
Better Encoders for Neural Process

Family Models

Benedict King

Department of Engineering

University of Cambridge

This dissertation is submitted for the degree of

Master of Philosophy in

Machine Learning and Machine Intelligence

Clare College August 2022

Dedicated to the family and friends who have made my time at Cambridge so enjoyable.

In particular my Grandma, whose support made this master’s possible for me.

Declaration

I, Benedict King of Clare College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are
my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable
purpose.

I further declare the software and data used for this thesis. The experimentation
was carried out using Python and its standard scientific and machine learning libraries:
Numpy, Scipy, Pandas, and PyTorch. All plots and visualisations included in this report
were generated using Matplotlib and Seaborn. The neuralprocesses module that was
used extensively and built upon during this thesis was developed by W. Bruinsma, 2022.
Additional code that was added to this module to execute experiments contained in this
thesis are as follows:

• The addition of adapted decoder likelihoods for the ConvCNP, ConvNP, and CorrCon-
vNP models. Specifically the likelihoods were Bernoulli, Gamma, and composite
Bernoulli-Gamma distributions.

• The addition of synthetic data generation code for (i) a sinusoidal synthetic regres-
sion experiment with bi-modal noise; (ii) the Mixture of Gaussians classification
experiment in arbitrary dimensions with arbitrary number of classes (1D with 2 class
was used in this thesis); (iii) the GP-cutoff classification experiments in arbitrary
dimensions with 2 classes (2D was used in this thesis); (iv) the Gamma process
regression experiments in arbitrary dimensions (2D was used in this thesis).

• Code to conduct the significance testing at the end of Chapter 3. Specifically this code
allows for the forced diagonalisation of the CorrConvNP latent variable covariance
at a set point during training in order to return a ConvNP.

• Code for generating all figures in Chapters 3, 4 and 5, except for Figure 3.3, which
utilised existing code from W. Bruinsma, 2022.

• Code for reading in and processing the rainfall datasets from the Copernicus Climate
Change Service, 2021, and the subsequent sim-to-real experiments using this data.

The only external dataset used was from the Copernicus Climate Change Service, 2021.

Total word count (including the appendix): 14,804

Benedict King

August 2022

Acknowledgements

I would like to thank Professor Richard Turner, who originally suggested this project and

has provided constant support and direction throughout. In addition I would like to say a

huge thank you to Wessel Bruinsma for answering my endless stream of questions, letting

me make use of your code-base, and effortlessly fixing my code whenever I got stuck in a

sea of unintelligible errors.

Abstract

As research into machine learning matures into its 8th decade it has become increasingly

the case that the most celebrated advances have been in areas with the greatest abundance

of data. From reinforcement learning models that achieve super-human game-play perfor-

mance (Silver et al., 2016) to massive language models that are able to generate convincing

news stories in the style of specific authors1 (Brown et al., 2020), the path of progress has

often been to make models bigger and supply them with more information.

Whilst in many cases this is a suitable approach, we must not neglect the areas where it

is unfeasible. When data is scarce or sampled from many different environments we must

turn to methods which are much more efficient in the way that they extract information

and do not overfit during training to the data that is available to them. The purpose of this

thesis is to explore these problems, and in particular, a recent family of models that have

been developed to work well in them, coined Neural Processes.

At their root, neural processes are meta-learners that provide a mapping from a dataset

to the predictive posterior distribution of an underlying stochastic processes. In this way

they can be thought of as both meta-learning models and stochastic process approximators.

In this thesis we start by exploring the strengths and weaknesses of the existing

models in the neural process family (NPF), and build a new model called the Correlated

Convolutional Neural Process (CorrConvNP) to give more robustness and flexibility to

changes in task distributions. We show that the CorrConvNP exhibits strong performance

over a spectrum of synthetic tasks that reflect real use-cases, and evaluation shows it to

perform statistically better than the next best existing model in certain scenarios.

Finally, we show how the CorrConvNP can be extended to different data regimes, such

as classifying categories and zero-inflated regression, via a simple change of likelihood

function. We then test it on both synthetic classification data sets and a practical rainfall

prediction scenario.

1See https://newsyoucantuse.com/ to see the results!

Table of contents

List of figures ix

List of tables xiv

Nomenclature xv

1 Introduction 1

1.1 What is a Neural Process? . 1

1.2 Why Neural Processes? . 1

1.2.1 Meta-learning for Few-Shot Learning 2

1.2.2 Efficient Transfer Learning . 3

1.2.3 Handling Missing Values . 4

1.2.4 Sim-to-Real . 5

1.2.5 Accurate Uncertainty Quantification 5

1.3 Thesis Outline . 6

2 A Review of the Existing Literature 7

2.1 Multi-Task Learning: Context and Target Sets 7

2.1.1 Deep Set Embeddings . 9

2.2 The Conditional Neural Process . 10

2.3 The Neural Process . 12

vii Table of contents

2.4 The Gaussian Neural Process . 14

2.5 Moving to Convolutional Architectures 16

2.5.1 Translation Equivariance . 16

2.5.2 Implementation . 18

2.6 Model Training . 19

2.7 A Summary of Existing Models and their Shortcomings 21

3 Removing the Mean-Field Approximation of (Conv)NPs 23

3.1 CorrConvNP Definition . 23

3.1.1 Fast Computation of the KL-Divergence 24

3.2 How it Fits into the Family . 25

3.3 Performance on Regression Tasks . 28

3.3.1 Breakdown of Performance over Different Domains 35

3.4 Significantly Better? Changing the Training Regime 36

4 Extensions to Non-Gaussian Likelihoods 40

4.1 Classification: Using a Bernoulli Likelihood 40

4.1.1 Likelihood Definition . 41

4.1.2 Mixture of Two Gaussians . 41

4.1.3 GP-Cutoff . 42

4.1.4 Categorical Likelihoods . 44

4.2 Modeling Amounts: Using a Gamma Likelihood 44

4.2.1 Likelihood Definition . 45

4.2.2 Gamma Process . 45

4.3 Model Comparisons on Extended Likelihood Tasks 47

5 Rainfall Modeling: A Practical Example 49

viii Table of contents

5.1 The Bernoulli-Gamma Likelihood Function 50

5.2 Experimental Set-Up . 50

5.3 Results on Synthetic Rainfall Data . 52

5.4 Adapting to the Real Rainfall Data . 54

6 Conclusions and Future Work 56

6.1 Improvements on Baselines . 56

6.2 Extension to Other Likelihoods . 56

6.3 Results of the Rainfall Case-Study . 57

6.4 Improved Fitting in a Low-Data Regime: Latent and Deterministic Pathways 57

Appendix A Model Specifications and Training 63

List of figures

1.1 An example demonstrating two tasks with similar specifications but differ-

ent distribution of data. The task here is to predict raining or not given a

training set of observation points (black dots). 3

2.1 A diagram outlining the differences between using train and test sets in

traditional supervised learning (left) and using context and target sets with

neural processes (right). Whilst the functional forms of r and g might

change from model to model, the foundations of conditioning on a context

set when predicting outputs from a target set hold true for all NPF models.

Figure adapted from (Garnelo, Rosenbaum, et al., 2018). 8

2.2 Diagram showing the architecture of the Conditional Neural Process. The

entire context set is embedded using a deep set approach as discussed

in Section 2.1.1. This embedding is then passed to a neural network

once concatenated with a single target input, and used to give the target

predictive distribution statistics. 10

2.3 Diagram of a Neural Process model, showing the output Gaussian statistics

for a single target prediction y(t)m given the entire context set. The difference

from the CNP is that there is now an additional encoder after the deep set

embedding which produces a distribution over latent variables. It is these

latent variables that the decoder now conditions on when target inputs are

passed through, and they give rise to non-factorisable target predictive

distributions after marginalising them out. 12

x List of figures

2.4 Diagram of a Gaussian Neural Process (GNP) model. The output of the

decoder is run over pairs of points to construct Gaussian statistics for the

joint distribution over the whole target set, yyyttt , given all target inputs, XXX t ,

and the entire context set. 14

2.5 Diagram demonstrating the effect of translation equivariance (TE). A

function represented by a CNN maps the top row to the bottom row,

producing a regression curve and uncertainty from context points. When

the domain is shifted right 20 points in the top row, we would want the

predicted CNN output function to shift accordingly. This is only achieved

when the model is TE. Any non-TE model would instead fail to extrapolate

to the unseen zone despite having observed the exact same pattern in a

different input domain. 17

3.1 A diagram outlining how the models differ and what changes can be

made to find equivalence between them. The green arrows dictate a

transformation between models that requires only a change of distribution

definition and not a change of encoder/decoder architecture, and the purple

arrows represent transformations which require an encoder to be made

deterministic (consequently removing LVs, more on this below). 26

3.2 Training NLL loss with epoch number on both the training set (red) and

held-out validation set (blue) on the three regression tasks (top: EQ, middle:

sawtooth, bottom: bimodal) for all convolutional models. Left to right

the models are CorrConvNP, ConvGNP, ConvCNP, and ConvNP. The

black dashed line represents the minimum NLL of the CorrConvNP on the

validation set. 31

xi List of figures

3.3 Comparing the new model to existing models on three regression tasks

with different properties. The first task (top row) is a GP with an EQ kernel

and Gaussian distributed outputs. The second (middle row) is a sawtooth

as generated in W. Bruinsma, 2022 demonstrating a periodic function with

non-Gaussian distributed outputs. The third (bottom row) is a bi-modal

sinusoid with randomly generated phase and bi-modal Gaussian noise that

is very poorly approximated by a Gaussian predictive distribution. From

left to right the models are: CorrConvNP, ConvNP, ConvGNP, ConvCNP. 32

3.4 Evaluation log-likelihoods of all convolutional models considered in this

thesis on the 3 data regimes in an interpolation domain. The interpolation

domain represents the domain of input values which are bounded by

context points for the specific task being evaluated on. 35

3.5 Evaluation log-likelihoods for the 4 convolutional models on the 3 data

regimes but now in an extrapolation domain. This means that the evalu-

ation points are chosen to be outside the range of context points for that

evaluation task. However, they can be within the range of context points for

other tasks seen during training, and so this is not a complete extrapolation

to an unseen domain. 36

3.6 Plot of the validation set NLL as a function of number of epochs trained

on. Each epoch contains 16 distinct EQ kernel functions to approximate.

The model change from CorrConvNP to ConvNP occurs at epoch 10, and

an instant and lasting negative effect is observed as a result. The solid lines

are mean values over 9 runs on different seeds, and the shaded regions

show the 95% confidence interval. 38

3.7 A similar plot to in Figure 3.6 but this time for a single seed to reduce

computation time. The number of epochs is scaled up 10 times to 200, with

a model change at 100 epochs. The purpose of this plot was to demonstrate

how the training of the two regimes converge after many epochs. It shows

that the damage to the NLL from restricting the LV covariance to be

diagonal is lasting, with the converged NLL being greater for the changed

training regime than for the CorrConvNP control. 39

xii List of figures

4.1 (Left) A binary Mixture of Gaussians experiment in 1D showing the

strong uncertainty quantification of the CorrConvNP. It shows the fit of

the model averaged over 25 samples (green shading is the 95% confidence

interval) compared to the analytic black ground truth. (Right) The fit of a

31-parameter MLP after seeing the same number of training points over

the same number of epochs, but on data from a single task rather than

meta-learning. 42

4.2 The ConvCorrNP model predictions on an evaluation task for the 2D GP-

cutoff experiment after 100 training epochs. The black dots represent the

context point locations and the colour bar is scaled by the probability of

belonging to class 1. 43

4.3 Fit of the Gamma likelihood CorrConvNP model to a 2D synthetic Gamma

process evaluation task. The black dots are again context points, and there

are between 50 and 100 of them for each task. 46

4.4 Comparison of the evaluation log-likelihoods of the CorrConvNP, ConvNP

and ConvCNP models on the extended likelihoods tasks described above,

after 100 epochs of training. The binary mixture of two Gaussians is a 1D

input task, whereas the GP-cutoff and Gamma process are both 2D inputs.

The error bars are 95% confidence intervals. 47

5.1 Examples of rainfall data from 3 days that show very different properties.

The first day has a lot of rain, with a lot of variation in rainfall amounts

and a maximum value that is around 4 times greater than the middle plot,

which represents a day with only a little rain. The middle plot also has

much less variation in rainfall values, and the right hand plot shows a day

with no variation as there is no rain at all. The colourbar is scaled by

rainfall in kg/m2. 51

xiii List of figures

5.2 Predicted rainfall in kg/m2 on the LHS compared to the ground truth on

the RHS, as generated by the synthetic zero-inflated Gamma process. The

Bernoulli model seems to have succeeded in predicting the regions of no

rainfall, but the Gamma model struggles to predict the extent of rainfall

within the raining regions due to data scarcity. The total number of points

available during each task varies between 0.75% and 1.15% of the number

of image grid spaces available. 53

5.3 Sim-to-real results for 4 days of the real rainfall data. The model was

trained on a synthetic replica of the rainfall data and then implemented

on real data without any backpropagation in a sim-to-real fashion, as

described in Section 1.2.4. 54

5.4 Rainfall predictions from the real data overlaid on the geographical region

where the data is taken from. 55

6.1 Diagram of the inclusion of a deterministic pathway on an NP in the

encoder stage. Figure adapted from Kim et al., 2019 58

List of tables

2.1 Summary table of each of the models with their characteristics: shape

of predictive distribution, ability to have correlation between samples,

and uncertainty quantification. The most favourable characteristics are

coloured in green. The final row is the suggested CorrConvNP introduced

in the next chapter, which theoretically satisfies all desired characteristics. 21

A.1 Details of the architectures of the convolutional networks used in the

regression experiments of Chapter 3. 63

A.2 Details of the architectures of the CorrConvNP, ConvNP, and ConvCNP

models used in the 1D and 2D binary Mixture of Gaussians and GP-Cutoff

classification experiments of Chapter 4. 63

A.3 Details of the architectures of the CorrConvNP, ConvNP, and ConvCNP

models used in the 2D Gamma Process regression experiment of Chapter 4. 64

A.4 Details of the architectures of the CorrConvNP model used in the rainfall

modeling task in Chapter 5. 64

Nomenclature

hhh(D) (or H(D)) A continuous vector (or discretised functional) embedding of a set of data

D for use in a feed-forward (or convolutional) neural network.

Fθ A neural network (possibly convolutional) with trainable parameters θ .

ψ(x,y) A pre-aggregation function acting on a pair of points x,y.

ρ(h) A post-aggregation function acting on an aggregate of individual embeddings {hi}=

{ψ(xi,yi)}.

Dc The context set. A set of pairs of points xxx,y.

Dt The target set. At test-time the target set need not contain y values.

ELBO Evidence Lower Bound. An objective function used to train encoder models.

LV Latent Variable. These exist in the models that have an encoder part to them, as

the encoder outputs are the latent variables. They can either take a vector form (for

MLP encoder networks) or a functional form (for CNN encoder networks).

MLE Maximum Likelihood Estimation. An objective function simpler than ELBO that

predominantly is used to train non-encoder models.

NLL Negative Log-likelihood. A metric used to gauge the extent of training of the models.

It is the negative of the log-likelihood, which describes the probability of the test set

data given the model that has been trained on the training set. A lower value near to

0 therefore indicates a stronger performance.

