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Abstract

This thesis contributes to the development and understanding of masking schemes in tabular
self-supervision. We demonstrate that correlated masking is a generally applicable technique
that enhances state-of-the-art methods. This claim is validated on a family of synthetic
datasets and several benchmarks. We also introduce combination masks, a technique to
synthesise multiple masking schemes into a single approach to benefit from the advantages of
each. We show combining independent and correlated masking in this way outperforms each
individually on a family of seven proteomics datasets for predicting the efficacy of cancer
drug treatments.

A masking strategy is one of numerous design choices in tabular self-supervision, yet the
literature lacks a systematic approach for optimising these hyperparameters without at least
some labelled data for cross-validation. To address this, we exploit recent advances in
label-free explainable artificial intelligence to reveal why some representations are better than
others. This deepens our understanding of why correlated masking is effective, and allows us
to conjecture general properties that characterise good representations. We quantify these
observations to form metrics that allow us to estimate approximately optimal hyperparameters
on two standard benchmark datasets without access to any labelled data or downstream
tasks. This is an initial contribution to a broader program of research, which aims to equip
the practitioner with a suite of such tools and metrics to guide model development. As an
application of this, we design and analyse a novel hierarchical architecture for ensembling
encoders that uses collaboration between ensemble members to solve difficult tasks. This
design outperforms standard ensembles and our tools explain why; collaboration acts as a
form of regularisation and increases consistency amongst the feature importance scores.
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Chapter 1

Introduction

1.1 Motivation

The growing presence of technology in our daily lives gives rise to vast quantities of data with
potential for transformative social, academic and industrial impact. Deep neural networks,
surging in popularity since the success of AlexNet (Krizhevsky et al., 2012), have been at the
heart of a paradigm shift in supervised learning (LeCun et al., 2015). Yet, underlying state-
of-the-art performances, in domains from computer vision (He et al., 2016; Yu et al., 2022)
to language processing (Vaswani et al., 2017), is a critical dependency on time-consuming
and costly manual annotation (Roh et al., 2021).

Self-supervised learning eases this burden by exploiting intrinsic structure within unlabelled
data to learn an encoding function that yields informative representations of raw data. This
encoder then may be used as a pre-processing stage to enhance the performance of future
downstream supervised tasks. In this way it has been possible to obtain comparable or even
superior performance to traditional supervision with orders of magnitude less labelled data
(Chen et al., 2020; Dosovitskiy et al., 2021).

To date, the focus of the research community has been on self-supervision for the image and
language domains Fang et al. (2022); Jing and Tian (2021); Min et al. (2021b). This has
reimagined what is possible in these areas, particularly in the case of large language models
such as BERT (Devlin et al., 2019) and GTP-3 (Brown et al., 2020). However, this success
is, in part, based on leveraging our own human understanding of the strong spacial and
semantic relationships in images and language, respectively (Borisov et al., 2021). Extending
these methods to heterogeneous general tabular data is therefore challenging, obstructing the
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exploitation of data sources across industries including cybersecurity, energy, manufacturing,
and healthcare. Motivated by this, the broad objective of this work is to develop techniques
for enhancing the performance of self-supervised learning that are generally applicable to
any tabular data.

1.2 Contributions

Our main contributions are summarised below. Definitions of technical terminology may be
found in the corresponding introductory material of later chapters.

1. Demonstrate that correlated masking is a generally applicable method that may
significantly enhance tabular self-supervision. This claim is validated across a wide-
range of current reconstruction-based and contrastive methods on synthetic data,
standard benchmarks, and a proteomics dataset.

2. Provide a publicly available1 modular and extensible benchmarking suite for the testing
and development of new methods in tabular self-supervision.

3. Introduce methods for optimising hyperparameters in self-supervised frameworks
without access to any validation data or downstream tasks. This builds on recent
advances in label-free explainable AI (Crabbé and van der Schaar, 2022) to characterise
intrinsic and quantifiable properties of the best-performing representations.

4. Develop hierarchical ensembles of encoders that use collaboration between ensemble
components to solve difficult pretext tasks. We show this outperforms standard
ensembles and use our techniques based on label-free explainability to understand why.

1.3 Outline

Chapter 2 surveys general background material to set the scene, prepare the reader, and situate
later chapters within exisitng literature. Specialist topics relevant only to a single part are
contained in the corresponding chapter. We begin by formalising our problem statement
and introducing important concepts in self-supervision, along with a review of important
milestones in its development as a field. We then establish a unified mathematical notation
that brings together five important methods used in tabular self-supervision: Denoising
Autoencoders (Vincent et al., 2008), VIME (Yoon et al., 2020), SCARF (Bahri et al., 2022),

1Available at: github.com/stuartburrell/tabular_ssl_suite

https://github.com/stuartburrell/tabular_ssl_suite
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SubTab Ucar et al. (2021), and a tabular variant of Context Encoders (Pathak et al., 2016).
This highlights their common elements and pinpoints their differences.

Chapter 3 demonstrates the impact of using correlated masking in tabular self-supervision.
This form of masking uses the correlation structure of the input features to determine which
features to corrupt, and has previously only been applied to specific tasks such as feature
selection (Lee et al., 2022). In contrast, we show it is a generally applicable technique that
enhances a variety of recent methods in the tabular domain, including VIME (Yoon et al.,
2020), SCARF (Bahri et al., 2022), DAEs Vincent et al. (2008), SubTab (Ucar et al., 2021),
and a tabular variant of Context Encoders (Pathak et al., 2016).

Correlated masks may be efficiently sampled using standard techniques and Gaussian copulas.
A thorough mathematical description of this process is given in Section 3.1. Section 3.2
presents a series of validation experiments on standard benchmarks MNIST (LeCun et al.,
2010), UCI Blog Feedback (Buza, 2014) and UCI Income (Kohavi and Becker, 1996), and
illustrates how correlated masking mitigates a failure mode of existing methods using a
carefully constructed family of synthetic datasets.

To conclude Chapter 3, in Section 3.3 we introduce combination masks, a hybrid approach
that interpolates between different masking strategies. When applied to independent and
correlated masking, this balances the learning of local and global information and significantly
outperforms alternatives on a family of seven drug-discovery proteomics datasets derived
from the Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) and the Cancer Cell Line
Encyclopedia (CCLE) (Barretina et al., 2012).

Chapter 4 presents new methods for evaluating representations based on intrinsic information
contained within the representations and encoder. This chapter is an initial contribution to an
ambitious new program of research that aims to optimise hyperparameters in self-supervision
without access to any labelled data or downstream tasks. To do this, we leverage recent
work on label-free explainable artificial intelligence (XAI) (Crabbé and van der Schaar,
2022). A brief review of XAI and a mathematical introduction to the techniques required is
given in Section 4.1. These techniques are applied in Section 4.2 to perform an exploratory
visual analysis of feature importance scores, which measure the relative contribution of input
variables to a final representation. This suggests several desirable properties of distributions
over feature importance scores, which may characterise good representations. This is taken
a step further in Section 4.3, where we formalize these intuitions into three metrics that
quantitatively assess representations. These metrics are validated across 32 trained encoders
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on two datasets with different hyperparameters, and shown to approximately identify optimal
configurations.

As a final application, we show how the insights of Chapter 4 may guide the development of
ensembles of encoders. This is an alternative approach to fine-tuning the hyperparameters of
a single encoder, where multiple encoders are trained and their representations aggregated.
At the cost of compute, this reduces sensitivity to poor hyperparameters choices, since a
downstream model may disregard unhelpful parts of the representation. Rather than using a
standard ensemble however, we introduce a novel hierarchical architecture that allows for
collaboration between ensemble members to solve difficult tasks. This approach outperforms
standard ensembles and we use our visual and quantitative tools to explain why; collaboration
regularises the encoder at the base of the hierarchy.

To conclude, Chapter 5 draws together our findings and proposes several avenues for further
research. This includes moving beyond correlation to leverage advances in causal graph
learning (Gao et al., 2022; Zheng et al., 2020), and the creation of dynamic masking strategies
that evolve throughout training based on feedback from the metrics developed in Chapter 4.



Chapter 2

Background

This chapter introduces preliminary conceptual and technical knowledge required to situate
our contributions within the literature. We set the scene by establishing a precise formulation
of our problem. Then, we give a conceptual overview, discussing three broad families of
techniques, and highlighting key milestones in the literature. To conclude, we narrow our
focus to tabular data, and introduce a unified notation to bring together several important
techniques within a coherent mathematical framework; VIME (Yoon et al., 2020), SCARF
(Bahri et al., 2022), SubTab (Ucar et al., 2021), DAEs (Vincent et al., 2008) and tabular
Context Encoders (Pathak et al., 2016). In doing so we depart from the exposition of the
original authors, but aim to bring clarity to the commonality and distinctions of these methods.

2.1 Problem formulation

Let Du = {x(i) ∈ Rd}Nu
i=1 denote a set of unlabelled data and Dl = {(x(i),y(i)}Nl

i=1 a set of
labelled data from the same feature distribution, with classes or regression targets given by
y(i). We are interested in the setting where Nu >> Nl. Our question is how to use Du to
enhance performance of a downstream supervised learning task on Dl. In a multi-task setting,
see (Zhang and Yang, 2021), there may be multiple downstream datasets Dl and associated
tasks of interest. For brevity, we focus on a single task throughout.

Self-supervised learning tackles this problem by training an encoder e : Rd → Rk, typically
a deep neural network, to use as a pre-processing step to generate informative feature
representations for the downstream supervised learning task. The codomain of e is known as
a representation space of dimension k ∈ N. This setup is illustrated in Figure 2.1.
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Fig. 2.1 The self-supervised learning pipeline. An unlabelled dataset Du is used to train an
encoder e(·), which is used as a feature pre-processing function for labelled data Dl. This
may help to train the downstream supervised model g(·) when Nu >> Nl. This figure was
inspired by (Yoon et al., 2020, Figure 1 (Supplementary)).

