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Abstract

Neural Processes are a rich family of meta-learning models which produce flexible priors and
uncertainty-aware predictions. Typically these models, however, are limited to producing
Gaussian marginal distributions. We show how the the CNP output marginal distributions
can be reformulated as a Monte Carlo integration over autoregressively generated trajectory
samples—yielding a GMM marginal predictive with greater ability to model multi-modal
and heavy-tailed distributions—all with no changes to the CNP training procedure. We show
that this method can improve held-out log-likelihoods on three tasks: two synthetic and one
real-world. We explore the design space for this method, characterizing when it is most
useful.
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Chapter 1

Introduction

Though modern supervised deep learning models have achieved impressive performance on
a variety of tasks [Lecun et al., 2015] (including vision and natural language tasks), there
are some domains where their achievements have been more measured. For instance, these
methods are not well-adapted to handle data regimes with multiple small data sets which
are related (i.e. which are generated from the same underlying process). Meta-learning
models help alleviate these issues by "learning to learn" [Lake et al., 2015]. In other words,
meta-learning models are designed to learn from many datasets and make predictions on
unseen datasets using contextual information.

There are many domains where this sort of "learning-to-learn" is a more natural fit to
the data at hand. For example, many healthcare applications collect temporal readings
from individual patients. The readings for each patient over time constitute an individual
dataset. These datasets (collectively called the meta-dataset), come from the same underlying
process and, therefore, they share common features. Meta-learning methods have proven
effective in modeling electroencephalogram (EEG) data from multiple different patients
(each corresponding to a dataset)[Markou et al., 2022]. In this setting, meta-learning was
shown to outperform supervised methods which learn from one dataset at a time.

Because each individual dataset which makes up a given task (ex. forecasting EEG
readings for a single patient) typically only has a small amount of data, the precise value
of a prediction often cannot be pinned down with a very high confidence. Therefore, it is
critical that the meta-learning strategy at hand can quantify its uncertainty in addition to
achieving high accuracy. This quality of uncertainty-awareness is especially important for
safety-critical applications which inform decision-makers. For example, one may like to
estimate the likelihood of a combination of environmental factors (soil desiccation, rainfall,
river flow volume) resulting in catastrophic flooding. Or, perhaps one would like to estimate
the likelihood that a given patient may have blood clotting after a knee surgery based on



2 Introduction

various bio-metrics. Typically, the likelihood of such events is low, but the level of risk
is contingent upon precisely how likely or unlikely these events are. Many modern deep
learning systems fail in this regard due to their poor uncertainty calibration (typically, their
overconfidence).

Among uncertainty-aware meta-learning methods [Nguyen and Grover, 2022], Condi-
tional Neural Processes (CNP)[Garnelo et al., 2018a] are rich models with many desirable
features. These models flexibly model distributions over functions (like Gaussian Processes)
while using the advantages of deep-learning to flexibility adapt to the data at hand. They do
this while providing well-calibrated uncertainty estimates, and–unlike many meta-learning
methods like Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017]–they make quick
inferences at test time. Moreover, they are trained using a simple maximum likelihood
procedure–avoiding the complications of other training procedures like Variation Inference
(VI)1.

These CNP models also elegantly handle off-the-grid and missing data, making them
particularly well-adapted for many climate and healthcare related-tasks (and other spatio-
temporal tasks, more generally). For example, Convolutional Conditional Neural Processes
(ConvCNPs) [Gordon et al., 2019] have been shown to be effective for multi-site statistical
downscaling of temperature and precipitation [Vaughan et al., 2021]–allowing predictions
at arbitrary off-the-grid locations. Additionally, Conditional Neural Processes (CNPs) have
been found effective at modeling Active Galactic Nuclei (AGN) light curves, a use-case which
showcases their ability to model sparse, gapped, and irregular data [Cvorovic-Hajdinjak et al.,
2021].

Though vanilla CNPs are prone to underfitting, the CNP architecture can be combined
with other architectures to introduce specific inductive biases which take advantages in
the symmetries in the data at hand [Kawano et al., 2021][Holderrieth et al., 2021]. The
Attentive Neural Process [Kim et al., 2019] assumes that certain context points will be more
or less relevant to predicting a given unobserved location. It therefore uses an attention
mechanism which learns to attend to relevant (typically nearby) context points when making
predictions. Meanwhile, the ConvCNP introduces a translation equivariance inductive bias
using Convolutional Neural Networks (CNNs). Both of these architectures restrict the
hypothesis space and avoid many of the underfitting issues which CNPs often encounter.
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Fig. 1.1 The ConvGNP (right) makes dependent predictions and allows for drawing of
function samples. The ConvCNP (left), on the other hand, makes independent predictions.
Reprinted from Markou et al. [2022].

1.1 Limitations

Though CNPs gracefully handle irregularly sampled and missing data, they suffer from a
few major drawbacks. First, CNP models assume independence in the output predictions–
referred to as mean-field predictions [Markou et al., 2022]. Therefore, CNPs are unable
to model dependencies between outputs and cannot produce coherent function samples.
The performance of the models suffers, especially in applications which require dependent
samples. For example, when estimating flood risk on may want to know whether precipitation
is expected to remain above or below certain thresholds for certain periods of time. Due to
their mean-field predictives, CNPs can provide answers with well-calibrated uncertainties
about amounts of rainfall at particular times, but cannot provide these uncertainties when
asked about spans of time–which would require dependencies in the outputs. In Figure 1.1,
an example from Markou et al. [2022] can be seen which has outputs with and without
dependencies.

Several adaptations to the standard CNP model have been proposed to introduce depen-
dencies between outputs. For example, the Neural Process (NP) [Garnelo et al., 2018b]
introduces a latent variable to model output dependencies. This latent variable, however,
makes the likelihood analytically intractable, so NPs are trained using approximate inference
(namely, Variational Inference). Training adequately while using Variational Inference often
requires much expert knowledge and careful tuning–making it desirable to avoid, if possible.

The Gaussian Neural Process (referred to as FullyConvGNP)[Bruinsma et al., 2021]
builds on the ConvCNP, using translation equivariance while modeling predictive distribu-
tions directly with Gaussian Processes (GPs) [Williams and Rasmussen, 2006]. In this way,
the FullyConvGNP allows for dependencies in the outputs with an analytically tractable max-
imum likelihood training objective. A variant of the Gaussian Neural Process (GNP) which

1Latent variable variants of the CNP do require VI and, as a consequence, are more difficult to train[Garnelo
et al., 2018b].
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directly parametrizes the the covariance of a Gaussian predictive process, was developed to
alleviate some of the computational issues with FullyConvGNPs [Markou et al., 2022].

While the GNP and FullyConvGNP perform well and provide coherent samples and
output dependencies, they are limited to Gaussian predictions, making them inappropriate
for many tasks. For example, distributions for daily precipitation are asymmetric, with zero
density for negative values and a high density at zero millimeters. In this scenario, Gaussian
predictives would have a mode shifted positive from zero millimeters, with significant
probability mass over negative precipitation values.

1.2 Contributions

In this work, we explore using autoregressive (AR) sampling to model non-Gaussian marginal
distributions. The method we explore uses ConvCNP architectures trained in a traditional
manner (i.e. using a factorized joint for the loss) and only requires modification at test time,
thereby avoiding potentially expensive and complicated training procedures. We show that
our AR procedure can improve held-out log-likelihood scores on several tasks: two synthetic
and one real-world. We also explore this procedure’s parameter space, provide insights
regarding when this procedure is particularly useful, and when it should be avoided.

In our experimental design, we do not directly address the issue of modeling output
dependencies, but we propose how our work could be extended upon in order to do so.

1.3 Structure

In order to ground the discussion of this method, we start Chapter 2 by introducing meta-
learning and Stochastic Processes. We then describe how CNPs fit into this paradigm and
we detail their architecture and training procedure. We then discuss the some drawbacks of
CNPs, and describe how ConvCNPs mitigate these drawbacks by introducing the translation
equivariance inductive bias. Then we connect more closely to the problem we seek to
solve–granting greater flexibility to CNP output marginal predictives.

In Chapter 3, we provide a sketch and a proof showing the potential utility of our
autoregressive (AR) procedure. We then introduce the data generators for our experiments,
and discuss how exactly we train ConvCNP models on these separate stochastic processes.

In Chapter 4, we provide tables showing the performance of the AR procedure when
compared to the standard vanilla testing procedure, and the performance of a naive baseline
model. We examine these performance differences using different parameters and different
context sizes—and attempt to build intuition through figures showing these differences.
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In Chapter 5, we discuss some potential future experiments which could lead to greater
understanding of this AR procedure and its utility. We discuss how our work could be
extended upon to model output dependencies, and how one might train a CNP model in a
manner which uses our procedure in the loss function construction.



Chapter 2

Background

2.1 Metalearning

In traditional supervised learning, we are concerned with predicting some values of interest
given observations. For example, suppose an astronomer directs a telescope to gather
observations of the sun over the course of a month. She gathers a dataset with spatio-
temporal inputs (locations around the sun over time) and outputs which represent solar
activity (magnetic activity, spectra, etc.). After gathering data for a few days, she is interested
in predicting the solar activity in the coming days.

We refer to these observations as a context set DC and the data points we seek to
predict as the target set DT . Both sets consists of input, outputs pairs DC = {x j,y j}C

j=1 and
DT = {x j,y j}T

j=1, where C, and T are the cardinalities of DC and DT , respectively. In this
case x represents a particular location in space and time on sun, and y represents the solar
activity at the time and location. We refer to these two datasets together as a task x where
x = (DC,DT ).

In traditional supervised learning, we would approach this task x by fitting a model fq to
the data we have gathered up to this point (DC), and then using that model to make predictions
of solar activity at new spatio-temporal inputs {x

⇤|{x
⇤,y⇤} 2 DT}). The parameters of the

model (q ) would be fit so as to minimize some loss function L of our predicted values of
fq (x j) and their true values in the context set:

q ⇤ = argmin
q

n
E{x j,y j}2DC

⇥
L( fq (x j),y j)

⇤o
(2.1)

Our astronomer then applies the model fq to make predictions for values in the target set
DT —where the true values of y in the target set (the future solar activity) are unknown. Our
astronomer rejoices, having successfully created a model for forecasting solar activity based
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on spatio-temporal information. Soon though, she laments that the model is tuned only for
these particular observations and this particular time and place, and she thinks she may be
able to create a superior model with more data.

Fortunately, astronomy is not a solo affair and many of the most impressive results come
from collaboration and data sharing of observations from many telescopes in different places
viewing the skies at different times. Let us now suppose that our astronomer has access to a
collection of these datasets gathered from these disparate telescopes.

With this meta-dataset, our astronomer is now interested in a collection of tasks (a
meta-dataset X) coming from many separate observations:

X = {xi}N

i=1 where xi = (DCi
,DTi

) (2.2)

At first, our astronomer fears that she must now train a series of new models, one for
each task—a time consuming affair. She then realizes that all of these observations, tasks,
come from the same underlying phenomenon, the sun. She realizes that she can utilize
meta-learning in order to learn how to learn. In other words, she realizes she can train a
meta-learning model yJ which produces task-specific models f̂ from context set DC inputs—
yJ (DC) = f̂ . Like with supervised learning models, the meta-learning model parameters
J are trained by minimizing some loss function L, except this time L is a function of
task-specific models f and tasks x —L( f ,x ):

J ⇤ = argmin
J

E
x⇠Xtrain

[L(yJ (DC),x )] (2.3)

In short, in traditional supervised learning, one uses the context set DC of a single task x
to train a model fq which maps from the inputs x of the target set DT to predict outputs ŷ. In
meta-learning, one uses many tasks X to learn a meta-model which maps from tasks x to the
single-task models themselves f .

In our astronomer’s case, there is a key reason why it is sensible to use meta-learning in
this manner: namely, the fact that all of the observations are expected to have some features
in common because they arise from same underlying processes in the sun. In mathematical
terms, the functions are drawn from the same distribution over functions—referred to as a
stochastic process.

