures in graphs.

This is instead not true for our sheaf models. Recall that the type of sheaf we work
with is a cellular sheaf meaning that this structure is well defined for cell complexes.
In our work, we simply utilise the underlying graph, which is an example of a 1-
dimensional cell complex. Instead the CWN technique, for example, is equipped for
higher dimensional cellular structures. For this reason, we suspect that working over
higher dimensional cellular complexes would greatly benefit the sheaf diffusion model.
This would of course come at a trade off of the increased computational costs which
come from considering the higher dimensional cells.

3.4.5 Limitations

Limitations: Computational Cost We have shown that the sheaf attention
models consistently outperform GAT and also greatly help with the oversmoothing
and heterophily problems. In particular, they achieve competitive oversmoothing and
heterophilic accuracy to state of the art models specifically designed for these tasks.
While this is an exciting achievement, there are some drawbacks involved with the
additional sheaf structure.
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In particular, the models are effectively a higher-dimensional version of GAT. They
therefore inherit the costly attention mechanism. A GAT layer has cost O(|V |FF̂ +
|E|F̂ ) (Velickovic et al., 2017) where |V | and |E| denote number of nodes and edges
respectively, and F and F̂ denote the number of input and output features respectively.

With orthogonal restriction maps, we now have an extra O(d3) cost due to matrix
multiplication with the d×d restriction maps, similarly to the original NSD work by
Bodnar et al. (2022), resulting in O(d3(|V |FF̂ + |E|F̂ )). In practice the stalk dimension
d is chosen to be small such that d≤ 5. Learning d×d (orthogonal) restriction maps
is done efficiently with the Torch Householder library and the matrix operations
all support sparse batched GPU computations to alleviate the extra computational
complexity.

The memory cost is also significant especially as d grows, as one is required to
store (for each of the |E| edges) d×d restriction maps, which is linear in the number
of edges and up to quadratic in d (depending on how the orthogonal matrices are
being stored). There is additionally a memory cost from the attention mechanism
which scales linearly with number of edges to store the attention coefficients. On top
of this, the utilisation of K attention heads multiplies the computational costs of the
attention mechanism, although the memory costs remain similar as only the mean of
the attention head is required to be store.

The attention sheaf models as a consequence are computationally more expensive
than both GAT and the previously propose neural sheaf diffusion model from Bodnar
et al. (2022).

Table 3.5 shows the runtime results for the various models being bencharked. These
were obtained on 3 synthetic graphs of different sizes. All models only have 1 layer
and the sheaf models all have a stalk width d= 3. The reported value is the training
time in seconds over 100 epochs obtained whilst training on 80% of the samples. The
models were trained on an NVIDIA TITAN X GPU and an Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz.

The GAT model is fastest, followed by the Conn-NSD sheaf model (Barbero et al.,
2022). The O(d)-NSD model comes next, followed by SAN and finally ANSD. The
SAN parameterisation is faster than ANSD as it requires fewer operations. On top
of this, the neural sheaf diffusion models learn, as previously mentioned, a vector
ϵ ∈ [−1,1]d which adjusts the relative weights of each stalk dimension. Although
effective in practice, this adds slight costs when backpropagating.

Overall, we have shown that although the sheaf attention mechanism is slower than
the GAT model, the training time is still reasonable especially when compared to the



49 Attention Mechanisms over Sheaves

Table 3.5 Training time (in seconds) for 100 epochs on synthetic graphs of different sizes
(lower is better). The models are ordered by speed (faster models on the bottom). O(d)-
NSD is neural sheaf diffusion with orthogonal restriction maps (Bodnar et al., 2022),
whilst Conn-NSD is neural sheaf diffusion with pre-computed connection Laplacians
(Barbero et al., 2022). For all the models we utilise 1 layer and stalk width d= 3 (when
applicable).

Synthetic 1 Synthetic 2 Synthetic 3
Rank
#Nodes 99 999 9,999
#Edges 500 5,000 50,000
ANSD (ours) 0.557 2.620 22.262
SAN (ours) 0.430 2.201 19.544
O(d)-NSD 0.417 2.094 17.382
Conn-NSD 0.180 0.839 9.225
GAT 0.128 0.495 3.910

performance gained in practice. The additional attention mechanism overhead from
O(d)-NSD to ANSD and SAN is also not disastrous.