There are a broad array of techniques for learning the encoder e, yet many share common
aspects. Before diving into the technical details, we give a high-level overview of these
techniques.

2.2 Conceptual overview

Self-supervised learning utilises supervised mechanisms despite the lack of targets. To
overcome this, artificial pretext tasks are created with a known supervisory signal. Examples
found in computer vision are often based on augmentations, and include solving jigsaw
puzzles (Noroozi and Favaro, 2016) of permuted images, colourising gray-scale images
(Zhang et al., 2016), or reversing transformations such as rotations (Gidaris et al., 2018).
Typically, these tasks are solved by appending a projection head network to e, to be discarded
after self-supervision. The intuition behind this argues that the intermediate representations
obtained by e are likely to encode lower-level generalisable information, such as edges, shapes
and spatial relationships, which may benefit a wider range of downstream tasks than fine
details.

In all of these tasks the essential content we typically care about, such as object classes, is
left invariant. This presents a challenge in the tabular domain; it may be hard or impossible
to identify analogous augmentations, with concepts such as rotation lacking a general
interpretation. However, two strategies have emerged for designing pretext tasks that are
applicable to general tabular data, which we refer to as reconstructive and contrastive tasks.
The remainder of this section is split into two parts, and gives a high-level introduction to both
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types of task. This prepares the reader for Section 2.3, where we delve into the mathematics
of tabular methods and draw on both families of techniques.

Reconstructive tasks

Fig. 2.2 The manifold interpretation of reconstructive pretext tasks (Vincent et al., 2008). The
composition e ◦ h projects corrupted data back onto a lower dimensional data manifold. The
intermediate representations obtained by e(·) may be thought to parameterise a co-ordinate
system for the data manifold (Vincent et al., 2008).

Reconstructive tasks attempt to recover data from a corrupted version obtained through
an algorithmic process. The term corruption is used, rather than augmentation as in the
image domain, to capture the generality of this approach and emphasize it may not be
label-preserving. Corruption could involve replacing certain variables in an input with a
placeholder value such as zero (Vincent et al., 2008), the mean over that variable (Lee et al.,
2022), or with random draws from the empirical marginal distribution of that variable (Yoon
et al., 2020). Other forms of distortion such as additive Gaussian noise may also be used, as
in (Ucar et al., 2021), though their suitability is dependent on the type of the data.

The idea underpinning reconstructive tasks is that of understanding which parts of an input are
inconsistent with other parts, and is perhaps one of the most central ideas in self-supervised
learning (LeCun, 2022). A simple but instructive mathematical line of reasoning justifying
this is based on the idea of a data manifold (Vincent et al., 2008), and illustrated in Figure
2.2. For features living on a low-dimensional manifold within a high-dimensional ambient
space, the process of corruption will typically result in points lying away from the manifold.
Therefore, learning how to project them back onto their original values is a rephrasing of
the task of learning the data manifold itself. This is helpful because supervised techniques
often benefit from receiving lower-dimensional input; it allows for fewer parameters, simpler
model complexity and mitigates the risk of over-fitting.
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Reconstructive tasks are prevalent in language settings, with examples including predicting
the completion of partial sentences (Devlin et al., 2019; Lan et al., 2020) or reversing random
permutations of sentences (Lewis et al., 2020). BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020) are two particularly important methods in this area, and have had a major impact
in language processing and translation (Min et al., 2021a).

However, reconstructive tasks are by definition generative, and implicitly model fine-scale
structure during reconstruction that may not be beneficial to a downstream task. This may
require more expressive models with a greater risk of overfitting, or cause models to focus on
microscopic detail such as texture, rather than salient macroscopic information like the shape
of an object. This motivates a competing family of contrastive techniques.

Contrastive tasks

Fig. 2.3 An illustration of contrastive representation learning on the unit sphere. Similar points
according to a contrastive loss function are attracted (green arrows) and dissimilar points are
repulsed (red arrows). Examples of similar samples are typically generated through some
form of data corruption or augmentation, illustrated here with dashed or solid perimeters.

Contrastive methods operate directly in the representation space by encouraging the embed-
dings of similar points to cluster, and those of dissimilar points to separate. This idea is
illustrated in Figure 2.3. This requires us to define a notion of when two samples are similar.
For images, combinations of data augmentations such rotations or color distortion (Chen
et al., 2020) are commonly used to generate similar positive examples. Dissimilar negative
examples may be obtained by comparing two different samples, or their augmentations.
While computer vision has been a focal point of these techniques, SCARF (Bahri et al., 2022)
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demonstrates that corruption techniques used in general reconstructive tasks are effective
augmentations for tabular data.

The intuition behind contrastive learning is simple, but requires a contrastive loss function to
quantify similarity in a differentiable manner for back-propagation and learning. This relates
to the wider field of deep metric learning, see Kaya and Bilge (2019). Early approaches
compared pairs (Chopra et al., 2005) or triplets (Weinberger et al., 2005) of samples, using
simple loss functions based on Euclidean norms to attract or repel positive or negative pairs.
In recent years, the standard choice has become more sophisticated options such as InfoNCE
(van den Oord et al., 2018), which built upon Noise Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2010), or close variants used in, for example, (Chen et al., 2020; Sohn,
2016; Tian et al., 2020; Wu et al., 2018). These losses are based on the mutual information
between representations, a term that describes how dependent two variables are on each other.
InfoNCE loss, formally defined in Section 2.3, maximises the mutual information between
representations of positive pairs, while minimizing it for negative ones.

Despite contrastive learning being highly effective in many settings (Jing and Tian, 2021),
it is not without drawbacks. LeCun (2022) argues the main challenge to these methods
is their vulnerability to the curse of dimensionality. This is due to the need to effectively
sample a diverse array of negative examples away from the data manifold, a task which grows
exponentially harder with the dimension of the feature space (LeCun, 2022). Therefore,
in this work we experiment with reconstructive and contrastive approaches, since both are
salient to modern practice. In the next section we narrow our focus and provide concrete
descriptions of the methods we use in later chapters.

2.3 A unified view of tabular self-supervision

This section establishes a unified notation bringing together a wide variety of techniques for
tabular self-supervision. By doing so, we crystallise their similarities and differences, which
are often clouded by stylistic choices in the original expositions. To begin, we define basic
notation and detail the general framework, and then show how it permits a succinct description
of VIME (Yoon et al., 2020), SCARF (Bahri et al., 2022), Denoising Autoencoders (DAEs)
(Vincent et al., 2008) and Context Encoders (Pathak et al., 2016). We also cover SubTab
(Ucar et al., 2021), though this is deferred to Appendix A for brevity. Throughout, we assume
a familiarity with undergraduate level probability theory, calculus and basic mathematical
notation, for example as found in (Deisenroth et al., 2020).
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2.3.1 Framework

Fig. 2.4 A general framework for tabular self-supervision. An unlabelled data point x(i) is
corrupted by C(·, ·) based on a mask m(i), and then propagated through an encoder e and
projection heads h1, . . . , hn. This yields n outputs ỹ(1,k), . . . , ỹ(1,n).

Recall from Section 2.1 that, given an unlabelled dataset Du, our aim is to learn an encoder
e : Rd → Rk for use in a downstream supervised learning task. During self-supervision, one
or more projection heads h1, h2, . . . , hn are appended to e, as illustrated in Figure 2.4. For
each projection head, we aim to simultaneously solve the optimisation problems

min
e, hk

E [ lk(t
(k), (hk ◦ e)(x̃)) ] for k = 1, . . . , n, (2.1)

where the expectation is over the joint distribution of pretext inputs x̃ and pseudo-targets
t(k), and lk is a loss function associated with hk. By allowing the targets to depend on the
projection head, we can consider each head to be performing a different pretext task on the
common pretext input x̃, as in VIME (Yoon et al., 2020).

To specify a method based on (2.1), we first must state an algorithm for sampling from
aforementioned distribution of pretext inputs x̃. To generate a single corrupted sample x̃(i),
we complete the following two steps.

1. Sample a mask m(i) ∈ [0, 1]d from a mask distribution M. Often, m(i) ∈ {0, 1}d is
binary and indicates which dimensions are to be corrupted.
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2. Apply a corruption function C to obtain

C(m(i),x(i)) = x̃(i)

where x̃ is termed a masked or corrupted view of x. In general, C may return multiple
such views.

The masked view x̃(i) is then passed through e and each projection head, yielding

ỹ(k,i) = hk ◦ e(x̃(i))

for k = 1, . . . , n. For contrastive methods, we may also compute the output for the uncorrupted
sample, denoted

y(k,i) = hi ◦ e(x(i)).

The remaining question is how to specify the corresponding loss functions Lk and targets
tk for each projection head hk. In practice, the total loss is a differentiable aggregation
of the individual losses Lk, such as a weighted sum, and is computed over the batches
X̃ = {x̃(i) : i = 1, . . . , N} and, if required, X = {x(i) : i = 1, . . . , N}, with outputs denoted

Ỹ(k) = {ỹ(k,i) : i = 1, . . . , N} and Y(k) = {y(k,i) : i = 1, . . . , N}, (2.2)

for k = 1, . . . , n. The joint optimisation problem (2.1) may then be tackled using backpropa-
gation and standard optimisation techniques such as Adam (Kingma and Ba, 2015), assuming
suitable architecture choices.

It is easily shown that a wide variety of tabular self-supervised methods are special cases
of this framework, with variation arising from the number of projection heads n, the mask
distribution M, the corruption function C, the targets tk, and the loss functions Lk. In the
next two sections, we give examples of how to fill in the blanks for four techniques central to
later chapters: VIME (Yoon et al., 2020), SCARF (Bahri et al., 2022), DAEs (Vincent et al.,
2008), and Context Encoders (Pathak et al., 2016). For reference, in Appendix A.1 we also
include complete details for the fifth method we use, SubTab (Ucar et al., 2021), which is
simple but drawn out to describe and therefore omitted.
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Fig. 2.5 The self-supervised component of VIME (Yoon et al., 2020). Input data D is first
masked with swap corruption, and then passed through an encoder and two projection heads.
The first is trained to reconstruct the original input and the second to predict which values
were corrupted.