Now, let us suppose that our astronomer is interested in forecasting solar activity in order
to assess the risk of geomagnetic storms impacting telecommunications. This risk assessment
requires not just point predictions of solar activity, but rather probabilities of solar activity
over time given observations (i.e. a new task x ⇤):
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p({yi}T

i=1|{xi}T

i=1,DC) =
Z

p({yi}T

i=1|{xi}T

i=1,DC, f )p( f |DC)d f
1

where {xi,yi}T

i=1 = DT and (DC,DT ) = x ⇤
(2.4)

So, our astronomer requires:

1. A mapping from observed context sets DC to a stochastic processes conditioned on
those context sets p( f |DC)[Gordon, 2021].

2. A probability distribution of outputs {yi}T

i=1 given inputs of interest {xi}T

i=1 and a
particular function f drawn from the conditional stochastic process p( f |DC).

In this discussion, we will only handle finite numbers of predictive outputs, and we will
mostly concern ourselves with p({yi}T

i=1|{xi}T

i=1,DC) directly (thus avoiding determining
the full form of f ).

2.2 Conditional Neural Processes

NB: We hereafter ease notation by referring to context sets as C, rather than DC. We refer
to the parameters of our CNP model as q rather than J . We overload the notation on p to
refer to the hypothetical true probability distribution for whatever variable and whatever
conditioning is present. We refer to the output distribution of the CNP model as Qq , an ap-
proximation of the true predictive. We refer to the set of target set (DT ) inputs ({xi}T

i=1), and
outputs ({yi}T

i=1) as xt and yt , respectively. When we refer to a single target point, we use
{x

(T ),y(T )}. The number of points in C is called N. We refer to the expected log-likelihood
using L , whereas we refer to its negative, the loss function, using L.

The Conditional Neural Process (CNP)[Garnelo et al., 2018a] is one archictecture which
has been shown to work well for learning the mappings required for Equation 3.7. The
architecture requires several considerations in its construction:

1. The model must produce predictive distributions given context sets and inputs of
interest.

2. The model must operate on sets DC and DT . These sets can be of variable size and, as
sets, they have no ordering. Therefore, the model should accept sets of varying sizes,

1{yi}T

i=1 and DC are conditionally independent given f and {xi}T

i=1. f and {xi}T

i=1 are conditionally
independent given DC.
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and the outputs should not be impacted by the ordering of these sets’ representations
on the computer—a feature called permutation invariance.

The CNP imbues these requirements in its encoder-decoder architecture. First, the
encoder of the CNP assures that the model is permutation invariant with respect to the
context set C. In particular, the encoder is of the form[Zaheer et al., 2017]:

r = Encq (C) =
1
N

N

Â
i=1

ri where ri = hq (xi,yi) (2.5)

Where hq is a neural network (for example, a Multi-layer Perceptron). We see that per-
mutation invariance is assured because of the commutative property of summation, wherein
we average each context data point representation ri.

We then pass this context set encoding r and a target inputs of interest xt into a decoder
gq which generates parameters (µ,s) for a Gaussian predictive:

(µ,s) = gq (xi,r) for all xi 2 xt (2.6)

In this manner, the CNP generates marginal predictive distributions conditioned on
context sets and target points: Qq (yi |C,xi) for all xi 2 xt .

Now, the CNP model assures its permutation invariance to target sets DT , by assuming a
factorized distribution over its outputs:

Qq (yt |C,xt) =
T

’
i=1

Qq (yi |C,xi) (2.7)

This factorization has the added benefit of simplifying training, but comes with the
major drawback of crippling the CNP’s ability to accurately assess joint predictives in many
scenarios.

2.3 Training CNPs

CNPs can be trained by the procedure shown in Equation 2.3, where we have access to a
meta-dataset of tasks X which is partitioned into meta-train and meta-test sets, Xtrain and
Xtest , respectively. The meta-train set is split into many batches Xbatch for use in evaluating
the loss and updating parameters. The loss function L to minimize is defined as the expected
negative log-likelihood of the true data under the model with its current parameters; the loss
is given by:
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Fig. 2.1 Architecture for Conditional Neural Process model from Garnelo et al. [2018a].
Annotated with the notation we use to the context set (C), and the predictive marginal
distribution (Qq (y

(T )|C,x(T ))), where C = DC and {x
(T ),y(T )} 2 DT .

Lbatch(q) =� E
x⇠Xbatch

[logQq (yt |C,xt)] where x = (C,xt ,yt) (2.8)

Because, we assume our model Qq factorizes over the joint conditional predictive, we can
equivalently express the loss as2:

Lbatch(q) = �E
x⇠Xbatch

"
T

Â
i=1

logQq (yi |C,xi)

#
(2.9)

The parameters are updated using this loss function and standard gradient descent meth-
ods3.

2.3.1 Evaluating CNPs

We can evaluate the quality of the model by simply calculating the loss on the test set Xtest :

Ltest(q) = �E
x⇠Xtest

"
T

Â
i=1

logQq (yi |C,xi)

#
4 (2.10)

In our experiments, we will be looking at expected log-likelihoods L instead of the loss
L, where the loss is simply the negative of the expected log-likelihood. Therefore, whereas
we want to minimize the loss, we want to have maximal expected log-likelihoods.

2Noting that log’i zi = Âi logzi

3In our experiments, we use the Adam optimizer.
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2.4 Convolutional Conditional Neural Processes

While CNPs have been quite successful, they have been shown to have a few consistent
failings:

1. CNPs are prone to severe underfitting. Absorbing the context into the target set for
loss calculation during training is done to ameliorate this issue. Otherwise, the naive
way to ameliorate this issue is to simply train for more epochs.

2. CNPs often fail to when attempting to extrapolate to areas outside of their training
domain. Attempting to do so also often leads to catastrophic forgetting of data within
their training regime. [Turner, 2022]

Gordon et al. [2019] introduced Convolutional Conditional Neural Processes (ConvCNPs)
to alleviate these issues.The key decision in constructing ConvCNPs was to build the notion
of translation equivariance into the architecture. With translation equivariant models, when
input data are shifted in the domain (time, space. etc.) the outputs are correspondingly
shifted. This is a reasonable inductive bias in many cases, and it often allows for the model
to better learn from similar tasks (tasks where the inputs and outputs are similar when
translated). This was accomplished by introducing Convolutional Neural Networks (CNNs)—
which added translation equivariance to Multi-layer Perceptrons—into the CNP architecture.
Accomplishing this required developing the notion of functional representations on sets
which could then enrich the CNP encoder—naturally imbuing it with translation equivariance
[Gordon et al., 2019].5 In our experiments, we use a ConvCNP with UNet-like architecture,
like the ConvCNPXL model used by Gordon et al.[Gordon et al., 2019].

2.5 Flexibility of Distributions

Having established an understanding of meta-learning and the CNP as a meta-learning model,
we now return to key limitation of the CNP model: the marginal predictive distributions
are Gaussian. Regrettably, Gaussians—though an eminently tractable distribution—lack the
flexibility to adequately model a variety of datasets. We are interested in endowing the CNP
models with this greater flexibility in their marginal distributions such that they can better
model a variety of distributions. We are particularly interested in understanding our method’s
performance with respect to multi-modal and heavy-tailed distributions.

5Vector representations of sets, on the other hand, to not naturally lend themselves to a notion of translation
equivariance.
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There is a rich literature on building flexible generative distributions in this way. The
method we develop and test uses ideas from Neural Autoregressive Distribution Estimation

[Uria et al., 2016]—wherein the joint distribution is decomposed into a series of conditional
distributions using the chain rule of probability. It also bears resemblance to the generative
or reverse trajectory of a diffusion model [Sohl-Dickstein et al., 2015].

There is one key difference where this method stands apart from those mentioned above.
The method we propose is executed solely at test time—no changes to CNP training are
required in order to achieve the improvements we observe.



Chapter 3

Experiments

Having introduced meta-learning, CNPs, ConvCNPs, and their limitations—namely, those
stemming from the inflexibility of Gaussian distributions—we now introduce our method.
Recall, that the method introduced here requires no training procedures; the method is utilized
solely at test time.

The method works as follows: Suppose we have a trained model Qq . This model has been
trained in the typical fashion on samples generated from an underlying stochastic process
P. In other words, it has been trained by sampling functions from this underlying process,
sampling observations from these functions, dividing these observations into contexts and
targets, and providing the model with the contexts as inputs with the goal of predicting the
targets, and training through the minimum negative log-likelihood procedure described in
Chapter 2.

After using this standard training scheme, we apply a non-standard process at test time
(we refer to as the AR procedure). With the standard application of the CNP (or ConvCNP, in
this case), we would produce predictive marginals for a new evaluation points x

(T ) by using
the trained model to produce a Gaussian distribution, like so:

Qq (y
(T )|C,x(T )) = N (µ(T ),(s (T ))2) (3.1)

In our non-standard training procedure, we use autoregressive sampling to generate
Gaussian Mixture Model (GMM) marginal predictives. We start with a sketch (illustrated in
Figure 3.1) of this process followed by a mathematical proof indicating its potential utility.
The process is executed as follows:

Suppose, once again, we are interested in using our static trained model Qq along with
context C to produce a predictive distribution for a input of interest x

(T ). We begin this AR
procedure by first using our trained model to produce a predictive distribution at an entirely
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Fig. 3.1 The purple circles (sampled from the purple distributions) make up the autore-
gressively generated trajectories. Using the context points (red crosses) and purple circles
together as pseudo context, a predictive marginal is generated at the target input location
(the dotted green line). This process is executed again, with different purple distributions
and purple points, leading to a different Gaussian at the green input target. These Gaussians
are averaged to make a GMM on the right. This example only uses two trajectories (M = 2),
though we typically use more.

different point x1 (how this point is chosen will be discussed later). We then draw a sample
y1 from the predictive distribution we have produced at this input location:

y1 ⇠ Qq (y1|C,x1) (3.2)

Next, we take this new point {x1,y1} and include it as pseudo-context using the trained
model to predict the output at yet another input location x2. We then draw another sample, y2

from the predictive distribution we produced in this manner1.

y2 ⇠ Qq (y2| C,{x1,y1}| {z }
Pseudo Context Set

,x2) (3.4)

1When adopting a representation of the trained model as a function which produces parameters of a Gaussian
distribution (rather than as the distribution itself), we have: fq (x(T ),C) = {µ(T ),s (T )}. Then, the second step
of the AR process in 3.5 can be described using the pseudo-context as the input in place of C, like so:

fq (x2, {C,{x1,y1}}| {z }
Pseudo Context Set

) = {µ2,s2} (3.3)
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We continue in this fashion, choosing input locations x j and using the previously selected
points appended to the initial context set as a pseudo-context set to produce the corresponding
output y j

2:

y j ⇠ Qq (y j| C,{xk,yk} j�1
k=0| {z }

Pseudo Context Set

,x j) (3.5)

Eventually we reach the final AR sampled point yR (how R is chosen will be discussed
later):

yR ⇠ Qq (yR|{C,{xk,yk}R�1
k=0 }| {z }

Pseudo Context Set

,xR) (3.6)

As a result, we now have a set of AR generated points {xk,yk}R

k=1 which will append to
our context set C when producing a predictive distribution for our target point of interest
x
(T ):

Qq (y
(T )|{C,{xk,yk}R

k=1}| {z }
Pseudo Context Set

,x(T )) (3.7)

Upon executing this process once, we are simply left with another Gaussian distribution,
but one produced using a new context set {C,{xk,yk}R

k=1}. We see that executing this process
only once is not well justified. We are simply treating points sampled from the model as
observations, thereby likely introducing bias and error into our predictive outputs.

Therefore, crucially, we must repeat this process many times to produce new series of
AR generated points (hereafter referred to as trajectories). Doing so yields many different
Gaussian distributions produced from different trajectories:

Qq (y
(T )|{C,{x

(1)
k

,y
(1)
k
}R

k=0},x(T )) = N (µ1,s2
1 )

Qq (y
(T )|{C,{x

(2)
k

,y
(2)
k
}R

k=0},x(T )) = N (µ2,s2
2 )

...