Limitations: Implementation Complexity Another more subtle limitation is the
implementation complexity. For example, constructing the sheaf Laplacian requires
the careful juggling of restriction maps which need to be efficiently constrained to be
orthogonal. Importantly, the sheaf Laplacian needs to be treated as a sparse object
or the technique would run quickly into memory issues. Of course, the additional
attention mechanism further complicates this pipeline.

All of this adds extra difficulty when one needs to, for instance, work with batches
of graphs in inductive settings. Keeping track of the individual sheaf Laplacians and
their corresponding restriction maps becomes much more challenging when compared
to more simple GNN methods. Simplifying the implementation complexity of SNNs
through sheaf-compatible machine learning libraries is therefore important to allow
these models to become more widespread.
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Summary

We started the chapter by developing an attention mechanism over sheaves, leading to
an attentive sheaf diffusion PDE. We then considered two different parameterisations
of the discretised PDE leading to Sheaf Attention Networks and Attentive Neural
Sheaf Diffusion. We related all of this to existing GNN literature and showed
interesting properties of these constructions. The evaluation section showed that
these models address the oversmooothing and heterophily issues present in GAT
to a very significant extent. Furthermore, the new models perform very well when
compared to current state-of-the-art GNN architectures. We concluded the chapter
with a discussion on chemical applications and some limitations of our technique.



CHAPTER 4

CONCLUSION

Yet now I cannot sing out loud,
Peace is my farewell music;
Even crickets are now silent for me,
For Cambridge this evening is silent.

Quietly I am leaving,
Just as quietly as I came;
Gently waving my sleeve,
I am not taking away a single cloud.

Xu Zhimo (1897–1931)

We have reached the end of our topological journey. It is now time to take a step
back to recapitulate and reflect upon our findings. In chapter 2, we began with a
guided overview of the GNN literature and followed it with a dive into cellular sheaf
theory. We then showed how these two, at a glance, very distinct fields can be elegantly
tied into one with the concept of sheaf neural networks and neural sheaf diffusion.

In chapter 3, we formalised an attention mechanism over cellular sheaves and used
it to construct an attention-based sheaf diffusion PDE. We then studied and evaluated
two separate types of discretisations of this equation, one leading to Sheaf Attention
Networks and the other leading to Attentive Neural Sheaf Diffusion. We showed how our
constructions are generalisations of popular GNN models to sheaves. Importantly, our
evaluation supported our theoretical analysis demonstrating the exciting performance
SAN and ANSD displayed on oversmoothing and heterophily benchmarks.
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In terms of applications, we believe our technique to be especially useful in tasks
which are highly heterophilic, such as intruder detection graphs for example. As
our analysis showed, the SAN and ANSD models performed remarkably well and
significantly improved over the GAT baseline. We also empirically showed that sheaf
attention helps address the oversmoothing problem present in GAT. We then ex-
plored applications to molecules and believe that applying sheaf neural networks to
molecular tasks to be a potentially very productive avenue of research, with the right
improvements.

The analysis was structured in such a way to ground our proposal in existing
literature. For example, we showed how our models related to the GAT and GRAND
models. In doing so, we believe that our SAN and ANSD models are capable of
having measurable impact in tasks where these models are already being used today.
For example, a SAN model functions as a direct replacement of a GAT, with overall
improved performance, at the cost of computational overhead.

4.1 Future Work

We believe to have identified exciting areas of future work, some of which were
touched upon in chapter 3. One direction aims to address the computational overhead
which comes with learning the sheaf with gradient-based optimisation. Similarly to
what was done by Barbero et al. (2022), we believe that pre-computing the orthogonal
restriction maps, from a Riemannian geometry perspective, may help with the additional
computational costs introduced by the sheaf attention mechanism.

In terms of applications, we believe that sheaf attention mechanisms may become
incredibly useful in bio-chemical applications. Molecular interactions are very complex
to model and the higher-dimensional sheaf structure may be a great candidate. In our
work we focused on a sheaves over 1-dimensional cellular complexes, but we believe
that exploring higher-dimensional complexes may be very fruitful to build a sheaf
model which is able to take into account cycles and other types of substructures (see
appendix A.1 for further details).

Due to the interesting connection between GATs and Transformers, an exciting
potential application could be natural language processing. The higher dimensional
sheaf structure may prove useful to model complicated interactions between words.
Effectively, our models are sheaf generalisations of GAT, which in turn is a graph
generalisation of a Transformer. As a consequence, exploring sheaf Transformer models
may prove to be very fruitful in a lot of Transformer based tasks.
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APPENDIX A

MATHEMATICAL MATERIAL

In this section we give further mathematical intuition on the topological nature of
graphs and supplementary proofs which did not make it in the main chapters.