2.3.2 VIME

The key innovation of the self-supervised component of the VIME framework (Yoon
et al., 2020)1, is to not merely estimate a reconstruction of corrupted data, as in denoising
autoencoders (Vincent et al., 2008), but to also to predict which values were corrupted. This
is done using two projection heads, h1 and h2, as shown in Figure 2.5. The masks m ∈ Rd

are generated by independently sampling mi ∼ Bernoulli(p), where p ∈ [0, 1] is a fixed
parameter. The corruption function C : {0, 1}d × Rd → Rd is stochastic, and defined by

C(m,x) = (1−m)⊗ x+m⊗ s (2.3)

where ⊗ denotes the Hadamard product, 1 ∈ Rd is a vector of ones, and s is a vector formed
by independently and uniformly drawing samples from empirical marginal distribution of
each feature in Du. This form of corruption, known as swap corruption, prevents masked
entries being trivially identified and is therefore critical to VIME.

For a batch of outputs Ỹ(1) of size N from h1 (see (2.2)), we compute the a reconstruction
loss, but deal with continuous and categorical variables separately. That is,

L1 :=
1

N

 N∑
i=1

d∑
j=1

((1− dj)ỹ
(1,i)
j − (1− dj)x

(i)
j )2︸ ︷︷ ︸

mean-squared error

+β djx
(i)
j logdjỹ

(1,i)
j︸ ︷︷ ︸

cat. cross-entropy

 , (2.4)

1In this thesis we use VIME to refer to this self-supervised variant of VIME, which is sometimes also known
as VIME-Self in the literature.
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where β > 0 is tunable, and d is a binary indicator mask with di = 1 if the j th feature
dimension is categorical and 0 otherwise. Throughout, subscripts, as in ỹ

(1,i)
j , refer to the j th

component of the vector ỹ(1,i).

The loss for output Ỹ(2) of h2 is a cross-entropy loss targeting the mask m(i), given by

L2 :=
1

N

N∑
i=1

d∑
j=1

m
(i)
j log ỹ

(2,i)
j .

We then form the total loss as the weighted combination L = αL1 + L2 for a tunable
parameter α.

2.3.3 Denoising autoencoders

A denoising autoencoder (DAE) contains a single projection head h1. The mask m may
be generated by uniformly choosing ⌊pd⌋ components to be 1, and setting the remainder
to be 0, or as in VIME, for some fixed parameter p ∈ [0, 1]. The corruption function
C : {0, 1}d × Rd → Rd is defined by

C(m,x) = (1−m)⊗ x+m⊗ 0, (2.5)

where 0 ∈ Rd is a zero vector. This is known as zero corruption. The loss for the single
output Ỹ(1) of h1 ◦ e is a standard reconstruction loss, such as standard MSE loss or as in
(2.4).

2.3.4 Context encoders

Context encoders mimic the setup of a DAE, except that the loss is computed only over the
reconstructed elements. For example, with an MSE loss this is

1

N

N∑
i=1

d∑
j=1

mj(xj − (e · x)(x̃(i))j)
2.

2.3.5 SCARF

The contrastive framework SCARF (Bahri et al., 2022) contains a single projection head h1,
as shown in Figure 2.6, and uses both corrupted and uncorrupted inputs. For some fixed
parameter p ∈ [0, 1], the masks m may either be generated as in VIME or by uniformly
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Fig. 2.6 The self-supervised framework SCARF (Bahri et al., 2022). InfoNCE loss, denoted
LC , operates at the batch level, and so we consider batches denoted X. In contrast to VIME
(Yoon et al., 2020), uncorrupted and corrupted inputs flow through a pipeline that only
contains a single projection head.

choosing ⌊pd⌋ entries of each row of m to be 1, and setting the remainder to be 0. C is
defined as in (2.3).

The loss is computed over the outputs Ỹ(1) of corrupted inputs, but also requires the output
from the corresponding uncorrupted inputs, denoted Ỹ(1) (see (2.2)). InfoNCE loss (Gutmann
and Hyvärinen, 2010; van den Oord et al., 2018) is used, and given by the formula

L1 :=
1

N

N∑
i=1

− log

(
exp(sim(ỹ(1,i),y(1,i))/τ)

1

N

N∑
j=1

exp(sim(ỹ(1,i),y(1,j))/τ)

)
,

where sim(·) denotes cosine similarity and τ is a tunable temperature parameter that controls
the sensitivity to negative samples (Wang and Liu, 2021).

2.4 Summary

This chapter lay technical foundations to prepare the reader for later sections. We formalised
our problem statement and gave a conceptual overview of self-supervised learning, with
a particular focus on the different families of pretext task. To clearly describe methods
applicable to tabular self-supervision we developed a unified notation and framework. This
brings clarity to how the device we consider in the next chapter, correlated masking, is
generally applicable and may easily be injected into a broad array of current methods.



Chapter 3

Self-supervision with correlated masks

Masking processes are central to tabular self-supervision, and yet, the focus of the literature
has been on developing other aspects of the pipeline. The mask defines the question posed
by a pretext task, and we argue that asking better questions should ultimately lead to better
representations. Specifically, we consider correlated masks that reflect the correlation
structure of the input features. Concretely, this means that if two features xi and xj are highly
correlated, they are likely to either both be masked, or neither. This is expected to be helpful
during self-supervision, as it prevents networks learning trivial relationships, rather than
meaningful structure, to solve pretext tasks.

To begin, we describe the process of generating correlated masks, using a technique based
on Gaussian copulas (Lee et al., 2022). We then validate this approach across five methods:
VIME (Yoon et al., 2020), SCARF (Bahri et al., 2022), denoising autoencoders (DAEs)
(Vincent et al., 2008), Context Encoders (Pathak et al., 2016), and SubTab (Ucar et al., 2021).
This includes experiments on a family of synthetic datasets that illustrate a significant failure
mode of existing masking strategies, and on the standard benchmarks tabularised MNIST
(LeCun et al., 2010), UCI Blog Feedback (Buza, 2014), and UCI Income (Kohavi and Becker,
1996). To conclude, we introduce the notion of combination masks. These build on the
strengths of correlated and traditional independent masking, and are shown to outperform
both on a family of 7 proteomics datasets for predicting the efficacy of cancer treatments
(Barretina et al., 2012; Tomczak et al., 2015).

This chapter is accompanied by a software package1 that provides a modular and extensible
benchmarking suite for tabular self-supervision. It supports all of the methods we use, and

1github.com/stuartburrell/tabular_ssl_suite

https://github.com/stuartburrell/tabular_ssl_suite


16 Self-supervision with correlated masks

our hope is to give other researchers convenient access to consistent baselines to aid in the
development of new methods.

3.1 Building correlated masks

Existing techniques choose whether to mask each feature variable in a statistically independent
fashion. For example, recall that VIME (Yoon et al., 2020) sets each element of the mask
equal to an independent random draw from a Bernoulli distribution with probability p. In
this section we will show how to construct masks that respect the correlation structure of the
input.

It is a simple statistical problem to generate such masks, and there are multiple strategies. We
opt for an approach used in Lee et al. (2022) for self-supervision enhanced feature selection
that is based on Gaussian copulas, a standard tool in mathematical finance (Genest et al.,
2009). This section is divided into three parts. First, we formally define this technique and
describe an algorithm for obtaining samples. Second, we theoretically justify this approach
and empirically validate our implementation with a simple example. Third, we show how
samples from a Gaussian copula may be used to generate masks and visualise the differences
between correlated and independent masking. The topics we introduce here are covered in
various popular textbooks; for alternative expositions and background information see, for
example, Joe (1997, 2014); Nelsen (2006).

3.1.1 Sampling process

For d ∈ N, a function C : [0, 1]d → [0, 1] is a copula if C is a joint multivariate cumulative
distribution function (CDF) with uniform marginals. The Gaussian family of copulas are
obtained by taking a d-dimensional multivariate normal distribution with covariance matrix
R, and applying a probability integral transform to each component. Denoted CR, this can
be written

CR(U1, . . . , Ud) = ΦR(ϕ
−1(U1), ϕ

−1(U2), . . . , ϕ
−1(Ud))

where ϕ is the CDF of N(0, 1) and ΦR of N(0,R).

To sample from CR, first decompose R using a Cholesky decomposition

R = LLT , (3.1)
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where L is a lower triangular matrix, which is viable since R is positive semi-definite. We
then draw d samples from a univariate standard normal N(0, 1). These samples, denoted
X ∈ Rd×d are then left multiplied by L, giving

A = LX.

Finally, to obtain a sample from CR, we compute

(U1, U2, . . . , Ud) = (ϕ(A1)), . . . , ϕ(Ad)). (3.2)

where ϕ is the CDF of a standard normal distribution N(0, 1).

3.1.2 Theoretical justification

Fig. 3.1 The correlation structure of samples from a) Gaussian copula and b) the MNIST
dataset (LeCun et al., 2010). As expected, the observed patterns are almost identical, with
asymptotic equivalence.

The samples (3.2) are made to reflect the correlation structure of the unlabelled data Du by
defining R using the Pearson product-moment correlation coefficients given by

Ri,j =
Ci,j√
Ci,iCj,j

, (3.3)
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where Ci,j is the covariance of features xi and xj . Note that it is valid to set a covariance
matrix equal to a correlation matrix, since the latter is also positive semi-definite.

Correlation is carried from R to the copula samples, since A satisfies

E(AAT ) = E(LXXTLT ) = LE(XXT )LT = LILT = R

by (3.1). Hence, A has covariance matrix equal to the correlation matrix R. It then follows
from (3.3) that the correlation matrix of A is

D−1RD−1

where D is the diagonal matrix with Di,i equal to the variance of Ai. Since the diagonal
entries of R are 1 by definition, D = I, and we conclude the correlation matrix of A is also
equal to R. Since ϕ is positive and monotonically increasing, the final step (3.2) is order
preserving. Moreover, ϕ is approximately linear around 0 = E(Ai) for all i = 1, . . . , d, and
so, since correlation matrices are conserved by linear transformations with positive slope, we
conclude that the correlation structure of the samples (U1, . . . , Ud) approximately reflects
that of the original data, R.