Qq (y
(T )|{C,{x

(i)
k
,y

(i)
k
}R

k=0},x(T )) = N (µi,s2
i
)

...

Qq (y
(T )|{C,{x

(M)
k

,y
(M)
k

}R

k=0},x(T )) = N (µM,s2
M
)

(3.8)

Taking the mean of these Gaussian predictives yields a Gaussian Mixture Model (GMM):
2For ease of notation, we define {x0,y0}= /0, the empty set.
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1
M

M

Â
i=1

Qq

⇣
y
(T ) |C,{x

(i)
k
,y

(i)
k
}R

k=0,x
(T )
⌘

(3.9)

What is this justification for using this process? We follow now with a proof that indicates
the potential utility of this process.

First, we note that in the following derivation, we are working with the theoretical
ground truth probability distributions (denoted p). We overload the notation on p such that it
indicates the ground truth probability distribution of whatever variable it is applied to. With
R 2 Z, and using the sum rule of probability to marginalize over {x j,y j}R

j=0, we see that:

p(y(T )|C,x(T )) =
Z

p(y(T ),{x j,y j}R

j=0 |C,x(T ))d{x j,y j}R

j=0

=
Z

p(y(T )|C,{x j,y j}R

j=0,x
(T ))p({x j,y j}R

j=0 |C,x(T ))d{x j,y j}R

j=0

(3.10)

Next, we can write the underlined portion in the equation above like so:

p({x j,y j}R

j=0 |C,x(T ))

= p({x j,y j}R

j=0 |C) by {x j,y j}R

j=0 ? x
(T ) |C

=
R

’
l=0

p(xl,yl |C,{x j,y j}l�1
j=0) by chain rule

=
R

’
l=0

p(yl) |C,{x j,y j}l�1
j=0,xl)p(xl) by product rule

(3.11)

In the equation above, we see the autoregressive aspect of this method emerge by
application of the chain rule. Substituting the last line of Equation 3.11 into 3.10, we
have3:

3Upon expansion of {x j,y j}R

j=0, we see that x0 and y0 are not included in the differential because they are
not actually variables. Recall that we have defined {x0,y0}= /0. Therefore:

p(y(T ),{x j,y j}R

j=0 |C,x(T )) = p(y(T ),{x0,y0}| {z }
/0

,{x j,y j}R

j=1 |C,x(T )) = p(y(T ),{x j,y j}R

j=1 |C,x(T )) (3.12)
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p(y(T )|C,x(T ))

=
Z

p(y(T ), |C,{x j,y j}R

j=0,x
(T ))

R

’
l=1

h
p(yl |C,{x j,y j}l�1

j=0,xl)p(xl)
i

d{x j,y j}R

j=0

=
Z Z

...
Z Z

p(y(T ), |C,{x j,y j}R

j=0,x
(T ))

R

’
l=1

h
p(yl |C,{x j,y j}l�1

j=0,xl)p(xl)
i

dx1y1...dxRyR

(3.13)
Next, to ease notation, we define Pyl

= p(yl|C,{x j,y j}l�1
j=0,xl), and P

y(T )
= p(y(T )|C,{x j,y j}R

j=0,x
(T )).

We then rearrange the variables and their corresponding differentials in Equation 3.20, to get:

=
Z

p(x1)

Z
Py1


...

Z
p(xR)

Z
PyR

h
P

y(T )

i
dyR

�
dxR

�
...

�
dy1

�
dx1

(3.14)

Writing this out as a series of substitutions makes it clear that we can approximate this
integral through the recursive application of Monte Carlo integration:

p(y(T ) |C,x(T )) =
Z

g1(x1)p(x1)dx1 ⇡ 1
M1

M1

Â
i=1

g1(x1),x1 ⇠ p(x1)

g1(x1) =
Z

f1(y1)Py1dy1 ⇡ 1
N1

N1

Â
i=1

f1(y1),y1 ⇠ Py1

f1(y1) =
Z

g2(x2)p(x2)dx2 ⇡ 1
M2

M2

Â
i=1

g2(x2),x2 ⇠ p(x2)

g2(x2) =
Z

f2(y2)Py2dy2 ⇡ 1
N2

N2

Â
i=1

f2(y2),y2 ⇠ Py2

...

fl�1(yl�1) =
Z

gl(xl)p(xl)dxl ⇡ 1
Ml

Ml

Â
i=1

gl(xl),xl ⇠ p(xl)

gl(xl) =
Z

fl(yl)Pyl
dyl ⇡ 1

Nl

Nl

Â
i=1

fl(yl),yl ⇠ Pyl

...

fR�1(yR�1) =
Z

gR(xR)p(xR)dxR ⇡ 1
MR

MR

Â
i=1

gR(xR),xR ⇠ p(xR)

gR(xR) =
Z

fR(yR)PyR
dyR ⇡ 1

NR

NR

Â
i=1

fR(yR),yR ⇠ PyR

(3.15)
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where f (yR)) = p(y(T )|C,{x j,y j}R

j=0,x
(T )). Collapsing these Monte Carlo approximations

back down, we have:

p(y(T ) |C,x(T )))⇡
 

R

’
l=1

1
MlNl

!

Â
i2S

p(y(T )|C,({x j,y j}R

j=0)
(i),x(T ))

where S =
R[

l=1
{{1, . . . ,Ml}⇥{1, . . . ,Nl}}

x
(i)
j
⇠ p(x j)

y
(i)
j
⇠ p

⇣
y j | x j,C,({x j,y j}l�1

j=0)
(i)
⌘

(3.16)

Thus, we show that the marginal can be approximated through the iterative autoregressive
sampling of trajectories ({x j,y j}R

j=0)
(i), and incorporation of these trajectories as pseudo-

context for marginal prediction.

3.0.1 Approximation Using the Model

Now, it is worth revisiting the meaning of some of the terms in 3.16. First, we note that in
real-world application, the true ground truth marginal predictive distributions are unknown.
However, we have assumed that we have trained a CNP (Qq ) to model these marginals. Thus,
we have:

p(y(T ), |C,{x j,y j}R

j=1,x
(T )) = Qq (y

(T ) |C,{x j,y j}R

j=1,x
(T ))+ e(T )

Q
(3.17)

Where e(T )
Q

is the modeling error, a distribution which is a function of y
(T ),{x j,y j}R

j=1,C

, and x
(T ). The same substitution can be made for the distributions from which we draw our

y values in our trajectory samples:

p

⇣
yl |C,({x j,y j}l�1

j=0)
(i),xl

⌘
= Qq (y

(l) |C,{x j,y j}l�1
j=1,x

(l))+ e(l)
Q

(3.18)

Additionally, we note that distribution p(x) determines which points are context for when
constructing tasks x . As such, we consider this distribution to be under our control, and
potentially dependent upon the context set C and the specific target input in question x

(T ).
We write this as r(x |C,x(T )).
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Substituting these values in for Equation 3.20, we have:

p(y(T )|C,x(T ))

=
Z ⇣

Qq (y
(T ) |C,{x j,y j}R

j=1,x
(T ))+ e(T )

Q

⌘

R

’
l=1

h⇣
Qq (y

(l) |C,{x j,y j}l�1
j=1,x

(l))+ e(l)
Q

⌘
r(xl |C,x(T ))

i
d{x j,y j}R

j=0

(3.19)

Expanding this product of sums results in one term with all of our model predictives, many
terms with all combinations of model predictives and error predictives, and one term only
with error distributions. We gather all terms with modeling error into one term denoted E AR

Q
,

yielding:

p(y(T )|C,x(T ))

=
Z ⇣

Qq (y
(T ) |C,{x j,y j}R

j=1,x
(T ))
⌘

R

’
l=1

h⇣
Qq (y

(l) |C,{x j,y j}l�1
j=1,x

(l))
⌘

r(xl |C,x(T ))
i

d{x j,y j}R

j=0 +E AR

Q

(3.20)

Using the same logic applied in Equations 3.14 and 3.15, we can approximate the integral
using Monte Carlo integration. In this case, we simplify the procedure by assuming all Nl

and Ml values are equal M = Nl = Ml8l 2 1, ...,R. 4

p(y(T ) |C,x(T )))⇡ 1
M

M

Â
i=1

Qq (y
(T )|C,({x j,y j}R

j=0)
(i),x(T ))

x
(i)
j
⇠ r(x j|C,x(T ))

y
(i)
j
⇠ Qq

⇣
y j | x j,C,({x j,y j}l�1

j=0)
(i)
⌘

(3.21)

Because our model Qq only produces Gaussian outputs, the resulting model from this
application of Monte Carlo integration in Equation 3.21 will be a weighted sum of Gaussians–
a Gaussian Mixture Model (GMM).

Substituting on the left side with the error and using an equivalence relationship helps
reveal the crux of this method’s utility:

4There may be some utility to not making this assumption and testing different numbers of samples at
different trajectory lengths, but our experiments did not include this level of complexity.
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p(y(T ) |C,x(T ))) = Qq (y
(T ) |C,x(T )))+E Vanilla

Q

=
1
M

M

Â
i=1

Qq (y
(T )|C,({x j,y j}R

j=0)
(i),x(T ))+E AR

Q
+EMC

(3.22)

where EMC is the Monte Carlo error. Thus, this method improves the quality of the
marginal distributions when:

E AR

Q
+EMC < E Vanilla

Q
(3.23)

We expect the number of trajectories M to impact the Monte Carlo error EMC, the
trajectory length R to impact the AR model error E AR

Q
, and the context selection distribution

r to effect the variance reduction rate in the Monte Carlo sampling. These parameters M,
R, and r are those which we are principally concerned about and will investigate in our
experiments.

3.1 Trajectory Generation

Though selecting R and M is simply a matter of choosing a sensible natural number, the
distribution on inputs (r)— which we refer to as the trajectory generator—must be more
carefully constructed. In the following experiments, we use three different constructions of r,
three different trajectory generators, which we call:

1. Random Trajectory Generator

2. Grid Trajectory Generator

3. Emanate Trajectory Generator

The Random Trajectory Generator defines a distribution r which is Uniform over the
training domain and has no dependence on the context set or target point:

r(x |C,x(T )) = r(x) =Uni f orm(b,h) (3.24)

where b and h are the lower and upper bounds of the training domain, respectively.
The Grid Generator adds more structure to the trajectory generation. With the Grid

Generator, we first create a grid sequence over the training domain:

G = {b,b+D, ...,b+Di, ...,h�D,h} (3.25)
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Fig. 3.2 Emanate Trajectory Generation process.

Then, for each trajectory (of which there are M in total), we apply a random permutation
s to the grid. So for trajectory i, we have:

s (i)(G) =
n

s (i)
1 (b),s (i)

2 (b+D), ...,si(b+D j), ...,s (i)
R�1(h�D),s (�1)

R
(h)
o

(3.26)

Then, for each trajectory i and each point in the trajectory l the distribution r is defined:

r
(i)
l

= d ({s (i)(G)}l) (3.27)

where {s (i)(G)}l is the l
th element in the permutation i of grid G, and d is the Dirac

delta distribution. Here again, we note that each distribution r has no dependence on the
context set C or the target point x

(T ).
We refer to the final trajectory generator as the Emanate Generator, and it does use

information from the context set, unlike the previous two trajectory generators. For each
trajectory i out of M total trajectories, the procedure is as follows:

First, we select R points uniformly between the lower and upper bounds of our training
domain, inclusively:

xl ⇠Uni f orm(b,h)8l 2 {1, ..,R} (3.28)

This gives us a sequence S = {x1, ...,xR}. Now we construct a permutation of S which
uses information from the context set.