A.1 Graphs and Topology

Given a set X, a common question one may ask is how close together are two points
x,y ∈X. In a metric space (X,d), this is clearly answered via its corresponding metric
d :X×X → [0,∞) which takes two elements from the set and outputs a real number
which numerically quantifies their closeness.

In some sense topological spaces generalise this notion. They define the concept of
closeness in a more abstract way, through the use of a topology T and its corresponding
elements.

Definition A.1.1. (Kelley, 2017) A topology T over a set X is a collection of of
subsets of X called open sets, which follow the following axioms:

1. The empty set ∅ and X are in T .
2. Any (potentially infinite) union of elements of T is in T .
3. Any finite intersection of elements of T is in T .

Topological spaces are fundamental because they are the most general type of space
which allow for the definition of limits, continuity and connectedness (Kelley, 2017).
Graphs are usually thought of as combinatorial objects, but they are topological objects
in their own right. In our work we are particularly interested in cellular complexes, a
type of topological space which is very popular in the field of algebraic topology.
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Definition A.1.2. (Hansen and Ghrist, 2019) A (regular) cell complex is a topological
space X together with a partition {Xσ}σ∈PX

of subspaces Xσ of X called cells such
that:

1. For each element x∈X there exists an open neighbourhood of x that intersects
finitely many cells.

2. For all σ,τ we have that Xτ ∩Xσ ̸= ∅ iff Xτ ⊆Xσ, where Xσ is the closure of
a cell.

3. Every cell is homeomorphic to Rn.
4. (Regularity) For every σ ∈ PX there is a homeomorphism ϕ of a closed ball

in Rnσ to Xσ such that the restriction of ϕ to the interior of the ball is a
homeomorphism onto Xσ.

While the definition of a cell complex is rather technical, the conditions just
guarantee that the structure of the cells is what one would expect. A cell complex is a
hierarchical structure made of progressively higher dimensional cells.

One starts with a set of vertices which correspond to 0-cells. To form 1-cells, one
connects vertices together with line segments. If we stop here, then we have effectively
constructed a (multi) graph, where vertices are 0-cells and edges are 1-cells. In other
words, a graph is a 1-dimensional cellular complex. Cellular complexes may have more
structure than a graph, for example 2-cells may be added by attaching a circle to a
cycle in the graph. Generally, an n-cell may be added by attaching an n-dimensional
sphere to certain (n−1)-cells in the cellular complex.

While this may sound very abstract, it has actually been shown to be useful when
building GNNs. Traditional message passing operates up to 1-cell structures. Bodnar
et al. (2021a) show that one can build message-passing layers which are aware of
cells of higher dimensions and that this is particularly beneficial in detecting cycles,
with important applications to, for example, chemistry. In our work we make the
simplification to work over 1-dimensional cellular complexes, however cellular sheaf
theory is perfectly well equipped for higher cellular dimensions hinting to a possible
exciting research direction.

A.2 Supplementary Proofs

We give some supplementary proofs. First we show the convergence of the sheaf
heat equation, from theorem 4.1 by Hansen and Ghrist (2021).
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Theorem A.2.1. (Hansen and Ghrist, 2021) Solutions x(t) of the sheaf heat equation
(2.22), in the limit t → ∞ converge to the orthogonal projection of the starting
signal x(0) onto H0(G,F).

Proof. The sheaf Laplacian LF is a symmetric positive semi-definite matrix as
xT LFx = xT δT δx = (δx)T δx ≥ 0. As a consequence the matrix has orthogonal
eigenbasis with all eigenvalues λ≥ 0.
The solution of the sheaf heat equation (2.22) is x(t) = exp(−tαLF )x(0). If we work
under the orthogonal eigenbasis, the solution operator is a diagonal matrix with
entries exp(−tλ) for each eigenvalue λ of LF . As t → ∞ we have that for λ > 0,
exp(−tλ) → 0. Instead for λ = 0, exp(−tλ) → 1. In particular the 0 eigenvalues
correspond to the kernel of LF .
This means that as t → ∞, the solution is an orthogonal projection onto kerLF

and by the Hodge theorem kerLF =H0(G,F).

We show the convergence result of GRAND from Di Giovanni et al. (2022).