Figure 3.1 empirically validates this algorithm by visualising the correlation matrix over 1000
copula samples obtained using R derived from the MNIST dataset (LeCun et al., 2010). As
expected, the correlation structure of the Copula samples shown in a) is similar to that in b),
of the original data.

3.1.3 From copula samples to binary masks

It is simple to extend this procedure to generate binary masks. To sample a mask m ∈ {0, 1}d,
we obtain Gaussian copula samples (U1, . . . , Ud) and set mi = 1 if Ui < p and 0 otherwise.
Figure 3.2 illustrates the difference between correlated and independent masking on MNIST.
As shown by the darker region surrounding the main diagonal in Figure 3.1, MNIST has large
quantities of strong local correlations, due to the continuity of brush strokes in handwritten
figures. Therefore, we see that correlated masking tends to remove larger contiguous blocks
in comparison to independent masking. In the next section we validate the effectiveness of
correlated masking across a wide range of current methods and datasets.
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Fig. 3.2 Examples of independent and correlated masks for the MNIST dataset (LeCun et al.,
2010).

3.2 Experiments

This section demonstrates through a series of experiments that correlated masking typically
leads to greater downstream classification performance. First, we specify our general
experimental setup and details necessary for our results to be reproduced.

3.2.1 Setup

Similar architectures were used across methods for consistency where possible. Encoders
were a multi-layer perceptron with two hidden layers, while projection heads h1 were a
multi-layer perceptron with a single hidden layer. Hidden layers contained max{30, d} units,
where d is the feature dimension which varies across datasets. Models were trained using the
Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001. For self-supervision,
patience mechanisms that perform early-stopping after validation loss ceases to decrease after
a pre-specified number of epochs were found to be inconsistent. Therefore, for maximum
reproducibility, the number of training epochs for each dataset and model combination was
fixed, and determined to be sufficient by monitoring loss on an unlabelled validation set.
These quantities are given in Appendix A.2 for reference. We simulated the label-free setting
where no downstream labelled validation is available, and therefore chose a typical default
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value of p = 0.5 for the corruption probability unless otherwise stated. Further model-specific
hyperparameters are specified in Appendix A.

Downstream classification uses a multi-layer perceptron with 2 hidden layers. This was
trained for 100 epochs with early-stopping and a patience of 20. As in (Yoon et al., 2020),
10% of downstream training data was held-out for validation, with early stopping based
on validation classification performance. Accuracy or AUROC were used as performance
metrics for downstream classifications tasks. The data partitions into unlabelled and labelled
data are specified in the corresponding experiment. All models were implemented from
scratch using PyTorch (Paszke et al., 2019), and we have made our testing suite publicly
available2.

3.2.2 Synthetic data

Fig. 3.3 The correlation structure of a 9-dimensional synthetic dataset built around 3 latent
clusters. The within cluster variance is σ = 0.1 for a), σ = 0.5 for b), and σ = 1.0 for c). As
σ increases the level of clustering dissipates.

Existing methods for tabular self-supervision may not learn informative representations if the
network is able to exploit strong local correlations to solve pretext tasks while neglecting
salient global structure. To illustrate this failure mode, we constructed a family of synthetic
datasets. Each 9-dimensional row x ∈ R9 was sampled as follows.

2github.com/stuartburrell/tabular_ssl_suite

https://github.com/stuartburrell/tabular_ssl_suite
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Generation process

First, we independently sampled three standard normal latent variables

z1, z2, z3 ∼ N(0, 1).

These latents form cluster centres, around which components of x will lie. Specifically,

xi ∼


N(z1 + z2 + ε, σ) if i ∈ {1, 2, 3}

N(z2 + z3 + ε, σ) if i ∈ {4, 5, 6}

N(z1 + z3 + ε, σ) if i ∈ {7, 8, 9}

,

where ε ∼ N(0, σε) is sampled once per row x and applied to all clusters, while σ controls
the within cluster variance. To avoid the supervised learning task being trivial, we defined
classes based on the latent variables z1, z2, z3, which are discernible only by comparing the
locations of clusters and implicitly solving a system of linear equations. In particular,

ci =


1 if z1 < z2 < z3 or z2 < z3 < z1

2 if z1 < z3 < z2 or z3 < z1 < z2

3 if z2 < z1 < z3 or z3 < z2 < z1

.

Therefore, to successfully perform classification an algorithm must be able to discern the
ordering of the latents z1, z2, z3 for particular example. Due to symmetry in the construction
these classes are balanced, and so accuracy is considered relative to a baseline of 33%.

Our dataset contained 50000 points, of which we presumed only 100were used for downstream
training, and 5000 for downstream testing. The remaining 44900 points were considered
unlabelled and used for self-supervision, with 1000 held-out as a validation set to monitor
convergence during training. This lead to a training time of 200 epochs. We set the corruption
parameter p = 0.3, as opposed to the default of value of 0.5 used elsewhere, due to the small
number of features in this dataset.

Discussion

The results are given in Table 3.1. Correlated masking outperformed its independent
counterpart across almost all cases when σ = 0.1 or σ = 0.5. At these noise levels, our results
support the hypothesis that independent masking leads to reconstructive tasks exploiting
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Table 3.1 Downstream classification performance on three synthetic datasets for a variety
of reconstructive and contrastive tabular self-supervision approaches. There are 3 balanced
classes, giving a random choice baseline of 33%. The best result between the two masking
strategies for each method is given in bold. Mean and standard deviations are computed over
10 runs.

Accuracy (%)
Type Model Encoder Masking σ = 0.1 σ = 0.5 σ = 1.0

Supervised 2L-MLP – – 66.6 ± 7.5 56.7 ± 3.9 47.9 ± 7.7

Self-
supervised

DAE 2L-MLP Independent 59.8 ± 5.4 54.1 ± 7.9 52.7 ± 2.6
2L-MLP Correlated 66.3 ± 8.8 59.9 ± 4.8 53.9 ± 2.1

VIME 2L-MLP Independent 61.7 ± 8.2 56.6 ± 4.1 48.7 ± 5.8
2L-MLP Correlated 67.4 ± 4.9 58.5 ± 3.1 48.9 ± 8.1

SCARF 2L-MLP Independent 64.5 ± 9.2 54.5 ± 9.7 46.1 ± 7.8
2L-MLP Correlated 67.8 ± 6.4 57.6 ± 5.4 47.1 ± 3.1

SubTab 2L-MLP Independent 63.1 ± 6.9 52.9 ± 2.8 43.9 ± 3.9
2L-MLP Correlated 67.4 ± 3.6 51.8 ± 4.3 43.6 ± 3.7

Context Encoder 2L-MLP Independent 61.3 ± 6.4 57.0 ± 7.8 49.1 ± 3.8
2L-MLP Correlated 66.2 ± 7.2 61.5 ± 2.0 49.7 ± 4.1

within cluster correlations to easily reconstruct other cluster members. On the other hand,
correlated masking is more likely to lead to an entire cluster being masked, forcing the model
to discern the cluster values learning the hidden relationship between cluster centers.

Though to a lesser degree, correlated masking also improved the performance of the contrastive
method SCARF, for which the previous argument does not apply. In this setting, correlated
masking would be more prone to attracting representations between a point and a corrupted
version with an entire cluster masked. The is useful, since the model learns that seemingly
very distinct samples are actually similar based on the global relationship between cluster
centers. On the other hand, independent masking will tend to learn only obvious similarities
between points with partially masked clusters, whose similarity is evident without considering
the larger scale relationships between cluster centres.

As σ increases, we see the performance discrepancies reduce. This is likely because the
clustered structure begins to be obfuscated, and the within cluster correlations no longer
confuse self-supervision by presenting a trivial solution to the pretext tasks. We conclude
this discussion by noting that, while this dataset is synthetic, it does exhibit a structure that
is plausible in many settings. For example, in a climate dataset on temperature measured
at three weather stations within three regions, we would expect strong correlations between
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measurements in each region. This may obfuscate attempts to learn deeper patterns that
occur at a larger scale between regions. That said, this example is specifically designed to
exploit the weakness of independent masking and the strengths of correlated masking. In the
next section, we level the playing field by considering three tabular benchmarks.

3.2.3 Tabular benchmarks

This section validates correlated masking on tabular MNIST (LeCun et al., 2010), UCI Blog
Feedback (Buza, 2014), and UCI Income (Kohavi and Becker, 1996). These datasets are
widely used to validate tabular self-supervised methods, for example, in (Bahri et al., 2022;
Ucar et al., 2021; Yoon et al., 2020). Each is briefly introduced below. In all cases, the
ratio of unlabelled to labelled training data we used was roughly 95-5%. 1000 unlabelled
samples were held-out during self-supervision to monitor for convergence of validation loss
and determine fixed stopping times, see Appendix A.2. A default value of p = 0.5 was used
throughout. For consistency with (Bahri et al., 2022; Ucar et al., 2021; Yoon et al., 2020), we
use accuracy to measure downstream performance

MNIST Handwritten Digits

Fig. 3.4 Examples from the MNIST dataset (LeCun et al., 2010). In tabular experiments,
these images are vectorised so that each forms a single row.

The MNIST dataset (LeCun et al., 2010) contains 60, 000 training and 10, 000 test grayscale
28 × 28 handwritten digits, see Figure 3.4. In tabular settings, each sample is converted
into a 784-dimensional row vector. Each image was pre-processed by applying min-max
normalization. The provided test set of 10, 000 images were used. 57, 000 training images
were used for unlabelled self-supervision, and 3000 for downstream training.