22 Experiments

Given context set C with inputs xt , we randomly select an element x
(⇤) from xt . Now,

we identify the point in S which is closest to the selected context input x
(⇤), and make that

the first element of our permutation:

s1(S) = min
xl2S

h
xi � x

(⇤)
i

(3.29)

Our next point in the permutation is selected to be the point in S closest to the previously
selected point, excluding the previously selected:

s2(S) = min
xl2S\{s1(S)}

[xi �s1(S)] (3.30)

The permutation is continued in this way, with each subsequent element chosen to the
be the element which is closest to the previous. An illustration of the process is shown in
Figure 3.2. Permutations of this sort are created for each trajectory, where the starting context
input is selected randomly each time.

3.2 Experiment Setup

We assess the impact of these parameters (M, R, and r) in experiments on four different
ConvCNP models: three from synthetic data generating processes, and one from real-world
data. All training is done using the neuralprocesses library [Wessel et al., 2022].

The first experiment using a Gaussian Process was chosen because the marginals of the
Gaussian Process are Gaussian, and therefore we do not expect to see improvements when
adding the ability to construct GMM marginals. This experiment contrasts with all the others,
as the subsequent experiments all have non-Gaussian marginals–a regime where we expect
the ability to model as a GMM could be helpful.

In particular, the sawtooth experiment has bimodal marginal predictives, and the synthetic
and real audio experiment marginals are heavy-tailed. We are interested in how this method
performs when modeling these features which Gaussians lack.

3.2.1 Gaussian Process Experimental Setup

In this experiment, we use a data generator which is a Gaussian Process5 with a mean
function of 0 and an exponential quadratic kernel6 with a variance of 1 and a length scale of
0.25:

5From neuralprocesses library [Wessel et al., 2022].
6Also referred to as the squared exponential kernel.
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Fig. 3.3 Function drawn from GP with mean function 0 and kernel shown at 3.31
.

k(x,y) = exp
✓
�1

2
||x� y||2

(0.25)2

◆
(3.31)

We add Gaussian noise to the resulting values from the function: y= f (x)+(N)(0,0.00252).
We use a ConvCNP model with a UNet-like architecture (See ConvCNPXL, Gordon et al.
[2019]). We train for 100 epochs using 1024 batches per epoch with a batch size of 16. We
discretize the encoder by evaluating 64 points per unit. We use a margin of 0.1, and a stride
length of 2 for each of the 6 layers of the UNet. Each layer has 64 channels. The receptive
field size from this combination of parameters is 6.953.

For training, we sample a number of context points uniformly between 0 and 30 (inclusive)
and exactly 50 target points for each function sample. Context points and target points are
sampled uniformly between -2, and 2 (inclusive). We use the Adam optimizer with a learning
rate of 3⇥10�4.

3.2.2 Sawtooth Experimental Setup

In this experiment, we use a data generator for sawtooth functions7. The samples are
generated from the following function:

y = [w(dx�f)]mod1 (3.32)

We sample frequencies w uniformly between 3 and 5 (inclusive), direction as either -1 or
1 with equal probability, and shift f uniformly conditional on the frequency in between 1
and 1

w (inclusive). Example functions generated from this process can be see in Figure 3.4.

7From neuralprocesses library [Wessel et al., 2022].
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Fig. 3.4 Sawtooth functions generated by 3.32. Note that the sawtooths can have positive or
negative slope, introducing bi-modality to our predictive marginals.

For training, we sample a number of context points between 0 and 75 (inclusive), and we
sample exactly 100 target points. Context points and target points are sampled uniformly
in between -2 and 2 (inclusive). All other hyperparameters are the same as those of the
Gaussian Process model.

3.2.3 Synthetic Audio Experimental Setup

In this experiment, we create a data generator for periodic "audio-like" functions. The
samples are generated by convolving a Dirac comb8 with a truncated decaying sum of
sinusoids:

s(t) =

8
<

:
e

�t

(t) [sin(w1t)+ sin(w2t)] for 0  t < T

0 otherwise

f (x) =XT (x)⇤ s(x)

e ⇠ N (µ = 0,s2 = 0.001)

(3.33)

With w1 and w2 both being drawn uniformly in between 50 and 70 (inclusive). The period
T being drawn uniformly in between 0.75 and 1.25 (inclusive), and the decay t being drawn
uniformly between 0.1 and 0.3 (inclusive). We truncate the waves up to the period length,
because otherwise the convolution with the Dirac comb would lead to increasing amplitude,
resulting in a non-stationary process. We chose to work with a simpler function instead. All
other hyperparameters are the same as those of the Gaussian Process and Sawtooth setups.
Example functions generated from this process can be see in Figure 3.5.

8Dirac comb defined as XT (t) := Â•
k=�• d (t � kT ) for given period P.
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Fig. 3.5 Synthetic Audio functions generated by 3.33. The sparse high amplitude wave
structure results in heavy-tailed marginal distributions.

Fig. 3.6 Real audio waveforms of the phoneme /iy/ extracted from the TIMIT corpus. 800
frames is 0.05 seconds.

3.2.4 Real Audio Experimental Setup

For our real-world experiment, we look at real speech data from the TIMIT corpus [Garofolo
et al., 1993], a corpus of audio recordings from 630 speakers across major dialect of American
English, each reading ten sentences. The corpus is particularly useful because the speech
wave form phonemes are labelled at the frame level. The waveform files are 16-bit, sampled
at 16kHz.

Because of this labelling, we are able to isolate individual phonemes in the corpus.
Therefore, to limit the scope of our experiment we extract the all instances of the phoneme
/iy/ from corpus.

We do some preprocessing of these audio files before feeding them into the ConvCNP
model. First, we cut the /iy/ audio from the audio files using the phone-level transcriptions.
Next, we cut these audio in segments of 800 frames, or one twentieth of a second. We do
this because we believe it should make training easier because the selection of context and
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target points cannot be too far away from each-other. There is a greater resemblance to the
synthetic-audio and real-audio experiments because there are fewer oscillations with these
few frames.

After creating these equally sized audio segments, we then apply peak normalization on
the segments using the python library pydub [Robert et al., 2018]. In peak normalization, we
take the highest peak of the waveform and scale it -20 dBFS; all other parts of the waveform
are then scaled using the same proportion. After normalizing the gain, we then normalize the
signals between -1 and 1 using the python library librosa [McFee et al., 2015].

We then split these audio segments into train, test, and evaluation sets using the TIMIT
provided separation, which are balanced for dialectic coverage. As a result, we are left with
9096 training samples, 1711 testing samples, and 1712 evaluation samples—all samples
having length 800 frames. During training, when all samples have been exhausted, the same
function samples are used again with different random selections for target and context
points.

We train using the same ConvCNP model with UNet-inspired architecture. We use 7
channels with 1 point-per-unit encoder discretization. We use a stride size of 1 for the first
layer and a stride of 2 for each subsequent layer. Each layer has 128 channels. The resulting
receptive field size is 513.0.

We train for 500 epochs with 1024 batches per epoch and a batch size of 16. We use
a learning rate of 2.5⇥ 10�5. Like in previous experiments, the model parameters are
optimized by minimizing the expected negative log-likelihood for each training batch.

For training we a number of target points uniformly between 50 and 200 (inclusive). We
sample a total number of data points in 200 and 500 (inclusive). The number of contexts
points is the total number of data points minus the number of target points. The data points
are all sampled uniformly on integers between 1 and 800, the total number of frames.
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Results

Now that we have constructed our data generators and trained ConvCNP models on each one,
we seek the assess the effect of using autoregressive sampling on the quality of our marginal
predictions. We do so by measuring the log-likelihood of the held-out true target points (i.e.
points from the tasks in the meta-test set Xtest):

{(x(T ),y(T )) 2 DT | (C,DT ) 2 Xtest} (4.1)

Here, the test tasks Xtest are constructed by sampling from our underlying data generators
described in Chapter 3. For our purposes, we are interested on the impact of the context size
on performance, so we also partition the meta-test set in subsets which have equivalently
sized context sets, where the size is given by n:

X(n)
test = {(C,DT ) 2 Xtest such that Card(C) = n} (4.2)

Recall from Chapter 2 that the expectation of the log-likelihood over functions drawn
from our processes and the number of target context points is given by:

L (q) = E
(C,(xt ,yt ))⇠Xtest

[logQq (yt |C,xt)]

= E
(C,(xt ,yt ))⇠Xtest

"
T

Â
k=1

logQq (yk |C,xk)

#
where xk 2 xt ,yk 2 yt

(4.3)

Again, here we assume a factorized distribution, because we are only assessing the
performance on the quality of the marginals, rather than joints with dependencies.
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Now, moving away from this standard method for evaluating the log-likelihoods for
CNPs, and we introduce evaluation using the AR procedure

1:

LAR(q) = E
(C,(xt ,yt ))⇠Xtest

"
log

T

’
k=1

1
M

M

Â
i=1

Qq

⇣
yk |C,{{x j,y j}R

j=0}(i),xk

⌘#

= E
(C,(xt ,yt ))⇠Xtest

""
T

Â
k=1

log

 
M

Â
i=1

Qq

⇣
yk |C,{{x j,y j}R

j=0}(i),xk

⌘!#
�

T

Â
k=1

log(M)

#

(4.4)
We also often report our results simply as expected log-likelihoods of marginal predictives,

which is equivalent to dividing the factorized joint by the number of target points:

L (norm)
AR

(q) = E
(C,(xt ,yt ))⇠Xtest

"
1
T

""
T

Â
k=1

log

 
M

Â
i=1

Qq

⇣
yk |C,{{x j,y j}R

j=0}(i),xk

⌘!#
�

T

Â
k=1

log(M)

##

(4.5)
Where R is the length of the trajectory and M is the number of trajectories sampled.
In the tables and figures shown in this section, we report on the performance of the Vanilla

model (a ConvCNP without use of AR marginal approximation), the model with the use of
the AR method, and a Naive model. We provide the log-likelihood of a Naive model to give
an better sense of the scale of the differences between the Vanilla and AR performances.

The Naive model for a given experiment is defined simply by a single Gaussian distribu-
tion with mean equal to the mean of all context points for all functions in that experiment,
and variance equal to the variance for all context points for all functions in that experiment:

Qnaive(y
(T )) |C,x(T )) = 2

Qnaive(y
(T )) = N (y(T ); µ,s2)

where µ = E[Y ] and s2 =Var[Y ]

with Y = {yc|(xc,yc) 2Ci for all (Ci,DTi
) 2 Xtest}}

(4.6)

4.1 Overview

In Table 4.1, we see that using marginal approximation by autoregressive sampling improved
the performance (as measured by held-out log-likelihoods) across all experiments except

1With a trajectory length (R) of 0, we simplify to the vanilla log-likelihood evaluation.
2Note that predictions made by Qnaive are not impacted by the particular context set and target input in

question.
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Experiment Naive Vanilla ARR=8,M=128
Real Audio 0.92 ± 0.10 1.74 ± 0.16 1.77 ± 0.15
Sawtooth -0.18 ± 0.00 1.46 ± 0.30 1.64 ± 0.28

Synthetic Audio -0.44 ± 0.02 0.12 ± 0.14 0.55 ± 0.10
GP -1.45 ± 0.06 -1.04 ± 0.08 -1.04 ± 0.08

Table 4.1 Using Autoregressive sampling for marginal approximation improves held-out
log-likelihoods on all experiments except for the GP experiment, which is to be expected.
These values are normalized by the number of target points, as shown in Equation 4.5. Values
which are significantly best (p < 0.05) are shown in bold.

for the Gaussian Process experiment, where it achieved the same performance as the vanilla
model. When we measure log-likelihoods across tasks of all context sizes, the improvement
for the synthetic audio is the only one which is significant (p < 0.05). Later, we will divide out
these results by context size and observe the differences. We hereafter refer to the standard
use of the model Qq as the vanilla procedure and the AR marginal approximation method as
the AR procedure. We avoid using the term model because we wish to highlight that both
processes use the exact same trained model Qq .

We now further explain and contextualize these results by:

1. Defining the construction of each experiments’ meta-test sets Xtest .

2. Visually comparing the marginal density estimation using the vanilla procedure and
the AR procedure for each experiment.