NPF The Neural Process Family (the set of all neural process models, both convolutional

and non-convolutional).

TE Translation Equivariance. The property of CNNs that when the input domain is

translated the output predictions are also translated equally.

Chapter 1

Introduction

1.1 What is a Neural Process?

A neural process is an amortized meta-learning model (Ravi and Beatson, 2019) that is

trained on tasks from multiple data distributions to make it directly applicable to unseen

tasks at test-time. They make use of a context and target set1 from each task to first find a

good representation of the current task within a learned distribution over tasks, and then

condition on that to find a good representation of that task’s internal data distribution.

As a consequence of meta-learning, it is required that the training tasks follow different

distributions, rather than subsets of the same one as in traditional learning. Note that it

is still possible to learn a single large task however, as it can be separated into multiple

smaller tasks with different distributions. For example, consider breaking up the task

of learning to distinguish between K classes of image into multiple smaller tasks, each

distinguishing between k < K image classes.

1.2 Why Neural Processes?

A strong starting point for any piece of research is to consider why it is important and what

gap it is trying to fill. This is quite straightforward to lay out for NPF models: they present

a means of learning quickly on tasks where there is a small amount of data to train on.

1Explained in more detail in Chapter 2 and similar to the support and query sets in Ravi and Beatson,
2019.

2 Introduction

There is also a risk in low data regimes that a model with a large number of parameters

will overfit such that it performs excellently on the training data but is unable to generalise

to a held-out test set. In other words, it will become so confident during training that when

applied to unseen data it makes predictions with high amounts of certainty, even if those

predictions are wrong. NPF models therefore seek to avoid this pitfall via the process

of meta-learning, where they learn to learn2 rather than solely learn a dataset. A few

examples of how this is useful are as follows.

1.2.1 Meta-learning for Few-Shot Learning

Meta-learning takes a different approach to conventional model training by utilising

experience gained over multiple tasks to learn a new task, rather than training from scratch

on each task individually and assuming all the information necessary to train is contained in

that task’s training data (Hospedales et al., 2021). This takes advantage of the assumption

that whilst data distributions may differ across tasks there are still sufficient similarities

between them that relevant information can be transferred from training in one domain to

another.

The effect of this is that if there is little data for a task that we wish to train on, progress

can still be made by training on multiple tasks with similar specifications. As an example

consider a map where regions are classified as it will rain tomorrow and it will not rain

tomorrow. By making observations of the current climate at certain geographical points

and using existing forecasting methods we can make accurate predictions for tomorrow’s

precipitation at those observation points. This can then be used as a training set for a model

that can predict whether it will rain tomorrow in the remainder of the grid of locations that

we are interested in. This is considered a single task following a single data distribution:

for this one day the distribution of raining tomorrow or not against geographical location

is fixed and able to be learned by a model given enough observation points.

However, when tomorrow comes and we wish to repeat the task for the next day, this

distribution will have changed, and consequently just using the previous day’s model will

result in a poor prediction now that the model has fitted to a distribution that is no longer

2As described in Section 1.1 above, learning to learn means learning not only a single task’s internal
distribution, but also the similarities across different tasks, such that a model can generalise quickly to unseen
tasks in the future.

3 Introduction

Fig. 1.1 An example demonstrating two tasks with similar specifications but different
distribution of data. The task here is to predict raining or not given a training set of
observation points (black dots).

true. This is shown in Figure 1.1. One solution would be to retrain the model from scratch

on the new observations, but if there are not many observations then training will be

difficult. Another approach therefore is to extract some information from the previous day,

such as how regions of rain/no rain seem to be correlated in space, and use that information

in addition to the new observations to help the model learn tomorrow’s distribution faster.

This is an example of meta-learning, and when repeated over many different tasks (days

in this case), it allows a model to generalise rapidly to new unseen distributions with a

limited number of observations for the current task.

This rainfall example is a strong use case for meta-learning, and is explored in more

depth towards the end of this thesis.

1.2.2 Efficient Transfer Learning

A major motivation for neural processes and meta-learning in general is that they allow

for the transfer of learned knowledge from one domain to another, as demonstrated in

(Requeima et al., 2019). If done well this potentially reduces significantly the data, time,

and compute required to train to the same level on the second domain. Not only is this

economical, but can be crucial in many use cases.

Personalisation is a good example of this. Personalisation concerns making the outputs

of a model more specific to an individual user over time, for example within the context

4 Introduction

of recommender systems or predictive text models. In the early stages of a user using an

application there is a scarcity of data that is specific to that user, and so it is difficult to

effectively train a model to give them good recommendations without overfitting. What

is more, the training process often requires a computationally intensive process such as

backpropagation that is not feasible to run on a small device like a mobile phone.

Whilst there are a number of approaches for meta-learning (Hospedales et al., 2021),

they all share a similarly extensive computation requirement during meta-training (the

general training of the model over all tasks rather than specific training on a single

task), with the number of tasks trained on often reaching in the thousands until a good

representation can be learnt. However, once meta-training has been performed, the test-

time implementation of the model on a previously unseen task is a lot cheaper and faster.

Indeed in amortisation-based meta-learning approaches (Ravi and Beatson, 2019), such

as those used in NPF models, there is no requirement for back-propagation at all at test

time, making the computation requirements substantially smaller.3 This means that a

meta pre-trained model can be put on a smaller device such as a mobile phone and the

personalisation carried out on-device in an efficient manner.

1.2.3 Handling Missing Values

The ability of neural processes to learn tasks rapidly with little training data allows them to

fill in missing values for previously unseen off-the-grid data in time-series or images, for

example. In the image case, a neural process can use the provided pixel values as a context

set (more on these shortly) and treat the rest of the missing image grid as the target inputs.

This allows for pixel value predictions to be calculated at each missing value to up-scale

the image resolution (Garnelo, Rosenbaum, et al., 2018), (Garnelo, Schwarz, et al., 2018).

3For example the test-time performance for a ConvNP (discussed in chapter 2) is at least 5x faster than
other state-of-the-art meta-learning models such as Model Agnostic Meta-Learning (MAML) that require
gradient computations on unseen tasks (Requeima et al., 2019), (Finn, Abbeel, and Levine, 2017).

5 Introduction

1.2.4 Sim-to-Real

Another use case of interest is emulation, specifically the transfer from simulated to real

data.4 This is again a method for combating data scarcity, specifically when there is a

shortage of observed data but we know a basic underlying model of the problem’s dynamics.

Therefore a synthetic model is known, but the exact parameters are not, and real world

observations contain noise that is often not well represented by a simulation. Despite this,

the fact that the underlying mechanics are correct mean that the distribution of simulated

data is similar to that of the real observations. The model can therefore be meta-trained on

simulated data with a range of parameter settings to learn a good representation prior to

having the true observations passed through to make realistic predictions at test-time.

1.2.5 Accurate Uncertainty Quantification

A final prominent motivation for neural processes is how mitigating overfitting naturally

leads to strong uncertainty quantification. When a new task is presented to a meta-learner

during training they are penalised for being overconfident about their predictions from

the previous task as the ground-truth distribution has shifted. As a result meta-learning

models, particularly generative ones like considered in this thesis, are intrinsically good

at quantifying the amount of confidence behind their predictions, even after a very large

number of training epochs (Garnelo, Rosenbaum, et al., 2018).5

The advantages of this are far-reaching, as overfitting and exaggerated confidence has

been a problem that has plagued black-box models for a long time (Mena, Pujol, and

Vitrià, 2021) and has led to slow uptake in domains where incorrect predictions have

adverse consequences such as medicine and finance. Multi-stage models such as climate

models that make use of uncertainty in their downstream modeling are also negatively

effected by overconfidence, and would therefore also be advantaged by accurate uncertainty

quantification. This is further discussed in Chapter 5 of this thesis.

4See for example the applications of Convolutional Conditional Neural Processes and Gaussian Neural
Processes, which are described in Chapter 2, to predator-prey data (Gordon et al., 2020), (Markou et al.,
2022)

5Note however that the type of uncertainty that makes up this quantification varies between models, with
the original Conditional Neural Process discussed in this paper predicting almost solely aleatoric noise. This
is discussed in greater detail in Chapter 2.

6 Introduction

1.3 Thesis Outline

The organisation of the thesis takes the following order:

• Chapter 2: A review of the existing literature behind Neural Process Family models,

discussing the task that each was built to solve and their consequent strengths

and weaknesses. The existing literature has many similarities in approaches and

methodology yet often use different notations to describe the same process. Therefore

this chapter also provides a unification across the current models to make their

comparisons more transparent.

• Chapter 3: Introducing and testing the new CorrConvNP model, laying out the

motivations behind the adaptations and how they provide improvements to the

existing methods.

• Chapter 4: Introducing alternative likelihoods for the CorrConvNP and exploring

why it is a suitable choice for certain classification and prediction problems.

• Chapter 5: Investigating a real-world use case which the meta-learning and cor-

related predictive distribution characteristics of the new model are well suited for.

This case is to predict the daily volume of rainfall over a grid given a low number

of observations, and is an historically difficult problem due to the preponderance of

zeros in rainfall data.

• Chapter 6: A summary of the investigations within this thesis and future research

questions that could arise as a result of it.

Chapter 2

A Review of the Existing Literature

Since their initial conception in 2018 there have been multiple models join the neural

process family, each offering a slight difference in architecture and consequent variations in

their properties. This chapter investigates their chronology and builds a unifying notation

under which all models can be readily compared.

2.1 Multi-Task Learning: Context and Target Sets

One feature common to all models is multi-task learning, which is the ability (and re-

quirement) to train on many tasks with data from different underlying distributions. As

mentioned at the start of Chapter 1, this is usually advantageous and rarely a restriction, as

one large task can be broken up into multiple smaller ones with different distributions to

give a work-around for single-task problems.

To achieve multi-task learning, all models make use of a context and target set. Whilst

the terminology may seem unusual to a reader unfamiliar with meta-learning, it is similar in

concept to training and test sets in traditional supervised learning. The difference, however,

comes from the fact that the task at test-time has not been seen before by the model, so

it does not make sense to simply pass test data through a pre-trained model in the hope

that the outputs will be specific to the task at hand. Instead, after every task, be it during

training or testing, the model has available to it a set of context points, Dc, and a set of

target points, Dt . The difference between training and testing is that during training the

labelled target points are used to learn parameters through backpropagation, whereas in

8 A Review of the Existing Literature

testing they are not. A diagram making clear this difference in methodology can be seen in

Figure 2.1.

Fig. 2.1 A diagram outlining the differences between using train and test sets in traditional
supervised learning (left) and using context and target sets with neural processes (right).
Whilst the functional forms of r and g might change from model to model, the foundations
of conditioning on a context set when predicting outputs from a target set hold true for all
NPF models. Figure adapted from (Garnelo, Rosenbaum, et al., 2018).

As can be seen from the RHS of the figure, the context set is embedded by some

function r : (xi,yi)→ hi and aggregated by a : {hi}→ h such that all of the target point

predictions are conditioned on the context set. The context set therefore has the effect of

making the meta model specific to the unseen task at hand and requires labeled (x,y) pairs,

whereas the target set defines all points where an output needs to be predicted given the

input.

Figure 2.1 also makes clear the similarity between neural processes and stochastic

processes, as stochastic processes also make use of a set of input-output pairs to condition

on when making predictions from a target set. The major advantage of the neural process

approach comes from the computational complexity improvements. If there are n points

in the context set and m in the target set, then a stochastic process such as a Gaussian

process has complexity O((n+m)3) (Rasmussen and Williams, 2006). In comparison,

due to the use of neural networks, if no backpropagation is taking place (i.e. we are in a

post-training regime), then the computational complexity of a neural process is O(n+m)

(Garnelo, Rosenbaum, et al., 2018), presenting a significant speed-up comparably.

A new issue now presents itself, however. Both the context set and target set can

take variable numbers of points, but neural networks generally require fixed-size inputs.

What is more, the ordering of (x,y) pairs within those sets should not matter, and for

9 A Review of the Existing Literature

utility purposes it should be possible to continually expand both the context and target sets

without having to re-run any computation on previously seen points. This is the problem

of permutation invariance on sets (Wagstaff et al., 2019), and is solved for the target set

in a variety of ways for different NPF models (discussed later on in Chapter 2). For the

context set however, the solution comes for all models from deep set embeddings (Zaheer

et al., 2017).

2.1.1 Deep Set Embeddings

Proposed by Zaheer et al., 2017, Deep Sets are a way of representing entire unordered sets

of variable length in a single vector representation of fixed size so that the output of any

function operating on them is permutation invariant.

Permutation invariance is defined as the following. Consider a function f (·) acting on

a set of values D = {d1, ...,dN} for arbitrary length N. Permutation invariance holds iff for

any permutation π it is true that:

f ({d1, ...,dN})≡ f ({dπ(1), ...,dπ(N)}) (2.1)

With this in mind, the deep set theory is as follows (Zaheer et al., 2017). Any function

f (·) is a valid set function iff it can be decomposed as:

f (D) = ρ

(
∑

d∈D
ψ(d)

)
(2.2)

where ψ(·) and ρ(·) are suitably defined transformation functions. In the extended

case that ψ(·) and ρ(·) are deep neural networks, f (·) becomes a deep set function.

In the context of this work, the sum is known as the aggregation, ψ(·) is referred to

as a pre-aggregation function, and ρ(·) a post-aggregation function. The context sets are

passed through this chain of functions to find an embedding, either denoted by hhh for FNN

transformation functions, or H for CNN versions (this is discussed in more detail in the

remainder of Chapter 2).

10 A Review of the Existing Literature

2.2 The Conditional Neural Process

First of the NPF models was the Conditional Neural Process (CNP) (Garnelo, Rosenbaum,

et al., 2018). It is the simplest in architecture, involving only a context set embedding and

a decoder. Its motivation was to mimic the functional flexibility and strong uncertainty

quantification of stochastic processes such as Gaussian Processes (GPs) (Rasmussen and

Williams, 2006) whilst boasting the lower computational complexity of neural networks.

The structure of a CNP is modular and sequential: it can be crudely thought of as a

sequence of neural networks that work in a chain-like fashion, taking as input the output of

the previous network and passing the outputs forwards to another. Importantly, the final

outputs are the statistics of a Gaussian distribution (namely the mean and variance), which

are used to define a distribution over predicted outputs for each test input passed into the

model. This is the reasoning behind saying that a CNP is a neural network approximator

of a GP; it takes in a set of inputs and produces Gaussian distributions over their outputs.

A diagram of a CNP can be seen in Figure 2.2.

Fig. 2.2 Diagram showing the architecture of the Conditional Neural Process. The entire
context set is embedded using a deep set approach as discussed in Section 2.1.1. This
embedding is then passed to a neural network once concatenated with a single target input,
and used to give the target predictive distribution statistics.

The functional breakdown can be described in more detail as follows:

1. There is a local embedding for each context set point, given by some pre-aggregation

function (for example a Feedforward Neural Network (FNN) is used in the original

paper (Garnelo, Rosenbaum, et al., 2018)):

hhhn = ψ(xxx(c)n ,y(c)n) (2.3)

11 A Review of the Existing Literature

The aggregation then combines these representations in a deep set architecture as

proposed in (Zaheer et al., 2017), which makes the overarching context embedding

invariant to permutations and the length of the context set. A sum makes a natural

choice for this:

hhh = ∑
n∈Dc

hhhn (2.4)

Note that in the diagram in Figure 2.2, H is used as the context set embedding.