UCI Blog Feedback

UCI Blog Feedback Buza (2014) is a tabular dataset of 60021 examples containing 280

features. These describe various attributes of blog posts, such as bag of word features and
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meta-data. The provided label is a regression target for the number of comments on a sample
blog post in a 24 hour period (Buza, 2014), though as in VIME (Yoon et al., 2020), we convert
this into a binary prediction task by predicting whether the number of comments is greater
than 0. This task is slightly unbalanced, and a baseline based on predicting the mode class 0
is 63.7%. Min-max normalisation was applied to all features. We used 49, 777 unlabelled
examples, 2620 downstream labelled training samples, and the provided test set of size 7264.

UCI Adult Income

UCI Income (Kohavi and Becker, 1996) is drawn from census data, and contains 30162

samples with 37 features describing attributes such as education history, job status, or age.
Min-max normalisation was applied, which only impacts non-binary features. Our split
contained 25, 146 unlabelled examples, 1508 labelled training examples, and 2000 testing
examples.

Table 3.2 Classification performance for 2 supervised and 5 self-supervised methods on three
benchmark datasets. Mean and standard deviations are computed over 10 runs.

Accuracy (%)
Type Model Encoder Masking Blog MNIST Income

Supervised 2L-MLP None None 76.9 ± 0.4 92.9 ± 0.6 81.7 ± 0.5

Self-
supervised

DAE 2L-MLP Independent 73.8 ± 0.5 93.1 ± 0.5 83.3 ± 0.6
2L-MLP Correlated 75.6 ± 1.3 94.2 ± 0.5 83.1 ± 0.7

VIME 2L-MLP Independent 77.6 ± 0.8 93.6 ± 0.6 81.6 ± 0.7
2L-MLP Correlated 78.6 ± 1.1 94.5 ± 0.3 81.7 ± 0.7

SCARF 2L-MLP Independent 77.6 ± 0.8 93.8 ± 0.4 82.4 ± 0.6
2L-MLP Correlated 77.7 ± 0.8 94.0 ± 0.4 82.2 ± 0.9

SubTab 2L-MLP Independent 77.3 ± 0.4 94.9 ± 0.6 83.4 ± 0.5
2L-MLP Correlated 77.9 ± 0.4 95.7 ± 0.3 83.3 ± 0.4

Context Encoder 2L-MLP Independent 78.5 ± 0.6 94.1 ± 0.5 81.1 ± 1.4
2L-MLP Correlated 79.2 ± 0.6 94.7 ± 0.2 81.6 ± 0.2

Discussion

Table 3.2 presents classification accuracy for each dataset over the five methods: VIME,
SCARF, SubTab, Context Encoders and DAEs. For both Blog and MNIST, correlated
masking is an effective technique, consistently improving performance by around 1-2% in
absolute terms across a wide range of tabular self-supervised methods. For UCI Income, both
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Fig. 3.5 Visualising feature correlations for the UCI Income (Kohavi and Becker, 1996)
dataset.

methods were approximately comparable. This is to be expected, as given closer inspection
of the correlation structure of Income features shows only very weak correlations between
feature variables, see Figure 3.5. In such cases, the two masking regimes differ only negligibly
and we expect comparable performance. In practice, the user may inspect or quantitatively
summarise the correlation structure to determine whether there are sufficient relationships to
expect correlated masking to have an impact. For example, the mean of the correlation matrix
of UCI Income is 0.008, far lower than 0.02 and 0.07 for MNIST and UCI Blog, respectively.
However, we never witness a significant degradation due to correlated masking, suggesting
even novice practitioners may apply this technique without significant risk.

An importance difference is seen between the contrastive approach SCARF (Bahri et al., 2022)
and other methods, which all rely on some form of pretext reconstruction task. For SCARF,
both approaches were quite comparable asymptotically, as shown in Table 3.2. However,
we did observe that on UCI Blog correlated masking converged much quicker, reaching its
approximate final performance levels after just 200 epochs. At this stage however, independent
masking was lagging behind by almost a 1% in accuracy, and required further 100 epochs to
close the gap, see Figure A.2 in Appendix A.3. This demonstrates that correlated masking is
playing a different role in contrastive settings. In contrastive frameworks, the importance of
good quality negative examples is known, see (Chen et al., 2020; Tian et al., 2020). Therefore,
we hypothesise that since correlated masks correspond to more meaningful distortion, they
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therefore more frequently and easily generate good negative examples. However, given
sufficient training, independent masking will eventually generate such examples too, with the
reduced frequency not appearing to impact performance.

3.3 Combination masks

So far we have witnessed an array of cases where correlated masking is beneficial, and
would be a recommended technique across tabular self-supervision. By masking correlated
collections of variables, this scheme may be thought to learn deeper, less obvious relationships.
These may be characterised as global, since instead of pairwise dependencies they may often
depend on larger numbers of variables. However, as we shall see in Chapter 4, we should not
completely disregard the information provided by independent masking, either. A method
that focuses more on pairwise relationships may well encode local information that correlated
masking does not.

For many downstream tasks, we may desire representations that successfully encode informa-
tion at both global and local scales. Motivated by this, we construct method that synthesising
both form of mask within a single scheme. For two different masks m1 and m2 and a
parameter 0 ≤ γ ≤ 1, we set

m = (u<γ)⊗m1 + (1− u<γ)⊗m2.

where u ∈ Rd is a binary vector with entries sampled from Uniform(0, 1), and

(u < γ)i =

1 if ui < γ

0 if ui ≥ γ
.

In our experiments, we set m1 to be a correlated mask and m2 to be a standard independent
mask. Hence, we recover independent masking when γ = 0 and correlated when γ = 1. We
note that this scheme readily extends to more than two schemes, at the expense of additional
parameters to define the weighting.

As a final application in this chapter, we chose to validate all three masking strategies;
independent, correlated and combined, with a larger scale experiment using a family of 7
proteomics datasets on estimating the efficacy of cancer treatments. This is a more deserving
test bed than arguably overused benchmarks from the literature; as the ratio of unlabelled
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to labelled data grows, it is for such data with rich and complex structure that tabular
self-supervision will likely thrive.

3.3.1 Estimating the efficacy of cancer treatments

This validation experiment uses a dataset built from the Cancer Cell Line Encyclopedia
(CCLE) (Barretina et al., 2012) and The Cancer Genome Atlas (TCGA) (Tomczak et al.,
2015). The former contains 889 samples of 196 protein expressions taken from cancer cells.
We consider associated drug responses for 7 cancer treatments, which are available for 458 of
these samples to form our downstream labelled data. The remaining 458 are unlabelled. This
is not a scale where we expect self-supervision to be successful, and for this reason these
unlabelled samples are combined with a further 7329 samples from (Tomczak et al., 2015).
The resulting dataset contained 124 featured dimensions.

We created a binary classification task by labelling cell lines with responses in the top 25%

as responders (label 1) and those in the bottom 75% as non-responders (label 0). This is an
unbalanced task, the ratio of non-responders to responders 3 to 1. Therefore, AUROC is used
as our performance metric to assess performance. As a representative example, we chose
the method VIME (Yoon et al., 2020) with α = 2 and p = 0.5, though others choices would
be suitable. The combination mask parameter γ was set to 0.5. Table 3.3 shows that, even
though thee amount of unlabelled data is modest, self-supervision yields improvements in all
cases. Correlated and combination masking also outperform independent masking across
all but one dataset, with the combined scheme optimum for 5 out of the 7. This supports
our hypothesis that a hybrid approach that balances local and global information is often
promising, and tuning of γ could potentially further increase the benefit.

Table 3.3 Downstream AUROC performance scores for estimating drug responses using the
CCLE (Barretina et al., 2012) and TCGA (Tomczak et al., 2015) proteomics datasets. Mean
and standard deviations are computed over ten runs.

Drug
Masking γ Panobinostat L-685458 AEW541 Topotecan TAE684 PF2341066 Irenotecan Average

None – .747 ± .025 .660 ± .039 .641 ± .036 .672 ± .076 .652 ± .029 .649 ± .018 .599 ± .004 .660 ± .032
Independent 0.0 .749 ± .009 .696 ± .008 .613 ± .021 .716 ± .009 .657 ± .013 .652 ± .012 .640 ± .023 .675 ± .014
Correlated 1.0 .780 ± .005 .705 ± .006 .639 ± .017 .708 ± .007 .637 ± .014 .676 ± .011 .693 ± .027 .691 ± .012
Combination 0.5 .784 ± .006 .705 ± .009 .646 ± .009 .718 ± .007 .644 ± .012 .667 ± .018 .705 ± .020 .696 ± .011
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3.4 Summary

This chapter investigates the use of correlated masking for self-supervision. Strong motivation
for this technique is given by constructing a synthetic dataset which demonstrates a significant
failure mode of existing techniques, showing how strong local correlations may obfuscate
attempts to learn deeper latent structure. We extensively validate this method and show
significant performance gains across a wide range of techniques: VIME (Yoon et al., 2020),
SCARF (Bahri et al., 2022), SubTab (Ucar et al., 2021), DAEs (Vincent et al., 2008), and
Context Encoders (Pathak et al., 2016). To conclude, we consider a family of 7 proteomics
datasets on estimating the efficacy of cancer treatments. Correlated masking is effective
in this setting, but often a novel approach based on combining masking schemes is best.
This allow finer control of task difficulty, and we argue balances the learning of local and
global information. However, this introduces a further hyperparameter γ that controls
the weighting of each scheme, further motivating the need for effective hyperparameter
optimisation techniques. In the next chapter, we address this issue by introducing methods for
approximating optimal hyperparameters using explainable AI, without access to any labelled
validation data or downstream tasks.



Chapter 4

Optimisation through explainability

Downstream performance is widely accepted as the method of choice for evaluating rep-
resentation quality. If labelled examples are available during self-supervision, standard
cross-validation techniques may be used to optimise network architectures and masking
hyperparameters, such as p, which controls the degree of corruption. However, in such
settings semi-supervised approaches (Pise and Kulkarni, 2008) that directly incorporate
labelled examples within the representation learning framework might be preferred, such
as the semi-supervised variant of VIME (Yoon et al., 2020). In this chapter we ask how
hyperparameter optimisation may take place without access to any downstream labelled data.