3. Showing the impact of increasing number of trajectory samples (M) on the overall
model error.

4. Investigating the impact of context set size on performance of the vanilla and AR
procedures.

4.2 Examination of Particular Marginals

4.2.1 Gaussian Process

For the Gaussian Process experiment, we use the model Qq which has been trained on
tasks from the GP data generator as described in Chapter 3. Additionally, we construct our
meta-test set Xtest by sampling functions from the GP data generator. In particular, we sample
a total of 96 functions–16 functions each for context set sizes 0, 1, 2, 4, 8, and 16. We use



30 Results

Fig. 4.1 An example task from the GP experiment with target marginal densities created with
two methods. In the top plot, we use use the Vanilla model (R = 0) to create the marginal
densities, indicated by the color (yellow as areas of high density, purple as areas of low
density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output.

trajectories lengths (R) from 03 to 8, inclusive. We use a number of trajectory samples (M)
from 1 to 128, inclusive. For this experiment, only evaluate one method for choosing input
trajectory points, the Random Trajectory Generator described in Section 3.1.

We find that the AR marginal approximation procedure does not improve the held-out
log-likelihoods, as seen in Table 4.1. This is to be expected, because the AR procedure only
introduces Monte Carlo error while not decreasing the modeling error:

EMC > 0 and E AR

Q
� E Vanilla

Q
=) EMC +E AR

Q
> E Vanilla

Q
(4.7)

The modeling error is not decreased because the marginal distributions of a Gaussian
Process are Gaussian [Williams and Rasmussen, 2006]. Therefore, using the AR procedure
to create a GMM does not provide additional benefits.

We can see this phenomena more clearly by observing Figure 4.1. In Figure 4.1, we see
one example task x with context set C shown with red crosses, and target set DT shown with
a grey line. The marginals are represented across the domain with the color range, and one

3where R = 0 is the vanilla model
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target marginal is highlighted with a density plot on the right side of the figure. The top
portion of the figure shows the vanilla procedure and the bottom shows the AR procedure.
We notice a few things:

1. Visually there appears to be very little change to the marginal densities across the
domain.

2. The particular target point highlighted with the right density also appears mostly
unchanged, though the AR marginal appears slightly narrower near the mode.

3. The average likelihood across targets for this function E(L ) is slightly less for the AR
procedure than it is for the vanilla procedure.

We will take a broader look at the AR procedure performance across functions after
introducing our other experimental results.

4.2.2 Sawtooth

For the Sawtooth experiment, we use a model Qq which has been train on tasks from the
Sawtooth data generator as described in Chapter 3. Additionally, we construct our meta-test
set Xtest by sampling functions from the Sawtooth data generator. In particular, we sample a
total of 112 functions–16 functions each for context set sizes 0, 1, 2, 4, 8, 16, and 32. We
use trajectories lengths (R) from 04 to 8, inclusive. We use number of trajectory samples
(M) from 1 to 128, inclusive. We run this experiment using all three trajectory generators
introduced in Section 3.1—Random, Grid, and Emanate.

We find that the AR procedure can improve the held-out log-likelihoods, as seen in
Table 4.1. In other words, it appears that producing sufficiently long trajectories reduces the
modeling error E AR

Q
and taking sufficiently many of them reduces the Monte Carlo error such

that:

EMC +E AR

Q
< E Vanilla

Q
(4.8)

In the next section, we will take a closer look at the Monte Carlo error, but here we try
to illustrate how the modeling error is improved. Observing Figure 4.2, we notice several
things. First, we see in this example that the AR procedure has produced densities which are
very different from the vanilla procedure. For the particular target we have highlighted in the
right plots, we see that the vanilla procedure produces a uni-modal Gaussian density, whereas
the AR procedure has produced a multi-modal distribution that appears to be approaching

4where R = 0 is the vanilla model
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Fig. 4.2 An example task from the Sawtooth experiment with target marginal densities
created with two methods. In the top plot, we use use the Vanilla model (R = 0) to create the
marginal densities, indicated by the color (yellow as areas of high density, purple as areas of
low density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output.

a bi-modal distribution. This is precisely the sort of behaviour which we would hope to
see in this model because the true marginals of the sawtooth generator are bimodal due to
the randomly chosen direction of the sawtooth function. Therefore, the cross we see in the
middle of the bottom left plot appears to portray the densities much more adequately than
the more amorphous form in the top plot.

These are all positive signs, but one may notice that the vanilla and AR procedures
achieve the same expected log-likelihood for this particular function E[(L)] =�0.13. This
is likely a result of large Monte Carlo error for this particular function, such that—despite
model error improvements using the AR procedure–we end up with:

EMC +E AR

Q
= E Vanilla

Q
(4.9)

Potential visual evidence of this Monte Carlo error can be seen by observing the yellow
streaks (areas of high density) farther to the right and left of the context point. We see that
these streaks have an orientation and form which fits the underlying true function in black,
but there are many areas where they do not properly align with the underlying true function.
In a subsequent section, we try to shed more light on a question raised by this observation:
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How do our parameter (R and M) selections impact the two error sources EMC and E AR

Q
?

4.2.3 Synthetic Audio

For the synthetic audio experiment, we use a model Qq which has been trained on tasks
from the synthetic audio data generator as described in Chapter 3. Additionally, we construct
our meta-test set Xtest by sampling functions from the synthetic audio data generator. In
particular, we sample a total of 96 functions–16 functions each for context set sizes 0, 1,
2, 4, 8, and 16. We use trajectories lengths (R) from 05 to 8, inclusive. We use number
of trajectory samples (M) from 1 to 128, inclusive. We run this experiment using all three
trajectory generators introduced in Section 3.1—Random, Grid, and Emanate.

Fig. 4.3 An example task from the Sawtooth experiment with target marginal densities
created with two methods. In the top plot, we use use the Vanilla model (R = 0) to create the
marginal densities, indicated by the color (yellow as areas of high density, purple as areas of
low density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output.

Like the previous two examples, the top plot of Figure 4.3 shows the marginal density
produced using the vanilla procedure and the bottom shows the marginal density produced
by the AR procedure (R = 8, M = 128). The blue plots on the right show a particular target
density of interest.

5where R = 0 is the vanilla model
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The difference between these plots is not as visually striking at that of the sawtooth
experiment. However, we find that the AR procedure is beneficial here—increasing the
log-likelihood from �1.11 to �0.16.

By taking a closer look at the specific marginal density of interest shown in blue, we can
gain intuition for why we see this improvement. Namely, we see that the AR marginal places
a much higher density on the target point (shown with the horizontal blue line). It does this
by producing a heavy-tailed distribution. Though both procedures place a similar density
at the mode of zero, this heavy-tailed distribution places a much higher density at the true
target point.

4.2.4 Real Audio

In this Real Audio experiment, we use a model Qq which has been trained on tasks from the
real audio \iy\ phoneme data generator as described in Chapter 3. Additionally, we construct
our meta-test set Xtest by sampling functions from the this data generator. In particular, we
sample a total of 96 functions–16 functions each for context set sizes 0, 10, 20, 40, 80, and
160. We chose to use more context for this experiment because this task is more difficult than
our synthetic experiments. Later, we discuss how this decision may have been misguided for
the purposes of exploring the efficacy of the AR procedure. Like the previous experiments,
we use trajectories lengths (R) from 0 to 8, inclusive. We use number of trajectory samples
(M) from 1 to 128, inclusive. We run this experiment using all three trajectory generators.

Here, as seen in Table 4.1 we also an improvement by using the AR procedure over the
vanilla procedure, though these results show a smaller improvement over use of the vanilla
model as compared to the sawtooth and real-audio experiments. Taking a closer look at the
marginals for the particular function in Figure 4.4 may help reveal why.

First, we notice that the top plot (vanilla procedure) and the bottom plot (AR procedure),
appear to place the areas of highest density in very similar locations. We also notice that
there appears to be little difference between vanilla in AR in the particular marginal density
highlighted in the blue plots on the right of the figure. Nevertheless, there does still appear
to be an improvement in expected log-likelihood for this particular function (from 1.08 to
1.14). We suspect that the modeling errors have been reduced by the AR procedure’s ability
to model heavy-tailed distributions, as shown in the synthetic audio experiment. Though we
also suspect that the marginals in this case are closer to Gaussian, perhaps because we are
using more context points. In an upcoming section we will seek to better understand this
question:

How does the context size impact the efficacy of the AR procedure?
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Fig. 4.4 An example task from the real audio experiment with target marginal densities
created with two methods. In the top plot, we use use the Vanilla model (R = 0) to create the
marginal densities, indicated by the color (yellow as areas of high density, purple as areas of
low density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output.

4.3 Monte Carlo Stopping Criteria and Convergence

Having built some understanding of the effects of using the AR procedure on a few example
functions, we seek to better understand two parameters—the trajectory length (R) and the
number of trajectories (M). First, we take a closer look at the two error sources (EMC and
E AR

Q
, and E Vanilla

Q
).

In order to better understand these error sources, we need to discuss notion of Monte
Carlo error reduction and convergence. Note that we have overloaded the error terms to mean
both the distributions which would make our marginals equivalent to the ground truth model
as well as the difference in expected log-likelihood from the ground truth model over some
meta-test set.

First, we present Figure 4.5 to illustrate the relationship between these sources of error.
In this illustration, we assume we have utilized the AR procedure with a fixed trajectory
length and varying number of trajectories, yielding the purple curve. We also have measured
the vanilla procedure’s expected log-likelihood over the same tasks. At the selected point in
black, the Monte Carlo error is very large, making the AR procedure inferior to the vanilla
procedure (EMC +E AR

Q
> E Vanilla

Q
). However, if we move further to the right along the purple
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Fig. 4.5 Illustration of the interplay of the three error terms of interest: the AR Monte Carlo
Error EMC, the AR modeling error E AR

Q
, and the vanilla modeling error E Vanilla

Q
. Here we see

that the vanilla model (in blue) does not have any Monte Carlo error, the line is perfectly
horizontal. For the AR model, however, we see that increasing the number of trajectories
decreases the Monte Carlo error as it approaches Monte Carlo convergence. Notice that
this convergence falls short of the log-likelihood of the hypothetical perfect ground truth
model. This is because our AR procedure does not have access to the ground truth marginals,
only models of these marginals Qq (See Section 3.0.1). The AR procedure is helpful when
the sum of the Monte Carlo and AR modeling error is less than the vanilla modeling error.
In this case, for the black point shown in this figure, the AR procedure is inferior to the
vanilla procedure due to high Monte Carlo error. However, if we were to take a point further
along the purple AR procedure curve, we would eventually surpass the vanilla procedure
performance as our Monte Carlo error shrank.

AR curve, our Monte Carlo error reduces such that the AR procedure becomes superior to
the vanilla procedure (EMC +E AR

Q
< E Vanilla

Q
). This occurs because we can reduce the Monte

Carlo error arbitrarily by taking more and more trajectory samples, but the AR modeling
error is less than the vanilla model. We expect this to be the case when the vanilla model’s
restriction to producing Gaussians makes it mal-adapted for modeling the marginals of a
particular experiments’ tasks. On the other hand, we expect the vanilla model to be at the
line of AR Monte Carlo convergence when Gaussians can model the marginals well.

Because we can take arbitrarily many trajectory samples in order to decrease the Monte
Carlo error, we are interested in identifying a number of trajectory samples after which taking
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more samples provides little to no practical benefit. To this end we construct a heuristic for
convergence.