This is an equivalent notation, but allows for the embedding to have more than 1

channel, for example if convolutional architectures were to be used with CNN-like

pre-aggregation functions (see Section 2.5).

2. The context set embedding is then concatenated with a target set input xxx(t)m and

passed into a decoder network, which in the original paper was once again a FNN.

The output of this decoder network is therefore specific to a single target point, and

gives both the mean and variance of a Gaussian distribution for the target output,

p(y(t)m |xxx(t)m ;Dc), governed by:

y(t)m ∼ N (µm,σ
2
m)

µm,σ
2
m = FDecoder(xxx

(t)
m ,hhh)

(2.5)

Importantly, the fact that the model is ran separately for all points in the target set means

that it it can handle a target set of any size, but that all target points must therefore be

treated as independent, which can have negative consequences on tasks where correlation

between points is important. This is the motivation behind the later models such as the

Neural Process and Gaussian Neural Process described below.

The likelihood over the entire target set is:

p(yyyt |XXX t ,Dc) = ∏
m∈Dt

p(y(t)m |xxx(t)m ,hhh(Dc)) = ∏
m∈Dt

N (y(t)m ; µm(xxx
(t)
m ,Dc),σ

2
m(xxx

(t)
m ,Dc)) (2.6)

which demonstrates this target point independence from the fact that it is factorisable.

12 A Review of the Existing Literature

2.3 The Neural Process

The independence of target point distributions in the CNP ends up being problematic in

many applications where correlations between input features are important. To see this we

return again to the example in Chapter 1 of predicting whether it will rain or not tomorrow,

and adapt it slightly. The inputs in this scenario were the spatial coordinates of a grid of

locations and the outputs were a binary variable of raining or not raining. If the outputs

are changed to a continuous measure of rainfall amount, then we can truncate at 0 our

Gaussian target predictive distributions produced by the CNP and approximate the rainfall

amounts by sampling from them. However, the target set independence now dictates that

at any given point the amount of rainfall can be deduced from the context set only and

does not depend on the rainfall at locations nearby in the target set. If the context set is

small and covers very few locations then rainfall predictions far from context points will

fluctuate greatly even between adjacent locations. Realistically this does not make sense,

particularly on small distance scales. The amount of rain predicted a matter of meters from

our location should tell us a great deal about how much rain we predict for where we are,

and therefore the target predictions must be correlated.

Neural Processes were therefore introduced to remove this target prediction indepen-

dence (Garnelo, Schwarz, et al., 2018) and use a latent variable (LV) architecture to prevent

factorisability of the target set likelihood. Figure 2.3 below shows a diagram of a NP

model, which is similar to the CNP of Figure 2.2 but has an additional encoder network

inserted between the deep set embedding and the target set decoder.

Fig. 2.3 Diagram of a Neural Process model, showing the output Gaussian statistics for
a single target prediction y(t)m given the entire context set. The difference from the CNP
is that there is now an additional encoder after the deep set embedding which produces a
distribution over latent variables. It is these latent variables that the decoder now conditions
on when target inputs are passed through, and they give rise to non-factorisable target
predictive distributions after marginalising them out.

13 A Review of the Existing Literature

The NP architecture is given as follows:

1. The encoder maps from the context set to a probability distribution over a set of LVs

{z}. It takes as input the context set in embedded form and outputs the mean and

variance of a multidimensional Gaussian distribution for {z}. Like with the CNP,

the original paper uses FNNs for all function approximations, and so the encoder

takes the form of a FNN with trainable parameters (Garnelo, Schwarz, et al., 2018).

{z} ∼ N (µ,σ2)

µ,σ2 = FEncoder(hhh(Dc))
(2.7)

where, as with the CNP, the embedding is given by:

hhh = ∑
n

hhhn = ∑
n

ψψψ(x(c)n ∪ y(c)n) (2.8)

2. The decoder then constructs the mapping from target inputs to distributions of

the target outputs, conditioned on the LVs {z} sampled as above. Specifically, it

produces the distribution pθ (yyyt |Xt ,{z};Dc) by using a neural network to approximate

the Gaussian statistics via:

p(yyyt |XXX t ,{z};Dc) = ∏
m∈Dt

N (y(t)m ; µm(xxx
(t)
m ,{z};Dc),σ

2
m(xxx

(t)
m ,{z};Dc))) (2.9)

where µm and σ2
m are a 2-headed neural network output layer (the original paper

again uses a FNN for this (Garnelo, Schwarz, et al., 2018)):

µm,σ
2
m = FDecoder(xxx

(t)
m ,{z}) (2.10)

The benefit of a LV representation now becomes clear when marginalising them out to

give the expression for the target set predictive:

p(yyyt |XXX t ;Dc) = Ep(z) [p(yyyt |XXX t ,{z};Dc)] (2.11)

which is no longer factorisable and therefore means that the target points are no longer

independent given the context set.

14 A Review of the Existing Literature

2.4 The Gaussian Neural Process

A different approach to ensure correlation between target points is to force the target

predictive distribution to be non-diagonal. This is the approach taken by the Gaussian

Neural Process (GNP) proposed in Wessel Bruinsma et al., 2021. In contrast with a NP, the

GNP uses a closed-form likelihood and includes only a deep set embedding and a decoder.

Instead a GNP defines a covariance between each pair of points in the target set such

that they are now not assumed to be independent (i.e. the covariance matrix over target

points is constructed to be non-diagonal). This means that the decoder must be ran over

pairs of points for each element of the covariance matrix to be constructed. The function

architecture for a GNP is shown in Figure 2.4 below.

Fig. 2.4 Diagram of a Gaussian Neural Process (GNP) model. The output of the decoder is
run over pairs of points to construct Gaussian statistics for the joint distribution over the
whole target set, yyyttt , given all target inputs, XXX t , and the entire context set.

Notice that in Figure 2.4 the decoder output now has a greater number of heads than

before. The first gives the mean of the target Gaussian distribution (we have once again

assumed for simplicity that the dimensions of yc and yt are 1), and the remainder give a

fixed-size vector that is used to construct the elements of the Gaussian target predictive’s

covariance matrix. A more detailed breakdown of the process is as follows:

1. The likelihood distribution is now given by:

p(yyyt |XXX t ,Dc) = N (yyyt ;mmm(XXX t ,Dc),KKK(XXX t ,Dc)) (2.12)

where the mean vector and covariance matrix are defined jointly over all points

in the target set. Note the diversion from CNPs here is that the covariance matrix

need not be diagonal, although if KKK := σ2ÎII for some σ2 then we do return the CNP

architecture.

15 A Review of the Existing Literature

2. The mean and covariances are defined using neural networks f (·) and g(·) (e.g.

FNNs again), where the covariance is simplified to be calculated pair-wise over

points within a positive semi-definite kernel function k(·):

mmmi = fθ (xxx
(t)
i ,hhh)

KKKi, j = k(gggθ (xxx
(t)
i ,hhh),gggθ (xxx

(t)
j ,hhh))

(2.13)

For the architecture in Figure 2.4, f (·) and g(·) are assumed to be part of the same

multi-headed neural network with parameters θ , and this decoder network is ran

twice (over both xxx(t)i and xxx(t)j) to construct a single KKKi, j element.

3. For the kernel function, a common choice is the Exponentiated Quadratic (EQ)

(Rasmussen and Williams, 2006) due to its theoretically infinite number of basis

functions allowing it to model locally varying functions well. However, as the EQ

kernel works on the difference between its vector inputs, the smallest the elements

of the kernel matrix can be is 1 (i.e. on the diagonal). Therefore, the KVV kernel is

used to allow near 0 covariance in regions where the target points are close to points

from the context set. This is defined as follows (Markou et al., 2022):

KKKKVV
i, j = kEQ(gggθ (xxx

(t)
i ,hhh),gggθ (xxx

(t)
j ,hhh))ν(xxx(t)i)ν(xxx(t)j) (2.14)

where ν(·) is a neural network layer producing a scalar that can take any real value

and can therefore learn to go to 0 at the context points.

Despite the KVV kernel giving good flexibility for learning a function shape, it

has the disadvantage of not being parallelisable across an entire target set through

matrix operations. Therefore, Wessel Bruinsma et al., 2021 use a low-rank kernel

approximation:

KKK =VVV θVVV T
θ +ΛΛΛdiag (2.15)

where ΛΛΛdiag represents non-zero but independent observation noise, and VVV θ is a

matrix with any jth row representing gggθ (xxx
(t)
j ,hhh) from Equation (2.13).

16 A Review of the Existing Literature

2.5 Moving to Convolutional Architectures

2.5.1 Translation Equivariance

Translation Equivariance (TE) is an essential property for strong model generalisation

(Foong et al., 2020). A model is called TE if when an input domain is shifted in space (for

spatial data) or time (for temporal data) its predictions are shifted in an identical way.1 The

generalisation power of TE stems from its ability to extrapolate to unseen domains: with

TE, if a model learns some function or generative distribution in an observed domain during

training, it can also give good predictions on test data that follow the same distribution or

functional form, even if the data lie outside of the training domain.

To achieve TE in deep learning a common approach is to use Convolutional Neural

Networks (CNNs). The authors of the paper (Ravanbakhsh, Schneider, and Poczos, 2017)

show that a network that exhibits parameter sharing, such as a convolutional network, has

the desired properties of TE. What is more, in the paper by Kondor and Trivedi, 2018, the

authors go one step further and show that convolution in every layer of a neural network

is a necessary requirement for equivariance within a compact group. Equivariance here

is thus not restricted just to translation (though this is the characteristic that we are most

concerned with for our application) but holds for any transformation within a compact

group, such as linear and affine matrix transformations (as defined in Donald House and

Keyser, 2016, Appendix C).

This is the approach taken by Gordon et al., 2020, Foong et al., 2020, and Wessel

Bruinsma et al., 2021, with the new additions to the NPF called the ConvCNP, ConvNP, and

ConvGNP respectively. However, the use of convolutional architectures adds an additional

complexity. It is no longer suitable for the context set embedding hhh, or the LVs {z} of

encoder models, to be vectors, they have to now instead be represented by functions. As

described in the Conv Deep Sets section of Gordon et al., 2020, the reasoning behind this

is that TE is not well defined for vectors. To demonstrate this the authors consider a CNN

to be a function f (xxx) : xxx → Y , operating on inputs xxx ∈ Rd with translations τττ ∈ Rd given

by a translation operator Tτττ(·) also operating in Rd . If Y is a vector of dimension d′ then

1Note that this is not the same as translation invariance, which TE is often confused for. Translation
invariance is instead the property that output predictions do not change when the input domain is translated.

17 A Review of the Existing Literature

there is no suitable definition for a translation f (Tτττ(xxx))
TE
= Tτττ(f (xxx)) = Tτττ(Y), as Tτττ(Y) is

undefined when the dimension of Y can be different from the dimension of the translation

operator. However, if Y is a function with inputs spanning the space Rd , then it is well

defined to say f (Tτττ(xxx))
TE
= Tτττ(f (xxx)) = Tτττ(Y (xxx)), and translation equivariance is satisfied.

Figure 2.5 shows a diagramatic explanation of what TE means and how it is achieved

by a functional representation. The input dimensions have been made 1 here to be able to

generate the figure, but in general the inputs can be any dimension.

Fig. 2.5 Diagram demonstrating the effect of translation equivariance (TE). A function
represented by a CNN maps the top row to the bottom row, producing a regression curve
and uncertainty from context points. When the domain is shifted right 20 points in the top
row, we would want the predicted CNN output function to shift accordingly. This is only
achieved when the model is TE. Any non-TE model would instead fail to extrapolate to the
unseen zone despite having observed the exact same pattern in a different input domain.

18 A Review of the Existing Literature

2.5.2 Implementation

In the non-convolutional models the context set embedding is represented by a vector hhh,

which depends on an arbitrary length context set and is permutation invariant due to the

use of deep sets. For vector basis function ψψψ(·), hhh is defined as (Garnelo, Rosenbaum,

et al., 2018):

hhh = ∑
n∈Dc

ψψψ(xxx(c)n ,y(c)n) (2.16)

A similar approach is taken in the convolutional models, except the context set embed-

ding now needs to be discretised to be passed as a CNN input. This discretisation is done

by splitting the input domain uniformally into a user-decided number of points. Care has

to be taken not to set the discretisation too high for high dimensional input spaces as the

memory requirement for the discretisation increases with order O(Kd) for d dimensions

and K discretised points per 1D domain range.

A 2-channel tensor denoted H is used in the ConvCNP (Gordon et al., 2020) and the

ConvNP (Foong et al., 2020) as the embedding, with the first being the data channel and

the second the density channel.2

The data channel is given by: (note the normalisation by the density channel is optional)

H0(ttt) =
∑n∈Dc y(c)n ψ(ttt − xxx(c)n)

∑n∈Dc ψ(ttt − xxx(c)n)
(2.17)

where ttt is a translation included to demonstrate the TE property of the convolutional

embedding.

The density channel describes where there are data-points within the discretised grid,

as otherwise the data channel above would give the same values for both y(c)n = 0 and no

data-point existing at that xxx(c)n point at all. It is defined as:

H1(ttt) = ∑
n∈Dc

ψ(ttt − xxx(c)n) (2.18)

2In the original papers they give a vector formula for H to represent both channels in one equation, but
here we take the same notation as Wessel Bruinsma et al., 2021 and represent each channel separately for
simplicity.

19 A Review of the Existing Literature

ConvGNPs (Wessel Bruinsma et al., 2021) also use a third channel in the embedding

which they call the source channel. This is given by the identity matrix H2 = ÎII, which

allows the model to start out with stationary prior covariance.

Where LVs are used, they are represented as a set {z} to indicate that they are either

a set of scalars (represented by a vector) or a set of functions, depending on the use

of convolutional models. Note that regardless of model, there is only one ‘set’ of LVs

produced per task - i.e. they are global to all target points for that task.

In the convolutional case, latent functions are approximately GPs, found by sampling

from a set of Gaussian distributions (one for each discretised point in the LV domain)

with mean and variance parameters predicted by a CNN encoder (Foong et al., 2020). For

the ConvNP these parameters are independent of each other, much like the decoder of a

(Conv)CNP.

2.6 Model Training

For the models without encoders (namely the (Conv)CNP and (Conv)GNP) their generative

nature means that maximum likelihood estimation (MLE) can be used as the training

objective. Due to the complex relationship of the model outputs with the parameters

there is no analytic solution with any of the models, so backpropagation with stochastic

gradient descent is implemented using an ADAM optimiser. As discussed in Chapter 1, the

combination of the models being generative and the training regime being meta-learning

means that they are unlikely to overfit to a single task during training, and hence there is

no need for any additional regularisation terms in the objective function.