To do this we argue representation quality may be inferred intrinsically from characteristics
of the representations and encoder alone. We present evidence for this by performing an
exploratory visual analysis of 16 self-supervised models trained on the MNIST dataset (LeCun
et al., 2010), and leverage recent advances in label-free explainable artificial intelligence
(Crabbé and van der Schaar, 2022). In contrast to a visualisation technique such as t-SNE
(van der Maaten and Hinton, 2008), which offers a larger scale picture of an embedding space,
the techniques we consider allow us to analyse properties of individual representations.

Based on these insights, we postulate general desirable properties of representations, and
define associated quantitative metrics that may be used for concrete optimisation. These
quantitative metrics are then validated on MNIST and a second dataset, UCI Blog Feedback,
unseen during our exploratory analysis. This is an ambitious line of research, and we do not
claim a single metric for optimising any representations may even exist. Instead, we take a
practical approach, and suggest that over time a suite of such tools for intrinsically evaluating
representations may be developed that may guide the machine learning practitioner during
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the development of self-supervised models. To begin, we introduce the reader to the field of
explainable artificial intelligence (XAI), with a particular emphasis on the label-free setting
(Crabbé and van der Schaar, 2022) that is directly relevant to our work.

4.1 Explainable artificial intelligence

In traditional statistical modelling, interpreting the predictions of techniques such as Gener-
alised Linear Models (GLMs) (McCullagh and Nelder, 1989) may often reduce to simply
comparing the relative sizes and roles of a handful of parameters. The success of modern
deep learning, however, has come at the cost of a dependence on model complexity, with
large language models such as GPT-3 (Brown et al., 2020) containing over a hundred billion
parameters. This shift in scale has necessitated the development of the field of explainable
artificial intelligence (XAI) (Das and Rad, 2020). This is a multi-faceted program of research,
built on a need for AI that is safe, trustworthy, robust and transparent (Adadi and Berrada,
2018). It aims to unpack the decision making process of machine learning models, and
understand why they produce the outputs they do, when at first glance they appear to be a
‘black box’. This promises to open the door to high-stakes applications of AI in fields such as
medicine and law (Barredo Arrieta et al., 2020), but also has the potential to aid scientific
discovery, since our models may reveal reasoning for predictions that previously eluded us
(Adadi and Berrada, 2018).

One approach to XAI aims to design and build models that are inherently interpretable
(Caruana et al., 2015; Letham et al., 2015; Ustun, 2016; Xu et al., 2015). This approach
is often too restrictive on model complexity, however, motivating the class of post-hoc
techniques (Lipton, 2018) that are model agnostic and generally applicable. The post-hoc
techniques we consider compute feature importance, a quantification of the importance
of an input feature on a model prediction. Popular methods that fall under this category
include Integrated Gradients (Sundararajan et al., 2017), Lime (Ribeiro et al., 2016), and
Shap (Lundberg and Lee, 2017). See also (Crabbé and Van Der Schaar, 2021; Fong and
Vedaldi, 2017; Shrikumar et al., 2017). In various ways, these techniques quantify the
sensitivity of a prediction to perturbation in the input, often through approximation. For
example, Lime (Ribeiro et al., 2016) uses a local linear approximation of the model around
the prediction, while Integrated Gradients accumulates gradients along a path from the input
to a common baseline, using the logic that a steeper gradient landscape around a feature
indicates heightened sensitivity and importance. However, for each of these methods, the
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predictions we are aiming to interpret relate to a supervised setting, and are a single scalar
value, such as a class. To instead consider a label-free setting with general multi-dimensional
model outputs an extension was introduced in (Crabbé and van der Schaar, 2022).

Conveniently, label-free feature importance (Crabbé and van der Schaar, 2022) builds on top
of a wide variety of traditional methods. To see how, let f : Rd → Rk denote a model of
interest. To compute the feature importance scores of an input x ∈ Rd, denoted ai(f,x) for
i = 1, . . . , d, the model f is wrapped within a function gx(f, ·) : Rd → R given by

gx(f, t) = ⟨f(x), f(t)⟩, (4.1)

where ⟨·⟩ denotes an inner product. Typically, this will be the standard inner product on
Rd. Importantly, note that the function gx produces a scalar, and may therefore be passed
directly to standard feature importance methods. This leads to the label-free importance
scores, denoted bi(x, f), defined by

bi(x, f) = ai(gx,x). (4.2)

The motivation for gx comes from the equation

k∑
j=1

fj(x)ai(fj,x), (4.3)

which quantifies the overall importance of xi as a weighted sum over its influence on each
dimension of the output, denoted fj . However, since this must be computed for each i and
sums over j, it requires d× k evaluations of ai per sample. However, (Crabbé and van der
Schaar, 2022) observe that this may be bypassed if ai(f,x) is linear with respect to its first
argument, meaning

ai(λf + γg,x) = λai(f,x) + γai(g,x).

This holds for most methods, including Integrated Gradients that we use later (Crabbé and
van der Schaar, 2022). Using linearity, (4.3) trivially reduces to

bi(f,x) = ai

(
k∑

j=1

fj(x) · fj,x

)
= ai(gx,x) (4.4)

recovering the definition of gx from (4.1).
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By identifying f with an encoder e such as those trained in Chapter 3, this machinery
allows us to probe deeper into how design choices such as correlated masking actually
change representations. This identifies qualitative and quantitative properties that characterise
representations with superior downstream performance.

4.2 Exploratory visual analysis

In Chapter 3, we saw how different forms of masking impact downstream performance. The
story does not end there, and we may ask why one representation is better, or more informative,
than another. We investigate this by computing and visualising feature importance scores
using (4.2) with the underlying method Integrated Gradients (Sundararajan et al., 2017),
though methods such as Shap (Lundberg and Lee, 2017) and Lime (Ribeiro et al., 2016)
would also be suitable.

Integrated gradients considers an accumulation of gradients along a path from a baseline
input x′ to an input of interest x. Formally, this is computed as

ai(f,x) = (xi − x′
i)×

1∫
0

∂f(x′ + α(x− x′))

∂xi

dα

which may be combined with (4.2) to compute the label-free version bi(f,x) = ai(gx, f),
since linearity is immediate. For MNIST, and in later sections with UCI Blog Feedback, we
found a zero baseline x′ = 0 to be effective, corresponding to a black image for MNIST and
an empty blog post for UCI Blog Feedback, noting that the majority of the features in this
latter case are word frequencies.

The impact of independent and correlated masking

Figure 4.1 visualises the feature importance of three examples taken from the MNIST dataset
for two VIME derived encoders; one with independent masking and another with correlated
masking. We surveyed a far larger number of examples, and chose these to exhibit three
prominent trends that we discovered. Figur 4.1 a) gives an example showing that independent
masking may lead to somewhat arbitrary levels of concentrated high importance, often at
the edges of a digit. This was perhaps the most common pattern we found, and suggests
independently masked models are more prone to being distracted by irrelevant local detail.
In contrast, correlated masking typically led to a smoother landscape of importance scores,
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evenly spread across the essential content. Figure 4.1 b) gives an example where independent
masking leads to missing patches and discontinuity in the paths of high feature importance
through a digit. This suggests a degree of over-fitting, with the model placing greater
importance on the central bar of the digit that happens to be present for many other numbers,
such as 1 and 7. In contrast, no examples with correlated masking we saw lead to this
behavior, showing a better respect for the large scale structure of the digits. Finally, in Figure
4.1 c), we see where independent masking is actually preferable; we often observed that
minor stylistic features were picked up in the importance scores much more frequently than
with correlated masks. As a result, the digits traced out for the correlated encoder often
contained thinner outlines. These three examples support our conjecture from Chapter 3 that
correlated masking led to a greater focus on global information while independent masking
picks up more local relationships. For many downstream tasks, global information may well
be more pertinent and correlated masking preferred, though when small details are relevant
to the downstream task, we expect this to be reversed.

Importance collapse and task difficulty

To gain a more complete picture of an encoder e : Rd → Rk it may be useful to look
at the typical behaviour of feature importance scores. Therefore, for a sample of inputs
{x(i), . . . ,x(N)}, we define the aggregated feature importance to be the vector A(e) ∈ Rd,
where

A(e)j =
N∑
i=1

bj(e,x
(i)). (4.5)

For visualisation purposes, on MNIST we reshape A(e) into a 28× 28 image.

Figure 4.2 visualises the aggregated feature importance for 10000 MNIST test examples
(scaled by a uniform constant). For p = 0.2, both masking schemes show large amounts of
irregularity in A(e), though this is more pronounced for independent masking. Specifically,
large numbers of important central pixels are ignored. This shows that for small p, the
self-supervision framework is able to solve the pretext tasks while completely dismissing
large amounts of salient input. This shows that the pretext task in this case is too easy. As p
increases to 0.5, regularity increases, particularly in the central region. Here, independent
masking takes into account a larger portion of the input overall, suggesting a lack of focus
that could explain lower downstream performance. As p increases further, scores for both
collapse in a concentrated central region. This suggests the task is too hard, with the model
learning to disregard the majority of the input as noise.
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Fig. 4.1 Feature importance scores for three examples from the MNIST dataset (LeCun et al.,
2010) using label-free XAI (Crabbé and van der Schaar, 2022) and Integrated Gradients
(Sundararajan et al., 2017). a) and b) demonstrate how correlated masking led to smoother
importance scores and higher levels of continuity. c) shows how independent masking uses
more stylistic detail to build representations.
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Fig. 4.2 Aggregated feature importance computed on the MNIST dataset (LeCun et al.,
2010) using label-free XAI (Crabbé and van der Schaar, 2022) and Integrated Gradients
(Sundararajan et al., 2017). For both forms of masking, the breadth and smoothness of the
aggregated importance distribution strongly depends on the corruption parameter p, with
undesirable behaviour at both extremes.
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Figure 4.1 and Figure 4.2 suggest general properties that may characterise ‘better’ representa-
tions. In the next section we place this approach on a firmer footing by developing concrete
quantitative metrics based on feature importance scores.