Lemma A.2.2. (Di Giovanni et al., 2022) The GRAND dynamical system:

∂X(t)
∂t

= −(I−ΛI)X(t) (A.1)

converges to the mean vector µ of the intial features.

Proof. We can write the solution of the GRAND dynamical system in its Jordan
form:

X(t) = PJP−1X(0) (A.2)

for some invertible matrix P of eigenvectors and where J is a diagonal matrix with
diagonal entry proportional to exp(−(1−λ)t) for each eigenvalue λ of the matrix
Λ.
By assumption, the underlying graph G is connected and as a consequence the
attention matrix Λ is regular. As a consequence, by the Perron–Frobenius theorem,
we have that for every eigenvalue Re(λ) is smaller than 1, except with the largest
eigenvalue being 1 associated to the Perron–Frobenius eigenvector 1. As t →
∞ we have that for λ < 1, exp(−(1−λ)t) → 0, while when λ = 1 we have that
exp(−(1−λ)t) → 1.
This acts as an orthogonal projection of X(0) onto the Perron-Forbenius eigenvector
which is simply the mean vector µ over the initial features X(0).



APPENDIX B

EXPERIMENTS

B.1 Datasets

In this section we summarise and describe the real-world and synthetic datasets
used throughout the experiments.

B.1.1 Real-World

What follows is a description of the real-world datasets. The descriptions are
summarised from the PyTorch Geometric documentation.

WebKB Datasets include Cornell, Texas and Wisconsin. The nodes represent web
pages and edges represent hyperlinks between them. The features are bag-of-words
representations of the web-pages. The task is to classify nodes into 5 categories:
student, project, course, staff, and faculty.

WikipediaNetwork Datasets include Cornell and Chameleon. The nodes represent
web pages and edges represent hyperlinks between them. The features are informative
nouns in the Wikipedia pages. The task is to predict the daily traffic of the web pages.

Actor Film dataset. The nodes represent actors and edges represent co-occurence
on the same Wikipedia page. Node features correspond to keywords in the Wikipedia
pages. The task is to classify nodes into five categories.
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Planetoid Datasets include Cora, Citeseer and Pubmed. The graphs represent
citation networks. Nodes represent documents and edges represent citations between
them.

B.2 Synthetic

To generate the synthetic graphs, we first generate n nodes belonging to 3 different
classes (with equal priors for each class). Each node feature vector x is 3-dimensional
with features sampled from Gaussian distributions. N (µ,σ2), such that x1 is sampled
from N (−0.6,0.4), x2 from N (0,0.4) and x3 from N (0.6,0.4). The |E| edges are then
sampled such that with probability h they connect two nodes of the same class and
probability 1 −h they connect two nodes of different classes. Figure B.1 shows the
spectrum of synthetically-generated graphs used in our experiments.

Remark. When we generate the graphs, we still maintain the constraint that the
graphs must be connected. For this reason h= 1 is not possible as this would always
produce a graph with 3 disconnected sub-graphs. For this reason our highest h is
set to 0.9.
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h = 0.0 h = 0.1

h = 0.2 h = 0.3

h = 0.4 h = 0.5

h = 0.6 h = 0.7

h = 0.8 h = 0.9

Fig. B.1 Spectrum of generated graphs with different homophily levels. As h increases,
the classes become more evidently separated.
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B.3 Hyper-parameters

Table B.1 details the hyper-parameter search space used in all of our experiments.
The reported test-set accuracy is then chosen to be the one with the tuned model
reporting the highest validation set accuracy. We train until the maximum number of
epochs have been reached and do early stopping only if the validation performance
does not improve for a number of a patience epochs. The hyper-parameter search space
is very similar to the one used by Bodnar et al. (2022).

Table B.1 Hyper-parameter search space for SAN and ANSD.

Hyper-parameter Searchable Values

Hidden channels {8,16,32} (WebKB) and {8,16,32,64} (others)
Stalk width d {1,2, . . . ,5}
Layers {1,2, . . . ,8}
Learning rate 0.02 (WebKB) and 0.01 (others)
Activation ELU
Regular weight decay Log-uniform [−4.5,11.0]
Sheaf weight decay Log-uniform [−4.5,11.0]
Layer dropout Uniform [0,0.9]
Patience (epochs) 100 (Wiki) and 200 (others)
Max training epochs 1000 (Wiki) and 500 (others)
Optimiser Adam (Kingma and Ba, 2014) (β1 = 0.9, β2 = 0.999)
Attention Heads 8
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