First, we set a trajectory length and measure the expected log-likelihood using this
trajectory length for differing number of trajectories (producing a curve like the purple one
in Figure 4.5), giving us a sequence:

S =
n

L AR(q ,n)8n 2 1, ...,M
o

(4.10)

where L AR(q ,n) is defined as the expected log-likelihood for some fixed trajectory length
and a number of trajectories n. Next, we find differences between subsequent terms in this
sequence, yielding:

D =
n

L AR

di f f
(q ,n) = L AR(q ,n)�L AR(q ,n)8n 2 {2, ...,M}

o
(4.11)

We expect this sequence to approach zero as the differences in subsequent terms decrease
with more samples. Next, take the rolling mean with a window size of 5 over this sequence
D, yielding:

Droll =

(
L AR

roll
(q ,n) = 1

5

4

Â
k=0

L AR

di f f
(q ,n� k)8n 2 {6, ...,M}

)
(4.12)

We then select the convergence number of trajectories n
⇤ as the number of trajectories

after which there are no values of L AR

roll
(n) greater than 0.001. Under this convergence

threshold, we expect to require more than 10 additional trajectory samples to achieve a
log-likelihood reduction of 0.01, or about a 1% reduction in the predictive interval—which
we consider to be the smallest reduction of practical significance. We consider this to
be a reasonable bounds on the number of trajectories which mitigates an explosion in
computational requirements. Having established this idea of convergence, we return to take a
closer look at the AR procedure results for different selections of M and R.

4.3.1 Gaussian Process

Returning to the Gaussian Process experiment, in Figure 4.6, we see measures comparing
the AR procedures with differing number of trajectories (M) and trajectory lengths (R). We
increase our expected log-likelihood 6 as we increase the number of trajectory samples
(M). This occurs because we are reducing our Monte Carlo error EMC by taking more
samples. Additionally, we notice that none of the AR procedures achieve performance equal

6Normalized by the number of target points
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Fig. 4.6 The two plots seek to reveal patterns when changing the number of trajectories
M and trajectory length R. On the left, lines representing different trajectory lengths. As
we increase the number of trajectories , we increase the expected log-likelihood over all
functions in this experiment. This happens because we are reducing the Monte Carlo error
EMC by taking more samples. The dotted vertical lines indicate the number of trajectories
needed for the given procedure’s log-likelihood to converge (as defined in Section 4.3). Here
the convergence threshold is 0.001. The right plot shows the same information using a
heatmap. The color indicates the log-likelihood, each cell corresponding to a particular
number of trajectories and trajectory length. The green blocks indicate the convergence
number of trajectories for the given trajectory length (rows). The yellow cells show the
best number of trajectories for each given trajectory length. The teal cell shows the best
performing combination of trajectory length and number of trajectories.

to the vanilla procedure. This further illustrates the point made earlier regarding Gaussian
Processes—the vanilla procedure already models the marginals sufficiently well, so the AR
procedure introduces Monte Carlo EMC error without reducing the modeling error E AR

Q
.

The right plot shows the same information in a different way. The expected log-likelihood
is shown by the color and each cell represents the AR procedure log-likelihood for a particular
trajectory length and number of trajectories. The green cells indicate the number of trajecto-
ries at which the given trajectory length achieves convergence (as defined in Section 4.3).
The yellow cells show the number of trajectories that lead to the highest log-likelihood for a
given trajectory length. The teal cell indicates the parameter selection which leads to the best
performance overall. We see in this case that the best log-likelihood is achieved using the
vanilla procedure7.

7Only one cell is highlighted in teal for a given trajectory length, though all number of trajectories are
equivalent under the vanilla procedure.
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Fig. 4.7 The two plots seek to reveal patterns when changing the number of trajectories
M and trajectory length R. On the left, lines representing different trajectory lengths. As
we increase the number of trajectories , we increase the expected log-likelihood over all
functions in this experiment. This happens because we are reducing the Monte Carlo error
EMC by taking more samples. The dotted vertical lines indicate the number of trajectories
needed for the given procedure’s log-likelihood to converge (as defined in Section 4.3). Here
the convergence threshold is 0.001. The right plot shows the same information using a
heatmap. The color indicates the log-likelihood, each cell corresponding to a particular
number of trajectories and trajectory length. The green blocks indicate the convergence
number of trajectories for the given trajectory length (rows). The yellow cells show the
best number of trajectories for each given trajectory length. The teal cell shows the best
performing combination of trajectory length and number of trajectories.

4.3.2 Sawtooth

For the Sawtooth experiment, we observe Figure 4.7. Like in the Gaussian Process experi-
ment, we see that the expected log-likelihood increases for all trajectory lengths as we take
a larger number of trajectories. Again, this is due to the reduction in Monte Carlo error.
Noting the location of the vanilla procedure performance (blue), we see how this experiment
differs from the Gaussian Process experiment. Longer trajectory lengths appear to generally
decrease the AR procedure model error E

AR

Q

8 as the log-likelihood ceiling gets higher for
large number of trajectories. Moreover, we see that procedures for all trajectory lengths
surpass the vanilla procedure log-likelihood after about a dozen trajectory samples.

In the plot on the right, we can see the convergence pattern more clearly. Recalling
that the green values indicate convergence number of trajectories, we see that the longer

8
R = 8 is below R = 7 with M = 128, perhaps because R = 8 still hasn’t sufficiently reduced Monte Carlo

error to surpass R = 7 performance.
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trajectories—though they seem to generally decrease model error by more—require more
trajectory samples to converge.

Here we find that the best performance (shown in teal) is achieved using a trajectory
length of 7 with and 127 trajectory samples.

4.3.3 Synthetic Audio

Fig. 4.8 The two plots seek to reveal patterns when changing the number of trajectories
M and trajectory length R. On the left, lines representing different trajectory lengths. As
we increase the number of trajectories , we increase the expected log-likelihood over all
functions in this experiment. This happens because we are reducing the Monte Carlo error
EMC by taking more samples. The dotted vertical lines indicate the number of trajectories
needed for the given procedure’s log-likelihood to converge (as defined in Section 4.3). Here
the convergence threshold is 0.001. The right plot shows the same information using a
heatmap. The color indicates the log-likelihood, each cell corresponding to a particular
number of trajectories and trajectory length. The green blocks indicate the convergence
number of trajectories for the given trajectory length (rows). The yellow cells show the
best number of trajectories for each given trajectory length. The teal cell shows the best
performing combination of trajectory length and number of trajectories.

For the synthetic audio experiment, we see in Figure 4.8 a similar pattern to that seen
in the sawtooth experiment in Figure 4.7. The Monte Carlo error decreases as we take
more trajectory samples, and the log-likelihood ceiling gets higher with longer trajectory
lengths—due to a decrease in modeling error. In this case, as in the sawtooth case, all
trajectory lengths surpass the log-likelihood of the vanilla model (in blue).

Observing the right plot, the convergence pattern is less clear. Trajectory length 1, for
example, does not converge until more than 50 trajectory samples, more than any of the
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others trajectory lengths. Though at the scale presented, the trajectory length curves appear
quite smooth, closer inspection reveals kinks in the curve—numbers of trajectories which
lead to a significant jump in log-likelihood.

Though this requires more careful inspection, we believe this phenomena arises from the
sparsity of the distributions in question. Recall that at each step of our AR sampling process
(see 3.21), we create a target sample y

(i)
j

by drawing from the model Qq

⇣
y j |C,({x j,y j}l�1

j=0)
(i),x j

⌘
,

which is a Gaussian. If the true marginals are heavy tailed, this may lead to some portions of
the density being under-explored because these samples are too focused around the mode.
This phenomena may motivate the exploration of using importance sampling with the AR
procedure when handling distributions suspected to be heavy-tailed.

4.3.4 Real Audio

Fig. 4.9 The two plots seek to reveal patterns when changing the number of trajectories
M and trajectory length R. On the left, lines representing different trajectory lengths. As
we increase the number of trajectories , we increase the expected log-likelihood over all
functions in this experiment. This happens because we are reducing the Monte Carlo error
EMC by taking more samples. The dotted vertical lines indicate the number of trajectories
needed for the given procedure’s log-likelihood to converge (as defined in Section 4.3). Here
the convergence threshold is 0.001. The right plot shows the same information using a
heatmap. The color indicates the log-likelihood, each cell corresponding to a particular
number of trajectories and trajectory length. The green blocks indicate the convergence
number of trajectories for the given trajectory length (rows). The yellow cells show the
best number of trajectories for each given trajectory length. The teal cell shows the best
performing combination of trajectory length and number of trajectories.

For the real audio experiment, we again see in Figure 4.9 a familiar pattern: decreasing
Monte Carlo error with larger number of trajectories; decreasing AR model error with
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increasing trajectory length. And again, all AR procedures eventually achieve better log-
likelihoods than the vanilla model—all after just a few trajectory samples.

Observing the plot on the right, we see one notable difference from the previous experi-
ments: the Monte Carlo convergence occurs with fewer trajectory samples (smaller M). We
believe this is due to a major experimental difference between this experiment and the others:
we use much larger context sizes (0, 10, 20, 40, 80, 160). This larger context reduces the
variance on the trajectory samples and leads to marginals which are more Gaussian. This
leads to both a faster reduction in Monte Carlo error and a smaller improvement over the
vanilla model. The relationship between context size and the AR and vanilla procedure
performances will be explored in the next section.

4.4 Understanding Impact of Context Size

As we’ve taken closer looks at some specific marginals on specific functions and some log-
likelihood convergence patterns in expectation, questions have arisen regarding the impact of
the context size on the AR procedure’s performance. Here we seek gain better purchase on
these questions by examining a few plots.

We are interested in the performance differences between the AR procedure and the
vanilla procedure for different context sizes. Additionally, we want to see the relative
difference between the AR procedure and the vanilla procedure when compared to the Naive
model.

4.4.1 Gaussian Process

Observing the bottom plot of Figure 4.10, we can get a visual intuition for the relative
difference between vanilla procedure (in blue) and the AR procedure (in ruddy hues) and the
Naive baseline model (in black). For the Gaussian Process experiment, the bottom plot of
absolute log-likelihoods9 shows a few patterns:

1. The vanilla procedure performs better than the baseline. This indicates to us that our
model is performing as expected.

2. The vanilla procedure achieves increasingly higher log-likelihood with greater context
size. This is to be expected as more context should narrow our predictive estimates.
The Naive model, on the other hand, is unchanged with more context10.

9in expectation
10The Naive model receives no new information upon seeing this context.
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Fig. 4.10 In the bottom plot we see the absolute expected log-likelihood using the AR
procedure for different trajectory lengths and context sizes. For each trajectory length, the
number of trajectories used is that at which that trajectory length achieves Monte Carlo
convergence (as defined in 4.3). In the top plot, we see the difference between AR procedures
of differing trajectories and the vanilla procedure. Error bars represent 95% confidence
interval obtained through bootstrapping. No difference between AR procedures and vanilla
procedure are significant. Log-likelihoods can be seen at Table A.8.

3. The vanilla and AR procedures appear to be quite close in absolute log-likelihoods,
when compared to the Naive baseline.

In the top plot of Figure 4.10, we take a look at the difference of log-likelihood between
the AR procedures and the vanilla procedure. We find that only a few AR procedures lead to
an improvement over the vanilla procedure and that those improvements are small ( 0.01)
with large confidence intervals.

Overall, the AR and vanilla procedures appear to have approximately the same perfor-
mance across context sizes. This is unsurprising, as we do not expect the AR procedure to
help with GP marginal modeling.
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Fig. 4.11 In the bottom plot we see the absolute expected log-likelihood using the AR
procedure for different trajectory lengths and context sizes. For each trajectory length, the
number of trajectories used is that at which that trajectory lengths achieves Monte Carlo
convergence (as defined in 4.3). In the top plot, we see the difference between AR procedures
of differing trajectories and the vanilla procedure. Error bars represent 95 % confidence
interval obtained through bootstrapping. Log-likelihoods can be seen at Table A.2.

4.4.2 Sawtooth

Now, we observe Figure 4.11 for the Sawtooth experiment. Observing the bottom plot, we
see a few interesting trends:

1. As in the previous experiment, the vanilla procedure (blue) outperforms the Naive
model (black)—increasingly so with larger context size.