When it comes to the LV (Conv)NP model, the objective function has to be modified

in order for the encoder’s parameters to be trained simultaneously to the decoder’s. As the

LVs are unobserved, this is achieved via an Evidence Lower-Bound (ELBO) objective,

such as that defined in Section 2.2 of Kingma and Welling, 2014. The objective takes

advantage of the monotonicity of the logarithm function to write a lower bound:

20 A Review of the Existing Literature

log pθ (yyyt |XXX t ;Dc) = E{z}∼qφ

[
log
(

pθ (yyyt |{z},XXX t ;Dc)

qφ ({z}|Dc)

)]
+KL(qφ ({z}|Dc ∪Dt)||p({z}|Dc))

≥ E{z}∼qφ

[
log
(

pθ (yyyt |{z},XXX t ;Dc)

qφ ({z}|Dc)

)]
= LELBO(θ ,φ)

(2.19)

where qφ is the encoder neural network mapping from context set to LVs, with trainable

parameters φ . As the term p({z}|Dc) is non-computable, a bootstrapping approach is

suggested in Le, 2018 and Garnelo, Schwarz, et al., 2018, of approximating it with

qφ ({z}|Dc), giving a final approximate ELBO objective to maximise:

LELBO(θ ,φ) = Ez∼qφ ({z}|Dc∪Dt) [log pθ (yyyt |XXX t ,{z})]−KL
[
qφ ({z}|Dc ∪Dt) ||qφ ({z}|Dc)

]
(2.20)

The original ConvNP paper (Foong et al., 2020) also implements a MLE objective for

the LV regime due to its faster computation and better uncertainty quantification caused

by no mean-field approximation (more on this below). However, using an MLE objective

leads to a bias in low data scenarios.3 Therefore for the purpose of this thesis, all encoder

model training is conducted using the approximate ELBO objective. Note that in practice

normalisation with the number of target points is also used, as the number of target points

changes per epoch.

3Specifically a MLE objective pushes the latent variable towards becoming deterministic if there is
low data capacity, returning in the limit a ConvCNP again, which has better uncertainty estimates, but
overweights aleatoric uncertainty over epistemic (as discussed in the following section). However, as the
amount of available data tends to infinity the KL term in the ELBO objective tends to 0 and the ELBO tends
towards the MLE objective anyway (Foong et al., 2020).

21 A Review of the Existing Literature

2.7 A Summary of Existing Models and their Shortcom-

ings

The table below summarises the existing models introduced in the chapter and outlines

their characteristics and shortcomings.

Model TE Target
Predictive
Distribution

Uncertainty Quantification Correlated
Target Points

CNP No Diagonal
Gaussian Only

Good, but overweights
aleatoric uncertainty (noise)

No

NP (LV) No Flexible Poor, underweights net
uncertainty4

GNP No Gaussian Only Good Yes

ConvCNP Yes Diagonal
Gaussian Only

Good, but overweights
aleatoric uncertainty (noise)

No

ConvNP
(LV)

Yes Flexible Poor, underweights net
uncertainty5

Yes

ConvGNP Yes Gaussian Only Good Yes

CorrConvNP
(LV)

Yes Flexible Good Yes

Table 2.1 Summary table of each of the models with their characteristics: shape of predic-
tive distribution, ability to have correlation between samples, and uncertainty quantification.
The most favourable characteristics are coloured in green. The final row is the suggested
CorrConvNP introduced in the next chapter, which theoretically satisfies all desired char-
acteristics.

The most notable results from Table 2.1 above are the strong performances of the

ConvGNP and the ConvNP models, with each filling all but one of the desired properties.

It is not clear exactly why the ConvNP underweights net uncertainty when trained with

an ELBO objective, but it is likely caused by the mean-field approximation in VI, caused

by the diagonal Gaussian (and thus independent) outputs of the ConvCNP encoder. One

suggestion (Le, 2018) is that the LV encoder models the epistemic uncertainty of the

underlying stochastic process, whereas the decoder models the observation noise. There-

fore, by forcing the LVs to be independent there is a loss of information on the stochastic

4Net uncertainty is the combination of aleatoric (noise) and epistemic (functional) uncertainty.
5This result is for the ELBO objective, the MLE objective improves net uncertainty but overweights

aleatoric uncertainty like the CNP (CovNP).

22 A Review of the Existing Literature

process variability, which causes epistemic uncertainty to be underweighted, leading to

net uncertainty underweighting if the aleatoric noise is otherwise well-represented by the

decoder.

The purpose of this thesis is therefore to propose a new model that has all of the

desirable properties of Table 2.1 above (shown by the bottom row). There are multiple

approaches for this, such as invertible output transformations on the ConvGNP outputs

as done in Markou et al., 2022, although these require that the transformations have well-

defined analytic inverses and that we know what the output distribution is, which limit

their applicability. Therefore, as discussed in Chapter 3, the approach taken in this work is

to start with a ConvNP basis and build in stronger uncertainty quantification by removing

the mean-field approximation on the LVs.

Chapter 3

Removing the Mean-Field

Approximation of (Conv)NPs

3.1 CorrConvNP Definition

The modularised design of NPF models means that their components are able to be inter-

changed to construct models with different properties. For example, the (Conv)NP was

constructed by treating a (Conv)CNP as an encoder to generate a LV. This is then concate-

nated with a target input and passed to a (Conv)CNP decoder for the target prediction. In

a similar fashion, the (Conv)GNP is derived from the (Conv)CNP by altering the output

layer of the decoder and constructing a pair-wise dense covariance function. This is a

common theme throughout both the literature and this thesis, and we take a very similar

approach with the proposed new model now.

Recall that the downfall of the ConvNP is hypothesised to come from the independent

LVs in the ConvCNP encoder. If we want the encoder to instead produce correlated

LVs, it make sense to swap out the ConvCNP encoder for a ConvGNP instead. The

encoder output is now a vector of values that parameterise both a mean vector and a

non-diagonal covariance matrix using the low-rank approximation (detailed below), which

allows for correlated latent functions to be sampled from a multivariate Gaussian. Due to

the introduced correlation of LVs and similarity with the previous ConvNP, we call this

new model the Correlated Convolutional Neural Process (CorrConvNP).

24 Removing the Mean-Field Approximation of (Conv)NPs

Note that this adaptation does not require major changes to the ELBO objective from

Chapter 2, as only the encoder is being changed, so only the Kullback-Leibler (KL)

divergence term is affected. For convenience the ELBO objective is repeated below:

LELBO(θ ,φ) = Ez∼qφ ({z}|Dc∪Dt) [log pθ (yyyt |XXX t ,{z})]−KL
[
qφ ({z}|Dc ∪Dt) ||qφ ({z}|Dc)

]
(3.1)

With a ConvGNP encoder the distribution qφ ({z}|·) is now a multivariate Gaussian

with a dense covariance matrix rather than the previous diagonal one. The calculation of the

KL-divergence between two multivariate Gaussians is analytic, but unfortunately typically

computationally cubic in the number of input points1 when their covariances are non-

diagonal. Therefore, Wessel Bruinsma et al., 2021 implement a low-rank approximation

to the dense covariance that can lead to significant improvements in performance in this

correlated LV scenario.

3.1.1 Fast Computation of the KL-Divergence

The Sherman–Morrison–Woodbury equation (Max, 1950) gives a way of approximating

square dense matrices, such as a non-diagonal covariance matrix, in terms of lower rank

matrices and a diagonal matrix. The consequence of this is a large computational speed-up

in the calculation of dense matrix inverses. The mathematics of this operation are as

follows:

If VVV φ is a (N x M) matrix from the encoder output for N input points and a chosen

rank M, and ΛΛΛdiag is a (N x N) diagonal matrix representing independent Gaussian noise,

then the low-rank approximation simplifies the inversion of the covariance matrix to:

KKK−1 =
(

VVV φVVV T
φ +ΛΛΛdiag

)−1

= ΛΛΛ
−1
diag −ΛΛΛ

−1
diagVVV φ

(
ÎII +VVV T

φ ΛΛΛ
−1
diagVVV φ

)−1
VVV T

φ ΛΛΛ
−1
diag

(3.2)

1For the encoder, the number of input points is the number of discretised points in the embedding function
domain.

25 Removing the Mean-Field Approximation of (Conv)NPs

The effect of this a significant reduction in computational complexity whenever M <<

N, as due to the linear complexity of inverting a diagonal matrix, the entire inversion

complexity for KKK is now O(N +M3) instead of the previous O(N3).

This inversion lemma helps to compute the KL-divergence in an efficient manner

because the analytic form of the divergence between two multivariate Gaussians depends

directly on a covariance inverse. The analytic form is given by:

KL(N1(zzz; µµµ1,ΣΣΣ1)||N2(zzz; µµµ2,ΣΣΣ2)) =
∫

zzz
N1(zzz; µµµ1,ΣΣΣ1) log

(
N1(zzz; µµµ1,ΣΣΣ1)

N2(zzz; µµµ2,ΣΣΣ2)

)
dzzz

=
1
2

EN1(zzz;µµµ1,ΣΣΣ1)

[
log
(
||ΣΣΣ2||
||ΣΣΣ1||

)
+(zzz−µµµ2)

T
ΣΣΣ
−1
2 (zzz−µµµ2)− (zzz−µµµ1)

T
ΣΣΣ
−1
1 (zzz−µµµ1)

]
=

1
2
[
log ||ΣΣΣ2||− log ||ΣΣΣ1||−d +(µµµ2 −µµµ1)

T
ΣΣΣ
−1
2 (µµµ2 −µµµ1)+Tr(ΣΣΣ−1

2 ΣΣΣ1)
]

(3.3)

where we have used the expectation of a quadratic form identity (Bates, 2010) in going

from the second to the last line in Equation (3.3) above.

Therefore, we can see from the presence of ΣΣΣ
−1
2 in Equation (3.3) that if we choose a

rank M to be a lot smaller than the embedding function discretisation then we will achieve

a significantly reduced number of computations with each training loop iteration.

3.2 How it Fits into the Family

There were clear relations between the existing NPF models that were discussed in Chapter

2, and the new model is no departure from this. In fact, the CorrConvNP can be seen

as aptly filling in the last corner of a square representation of model characteristics in

model-space (or two corners of a cube if we consider also the non-convolutional models).

To make this abstraction to model-space more concrete, consider the diagram in Figure 3.1.

This shows a cube with a coordinate system governed by the three basis characteristics

of the models: the models being conditional or latent; the models having diagonal or

non-diagonal covariances (correlated samples); and the models being convolutional and

TE or not.

26 Removing the Mean-Field Approximation of (Conv)NPs

If we ignore the convolutional axis by only considering the convolutional variants of

the models (which we can do as each model has a direct convolutional alternative), then

we can see that the existing literature gives three corners of a square in this space, and the

new CorrConvNP simply completes the fourth.

Fig. 3.1 A diagram outlining how the models differ and what changes can be made to find
equivalence between them. The green arrows dictate a transformation between models
that requires only a change of distribution definition and not a change of encoder/decoder
architecture, and the purple arrows represent transformations which require an encoder to
be made deterministic (consequently removing LVs, more on this below).

The next question is naturally then: ‘If these models are so similar, then how can

we move between them?’ This section aims to do just that, and provide a unifying

framework under which all the models can be viewed and easily transformed between.

Again, for simplicity, only the convolutional models will be considered from here-on-in.

However, there is always a straightforward transformation from a convolutional to a non-

convolutional model, which is to switch-out the CNNs in the embedders/encoders/decoders

for MLPs, and change from latent functions to the simpler latent vectors.

In order to not repeat too much information unnecessarily, only the transformations

in the directions of the arrows in Figure 3.1 will be described, but the other direction can

always be achieved by doing the reverse transformation. The equivalences can therefore

be found as follows:

27 Removing the Mean-Field Approximation of (Conv)NPs

1. The transformation from a ConvNP to a ConvCNP requires the removal of the LV

aspect of the ConvNP model. In other words, the encoder of the ConvNP becomes

redundant. This becomes the case if the encoder function is no longer a CNN, but

instead the function:

Fencoder(H) =H (3.4)

The issue now arises that the ConvNP samples from a Gaussian distribution based

on the encoder output, whereas we desire the input of the decoder to be equal to

the encoder output. This can be done without a change of model architecture if

the encoder’s Gaussian likelihood function is turned into a Dirac Delta distribution

(described well in Section 1.11 of Arfken, Weber, and Harris, 2013), that is centered

around H.2

2. The transition from CorrConvNP to ConvNP is perhaps one of the simplest, as

the distinction between them is solely the correlation that has been introduced at

the encoder stage of the CorrConvNP. Equivalence is therefore found simply by

restricting the LV covariance matrix of the CorrConvNP to be diagonal:

KKK(z)
i, j = λiδi, j (3.5)

such that the LVs become independent from one-another:

{z} ∼ N
(

mmm(z),KKK(z)
)
→ ∏

i=1,...,len({z})
N (m(z)

i ,λi) (3.6)

This transformation is implemented later on in Chapter 3, when showing statistical

significance in the improvement that correlated LVs give compared to the ConvNP.

3. Moving from a ConvGNP to a ConvCNP requires a similar approach to the transfor-

mation above, except now a diagonal covariance is being introduced in the decoder

rather than the encoder. The process is therefore very similar to Equation (3.5),

except that target predictions replace LVs as the output:

2Note that a Dirac Delta distribution centered around mmm can be thought of as a Gaussian distribution with
mean mmm and covariance ΣΣΣ → 0 (Arfken, Weber, and Harris, 2013).

28 Removing the Mean-Field Approximation of (Conv)NPs

KKKi, j = λiδi, j (3.7)

yyyt ∼ N (mmm,KKK)→ ∏
i∈Dt

N (mi,λi) (3.8)

From an implementation viewpoint this process is inefficient however, as a ConvGNP

runs the decoder over all pairs of points in the target set and thus requires n(n+1)
2

computations to construct the dense covariance for n target points. If the covariance is

subsequently restricted to be diagonal then the majority of these3 calculations become

irrelevant as only the n computations of diagonal elements are used. Therefore, if

moving from a ConvGNP to a ConvCNP, it also makes sense to adapt the covariance

calculation loop to iterate over the target inputs separately rather than pairwise.

4. The transformation from CorrConvNP to ConvGNP again requires an architecture

change as a LV model is being restricted to a conditional one. This is similar to the

ConvNP to ConvCNP transformation above, with Fencoder(H) =H, except that now

correlations have to be introduced in the decoder. This is done by expanding the

dimensions of the multi-headed decoder output layer to give, for each target point i,

a mean value mθ (xxx
(t)
i ,H), and a vector gggθ (xxx

(t)
i ,H) that is used to construct the dense

covariance when ran pair-wise over the target inputs.

The final two transitions from CorrConvNP to ConvCNP and from ConvNP to Con-

vGNP are equivalent in process to transition 1 and transition 4 respectively. This is

because once the encoders of the CorrConvNP and ConvNP models are ignored (as they

are in both transitions 1 and 4), the two models become equivalent, and thus so do their

transformations.

3.3 Performance on Regression Tasks

In order to test the efficacy of the new CorrConvNP model and contrast it to the existing

models, we first recreate regression experiments from Foong et al., 2020 and Wessel

Bruinsma et al., 2021. Specifically these are the Gaussian Process regression experiment
3For n > 3.