4.3 Metrics for label-free optimisation

Visual analysis of representations is a useful tool, but may be time-consuming, sensitive
to bias, or difficult in situations where there are only marginal differences. Quantitative
metrics go some way in remedying these challenges, and may be amenable to more automatic
approaches to optimisation. In this section we propose three such metrics, and validate them
on two datasets: MNIST (LeCun et al., 2010) and UCI Blog Feedback (Buza, 2014). We
used the experimental setup and architectures given in Section 3.2.1 and Appendix A.2, but
varied p ∈ {0.2, 0.3, . . . , 0.8} and the form of masking (independent or correlated). This
required training 16 encoders on each dataset.

The first and second metrics are based on the idea that, in general, we expect good
representations to take into account more of the input. This is motivated by Figure 4.2; where
we saw that more extreme values of p led to degeneracy and the encoder ignoring large
amounts of salient information. While aggregate feature importance is a helpful visual tool,
it does not immediately translate into useful single quantity. For example, let us define the
total importance metric to be the sum over the aggregate importance scores. That is,

T (e) =
d∑

i=1

Ai. (4.6)

Figure A.3 in Appendix A.3 shows that values of p leading to a better spread of importance
across the input, as seen in Figure 4.2, do not have higher total importance. As p increases,
the magnitude of the importance in the collapsed central region far outweighs the reduction
in importance elsewhere, leading total importance to not correlate well with downstream
performance. A logical alternative would be to compute

U(e) =
d∑

i=1

1(Ai > ε)

for some ε > 0, measuring the proportion of variables with importance scores away from
zero. However, surprisingly, this also does not work (see Figure A.4 in Appendix A.3) and
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the reason why unearths an interesting relationship between downstream performance and
positive and negative importance scores.

Motivated by this, we define

P (e) =
1

N

N∑
i=1

d∑
j=1

1(bj(e,x
(i)) > 0) (4.7)

and

N(e) =
1

N

N∑
i=1

d∑
j=1

1(bj(e,x
(i)) < 0) (4.8)

to be the positive spread and negative spread metrics, respectively. Figures 4.4 shows
downstream performance is optimal when P (e) is approximately maximised, and when N(e)

is approximately minimised. This mirrored behaviour is expected, since

d = P (e) +N(e) +
1

N

N∑
i=1

d∑
j=1

1(bj(e,x
(i)) = 0),

and so the maximum of P (e) is will clearly coincide with the minimum of N(e). What
is interesting, however, is to unpack why positive feature importance scores appears to be
preferable, and not the other way around.

The magnitude of an importance score determines the degree of importance, while the sign
corresponds to the sign of the correlation with the model output. In this case, the model
output is

gx(x, f) = ⟨f(x), f(x)⟩ = ||f(x)||,

recalling the definition bi(f,x) = ai(gx,x). Therefore, if N(A(e)) is large, we deduce there
are many dimensions of x negatively correlated with ||f(x)||. Loosely, this is indicative of
degenerate behaviour of e, since if these dimensions of x grow while others remain fixed,
the representations of large amounts of potentially very distinct inputs will collapse towards
0. This argument is of course heuristic and asymptotic, and just one of many potential
explanations. We leave it as an interesting question for future research to determine other
rigorous theoretical results that underpin these empirical observations.

Our third metric takes a different approach, and aims to measures the degree of consistency
within the feature importance scores. The intuition is that we should expect correlated input
dimensions, on average, to have similar importance scores.
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Fig. 4.3 A comparison of the positive and negative spread metrics showing that they are
not sufficient to identify correlated masking as superior. This motivates the normalized
consistency metric (4.9). The approximate trend lines given were computed using second-
order polynomial regression.

We define the normalized consistency metric as

C(e) = − 1

T (e)

d∑
i=1

d∑
j=1

Ri,j|Ai −Aj|, (4.9)

where T (e) is the total importance (4.6), A = A(e) is the aggregated importance (4.5), and
R is the correlation matrix of the input data (as in Section 3.1). Therefore, if Ri,j is large,
it enforces larger penalties on deviations between Ai and Aj . It is important to note that
(Crabbé and van der Schaar, 2022, Proposition 2.3), which proves

d∑
i=1

bi(f,x) = ||f(x)|| − b0

for a baseline b0 ∈ R, is not sufficient to ensure A is of a comparable scale across models,
since b0 may depend on f . Therefore, the normalization constant T (e) is essential. The
positive and and negative spread metrics are coarse measures of degeneracy, and are not
able to successfully identify correlated masking as superior, see Figure 4.3. However, Figure
4.6, shows that maximising the normalized consistency metric would lead to successfully
identifying correlated masking as the stronger method. This is for both MNIST, where we
expected this to be the case based on our visualisations in Section 4.2, and UCI Blog Feedback
which could be considered a test case. Together, these results show that we should not rely
on a single metric for optimisation, but instead take a practical approach that uses a suite of
metrics and visualisations to guide design choices.
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Fig. 4.4 A comparison of the negative spread metric with downstream classification per-
formance. As expected, optimum downstream performance corresponds to the model with
approximately minimal N(A). The approximate trend lines given were computed using
second-order polynomial regression.
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Fig. 4.5 A comparison of the positive spread metric with downstream classification perfor-
mance. As expected, optimum downstream performance corresponds to the model with
approximately maximal P (A). The approximate trend lines given were computed using
second-order polynomial regression.
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Fig. 4.6 A comparison of the normalized consistency metric with downstream classification
performance. This metric, which aims to measure regularity and smoothness in the importance
features, successfully identifies correlated masking as the superior model. The approximate
trend lines given were computed using second-order polynomial regression.
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4.4 Designing encoder ensembles

This chapter has shown that choosing correct difficulties of pretext task is critical. For
example, if p is chosen to be too large the encoder may learn to disregard most of the input,
see Figure 4.2. Motivated by this, we consider an alternative to trying to choose a single best
p, and instead ensemble multiple encoders and concatenate their representations. At the cost
of additional compute, this should increase robustness to poor hyperparameter choices, since
a downstream model could learn to ignore uninformative parts of the final representation.

We demonstrate that ensembling in this standard way yields a small performance improvement.
However, we also introduce a novel hierarchical ensemble architecture that allows encoder
ensembles to collaborate to solve harder tasks. This approach is shown to perform better, and
we briefly discuss how the techniques develop in this chapter explain why.

Let us begin by precisely stating the two ensemble architectures we consider. In a standard
lateral ensemble, we train a variety of encoders with different hyperparameters independently.
Downstream, we aggregate their representations using concatenation. A hierarchical ensemble
allows certain information to flow through several encoders. As an example, let us describe a
hierarchical ensemble that contains three encoders. Each encoder has associated with it a
different task. Here, these different tasks will correspond to correlated masking strategies
with different values of p (for example p ∈ {0, 2, 0.4, 0.6}). For each sample during training,
we choose a masking scheme uniformly at random. If p = 0.2 is sampled, the input is
masked accordingly and propagates through only the first encoder. If p = 0.4, then it passes
through both the first and the second encoders, and so on. Once an input has passed through
the desired number of encoders, a representation is output and passed to projection heads
associated with the corresponding encoder to solve a pretext task. Loss is backpropagated as
usual.

Harder tasks should be placed higher up the hierarchy, allowing more encoders to collaborate
in their solution. The input to encoders above the first level is a copy of the original input and
the representation from the encoder below it. This architecture is best visualised, see Figure
4.8.

To validate these methods, we considered ensembles with 2, 3 and 4 tasks on the MNIST
dataset (LeCun et al., 2010). Each individual encoder followed the setup of Section 3.2.1, and
had attached projection heads corresponding to a VIME setup, see Section 2.3. Correlated
masking was used throughout.
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Fig. 4.7 The architecture of a hierarchical ensemble. Data corrupted with more aggressive
masking passes through more encoders, and this collaboration helps regularise the base level
encoder.
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Results

Table 4.1 Downstream accuracy performance on MNIST for 4 VIME models, 3 lateral
ensembles and 3 hierarchical ensembles. All ensembles used VIME based projection heads
and pretext tasks. Mean and standard deviations are given over ten runs.

Model No. Encoders p Accuracy

Supervised – – 92.9 ± 0.6

VIME

1 0.2 94.6 ± 0.3
1 0.4 95.4 ± 0.4
1 0.6 94.9 ± 0.3
1 0.8 93.6 ± 0.3

Lateral ensemble
2 0.2, 0.4 95.4 ± 0.2
3 0.2, 0.4, 0.6 95.7 ± 0.3
4 0.2, 0.4, 0.6, 0.8 95.7 ± 0.3

Hierarchical ensemble
2 0.2, 0.4 96.0 ± 0.2
3 0.2, 0.4, 0.6 96.1 ± 0.3
4 0.2, 0.4, 0.6, 0.8 96.2 ± 0.3

Discussion

In Table 4.1, we see that even simple lateral ensembles are mildly effective, yielding a
around a 0.3% absolute performance gain over the best single encoder. However, hierarchical
ensemble improves absolute performance by a further .5% over lateral, more than doubling
the overall improvement over the best single encoder. The techniques in this chapter may be
used to suggest why.