2. The AR procedure outperforms the vanilla procedure for context sizes 1, 2, 4, and 8.

3. For these context sizes, a larger trajectory length (darkening ruddy hues) leads to
greater log-likelihood.

4. The relative improvement for increasing the trajectory falls off as we use larger
trajectory lengths.
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Fig. 4.12 An example sawtooth task with zero context. We see that the marginals produced
by the AR procedure are very spike-y. With zero context, the AR procedure appears to have
slower rates of Monte Carlo error reduction.

5. For context sizes 0, 16, and 32, the AR procedure appears to typically achieve lower
log-likelihoods than the vanilla procedure.

Regarding 2, we believe that for context set size of zero, the AR procedure struggles to
improve over the vanilla procedure’s Gaussian marginal one major reason: with a context
set size of the zero, the randomness of the sawtooth shift f (see sawtooth data generator in
Section 3.2.2) means that the sawtooth function could be placed anywhere within the domain.
This means we will not end up with bimodal marginals. In fact, the marginals will be uniform
between 0 and 1. In this scenario, the AR procedure may recover its Monte Carlo error
very slowly because the resulting GMM requires many mixing components to adequately
model the infinite modes of the uniform distribution. Consequently, without taking very
many trajectory samples, simply using the single Gaussian from the vanilla procedure leads
to better log-likelihoods. The phenomena can be observed in Figure 4.12.

For context set sizes 1, 2, 4, and 8, on the other hand, the AR procedure increases the
log-likelihood substantially. This occurs because of the bi-modality of the true marginal
leading to a high error using the vanilla procedure, which attempts to place a Gaussian
to sufficiently cover both modes. The AR procedure, on the other hand, can model both
marginals using the generated GMM (Figure 4.2).

Observing a particular task with context set size 4 in Figure 4.13, we notice that one
mode has come to mostly dominate the density at the particular target shown in blue on the
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Fig. 4.13 An example task from the Sawtooth experiment with 4 context points, and the
target marginal densities created with two methods. In the top plot, we use use the Vanilla
model (R = 0) to create the marginal densities, indicated by the color (yellow as areas of
high density, purple as areas of low density). The bottom plot uses an AR model with R = 8,
and M = 128. The two plots on the right show particular the density on one particular target
input indicated with the vertical dotted blue line on the left plots. The horizontal dotted blue
line on the right plots shows the location of the true target output.
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Fig. 4.14 An example task from the Sawtooth experiment with 16 context points, and the
target marginal densities created with two methods. In the top plot, we use use the Vanilla
model (R = 0) to create the marginal densities, indicated by the color (yellow as areas of
high density, purple as areas of low density). The bottom plot uses an AR model with R = 8,
and M = 128. The two plots on the right show particular the density on one particular target
input indicated with the vertical dotted blue line on the left plots. The horizontal dotted blue
line on the right plots shows the location of the true target output.

right plots. The AR procedure places a much higher density at this location, which is close
to the true target, whereas the vanilla procedure’s mode is shifted slightly downwards and is
of much lower density.

What happens when the true sawtooth marginal density is almost entirely dominated by
a single mode? In this scenario, the AR procedure produces little to no benefit, which we
observe with context sizes 16 and 32. Figure 4.14 shows this scenario. There is sufficient
information from these context points to allow the vanilla Gaussian to perform well by
placing its single-mode, light-tailed density such that: EMC +E AR

Q
> E Vanilla

Q
.

We can also observe the convergence patterns for differing contexts sizes in Figure 4.15.
We that with a context set size of 2 and 4, we never actually achieve convergence for some
trajectory lengths. Therefore, there may still be significant log-likelihood gains to be had by
adding more trajectory samples for these context sizes. For a context set size of 16, on the
other hand, convergence is reached more quickly—likely due to lower variance of trajectory
samples.

Now, we wish to gain a better understanding of the computational costs of these log-
likelihood changes. Given the procedure outlined in Equation 3.21, we see that for a
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Fig. 4.15 Here we see several heatmaps revealing convergence patterns for various context
sizes on the sawtooth experiment. Each cell represents the expected log-likelihood (indicate
by the hue) of a given number of trajectories (columns) and trajectory length (rows). The
cells highlighted in green show the number of trajectories for which the AR procedure using
a given trajectory length achieves convergence (as defined in Section 4.3). The yellow cells
indicate the number of trajectories for a given trajectory length where the AR procedure has
the best performance. The teal cell shows the combination of number of trajectories and
trajectory lengths that yields the best performance overall for that context size.

trajectory length of R, M trajectory samples, we must execute the model (M)⇥ (R+1) times.
Recall that in Figure 4.11, we use the convergence number of trajectories for each given
trajectory length. Therefore, we can compute the total number of model executions for each
trajectory length and normalize the log-likelihood changes by this number. The results of
this calculation can be seen in Figure 4.16.

In the bottom plot we see the total number of model executions for each trajectory length.
In the top plot, we see the log-likelihood change normalized by model executions. From
context set sizes 2, 4, and 8, we see a trajectory length of 1 appears to lead to the greatest
log-likelihood change per model-execution, with the gains trending down thereafter.
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Fig. 4.16 In the bottom plot, we see the number of executions (forward passes) of the model
Qq for each trajectory length. For a given trajectory length R, convergence number of
trajectory samples M is used (see Section4.3). The number of model executions is then
M⇥ (R+1). The top plot then takes the difference between the AR procedure and vanilla
procedure log-likelihood for each trajectory length and divides is by the number of model
executions, yielding the difference per model execution.



50 Results

4.4.3 Synthetic Audio

Fig. 4.17 In the bottom plot we see the absolute expected log-likelihood using the AR
procedure for different trajectory lengths and context sizes. For each trajectory length, the
number of trajectories used is that at which that trajectory lengths achieves Monte Carlo
convergence (as defined in 4.3). In the top plot, we see the difference between AR procedures
of differing trajectories and the vanilla procedure. Error bars represent 95 % confidence
interval obtained through bootstrapping. Log-likelihoods can be seen at Table A.4.

Now, we comment on the impact of context size on the AR vs vanilla procedure perfor-
mance on the synthetic audio experiment. In Figure 4.17, we see some similarities with the
sawtooth results, and a few differences. First, we note that the the vanilla model improves
over the naive model—increasingly so with more context. Like before, this indicates our
model Qq is well trained. Second, we also see that larger trajectory lengths lead to greater
log-likelihood gains at a decreasing rate.

Now, for some notable differences. One, the AR procedure significantly outperforms
the vanilla procedure with zero context. This occurs because the true marginal with zero
context should be heavily concentrated around zero with heavy tails which can place some
density on the wave peaks. Therefore, the true marginal with zero context should bear more
resemblance to a Laplace distribution than to a Gaussian. We see that the AR procedure
better captures this distribution in Figure 4.18.
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Fig. 4.18 An example task from the synthetic audio experiment with target marginal densities
created with two methods. In the top plot, we use use the Vanilla model (R = 0) to create the
marginal densities, indicated by the color (yellow as areas of high density, purple as areas of
low density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output. This example uses zero context points.

We also note that—unlike in the sawtooth experiment—the AR procedure outperforms
the vanilla procedure even with a context set size of 16. We believe this occurs because
the synthetic audio has a random period and that many context point observations close
to zero are common and relatively uninformative. Therefore, the vanilla model does not
have sufficient context to place a very high density on the target such that the model error is
commensurate with the density placed by the peakier, heavier-tailed AR procedure density.
This question could be more adequately answered by using larger context sizes with the
synthetic audio model.

Now, we can observe the convergence patterns by context size in Figure 4.20. We
see a general trend of larger trajectory lengths requiring more trajectory samples to reach
convergence, though this trend is not present for a context set size of 16.

As before, we can also normalize the log-likelihoods by the number of model executions,
giving us Figure 4.21. Like in the sawtooth experiment, we see a trend of shorter context
lengths giving more log-likelihood gains per model execution—with a few exceptions. For
example, for context set size 4, trajectory length of 2 yields more gains per model execution
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Fig. 4.19 An example task from the real audio experiment with target marginal densities
created with two methods. In the top plot, we use use the Vanilla model (R = 0) to create the
marginal densities, indicated by the color (yellow as areas of high density, purple as areas of
low density). The bottom plot uses an AR model with R = 8, and M = 128. The two plots on
the right show particular the density on one particular target input indicated with the vertical
dotted blue line on the left plots. The horizontal dotted blue line on the right plots shows the
location of the true target output. This example uses 16 context points.

than trajectory length of 1. We can see that this is due to fewer overall execution being run
for trajectory length 2 due to faster convergence.



53 Results

Fig. 4.20 Here we see several heatmaps revealing convergence patterns for various context
sizes on the synthetic audio experiment. Each cell represents the expected log-likelihood
(indicate by the hue) of a given number of trajectories (columns) and trajectory length (rows).
The cells highlighted in green show the number of trajectories for which the AR procedure
using a given trajectory length achieves convergence (as defined in Section 4.3). The yellow
cells indicate the number of trajectories for a given trajectory length where the AR procedure
has the best performance. The teal cell shows the combination of number of trajectories and
trajectory lengths that yields the best performance overall for that context size.
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Fig. 4.21 In the bottom plot, we see the number of executions (forward passes) of the model
Qq for each trajectory length. For a given trajectory length R, convergence number of
trajectory samples M is used (see Section4.3). The number of model executions is then
M⇥ (R+1). The top plot then takes the difference between the AR procedure and vanilla
procedure log-likelihood for each trajectory length and divides is by the number of model
executions, yielding the difference per model execution.
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4.4.4 Real Audio

Fig. 4.22 In the bottom plot we see the absolute expected log-likelihood using the AR
procedure for different trajectory lengths and context sizes. For each trajectory length, the
number of trajectories used is that at which that trajectory lengths achieves Monte Carlo
convergence (as defined in 4.3). In the top plot, we see the difference between AR procedures
of differing trajectories and the vanilla procedure. Error bars represent 95 % confidence
interval obtained through bootstrapping. Log-likelihoods can be seen at Table A.6.

Finally, we investigate the effect of context size on the AR vs vanilla procedure per-
formance for the real audio experiment. We notice in Figure 4.22 that the vanilla model
outperforms the naive model more and more so as more context is added. The AR procedure
does not appear to give substantial gains over the vanilla procedure relative to the naive model.
Taking a closer look at the AR-vanilla procedure performance differences in the top plot, we
see that the most substantial differences are seen with a context set size of 40. We also see
the familiar pattern where longer trajectory lengths lead to increasing log-likelihoods at a
decreasing rate. We note, however, than none of these differences are significant (p < 0.05,
see Table A.6).

In Figure 4.23, we see the convergence patterns by context size. We note that log-
likelihood generally achieves convergence sooner in this experiment than in the synthetic
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Fig. 4.23 Here we see several heatmaps revealing convergence patterns for various context
sizes on the real audio experiment. Each cell represents the expected log-likelihood (indicate
by the hue) of a given number of trajectories (columns) and trajectory length (rows). The
cells highlighted in green show the number of trajectories for which the AR procedure using
a given trajectory length achieves convergence (as defined in Section 4.3). The yellow cells
indicate the number of trajectories for a given trajectory length where the AR procedure has
the best performance. The teal cell shows the combination of number of trajectories and
trajectory lengths that yields the best performance overall for that context size.

audio and sawtooth experiments. This likely occurs because we are using larger context sizes,
leading to a lower variance in trajectory samples.

We can also look at the log-likelihood changes normalized by model executions in
Figure 4.24. We find that context set size of 40 generally obtains the greatest log-likelihood
increase per execution. We also see, again, that the shorter trajectories generally have greater
log-likelihood delta by execution.

Overall, we find that the AR gains over the vanilla procedure are more measured in this
experiment, especially when compared to the synthetic audio experiment. This may be due
to a Gaussian being more appropriate in this context because the data is much noisier than in
the synthetic audio experiment. In the synthetic audio experiment, a very peaky heavy-tailed
distribution could be placed due to low noise, but there is not enough certainty to do so here
because of the noise.