29 Removing the Mean-Field Approximation of (Conv)NPs

with an exponentiated quadratic (EQ) kernel (Rasmussen and Williams, 2006) and the

bi-directional sawtooth experiment. The reasoning behind selecting these is as follows:

EQ GP:

The attraction of regressing a GP with a known underlying kernel is that we can

construct the true GP, with its well-defined uncertainties, and readily use this to compare

the uncertainty quantification of the different NPF models. What is more, being a GP, the

true target predictive distributions are all Gaussian, which suits the conditional models

(ConvCNP and ConvGNP) well, as these are fixed with a Gaussian target predictive

distribution and do not have the flexibility of the encoder models. This means that all of the

models are on an equal footing in terms of ability to fit the data, and the best performers

will therefore be those that can best measure target point correlations and quantify the

epistemic uncertainty caused by small context sets effectively.

Bi-directional Sawtooth:

As described in Foong et al., 2020, the bi-directional sawtooth task features a sawtooth

function with frequencies, translations, and granularities that are randomly generated. The

function is defined as:

y(x;s, f ,K) =
1
2
− 1

π

K

∑
k=1

(−1)k sin(2π f k[x− s])
k

(3.9)

K ∈ {10, ...,20} dictates the granularity (how smooth the resulting function is, with

higher values resulting in greater smoothness), s∼U (−5,5) dictates translations along the

x-axis, and f ∼ U (±3,±5) dictates the frequency of peaks per domain unit. Importantly,

whether a frequency is positive or negative is also chosen uniformly, with a negative

frequency causing a change in direction of the sawtooth, leading to the name bi-directional.

Note that the task does not include any additive observation noise, so a strong per-

forming model should be able to fit the underlying function very tightly with a sufficiently

large context set. The advantage of this task specification is two-fold. Firstly, it is a

difficult curve to fit, with abruptly changing shape when the frequency switches sign.

The purpose of this is to highlight the advantage of the encoder models that have greater

distribution flexibility than the conditional ones, particularly as uncertainty quantification

30 Removing the Mean-Field Approximation of (Conv)NPs

is not important for good performance on this task. Secondly, the periodic nature of this

function means that its shape repeats in extrapolation domains where there are no context

points. This advantages models with strong extrapolation properties that can copy over

learned distribution shapes to unseen domains.

Whilst these two existing regression tasks cover many bases, it is still useful to consider

the case of a periodic function with sizeable uncertainty, that is also highly non-Gaussian.

This will test both the generalisation properties of the models due to the periodicity, as

well as their ability to quantify noise well even when it is non-Gaussian. To this effect, the

bi-modal sinusoid is introduced, and defined as follows.

Bi-Modal Sinusoid:

y(x;A,s,T) = Asin
(

s+
2πx
T

)
+ c (3.10)

where A ∼ U (1,2) controls the amplitude, s ∼ U (0,2π) controls the phase, and

T ∼ U (1,2) controls the time period. Here c is additive non-Gaussian noise, chosen to

follow a bi-modal distribution. It is constructed from 2 Gaussians as follows:

c =
1
2
N (x;m,σ2)+

1
2
N (x;−m,σ2) (3.11)

with chosen statistics m = 0.1,σ2 = 0.2.

The plots in Figure 3.2 show the negative log-likelihood (NLL) as a function of epoch

number on both the training set (from seen tasks) and validation set (from unseen tasks) for

up to 100 epochs. What is immediately clear from these plots is how the smaller conditional

models have a far greater distance between converged training set and validation set NLLs.

The cause of this is their smaller size and lower model complexity, which allows faster

adaptation of the models to individual tasks during training. This still does not lead to

overfitting fortunately, as can be seen from the fact that validation scores do not increase

after many epochs. This is a result of the changing distributions across tasks in meta-

learning, as discussed in Chapter 1.

These comparisons can be supported further by considering the generated fits of the

respective models on the same unseen tasks, as plotted in Figure 3.3.

31 Removing the Mean-Field Approximation of (Conv)NPs

Fig. 3.2 Training NLL loss with epoch number on both the training set (red) and held-out
validation set (blue) on the three regression tasks (top: EQ, middle: sawtooth, bottom:
bimodal) for all convolutional models. Left to right the models are CorrConvNP, ConvGNP,
ConvCNP, and ConvNP. The black dashed line represents the minimum NLL of the
CorrConvNP on the validation set.

EQ GP Discussion:

In the top row of Figure 3.3 it is clear that all models have fit well to the EQ GP task

despite the low number of context points given for them to condition on. The closest

in fit for both mean line and uncertainty seems to be the ConvCNP, despite its poorest

performance on this task in Figure 3.2. The reason for this is because the ConvCNP

treats all uncertainty as aleatoric due to its independent target point samples (Markou

et al., 2022). All plots in this figure have had aleatoric noise removed for visual effect,4

and unlike the other models which include epistemic uncertainty in their samples, the

ConvCNP predictions are reduced to apparently deterministic samples in the absence of it.

A strong performing model will fill the ground truth uncertainty with functional uncertainty

represented by samples filling the space. This is done to a large extent by the three other

models, explaining their much better log-likelihoods in Figure 3.2.

4Aleatoric noise is still represented by the shading, which represents the 95% confidence interval for the
cumulative aleatoric and epistemic uncertainty.

32 Removing the Mean-Field Approximation of (Conv)NPs

Fig. 3.3 Comparing the new model to existing models on three regression tasks with
different properties. The first task (top row) is a GP with an EQ kernel and Gaussian
distributed outputs. The second (middle row) is a sawtooth as generated in W. Bruinsma,
2022 demonstrating a periodic function with non-Gaussian distributed outputs. The third
(bottom row) is a bi-modal sinusoid with randomly generated phase and bi-modal Gaussian
noise that is very poorly approximated by a Gaussian predictive distribution. From left to
right the models are: CorrConvNP, ConvNP, ConvGNP, ConvCNP.

Recall that this experiment was designed to suit well the Gaussian predictive models.

It is somewhat surprising then that the ConvGNP is not the strongest performer here, as its

correlated samples mean that it can represent correlations as robustly as the CorrConvNP

and ConvNP, and it does not have the weakness of the ELBO-trained ConvNP that can

underweight net uncertainty (as discussed in Section 2.7). Indeed, the understating of

uncertainty is apparent in both encoder models, but particularly pronounced for the ConvNP,

where in the extrapolation domain (to the right of the grey x = 2 line) it can be seen

that while the balance between aleatoric and espistemic uncertainty is good (aleatoric

uncertainty being negligible), the epistemic uncertainty is smaller than it should be. As

mentioned in Section 2.7, this is hypothesised by Le, 2018 to be a consequence of the

mean-field approximation in LV models. The LVs are thought to capture the functional

uncertainty of the underlying stochastic process, so the mean-field approximation strips

out information about the underlying process when it is forced to be diagonal, leading to

epistemic uncertainty underweighting.

33 Removing the Mean-Field Approximation of (Conv)NPs

This would indicate then that the CorrConvNP should not suffer from this problem,

as this new model contains correlated LVs. Whilst there is some underweighting still

present in the CorrConvNP case, it is evidently reduced, and the CorrConvNP gives the

best NLL performance of all the models on this data type, supporting this hypothesis. Note

also that the LVs of the CorrConvNP, whilst correlated, are still forced to be Gaussian,

which could also explain the small extent of functional uncertainty understating if the

Gaussian approximation is too restrictive to fully represent the variability of the underlying

stochastic process.5

Bi-Directional Sawtooth Discussion:

The bidirectional sawtooth experiment does not show the universally strong perfor-

mance of the EQ GP one, as shown both by the variability in NLL values during training

in Figure 3.2 and the poor fits of the conditional models in the fixed evaluation task in

Figure 3.3. In the interpolation domain to the left of the x = 2 line all models seem to fit to

the jagged structure of the sawtooth to some extent. However, the non-Gaussian nature

of the task means that the ConvGNP struggles a lot here to find the directional shape of

the function and ends up predicting far more epistemic uncertainty than the other models,

causing the wider and more untidy teeth.

For the ConvCNP, the characteristic of neglecting epistemic uncertainty does not

affect the fit in the interpolation domain, as the net uncertainty is almost negligible for

this experiment when the context set is sufficiently large. The same reasoning explains

the strong performance of the ConvNP model which previously suffered from epistemic

uncertainty understating, giving the ConvNP very similar performance to the CorrConvNP.

What lets the ConvCNP (and to a lesser extent the ConvGNP) down however, is the poor

generalisation ability in the extrapolation domain. For the case of the ConvCNP this can

be attributed in part to uncorrelated samples, meaning that the predictions decay back to

the prior (which is a flat line at 0 with purely aleatoric noise) very quickly beyond the

context points. The ConvGNP does have correlated samples though, so the cause of its

poor extrapolation must be a consequence of its lack of an encoder and fewer parameters.

A possible explanation for this follows from the theory that conditioning on the global

5An interesting experiment to continue this investigation would be to use a ConvNP encoder with a
ConvCNP decoder, which would still give the correlated LVs, but now allow them to be non-Gaussian. The
draw-back of this however would likely be high model complexity and difficulty training.

34 Removing the Mean-Field Approximation of (Conv)NPs

LVs provides a ‘memory’ about the shape of the underlying stochastic process that can be

extended to unseen regions, explaining the better performance of the encoder models. As

discussed shortly, there will also be the practical effect of smaller receptive fields in the

convolutional conditional models that also limit their extrapolation ability.

Bimodal Sinusoid Discussion:

The advantages and disadvantages of the models from the previous two experiments are

well summarised in the results from the bimodal sinusoid experiment. For the same reasons

as outlined above, the ConvCNP reduces to deterministic predictions with heteroskedastic

Gaussian observational noise (Foong et al., 2020) which fails to adequately model the non-

Gaussianity of the true noise distribution, leading to the poor validation set performances

seen in the bottom row of Figure 3.2. In a similar narrative, the ConvGNP also performs

badly, as it can not predict bimodal aleatoric noise with a Gaussian distribution, so ends

up exaggerating the functional uncertainty and predicting jagged spikes in the sample

functions to fill the probability space, as is seen in the bottom row of Figure 3.3. The net

effect of this is again a poor validation set NLL.

When it comes to the encoder models we see similar attributes between the two. Both

are able to capture the shape of the underlying sinusoid and fit the noise well. These models

have flexible predictive distribution shapes due to marginalisation over their LVs, which

mean that they do not have the same issues modelling the non-Gaussian heteroskedastic

observation noise. Whilst it is hard to see this improved fit from solely a shaded region

in Figure 3.3, the lower validation set losses seen for these models in the bottom row of

Figure 3.2 are testament to this. Comparing between the two they perform very similarly,

as the issue with the ConvNP is to do with epistemic uncertainty understating, and there is

little functional uncertainty in the bimodal tasks. That being said the CorrConvNP still

achieves marginally better performance, and this is shown shown further in the following

section.

35 Removing the Mean-Field Approximation of (Conv)NPs

3.3.1 Breakdown of Performance over Different Domains

To provide further breakdown of the log-likelihood performance we consider two different

domains: the interpolation domain, where target inputs are within the range of the context

points for that evaluation task; and the extrapolation domain, where target inputs are

outside the range of context points for that task, but within the range of context points for

all tasks in training.

Figure 3.4 shows the evaluation set log-likelihoods (note not the NLL anymore) on all

regression tasks for all convolutional models when only considering target points within

the former interpolation domain. In strong agreement with what was observed during

training, the CorrConvNP performs the best in all cases, although only marginally better

than the ConvNP in the bi-directional sawtooth and bimodal sinusoid tasks due to them

having much less of the functional uncertainty that degrades ConvNP performance. The

errorbars represent the 95% confidence interval across multiple evaluations on different

tasks.

Fig. 3.4 Evaluation log-likelihoods of all convolutional models considered in this thesis on
the 3 data regimes in an interpolation domain. The interpolation domain represents the
domain of input values which are bounded by context points for the specific task being
evaluated on.

Figure 3.5 shows the same except now for the extrapolation domain. The extrapolation

domain covers regions of points that are unseen for the current task but that have been

observed in previous training tasks. This can be thought of as a test of the models’ meta-

learning abilities. Traditional models would fit well to the current task but be largely

unable to make predictions in the unseen data regime, leading to poor extrapolation

log-likelihoods. We hope that by using meta-training the models will now be able to

retain the same performance in the extrapolation domain as in the interpolation one, as

36 Removing the Mean-Field Approximation of (Conv)NPs

the distribution information learned on training tasks follows through. The fact that the

extrapolation log-likelihoods mirror so closely the interpolation ones is therefore reassuring,

as it demonstrates that the models do not overfit to the domain of the current task’s context

points.

Fig. 3.5 Evaluation log-likelihoods for the 4 convolutional models on the 3 data regimes
but now in an extrapolation domain. This means that the evaluation points are chosen
to be outside the range of context points for that evaluation task. However, they can be
within the range of context points for other tasks seen during training, and so this is not a
complete extrapolation to an unseen domain.

The only other domain left to consider is the extrapolation domain that has not been

observed by context points in any of the tasks during training. For periodic experiments

this domain is of even more importance, as a strong model will be able to recognise

the periodicity and fit to the unseen regions. However, we do not include results from

such a domain, because the way that the models are implemented in practice means

that the receptive fields of the convolutional encoder models are greater than those of the

conditional ones, due to the additional CNN in the encoder (Araujo, Norris, and Sim, 2019).

A greater receptive field allows a model to cover a greater domain for its predictions, and

hence give the convolutional encoder models an unfair advantage in practice.

3.4 Significantly Better? Changing the Training Regime

So far there has been a trend that the encoder models tend to outperform the conditional

models but behave similarly to each other, except for the CorrConvNP having slight

improvements over the ConvNP wherever epistemic uncertainty is important. This raises

the question though of whether the CorrConvNP is significantly better than the ConvNP or

whether these improvements are coincidental and insignificant. For example, it could be

37 Removing the Mean-Field Approximation of (Conv)NPs

the case that the correlated LVs of the CorrConvNP become more and more independent

during training (i.e. the encoder learns to predict a more and more diagonal covariance),

which would mean that the CorrConvNP collapses back to the ConvNP in the high-epoch

limit, mitigating the advantages of introducing correlation in the first place.

It is hard to test this however when training can change so much between models. For

example, the ConvNP is known to escape local optima and drop NLL values suddenly

at high-epoch numbers, so just taking a fixed number of epochs and comparing the two

models could be introducing a bias and limiting the efficacy of the significance test.

Therefore, to test for significance, a training regime change experiment is proposed

instead. This is a simple means of quantifying the statistical significance that the CorrCon-

vNP achieves a better NLL than the ConvNP, where we will conclude that the CorrConvNP

is better if and only if the performance is better to better than 5% significance. The process

for this is as follows:

1. A CorrConvNP is trained for 20 epochs in the usual fashion without any change to

the training process. This is used as the control in the significance test.

2. An identical CorrConvNP is then trained for 10 epochs, at which point the encoder’s

covariance matrix is forced to be diagonal, which as shown in Section 3.2 returns

the ConvNP.

3. Training on this new ConvNP is then carried on for a further 10 epochs.

4. This process is repeated for another 9 training loops with different seeds for both

regimes, and the mean and standard deviations of the NLL values taken for signifi-

cance testing.

If, upon changing the training regime at epoch 10, we observe a spike in the validation

set NLL, then this suggests that the CorrConvNP is not simply learning a diagonal LV

covariance matrix, as forcing it to be diagonal is detrimental to training (at least after

10 epochs). To be more thorough however, we wish to see the long term effects of this

restriction. If after a further 10 epochs the restricted model then converges to a higher NLL

than the control, this is evidence for a permanent detrimental effect of having independent

LVs, and is used to say that the CorrConvNP is significantly better than the ConvNP. The

38 Removing the Mean-Field Approximation of (Conv)NPs

multiple training runs allow for the computation of standard deviation values that can be

used to gauge the statistical significance of the differences at convergence.

Fig. 3.6 Plot of the validation set NLL as a function of number of epochs trained on. Each
epoch contains 16 distinct EQ kernel functions to approximate. The model change from
CorrConvNP to ConvNP occurs at epoch 10, and an instant and lasting negative effect is
observed as a result. The solid lines are mean values over 9 runs on different seeds, and
the shaded regions show the 95% confidence interval.

Figure 3.6 shows the results of this experiment on the EQ GP tasks. These tasks

were used because the high amount of epistemic uncertainty relative to observation noise

accentuates the potential differences between the CorrConvNP and ConvNP to a greater

extent than the sawtooth and bimodal sinusoid, which contain almost purely aleatoric noise.

Before 10 epochs the losses follow each other closely, which is to be expected given that

they are the same model at this point. At epoch 10 there is then the spike in NLL for the

regime change model while the control continues to decrease in NLL. This supports the

theory that the CorrConvNP encoder has learned to build non-diagonal covariances by

10 epochs that improve the training performance. Beyond 10 epochs the regime-changed

model again starts training again, this time as a ConvNP, but by 20 epochs it has not reached

as low a NLL as the CorrConvNP control. The shaded regions show the 95% confidence

intervals over the 10 distinct training runs, so the fact that there is no overlap gives reason

to say that we can be greater than 95% confident that by epoch 20 the CorrConvNP models

the EQ GP tasks significantly better than the ConvNP.

However, there does not appear to be convincing convergence by epoch 20 on either

regime. Therefore it could still be the case that the regime-changed ConvNP, whilst initially

39 Removing the Mean-Field Approximation of (Conv)NPs

negatively affected by the restriction on the LV covariance, will converge eventually to

a similar loss. To show that this is not the case the process was repeated again, except

now for 200 epochs rather than 20, with the change occurring after 100. This is shown by

Figure 3.7.

Fig. 3.7 A similar plot to in Figure 3.6 but this time for a single seed to reduce computation
time. The number of epochs is scaled up 10 times to 200, with a model change at 100
epochs. The purpose of this plot was to demonstrate how the training of the two regimes
converge after many epochs. It shows that the damage to the NLL from restricting the LV
covariance to be diagonal is lasting, with the converged NLL being greater for the changed
training regime than for the CorrConvNP control.

Whilst Figure 3.7 only includes a single training run per regime,6 it is clear that the

converged NLL values for the regime-change model are permanently damaged by moving

from correlated to independent LVs. What is more, upon the initial restriction at 100

epochs, the instantaneous increase in NLL is even more severe than it was in the previous

experiment after 10 epochs. This means that representation learned by the CorrConvNP

encoder actually relies very heavily on its correlations to achieve a good fit, and it certainly

does not learn to predict a diagonal covariance in the high-epoch limit.

6This is for computational reasons, as 200 epochs takes a long time to train, so repeating the process 10
times for each regime was unfeasible.

Chapter 4

Extensions to Non-Gaussian Likelihoods

Until now we have considered Gaussian likelihoods for the decoders of all models. For

the conditional models this assumption was restrictive and limited performance on non-

Gaussian tasks, whereas for the encoder models, marginalisation allowed for flexible

distributions that depend on the distribution of {z}. That being said, there may be tasks

where it is useful to use non-Gaussian decoder distributions from the start, even for the

encoder models, when we have particular constraints which we wish to impose onto

the distributions. These cases are considered in Chapter 4, starting with classification

likelihoods in the first half, and Gamma likelihoods in the second.

4.1 Classification: Using a Bernoulli Likelihood

Unlike with the regression tasks considered so far, a continuous distribution is not suitable

for fitting to the categorical targets of a classification problem. In this case a Bernoulli

likelihood is better suited if there are two target classes, or a categorical distribution if

there are more (for example, see Sections 4.2.3 and 4.2.4 of Murphy, 2022 respectively).

For simplicity it is easier to consider binary targets and use a Bernoulli likelihood, and so

this is done in this section, but a multi-class categorical likelihood is a simple extension of

this.

41 Extensions to Non-Gaussian Likelihoods

4.1.1 Likelihood Definition

If considering only the encoder models, the decoder likelihood is a Bernoulli distribution

conditioned on the LVs and is given by (Murphy, 2022):

p(yyyt |XXX t ,{z};Dc) = ∏
m∈Dt

ρ
y(t)m
m (1−ρm)

(
1−y(t)m

)
(4.1)

for ρm = Fdecoder

(
xxx(m)

t ;{z}
)

the output of the decoder network. The log-likelihood

of the entire target set it thus given as usual by marginalising out the LVs:

log p(yyyt |XXX t ;Dc) = logEp(z)

[
∏

m∈Dt

ρ
y(t)m
m (1−ρm)

(1−y(t)m)

]
(4.2)

As was the case with the Gaussian likelihoods, the correlation between target points

is achieved through the non-factorisability of the (log)-likelihood, and plays a large part

in the modeling of spatial data, for example. To show this, we consider two similar

classification experiments of varying difficulty: a 2-class Gaussian mixture model, and a

2-class GP-cutoff model.

4.1.2 Mixture of Two Gaussians

In the same way that robust uncertainty quantification is important for downstream tasks

in regression, it is also crucial for classification in many practical applications (Lakshmi-

narayanan, Pritzel, and Blundell, 2017). This experiment is used not only to demonstrate

the importance of spatial correlations in classification when there are sparse observations,

but also to reinforce how the ConvCorrNP avoids overfitting even when the training tasks

are simple and contain low amounts of data. This leads to better uncertainty quantification

and more realistic decision boundaries than traditional classification models.

A binary mixture of Gaussians is defined in 1D with means at ±(1+ ε) and variances

of 0.5+ 0.2ε . Each input point is sampled from one of the Gaussians with component

probabilities of 0.5, and the output classed as 0 if the Gaussian centered on −(1+ ε)

is chosen or 1 if the Gaussian centered on +(1+ ε) is selected instead. ε ∼ N (0,1)

represents perturbative noise that alters the covariances in such a way to ensure that each

42 Extensions to Non-Gaussian Likelihoods

task’s distribution is unique and meta-learning is conformed to. What is more, the number

of context points is reduced to between 5 and 10 per task to represent observation sparsity.

Figure 4.1 (left) shows the CorrConvNP predictions on an evaluation task. It shows

the model predictions follow closely the analytic decision boundary (shown in black) and

do not overfit, despite the low number of context points during training relative to the

number of model parameters. In contrast, a non meta-trained classifier quickly overfits

to the training points by the 30 epoch mark and the resulting decision boundary is far

steeper. This is what is demonstrated by the right-hand plot, which shows the predictions

of a simple MLP with only 31 parameters1 that has been trained on the same number of

points, batches and epochs as the CorrConvNP, but with data from a single distribution.

The advantage of being able to learn by meta-learning is made clear here, as the traditional

learning method overfits very easily in comparison.

Fig. 4.1 (Left) A binary Mixture of Gaussians experiment in 1D showing the strong
uncertainty quantification of the CorrConvNP. It shows the fit of the model averaged over
25 samples (green shading is the 95% confidence interval) compared to the analytic black
ground truth. (Right) The fit of a 31-parameter MLP after seeing the same number of
training points over the same number of epochs, but on data from a single task rather than
meta-learning.

4.1.3 GP-Cutoff

The previous experiment was done to demonstrate the CorrConvNP’s low capacity for

overfitting in a classification setting, but has a simple linear decision boundary and does not

demonstrate how the model handles more complex tasks. Therefore this next experiment

is another binary classifier, but this time with a true decision boundary that is highly

non-linear and varies a lot between meta tasks.
1In stark contrast, the CorrConvNP contains a far greater 202,371 parameters for this experiment!

43 Extensions to Non-Gaussian Likelihoods

It is constructed using a continuous GP sample, and a cut-off converts it into a categori-

cal problem. For each given task, the outputs yyyc,yyyt are 1 if the GP sample is greater than

the median at that input point, or 0 if it is less than it. The use of the median guarantees we

approximately have equal numbers of points in each class and mitigates availability bias.

By using a GP we also have control over the length-scales of the samples, which by proxy

lets us control the separation and width of the regions belonging to each class and hence

controls the task complexity.

Figure 4.2 shows the resulting fit of the CorrConvNP on a GP-cutoff task after 100

epochs of training. Apart from the occasional region which is badly learned (see, for

example, the bottom left corner), the model does an encouragingly good job of fitting to

the true class memberships given that the decision boundaries change in shape and location

so much between tasks.

Fig. 4.2 The ConvCorrNP model predictions on an evaluation task for the 2D GP-cutoff
experiment after 100 training epochs. The black dots represent the context point locations
and the colour bar is scaled by the probability of belonging to class 1.

Notice how in Figure 4.2, the grid cell between (20, 20) and (30, 30) contains no

context points, yet fits well the ground truth reference. This is a demonstration of strong

interpolation in regions of no context points due to both TE from the convolutional structure

and having target point correlation.

44 Extensions to Non-Gaussian Likelihoods

4.1.4 Categorical Likelihoods

If instead we did have multiple classes, then the categorical log-likelihood for an encoder

model would be defined as follows (Murphy, 2022):

log p(yyyt |XXX t ;Dc) = logEp(z)

[
∏

m∈Dt

K

∏
k=1

(
ρ
(k)
m

)I(y(t)m =k)
]

(4.3)

where I(·) is the indicator function, I(y(t)m = k) := 1 if y(t)m = k and 0 otherwise.

ρρρm = {ρ
(k)
m }K

k=1 = Fdecoder(xxx
(t)
m ,{z}) is now the K-headed output of the decoder network,

with the kth element corresponding to the probability that the current target point belongs

to class k.

4.2 Modeling Amounts: Using a Gamma Likelihood

Even when the tasks are continuous there can be situations where a non-Gaussian likelihood

gives improvements. Take, for example, the modeling of the amount of something, such as

the amount of rainfall at a location on a given day that follows a Gamma distribution (Ye

et al., 2018), or the volume of insurance claims which are Poisson or Gamma distributed

(Promislow, 2014).2 These distributions share the property that their samples are strictly

positive and generally have positive skew, as theoretically samples can take the value

infinity. Even when LVs are used for distributional flexibility, using a Gaussian likelihood

for the decoder means that these constraints are not automatically satisfied. This can lead to

non-physical results unless a stopgap approach is used (such as a truncation of the Gaussian

samples at 0 or exponentiation),3 which detracts from the generative approach of these

models. This section therefore considers such cases and explores a Gamma likelihood

function.
2Insurance claim rate is generally Poisson distributed if we are considering only a single claim, and

Gamma distributed if considering the accumulation of multiple (Promislow, 2014).
3Exponentiation of a Gaussian variable produces a log-normal distribution, which is often used as an

approximation to more complex but theoretically derived exponential distributions, but quite rarely occurs
exactly in nature. The times it does are when dealing with the addition of Gaussian variables in a log-domain,
for example in economics or the Weber-Fechner law from psychophysics (Fechner, 1860).

45 Extensions to Non-Gaussian Likelihoods

4.2.1 Likelihood Definition

Again considering only the encoder models, the decoder likelihood conditioned on {z} is a

Gamma distribution defined as follows (Pishro-Nik, 2014):

p(yyyt |XXX t ,{z};Dc) = ∏
m∈Dt

1
Γ(αm)

β
αm
m

(
y(t)m

)(αm−1)
exp
[
−βmy(t)m

]
(4.4)

where the shape and rate parameters are given from the multi-head decoder output

as αm,βm = Fdecoder

(
xxx(t)m ,{z}

)
respectfully. The Gamma function is defined as Γ(x) =

(x−1)!, and the scale of the distribution is the inverse rate, 1/βm. There are restrictions

on these parameters to ensure that the gamma distribution is well-defined, which are that

αm,βm > 0 ∀ m, and for the purpose of stable predictions, αm > 1 ∀ m also.

The log-likelihood of the entire model used for training and evaluation is therefore:

log p(yyyt |XXX t ;Dc) = logEp(z)

[
∏

m∈Dt

1
Γ(αm)

β
αm
m

(
y(t)m

)(αm−1)
exp
(
−βmy(t)m

)]
(4.5)

4.2.2 Gamma Process

This experiment involves constructing a 2D Gamma Process, which is much like a Gaussian

Process, except that the predictive distributions at each input point are Gamma rather than

Gaussian. There is a difficulty with constructing such a process artificially however, which

is that it is far more difficult to introduce correlations directly into samples from a Gamma

distribution than samples from a Gaussian.4

Therefore, this experiment uses the slight workaround of generating samples from

a non-diagonal multivariate Gaussian to introduce correlation, and then exponentiating

to form a log-normal distribution. As mentioned in the second footnote of Section 4.2,

the log-normal distribution gives only an approximation of the Gamma distribution, but

fundamental characteristics such as bounds and asymptotic behaviour are the same. What

is more, for certain parameters, the shapes of the two distributions are very similar, so the

4For example Bithas et al., 2007 provide an expression for the joint probability function of 2 correlated
Gamma random variables, and it is clear that it is far from trivial to generalise to an arbitrary number of
samples.

46 Extensions to Non-Gaussian Likelihoods

encoder models with their flexible marginalised likelihoods will not have a problem fitting

to the lognormal tasks.

Fig. 4.3 Fit of the Gamma likelihood CorrConvNP model to a 2D synthetic Gamma process
evaluation task. The black dots are again context points, and there are between 50 and 100
of them for each task.

Figure 4.3 shows the results of the Gamma Process regression with the ground truth

plotted on the right and the models predictions on the left. It is visually clear that the fit

is good, with clear structure and spatial correlation even in regions of few or no context

points.

There are however isolated regions where the predictions are poor, highlighted for

example by the dark spots in the bright yellow sections. These are either caused by too

high observation noise being predicted (although this is unlikely as it is not seen across

the whole domain as would be expected), or more likely it demonstrates that the Gamma

distribution at those points is underdeveloped. If the latter is true, then more extensive

parameter tuning would hopefully improve the issue.

47 Extensions to Non-Gaussian Likelihoods

4.3 Model Comparisons on Extended Likelihood Tasks

It is clear that the CorrConvNP can fit to both the classification and Gamma likelihoods

well then, but it is unclear how it compares to the mean-field ConvNP and the conditional

ConvCNP models. Figure 4.4 therefore shows the comparison on validation set tasks. Note

that all models’ decoders have the relevant adapted likelihood (Bernoulli or Gamma) for

each experiment to make them comparable.

Fig. 4.4 Comparison of the evaluation log-likelihoods of the CorrConvNP, ConvNP and
ConvCNP models on the extended likelihoods tasks described above, after 100 epochs of
training. The binary mixture of two Gaussians is a 1D input task, whereas the GP-cutoff
and Gamma process are both 2D inputs. The error bars are 95% confidence intervals.