Further work should explore the effect of noise. For example, one may try many variations
of the synthetic audio experiment with increasing noise levels.
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Fig. 4.24 In the bottom plot, we see the number of executions (forward passes) of the model
Qq for each trajectory length. For a given trajectory length R, convergence number of
trajectory samples M is used (see Section4.3). The number of model executions is then
M⇥ (R+1). The top plot then takes the difference between the AR procedure and vanilla
procedure log-likelihood for each trajectory length and divides is by the number of model
executions, yielding the difference per model execution. This plot has a minimum of 0, which
cuts off some of the lower parts of the confidence intervals.
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Table 4.2 Log-likelihood Changes with Different Trajectory Generators

Experiment Emanate Grid Random
Real Audio 1.77 ± 0.15 1.76 ± 0.16 1.77 ± 0.16
Sawtooth 1.65 ± 0.29 1.57 ± 0.28 1.64 ± 0.29

Synthetic Audio 0.56 ± 0.10 0.54 ± 0.11 0.55 ± 0.10
Table 4.3 Expected log-likelihoods using different trajectory generation methods described in
Section 3.1. Context set size of 0 has been omitted in the calculation of these log-likelihoods
because using zero context is ill-defined for the Emanate trajectory generator.

4.5 Effect of Trajectory Generation Method

In the above analysis, we have been focused on focused on the impact of trajectory length
R and number of trajectory samples M as they relate to the AR procedure performance for
varying context sizes. The above analysis has been limited to random trajectory generation.
Now we take a look at the impact of the trajectory generation on the AR procedure’s
performance.

In Table 4.3, we see an overview of the expected log-likelihoods across all tasks with
non-zero context 11. We did not find any significant differences between using these different
trajectory generation strategies in the resulting log-likelihoods.

We note that the Random and Grid trajectory generators are agnostic to context or
the target point which we are predicting for. The Emanate trajectory generator does use
information from the context set when creating trajectories. None of them, however, use
information about the specific target point of interest. Follow on work might investigate
trajectory generation strategies which do use this information.

11Emanate trajectory generator requires non-zero context



Chapter 5

Conclusion

We have presented a novel method for using a trained CNP model to generate flexible
marginal distributions by altering the test-time procedure using Monte Carlo integration and
Autoregressive Sampling. We have shown this model to be effective at creating multi-modal
and heavy tailed distributions which achieve higher expected log-likelihoods across three
tasks: two synthetic and one real-world.

In our discussion, we found a key equation that–when true–tells us that our method
improves over the vanilla model:

EMC +E AR

Q
< E Vanilla

Q
(5.1)

We observed in situations where the true marginals are heavy tailed or multi-modal, we
could use the AR procedure such that E AR

Q
< E Vanilla

Q
, and then we could take sufficiently

many trajectory samples to reduce our Monte Carlo error EMC.
We found that for the sawtooth and real audio experiments, having a large context set

led to the marginals being modeled sufficiently well by Gaussians such that using the AR
procedure degraded marginal quality through the introduction of Monte Carlo error. We also
found that the AR procedure struggled to recover the uniform marginal from having zero
context on the sawtooth experiment.

Generally, we found that this method has an impressive capacity for improving marginal
quality and does so reliably if sufficient trajectory samples are taken. The model performs
particularly well in scenarios when the marginals have a few modes or are heavy-tailed, but
is not justified when there are many context points.

Further experiments should examine the impact of aleatoric uncertainty in the underlying
stochastic process on the effectiveness of this method. The insignificant improvements using
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the AR procedure on the real world audio may indicate that the procedure works best when
the data we model have little noise.

The potential usage of importance sampling in trajectory generation could be explored in
cases where it is expected that sampling trajectory outputs from a Gaussian leads to samples
which are too focused around the Gaussian mode. There could be improvements in the Monte
Carlo convergence rates, especially for processes with heavy-tailed marginals.

The effectiveness of this process could also be explored further by again applying the
chain rule of probability over the target points to evaluate the joint (as opposed to using a
factorized joint). For example, by:

L (q) = log
M
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Finally, one might train a CNP model using the AR procedure—by updating parameters
using the negative of Equation 5.3 as the loss function:
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(5.3)
In this way, the training procedure would be explicitly focused on maximizing the AR

procedure’s construction of the marginal predictives. Training in this manner might take some
cues from diffusion models [Sohl-Dickstein et al., 2015], which have a similar construction.
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Appendix A

Tables

Table A.1 Sawtooth Experiment Log-likelihoods.

1 2 4 8 16 32
Naive -0.17 ± 0.01 -0.18 ± 0.00 -0.18 ± 0.01 -0.18 ± 0.00 -0.18 ± 0.00 -0.17 ± 0.00
Vanilla -0.14 ± 0.02 -0.02 ± 0.05 0.42 ± 0.19 1.89 ± 0.23 3.06 ± 0.13 3.54 ± 0.08

1 -0.14 ± 0.02 0.01 ± 0.05 0.64 ± 0.17 2.09 ± 0.22 3.07 ± 0.13 3.54 ± 0.08
2 -0.14 ± 0.02 0.03 ± 0.07 0.73 ± 0.17 2.21 ± 0.19 3.08 ± 0.13 3.54 ± 0.09
3 -0.13 ± 0.02 0.04 ± 0.07 0.81 ± 0.17 2.29 ± 0.18 3.07 ± 0.12 3.53 ± 0.08
4 -0.12 ± 0.03 0.06 ± 0.07 0.87 ± 0.16 2.32 ± 0.17 3.06 ± 0.13 3.53 ± 0.08
5 -0.12 ± 0.03 0.07 ± 0.07 0.90 ± 0.15 2.34 ± 0.16 3.06 ± 0.13 3.53 ± 0.09
6 -0.11 ± 0.03 0.09 ± 0.07 0.92 ± 0.16 2.36 ± 0.15 3.06 ± 0.13 3.52 ± 0.09
7 -0.09 ± 0.04 0.08 ± 0.08 0.95 ± 0.16 2.37 ± 0.15 3.05 ± 0.13 3.51 ± 0.08
8 -0.09 ± 0.04 0.08 ± 0.08 0.95 ± 0.16 2.37 ± 0.15 3.04 ± 0.13 3.51 ± 0.08

Table A.2 Log likelihood values for varying context sizes using AR procedures and vanilla
and naive models. AR procedure log-likelihoods are shown in bold when they are significantly
different than the vanilla log-likelihood (p < 0.05). Column headers are context sizes. Row
names are methods. Errors represent 95% confidence interval obtained through bootstrapping.
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Table A.3 Synthetic Audio Experiment Log-likelihoods.

1 2 4 8 16
Naive -0.46 ± 0.06 -0.46 ± 0.05 -0.45 ± 0.04 -0.44 ± 0.04 -0.40 ± 0.03
Vanilla -0.45 ± 0.18 -0.24 ± 0.12 -0.12 ± 0.12 0.36 ± 0.15 1.07 ± 0.18

1 -0.12 ± 0.08 -0.05 ± 0.10 0.03 ± 0.09 0.52 ± 0.12 1.11 ± 0.20
2 -0.03 ± 0.09 0.05 ± 0.11 0.11 ± 0.10 0.58 ± 0.11 1.16 ± 0.15
3 0.04 ± 0.09 0.10 ± 0.12 0.16 ± 0.10 0.63 ± 0.11 1.19 ± 0.14
4 0.08 ± 0.10 0.15 ± 0.11 0.20 ± 0.10 0.67 ± 0.11 1.21 ± 0.13
5 0.13 ± 0.10 0.17 ± 0.12 0.24 ± 0.10 0.68 ± 0.10 1.23 ± 0.14
6 0.15 ± 0.10 0.19 ± 0.13 0.26 ± 0.10 0.71 ± 0.10 1.24 ± 0.13
7 0.16 ± 0.10 0.21 ± 0.13 0.29 ± 0.11 0.72 ± 0.10 1.26 ± 0.12
8 0.19 ± 0.11 0.24 ± 0.12 0.30 ± 0.12 0.74 ± 0.10 1.27 ± 0.13

Table A.4 Log likelihood values for varying context sizes using AR procedures and vanilla
and naive models. AR procedure log-likelihoods are shown in bold when they are significantly
different than the vanilla log-likelihood (p < 0.05). Column headers are context sizes. Row
names are methods. Errors represent 95% confidence interval obtained through bootstrapping.

Table A.5 Real Audio Experiment Log-likelihoods.

1 2 4 8 16
Naive 1.01 ± 0.16 0.77 ± 0.22 0.90 ± 0.30 1.02 ± 0.20 0.88 ± 0.20
Vanilla 1.11 ± 0.18 1.16 ± 0.22 1.70 ± 0.29 2.29 ± 0.26 2.43 ± 0.19

1 1.13 ± 0.15 1.15 ± 0.22 1.72 ± 0.28 2.29 ± 0.27 2.43 ± 0.19
2 1.13 ± 0.15 1.16 ± 0.22 1.72 ± 0.28 2.30 ± 0.27 2.44 ± 0.19
3 1.13 ± 0.15 1.16 ± 0.22 1.72 ± 0.28 2.30 ± 0.26 2.44 ± 0.19
4 1.14 ± 0.15 1.17 ± 0.22 1.73 ± 0.28 2.30 ± 0.27 2.44 ± 0.19
5 1.14 ± 0.15 1.17 ± 0.22 1.73 ± 0.29 2.30 ± 0.27 2.44 ± 0.19
6 1.14 ± 0.15 1.18 ± 0.22 1.74 ± 0.28 2.31 ± 0.27 2.45 ± 0.19
7 1.14 ± 0.14 1.17 ± 0.22 1.74 ± 0.28 2.30 ± 0.27 2.45 ± 0.19
8 1.14 ± 0.15 1.19 ± 0.22 1.74 ± 0.28 2.31 ± 0.27 2.45 ± 0.19

Table A.6 Log likelihood values for varying context sizes using AR procedures and vanilla
and naive models. AR procedure log-likelihoods are shown in bold when they are significantly
different than the vanilla log-likelihood (p < 0.05). Column headers are context sizes. Row
names are methods. Errors represent 95% confidence interval obtained through bootstrapping.
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Table A.7 Gaussian Process Experiment Log-likelihoods.

1 2 4 8 16
Naive -1.44 ± 0.08 -1.44 ± 0.12 -1.42 ± 0.13 -1.56 ± 0.17 -1.40 ± 0.10
Vanilla -1.36 ± 0.08 -1.27 ± 0.09 -1.12 ± 0.08 -0.92 ± 0.14 -0.52 ± 0.06

1 -1.35 ± 0.08 -1.28 ± 0.10 -1.11 ± 0.08 -0.92 ± 0.14 -0.51 ± 0.05
2 -1.35 ± 0.08 -1.28 ± 0.10 -1.11 ± 0.08 -0.92 ± 0.15 -0.51 ± 0.05
3 -1.35 ± 0.08 -1.28 ± 0.11 -1.12 ± 0.08 -0.93 ± 0.15 -0.52 ± 0.05
4 -1.36 ± 0.08 -1.28 ± 0.10 -1.12 ± 0.09 -0.93 ± 0.15 -0.52 ± 0.05
5 -1.35 ± 0.08 -1.29 ± 0.11 -1.12 ± 0.09 -0.94 ± 0.16 -0.52 ± 0.05
6 -1.35 ± 0.08 -1.28 ± 0.10 -1.13 ± 0.09 -0.93 ± 0.14 -0.52 ± 0.05
7 -1.35 ± 0.08 -1.29 ± 0.10 -1.13 ± 0.10 -0.92 ± 0.14 -0.52 ± 0.05
8 -1.35 ± 0.08 -1.29 ± 0.10 -1.13 ± 0.09 -0.93 ± 0.15 -0.52 ± 0.05

Table A.8 Log likelihood values for varying context sizes using AR procedures and vanilla
and naive models. AR procedure log-likelihoods are shown in bold when they are significantly
different than the vanilla log-likelihood (p < 0.05). Column headers are context sizes. Row
names are methods. Errors represent 95% confidence interval obtained through bootstrapping.
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