Firstly, the binary mixture of Gaussians classification task shows the addition of LVs to

give a (weakly5) significant advantage compared to the ConvCNP, with the CorrConvNP

outperforming the ConvNP also. The GP-cutoff and Gamma process results follow the

same hierarchy, except that any improvements from (i) introducing correlations in the LVs,

or (ii) adding LVs to a conditional model in the first place, are not significant for these two

experiments.

Like with the regression experiments of Chapter 3, the reason for this lack of sig-

nificance comes down to the number of context points, specifically the fact that the 2D

GP-cutoff and Gamma process experiments both use on average around 10 times more

context points than the 1D binary MoG in order for the models to fit to the more complex

tasks. This leads to less epistemic uncertainty (i.e. more deterministic true functions)

in these tasks and a lower importance of correlated samples if more observations fill

more of the domain. Therefore the ConvNP and ConvCNP achieve marginally worse but
5The word ‘weakly’ is used here as we have not carried out a thorough significance test like at the end of

Chapter 3, where we changed the training regime. Instead we simply observe the 95% confidence interval on
evaluation tasks after 100 epochs.

48 Extensions to Non-Gaussian Likelihoods

similar results to the CorrConvNP, as their weaknesses relate to underestimating functional

uncertainty and having uncorrelated samples respectively.

This is further reinforced when considering the binary MoG classification experiment.

Its simplicity makes it easier to learn with fewer context points, which leads to greater

epistemic uncertainty due to sparser observations, and a higher importance of correlated

samples. Under this regime correlated LVs become very valuable, much like with the

EQ GP regression task of Chapter 3, leading to apparent significance at each stage of the

hierarchy shown in the LH plot of Figure 4.4.

Chapter 5

Rainfall Modeling: A Practical Example

We have shown in Chapter 4 that the CorrConvNP can be readily extended to both classi-

fication tasks and modeling strictly positive and right-skewed quantities via the Gamma

distribution. If the model can be trained on these tasks individually then it is not unrea-

sonable to think that they may be learned in parallel to provide a solution to problems

with zero-inflation. This is where an excess of 0s in a dataset, most often caused by an

unobserved latent variable, leads to poor fits with traditional modeling techniques.

Modeling rainfall is a well-known example where zero-inflation causes availability

bias problems when trying to fit a regression model. A historic solution has been to alter

an existing distribution such that it exaggerates the probability of getting 0 and does not

incorrectly shrink the variance of the distribution as a result. The Zero-Inflated Poisson

(Lambert, 1992) is an example of this, and has been used with some success for the rainfall

task (Dzupire, Ngare, and Odongo, 2018). We take inspiration from this approach and

build zero-inflation into the Gamma model of Chapter 4 by ‘gating’ the Gamma model

with a Bernoulli classifier first.

50 Rainfall Modeling: A Practical Example

5.1 The Bernoulli-Gamma Likelihood Function

With this in mind, the composite Bernoulli-Gamma likelihood function is defined as

follows:

p(YYY t |XXX t ,{z};Dc) = ∏
m∈Dt

[
ρ

y(t)m,0
m (1−ρm)

(
1−y(t)m,0

)]
×

[
1

Γ(αm)
β

αm
m

(
y(t)m,1

)(αm−1)
exp
(
−βmy(t)m,1

)]I(y(t)m,0=1
) (5.1)

where ρm,αm,βm =Fdecoder

(
xxx(t)m ,{z};Dc

)
is a 3-headed decoder output. Here we use

a slightly different notation than previously, as we are now breaking the assumption that the

context and target set outputs are 1 dimensional. Instead YYY ·=
{

yyy(·)i

}
i
for yyy(·)i =

(
y(·)i,0,y

(·)
i,1

)T
.

y(·)i,0 is a binary variable representing whether a point in the context or target set has rainfall,

and y(·)i,1 is then the amount of rainfall given that the binary variable is 1 (i.e. it is raining at

that point).

From Equation (5.1) it can be seen that the Gamma component that is concerned

with the amount of rainfall is only activated if the binary variable is 1. This is to avoid

zero-inflation bias in the data, which could lead to learned Gamma distributions with

underestimated variances that simply predict rainfall amounts near to 0 for all locations.

The formulation of Equation (5.1) also means that during training the Bernoulli parameter

is learned independently to the Gamma parameters, and similarly the Gamma parameters

are learned independently to the Bernoulli one, once only points with rain are considered.

The hope is that by having no interference between the two likelihoods the decision of

whether it is raining or not can still be learned well and provide some insight, even if the

Gamma distribution fits the extent of rainfall badly.

5.2 Experimental Set-Up

The real-life data used to test this model was daily rainfall data in Sweden from 2018,

distributed by the Copernicus Climate Change Service, 2021. The 2D inputs were the x

(West-East) and y (South-North) coordinates measured in kilometres relative to the bottom

left grid value. The 2D outputs again contain a binary variable signifying if there was rain

51 Rainfall Modeling: A Practical Example

on a given day for that (x,y) region or not, and a positive scalar variable representing the

amount of rainfall in kg/m2. Due to the size of region and consequent memory costs of

running the model on very large datasets, a subset of the available region was considered,

covering a 60km by 60km grid, with a granularity of observations taken every 2km. In

this way there are 900 observed points per task, of which a random subset is taken as the

context set, and the remainder of the grid of points as the target inputs (at test-time).

Three example days are shown in Figure 5.1 below. The first is for a particularly rainy

day on the 1st of January, the second for a less rainy day on the 20th of February, and the

third for a day without rain on the 11th of April. These plots highlight a potential challenge

from working with this data: the amount of rainfall can vary not only within a task, but also

greatly between them. In fact, there are many days which show no rainfall at all, which

will likely cause issues when training the model.

Fig. 5.1 Examples of rainfall data from 3 days that show very different properties. The first
day has a lot of rain, with a lot of variation in rainfall amounts and a maximum value that
is around 4 times greater than the middle plot, which represents a day with only a little
rain. The middle plot also has much less variation in rainfall values, and the right hand
plot shows a day with no variation as there is no rain at all. The colourbar is scaled by
rainfall in kg/m2.

With this in mind, we propose a synthetic rainfall experiment to train on, so that we can

then run the pre-trained model on the real dataset at test time in a sim-to-real fashion (see

Section 1.2.4 for details on what this entails). Training is easier to do with the synthetic

data as all tasks contain regions of rainfall and no rainfall to mitigate availability bias, and

the range of rainfall values between tasks are kept relatively similar. The synthetic tasks

are constructed in a similar way to the GP-Cutoff experiments of Chapter 4, except that in

this case the GP sample is multiplied by a ReLU function to give it regions where rainfall

is strictly positive, and large regions where it is 0 to mimic zero-inflation.

52 Rainfall Modeling: A Practical Example

5.3 Results on Synthetic Rainfall Data

At first we tried fitting the CorrConvNP with the likelihood in Equation (5.1) directly to

the synthetic dataset, but encountered the problem that the model would not fit after many

epochs. A hypothesis for why this is to do with the different magnitude and scaling of the

two parts to the generative model loss. The Bernoulli loss is less sensitive to parameter

values than the Gamma one and improves faster, meaning that model learning is dominated

by learning the Gamma parameters. At the same time, the Gamma parameters are trained

on only a smaller subset of the context and target points each task (because points are only

included if the binary part of the output is 1), which makes the Gamma model difficult to

fit, leading to noisy gradients and unstable learning.

Therefore, a workaround comes from splitting the likelihoods into separate models

to independently predict Bernoulli and Gamma parameters, and then combining their

predictions at the end. For a conditional model such as the ConvCNP, this returns exactly

the closed-form joint distribution of Equation (5.1) as there is no marginalisation, and

therefore has the sole effect of increasing the number of parameters. However, for the

encoder models, a single-expectation joint distribution cannot be recovered due to the

expectation over different {z}’s. The LV joint distribution from the separate models is

instead given by:

p(YYY t |XXX t ;Dc) = Ep1(z)

[
∏

m∈Dt

[
ρ

y(t)m,0
m (1−ρm)

(
1−y(t)m,0

)]]
×

Ep2(z)

[1
Γ(αm)

β
αm
m

(
y(t)m,1

)(αm−1)
exp
(
−βmy(t)m,1

)]I(y(t)m,0=1
)

≈ Ep(z)

[
∏

m∈Dt

[
ρ

y(t)m,0
m (1−ρm)

(
1−y(t)m,0

)]
×

[
1

Γ(αm)
β

αm
m

(
y(t)m,1

)(αm−1)
exp
(
−βmy(t)m,1

)]I(y(t)m,0=1
)

(5.2)

The single-expectation expression of Equation (5.1) could therefore again be recovered

for the encoder models if the LV distributions were shared across the two encoders such

that p1(z) ≡ p2(z) := p(z), and this is something that would be interesting to explore

53 Rainfall Modeling: A Practical Example

in the future. Nevertheless, despite being only an approximation to the true generative

likelihood, the separated likelihood in Equation (5.2) still gives much improved results

with the CorrConvNP compared to fitting the original combined model directly. Figure 5.2

demonstrates this by showing the output of a validation set task from the synthetic dataset

after 50 epochs of training.

Fig. 5.2 Predicted rainfall in kg/m2 on the LHS compared to the ground truth on the
RHS, as generated by the synthetic zero-inflated Gamma process. The Bernoulli model
seems to have succeeded in predicting the regions of no rainfall, but the Gamma model
struggles to predict the extent of rainfall within the raining regions due to data scarcity.
The total number of points available during each task varies between 0.75% and 1.15% of
the number of image grid spaces available.

Whilst the Bernoulli model that predicts whether it is raining or not seems very well

developed, the Gamma part seems to be lagging behind and only loosely fits the regions

of high and low rainfall in the RHS reference. This is support for the hypothesis that the

Gamma likelihood is far harder to fit to due to the amount of noise in backpropagation

caused by a much restricted context and target set size relative to the Bernoulli model’s.

Again this is because the Gamma model only considers points in the context and target sets

that have a binary variable of 1, and thus removes around half of the points available to the

Bernoulli model each task. One solution to this would be to scale up the size of the context

and target sets so that the Gamma model has more data available to it proportionally, but

this is often not feasible due to the nature of low-data scenarios.

54 Rainfall Modeling: A Practical Example

5.4 Adapting to the Real Rainfall Data

The result of running the pre-trained model on the real rain dataset at test-time can be seen

in Figure 5.3. The results look positive, although this is not true for all days. As with the

synthetic rainfall dataset before, what is true for all days is that the Bernoulli part of the

likelihood fits well and the Gamma part lags somewhat behind. Reassuringly however, the

trained model has been able to transfer the knowledge of the learned Gamma distribution

from the synthetic task to achieve similar performance in the real case, reaffirming neural

processes’ strengths in sim-to-real adaptation.

Fig. 5.3 Sim-to-real results for 4 days of the real rainfall data. The model was trained
on a synthetic replica of the rainfall data and then implemented on real data without any
backpropagation in a sim-to-real fashion, as described in Section 1.2.4.

What is more, by virtue of running the model on the real data in an evaluation regime

only, when a zero-saturated day is encountered (like in (A) in Figure 5.3), the model training

is not affected, and it is capable of recognising the zero-saturation at every occurrence. In

fact, the performance on days with no rain whatsoever was better than expected, given that

during training no synthetic task contained no rain at all. This is testament to the strong

predictions of the Bernoulli part of the model, as the Gamma likelihood is only activated if

the Bernoulli component predicts there to be rain at test-time.

In order to make the model’s practical use more concrete, Figure 5.4 shows a real

rainfall prediction overlaid on the geographical region that the data was taken from.

55 Rainfall Modeling: A Practical Example

Fig. 5.4 Rainfall predictions from the real data overlaid on the geographical region where
the data is taken from.

The evaluation log-likelihood on the rainfall data was -1.52, which is about inline with

summing the likelihoods from the GP-cutoff classification and Gamma process regression

experiments in Section 4.3, showing that using the real data gives similar performance to

the synthetic sets used for training.1

1Recall that the synthetic rainfall data is fundamentally a combination of a GP-cutoff classifier and a
Gamma process regressor.

Chapter 6

Conclusions and Future Work

6.1 Improvements on Baselines

The first set of experiments concerned recreating regression task results from the existing

literature and comparing them to the CorrConvNP performance. This was a success story

for the new model, as it performed best in all cases. Although only marginally and not

statistically significantly better than the ConvNP on the sawtooth and bimodal sinusoid

tasks, it was significantly better on the EQ GP. This is a very strong result given that of all

the regression experiments, this is the one that the CorrConvNP is expected to be better on

with its superior epistemic uncertainty estimation, indicating that removing the mean-field

approximation improves the model.

6.2 Extension to Other Likelihoods

Further success was found when moving away from the previous Gaussian decoder like-

lihoods to ones that can handle categorical variables or skewed and bounded continuous

ones. In both the classification and Gamma process experiments it was clear that the Cor-

rConvNP is a versatile model, and well-suited to tasks beyond the regression specifications

that had been considered in the literature and in Chapter 3. We also saw in the binary MoG

classifier experiment that the CorrConvNP is notably1 better than the ConvNP, which is

1The use of the word ‘notably’ rather than ‘significantly’ again refers to the lack of thorough statistical
significance testing. See Section 4.3 for details.

57 Conclusions and Future Work

itself notably better than the ConvCNP, as we were able to use fewer context points which

increases the epistemic uncertainty. As experiment complexity increased when moving to

2D experiments, so did the number of context points required for the models to fit, which

reduced epistemic uncertainty and levelled the playing field for the models. As a result,

we saw that whilst the same ranking held, there was no significant advantage to adding

correlation to LVs or adding LVs in the first place with these tasks. A conclusion from this

could be therefore that the CorrConvNP is particularly well adapted to learning tasks with

very little data.

6.3 Results of the Rainfall Case-Study

The rainfall case-study aims to demonstrate how the attributes of the CorrConvNP (and to

a large extent the other NPF models) make it suitable for modeling previously hard-to-fit

distributions such as zero-inflated data that occurs with rainfall. The experiments carried

out demonstrate a good level of success, particularly when sim-to-real training is carried

out first on a synthetic dataset to stabilise training. The zero-inflation was elegantly handled

by the Bernoulli component of the likelihood, and the model was even able to fit at test-time

to zero-saturated data from days when it did not rain at all. It is also clear however that the

reduced number of context and target points available to the Gamma likelihood cause its

parameters to not be as well learned. Apart from simply increasing the overall number of

context and target points (which is infeasible in low-data scenarios), there is little that can

be done to improve this underfitting with the current models. However, it is possible that

another change of architecture to include deterministic pathways may yield improvements.

6.4 Improved Fitting in a Low-Data Regime: Latent and

Deterministic Pathways

Attentive Neural Processes (ANPs) are another member of the NPF that use an attention

mechanism in their architecture to address the original problem of underfitting in non-

convolutional NPs (Kim et al., 2019). The introduction of convolutional NPF models, as

discussed in detail in this thesis, also addressed this issue, and were found empirically to

58 Conclusions and Future Work

give better performance than ANPs (Wessel Bruinsma et al., 2021), (Foong et al., 2020),

justifying ANPs not being included thus far in the thesis.

However, part of the ANP architecture could give an interesting avenue for further

research in our proposed CorrConvNP model, namely the use of deterministic and latent

pathways in the encoder. Figure 6.1, adapted from Kim et al., 2019, shows a NP architecture

where the encoder consists of a deterministic part and a latent part. The deterministic part

includes no sampling and generates solely a deterministic vector embedding of the context

set. The latent part produces a LV as seen before in Chapter 2 by sampling stochastically

given the output. These latent and deterministic embeddings are them concatenated with

the target input when being passed to the decoder and the decoder operates in the usual

fashion.

Fig. 6.1 Diagram of the inclusion of a deterministic pathway on an NP in the encoder stage.
Figure adapted from Kim et al., 2019

.

Kim et al., 2019 found the inclusion of a deterministic pathway to improve NP per-

formance. As the function of the encoder in a NP is theoretically similar to that of the

CorrConvNP model, it seems reasonable to think that including a deterministic pathway

on our model would also improve performance in a similar way. A consideration, however,

is how to change from the MLPs of Figure 6.1 to CNNs to retain TE, as we have seen

in Chapter 2 that TE requires the CNNs to operate between function spaces rather than

vectors.

Bibliography

Araujo, André, Wade Norris, and Jack Sim (2019). “Computing Receptive Fields of Con-

volutional Neural Networks”. In: Distill. https://distill.pub/2019/computing-receptive-

fields. DOI: 10.23915/distill.00021.

Arfken, George B., Hans J. Weber, and Frank E. Harris (2013). “Chapter 1 - Mathematical

Preliminaries”. In: Mathematical Methods for Physicists (Seventh Edition). Ed. by

George B. Arfken, Hans J. Weber, and Frank E. Harris. Seventh Edition. Boston:

Academic Press, pp. 1–82. ISBN: 978-0-12-384654-9. DOI: https://doi.org/10.1016/

B978-0-12-384654-9.00001-3.

Bates, Douglas (Oct. 2010). Statistics 849 notes.

Bithas, Petros et al. (Jan. 2007). “Distributions involving correlated generalized gamma

variables”. In.

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners”. In: Advances in

Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran

Associates, Inc., pp. 1877–1901. URL: https://proceedings.neurips.cc/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Bruinsma, W. (2022). neuralprocesses. https://github.com/wesselb/neuralprocesses.

Bruinsma, Wessel et al. (2021). “The Gaussian Neural Process”. In: Third Symposium on

Advances in Approximate Bayesian Inference.

Copernicus Climate Change Service (2021). Nordic gridded temperature and precipitation

data from 1971 to present derived from in-situ observations. DOI: 10.24381/CDS.

E8F4A10C. URL: https://cds.climate.copernicus.eu/doi/10.24381/cds.e8f4a10c.

Donald House and John C Keyser (Dec. 2016). Foundations of physically based modeling

and animation. Oakville, MO: Apple Academic Press.

Dzupire, Nelson Christopher, Philip Ngare, and Leo Odongo (2018). “A Poisson-Gamma

Model for Zero Inflated Rainfall Data”. In: Journal of Probability and Statistics 2018,

https://doi.org/10.23915/distill.00021
https://doi.org/https://doi.org/10.1016/B978-0-12-384654-9.00001-3
https://doi.org/https://doi.org/10.1016/B978-0-12-384654-9.00001-3
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/wesselb/neuralprocesses
https://doi.org/10.24381/CDS.E8F4A10C
https://doi.org/10.24381/CDS.E8F4A10C
https://cds.climate.copernicus.eu/doi/10.24381/cds.e8f4a10c

60 Bibliography

pp. 1–12. DOI: 10.1155/2018/1012647. URL: https://doi.org/10.1155%2F2018%

2F1012647.

Fechner, G.T. (1860). Elemente der Psychophysik. Elemente der Psychophysik v. 1. Bre-

itkopf und Härtel.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (Aug. 2017). “Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th Inter-

national Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh.

Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 1126–1135.

Foong, Andrew Y. K. et al. (2020). “Meta-Learning Stationary Stochastic Process Predic-

tion with Convolutional Neural Processes”. In: Proceedings of the 34th International

Conference on Neural Information Processing Systems. NIPS’20. Vancouver, BC,

Canada: Curran Associates Inc. ISBN: 9781713829546.

Garnelo, Marta, Dan Rosenbaum, et al. (June 2018). “Conditional Neural Processes”.

In: Proceedings of the 35th International Conference on Machine Learning. Ed. by

Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.

PMLR, pp. 1704–1713. URL: https://proceedings.mlr.press/v80/garnelo18a.html.

Garnelo, Marta, Jonathan Schwarz, et al. (2018). “Neural Processes”. In: CoRR abs/1807.01622.

arXiv: 1807.01622.

Gordon, Jonathan et al. (2020). “Convolutional Conditional Neural Processes”. In: Interna-

tional Conference on Learning Representations.

Hospedales, T. M. et al. (May 2021). “Meta-Learning in Neural Networks: A Survey”.

In: IEEE Transactions on Pattern Analysis Machine Intelligence 01, pp. 1–1. ISSN:

1939-3539. DOI: 10.1109/TPAMI.2021.3079209.

Kim, Hyunjik et al. (2019). “Attentive Neural Processes”. In: 7th International Conference

on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

OpenReview.net. URL: https://openreview.net/forum?id=SkE6PjC9KX.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In:

2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun.

Kondor, Risi and Shubhendu Trivedi (Oct. 2018). “On the Generalization of Equivariance

and Convolution in Neural Networks to the Action of Compact Groups”. In: Proceed-

https://doi.org/10.1155/2018/1012647
https://doi.org/10.1155%2F2018%2F1012647
https://doi.org/10.1155%2F2018%2F1012647
https://proceedings.mlr.press/v80/garnelo18a.html
https://arxiv.org/abs/1807.01622
https://doi.org/10.1109/TPAMI.2021.3079209
https://openreview.net/forum?id=SkE6PjC9KX

61 Bibliography

ings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy

and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,

pp. 2747–2755.

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Simple and

Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle

Guyon et al., pp. 6402–6413. URL: https://proceedings.neurips.cc/paper/2017/hash/

9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html.

Lambert, Diane (1992). “Zero-Inflated Poisson Regression, with an Application to Defects

in Manufacturing”. In: Technometrics 34.1, pp. 1–14. ISSN: 00401706. URL: http:

//www.jstor.org/stable/1269547 (visited on 07/29/2022).

Le, Tuan Anh (2018). “Empirical Evaluation of Neural Process Objectives”. In.

Markou, Stratis et al. (2022). Practical Conditional Neural Processes Via Tractable De-

pendent Predictions. DOI: 10.48550/ARXIV.2203.08775.

Max, A Woodbury (1950). “Inverting modified matrices”. In: Memorandum Rept. 42,

Statistical Research Group. Princeton Univ., p. 4.

Mena, José, Oriol Pujol, and Jordi Vitrià (Oct. 2021). “A Survey on Uncertainty Estimation

in Deep Learning Classification Systems from a Bayesian Perspective”. In: ACM

Comput. Surv. 54.9. ISSN: 0360-0300. DOI: 10.1145/3477140. URL: https://doi.org/10.

1145/3477140.

Murphy, Kevin P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.

Pishro-Nik, Hossein (Aug. 2014). Introduction to probability, statistics, and random

processes. Kappa Research.

Promislow, S David (Dec. 2014). Fundamentals of actuarial mathematics. en. 3rd ed.

Nashville, TN: John Wiley & Sons.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian processes for

machine learning. Adaptive computation and machine learning. MIT Press, pp. I–

XVIII, 1–248. ISBN: 026218253X.

Ravanbakhsh, Siamak, Jeff Schneider, and Barnabas Poczos (2017). “Equivariance through

parameter-sharing”. In: International conference on machine learning. PMLR, pp. 2892–

2901.

https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
http://www.jstor.org/stable/1269547
http://www.jstor.org/stable/1269547
https://doi.org/10.48550/ARXIV.2203.08775
https://doi.org/10.1145/3477140
https://doi.org/10.1145/3477140
https://doi.org/10.1145/3477140

62 Bibliography

Ravi, Sachin and Alex Beatson (2019). “Amortized Bayesian Meta-Learning”. In: Interna-

tional Conference on Learning Representations. URL: https://openreview.net/forum?

id=rkgpy3C5tX.

Requeima, James et al. (2019). “Fast and Flexible Multi-Task Classification Using Con-

ditional Neural Adaptive Processes”. In: Proceedings of the 33rd International Con-

ference on Neural Information Processing Systems. Red Hook, NY, USA: Curran

Associates Inc.

Ronneberger, O., P.Fischer, and T. Brox (2015). “U-Net: Convolutional Networks for

Biomedical Image Segmentation”. In: Medical Image Computing and Computer-

Assisted Intervention (MICCAI). Vol. 9351. LNCS. (available on arXiv:1505.04597

[cs.CV]). Springer, pp. 234–241. URL: http : / / lmb . informatik . uni - freiburg . de /

Publications/2015/RFB15a.

Silver, David et al. (Jan. 2016). “Mastering the game of Go with deep neural networks

and tree search”. In: Nature 529.7587, pp. 484–489. DOI: 10.1038/nature16961. URL:

https://doi.org/10.1038/nature16961.

Wagstaff, Edward et al. (2019). “On the Limitations of Representing Functions on Sets”.

In: Proceedings of the 36th International Conference on Machine Learning, ICML

2019, 9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and

Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,

pp. 6487–6494. URL: http://proceedings.mlr.press/v97/wagstaff19a.html.

Ye, L. et al. (2018). “The probability distribution of daily precipitation at the point and

catchment scales in the United States”. In: Hydrology and Earth System Sciences 22.12,

pp. 6519–6531. DOI: 10.5194/hess-22-6519-2018.

Zaheer, Manzil et al. (2017). “Deep Sets”. In: Advances in Neural Information Processing

Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc. URL: https://proceedings.

neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

https://openreview.net/forum?id=rkgpy3C5tX
https://openreview.net/forum?id=rkgpy3C5tX
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://proceedings.mlr.press/v97/wagstaff19a.html
https://doi.org/10.5194/hess-22-6519-2018
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

Appendix A

Model Specifications and Training

Regression Experiments:

Model Network Name Channels Num. Parameters
ConvCNP U-Net1 (64, 64, 64, 128, 128, 128, 256) 1,108,164
ConvGNP U-Net (64, 64, 64, 128, 128, 128, 256) 1,116,484
ConvNP U-Net (64, 64, 64, 128, 128, 128, 256)2 2,222,756

CorrConvNP U-Net (64, 64, 64, 128, 128, 128, 256) 2,289,316
Table A.1 Details of the architectures of the convolutional networks used in the regression
experiments of Chapter 3.

Bernoulli Classifier:

Model Network Name Channels Num. Parameters
CorrConvNP (1D input) U-Net (32, 32, 32, 32, 32, 32) 202,371

ConvNP (1D input) U-Net (32, 32, 32, 32, 32, 32) 165,415
ConvCNP (1D input) U-Net (32, 32, 32, 32, 32, 32) 82,659

CorrConvNP (2D input) U-Net (32, 32, 32, 32, 32, 32) 869,251
ConvNP (2D input) U-Net (32, 32, 32, 32, 32, 32) 823,335

ConvCNP (2D input) U-Net (32, 32, 32, 32, 32, 32) 411,619
Table A.2 Details of the architectures of the CorrConvNP, ConvNP, and ConvCNP models
used in the 1D and 2D binary Mixture of Gaussians and GP-Cutoff classification experi-
ments of Chapter 4.

1Details of the U-Net architecture can be found in the original paper, (Ronneberger, P.Fischer, and Brox,
2015).

2These channels were the same for both the encoder and decoder for the LV models.

64 Model Specifications and Training

Gamma Process Regression:

Model Network Name Channels Num. Parameters
CorrConvNP U-Net (32, 32, 32, 32, 32, 32) 881,408

ConvNP U-Net (32, 32, 32, 32, 32, 32) 835,492
ConvCNP U-Net (32, 32, 32, 32, 32, 32) 411,652

Table A.3 Details of the architectures of the CorrConvNP, ConvNP, and ConvCNP models
used in the 2D Gamma Process regression experiment of Chapter 4.

Rainfall Prediction Experiment:

Model Network Name Channels Num. Parameters
CorrConvNP U-Net (32, 32, 32, 32, 32, 32) 870,918

Table A.4 Details of the architectures of the CorrConvNP model used in the rainfall
modeling task in Chapter 5.

Training was done for all experiments on a single Nvidia Tesla K80 GPU, with a

batch size of 16 batches per epoch. For 1D regression and classification experiments the

best-found learning rate was 3 · 10−4, but for the 2D extended likelihood experiments,

1 · 10−3 was found to perform better. All training was done with ADAM optimisation.

For the regression experiments the discretisation was set to 16 points per unit, and for the

classification and Gamma likelihood experiments it was set to 1 point per unit, to account

for the order of magnitude increase in domain size.

Training times on this GPU varied from less than a minute per epoch for the regression

experiments with the conditional models (approximately an hour and a half to train

100 epochs), to around 4 minutes per epoch for the regression experiments with the

CorrConvNP (approximately 7 hours to train 100 epochs).

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 What is a Neural Process?
	1.2 Why Neural Processes?
	1.2.1 Meta-learning for Few-Shot Learning
	1.2.2 Efficient Transfer Learning
	1.2.3 Handling Missing Values
	1.2.4 Sim-to-Real
	1.2.5 Accurate Uncertainty Quantification

	1.3 Thesis Outline

	2 A Review of the Existing Literature
	2.1 Multi-Task Learning: Context and Target Sets
	2.1.1 Deep Set Embeddings

	2.2 The Conditional Neural Process
	2.3 The Neural Process
	2.4 The Gaussian Neural Process
	2.5 Moving to Convolutional Architectures
	2.5.1 Translation Equivariance
	2.5.2 Implementation

	2.6 Model Training
	2.7 A Summary of Existing Models and their Shortcomings

	3 Removing the Mean-Field Approximation of (Conv)NPs
	3.1 CorrConvNP Definition
	3.1.1 Fast Computation of the KL-Divergence

	3.2 How it Fits into the Family
	3.3 Performance on Regression Tasks
	3.3.1 Breakdown of Performance over Different Domains

	3.4 Significantly Better? Changing the Training Regime

	4 Extensions to Non-Gaussian Likelihoods
	4.1 Classification: Using a Bernoulli Likelihood
	4.1.1 Likelihood Definition
	4.1.2 Mixture of Two Gaussians
	4.1.3 GP-Cutoff
	4.1.4 Categorical Likelihoods

	4.2 Modeling Amounts: Using a Gamma Likelihood
	4.2.1 Likelihood Definition
	4.2.2 Gamma Process

	4.3 Model Comparisons on Extended Likelihood Tasks

	5 Rainfall Modeling: A Practical Example
	5.1 The Bernoulli-Gamma Likelihood Function
	5.2 Experimental Set-Up
	5.3 Results on Synthetic Rainfall Data
	5.4 Adapting to the Real Rainfall Data

	6 Conclusions and Future Work
	6.1 Improvements on Baselines
	6.2 Extension to Other Likelihoods
	6.3 Results of the Rainfall Case-Study
	6.4 Improved Fitting in a Low-Data Regime: Latent and Deterministic Pathways

	Appendix A Model Specifications and Training