Figure 4.8 visualises the aggregated feature importance of the encoder within each of the
two ensembles corresponding to p = 0.2. In the hierarchical ensemble this the base encoder.
Using explainability techniques on higher level encoders in the hierarchical case is non-trivial
due to the complicated input structure, and we defer this to future work. However, just for the
base encoder we see a striking increase in the smoothness, positivity, and magnitude of the
aggregated feature importance scores for the hierarchical ensemble. Three properties that
were conjectured to be characteristic of good encoders in Sections 4.3 and 4.2. Since most
of the performance gain occurs in the hierarchical case when there are just 2 members of
the ensemble (Table 4.1), we conjecture this effect on the base level encoder by higher level
encoders could be the primary reason hierarchical ensembles perform better. This analysis is
supported quantitatively by the three metrics developed in Section 4.3, see Table 4.2.
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Fig. 4.8 A comparison of the aggregated feature importance computed for the base level
encoder within a hierarchical ensemble and the equivalent encoder (p = 0.2) within a lateral
ensemble.

Table 4.2 A comparison of the positivity, negativity and normalized consistency metrics,
denoted P (e), N(e), C(e) respectively, for the base level encoder in a hierarchical ensemble,
and the corresponding encoder in a lateral ensemble (p = 0.2). Both ensembles used 4
encoders with p ∈ {0.2, 0.4, 0.6, 0.8} and correlated masking. Other experimental parameters
were identical to those in Section 3.2.1. Bold indicates superior values.

P (e) N(e) C(e)

Lateral ensemble 111.6 39.5 -60.5
Hierarchical ensemble 151.1 0.0 -8.0
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4.5 Summary

This chapter introduced a new program of research that aims to optimise hyperparameters
within self-supervised frameworks without access to any labelled data or downstream
task. We build upon recent advances in label-free XAI to analyse the intrinsic structure
of representations. An exploratory analysis is given, and identifies a number of general
properties representations may benefit from, such as a smooth distribution of aggregated
feature importance scores. Three metrics are introduced to target these properties, and we show
that optimising these metrics correlates strongly with a-priori known best hyperparameters.
Future work should validate these techniques more widely, and expand the suite of available
metrics. We hope that eventually machine learning practitioners training self-supervised
models will be able to draw on a host of quantitative and qualitative tools like these to guide
design choices during model development.



Chapter 5

Conclusions

This thesis has contributed to the development and understanding of masking strategies in
tabular self-supervision. In this final chapter, we bring together our findings into a single
narrative that allows us to clearly motivate directions for further research. We begin with a
summary, before presenting a few concrete extensions and some more ambitious research
questions.

5.1 Summary

In Chapter 2, we gave a conceptual overview of self-supervised learning and set up a unified
notation for describing a wide variety of existing techniques. This highlighted the different
components in the pipeline, and that most existing innovations have focused on developing
new architectures, loss functions and pretext tasks. Even in this latter case, corruption based
pretext task design has focused primarily on how to corrupt input, and not what part of the
input to corrupt.

In Chapter 3, we saw how masking informed by the correlation structure of the input is a
generally applicable technique that may enhance several state-of-the-art methods for tabular
self-supervision. We construct a family of synthetic datasets to identify the failure mode of
independent masking that correlated masking addresses. We then validate correlated masking
across standard benchmarks. To conclude, we introduce combination masking, a procedure
that allows us to combine multiple masking schemes to benefit from the advantages of each.
This also gives finer control over task difficulty, and allows a balance between learning local
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and global information. We show this method outperforms the alternatives for a family of 7
proteomics datasets on the efficacy of cancer treatments.

After establishing the benefit of correlated masking, Chapter 4 asks why it is better, and
how we may optimise hyperparameters during self-supervision without access to labelled
data. This is a challenging problem but, using recent advances in label-free explainability
(Crabbé and van der Schaar, 2022), we explore how distributions of feature importance scores
vary across different encoders. For optimisation, we convert these qualitative insights into a
collection of metrics. Two of these metrics are empirically shown to offer useful insight into
issues that arise if pretext tasks become too difficult or easy. A third metric is more subtle,
and measures consistency between the feature importance scores of correlated variables.
This gives an abstract indicator of smoothness, and measures the tendency of the encoder to
overfit to small details.

A key message of Chapter 4 is that tabular self-supervision may easily degenerate if care is
not given when choosing parameters. We conclude with an application that aims to make
the framework more robust by ensembling encoders and aggregating their representations.
Standard ensembling like this leads to performance gains, but to improve it further, we
introduce hierarchical ensembles that pass information between ensemble components to
collaborate on harder tasks. Using explainability techniques, we show this acts as a form
of regularisation on the base encoder and dramatically improves several of our associated
metrics.

5.2 Future directions

The most immediate extension to our work is to validate the techniques we propose across
even more datasets and methods, with the hope of increasing our understanding of their
strengths and failure modes. However, our investigations also open the door to many new
questions, and in this final section we present two that we feel are most promising.

5.2.1 From correlation to causation

Correlation leads to an increase in task difficulty and prevents trivial correlations obfuscating
the learning of deeper semantic structure. However, masking in this way may lead to
pretext tasks that are inconsistent from a causal perspective. A causal graph, also known
as a directed acyclic graph (DAG), describes the functional dependencies between a set
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Fig. 5.1 An example of a causal directed acyclic graph (DAG) between variables a, b, c, d and
e. Each variable is considered to be causally dependent on variables from which there exists
an incoming edge. For example, b is causally dependent on a but not c.

of variables. See Figure 5.1. In this example, it would be unreasonable to task a network
with predicting b from d and e, since this contradicts the causal structure, and we risk the
network overfitting to particular examples in the training data in response. Whether this
impacts overall representation quality will depend on the causal structure of the data, and
the probability of such inconsistent pretext tasks being generated from a masking scheme
in question. To begin to answer these questions, we must obtain (or approximate) the DAG.
Fortunately, recent work allows a DAG to be learnt easily as a pre-processing step using a
continuous optimisation process (Zheng et al., 2020). This has already been successfully
applied to regularise neural networks (Kyono et al., 2020, CASTLE)), and improve imputation
(Kyono et al., 2021, MIRACLE). Future work could incorporate this DAG within a masking
scheme to modulate and control the nature of questions being asked.

We expect this could play a particularly important role for modelling temporal data, where
existing approaches such as Temporal Neighborhood Coding (Tonekaboni et al., 2021),
Neighborhod Contrastive Learning (Yèche et al., 2021) and Bootstrap Your Own Positive
Sample BYOP (Wanyan et al., 2021) (not to be confused with BYOL (Grill et al., 2020))
neglect a deep modelling of causal structure. Incorporating this causal structure within pretext
tasks could implicitly cause representations to encode functional dependencies that are highly
sensitive to temporal relationships, and prevent the network learning spurious patterns that
are not causally consistent with how events are organised with respect to an arrow of time.
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5.2.2 Dynamic masking schemes

Should masking a scheme remain constant or evolve throughout training? In psychology, the
idea of spaced repetition argues human learning benefits from seeing tasks frequently in the
beginning, and then less frequently over time to revise and consolidate information (Averell
and Heathcote, 2011; Cepeda et al., 2006). This idea has seen applications in natural language
processing (Amiri et al., 2017), and curriculum learning (Bengio et al., 2009; Kumar et al.,
2010; Soviany et al., 2022), which argues networks may benefit from task difficulty increasing
over time. In our setting, this could motivate masking schemes that gradually become more
difficult. This could be achieved, for example, by placing a distribution over p whose mean is
a monotonically increasing function of time.

Eventually, however, this would inevitably lead to prohibitive task difficulty. This naturally
asks whether the masking scheme could adapt in real-time, based on feedback. Validation
loss is not a good indicator of downstream performance, but perhaps techniques building on
metrics such as those in Chapter 4 could be measured during training to provide feedback and
continuously fine-tune a masking scheme. This concept could be pushed further, viewing
the overall model architecture and method as a hyperparameter. AutoML frameworks that
automatically search over hyperparameters and neural architectures have surged in popularity
in recent years (He et al., 2021), and it could be possible to design a bespoke framework
for use in tabular self-supervision. Despite the inherent non-differentiability of the metrics
we introduce in Chapter 4, their signal could be incorporated within automatic optimisation
schemes based on evolutionary algorithms (Li et al., 2022) or reinforcement learning (Zoph
and Le, 2017). The potential for this will only grow as research uncovers even more metrics
that characterise what makes a good representation.
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Appendix A

Supporting material

A.1 SubTab

In this appendix we give a complete mathematical description of SubTab (Ucar et al., 2021).

Fig. A.1 An illustration of the process to generate subset views in SubTab (Ucar et al.,
2021). In this example K = 3, and the proportion of overlap between neighboring subsets is
r = 0.25.

The SubTab model uses two projection heads h1 and h2, and a mask matrix M is formed by
sampling rows as in the masking procedure described for VIME (see Section 2.3.2). The
corruption function C contains two parts, that is C = B ◦ A. For a batch X = {x(i) : i =

1, . . . , N}, A is defined by

A(M,X) = (1−M) ◦X+M ◦ Z = X̃.
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where Z is either equal to a zero matrix, a matrix whose elements Zi,j are draws from the
empirical distribution of the j th dimension of X, or additive Gaussian white noise. B then
divides X̃ into multiple subsets, which we denote

B(A(M,X)) = B(X̃) = {X̃(1), . . . , X̃(K)}.

These are obtained by dividing X̃ into K matrices each containing approximately⌊
(1 + 2r)N

K

⌋
(A.1)

consecutive columns from X, where r ≥ 0 determines the proportion of overlap between
subsets. Figure A.1 illustrates this process.

Following the notation in Section 2.3, we denote the output of X̃(a) from hk by Y(k,a). The
outputs Y(1,a) are passed to a standard MSE reconstruction loss L1. For the outputs Y(2,a),
define S = {(Y(2,a),Y(2,b)) : a < b} to be the set of K choose 2 distinct pairs of subsets,
and compute

LC =
1

K(K − 1)

∑
(a,b)∈S

l(Y(2,a),Y(2,b)) + l(Y(2,b),Y(2,a))

where

l(Y(2,a),Y(2,b)) = − 1

N

N∑
i=1

log

(
exp(sim(Ỹ

(2,a)
i ,Y

(2,b)
i )/τ)

1

N

N∑
j=1

1i ̸=j exp(sim(Ỹ
(2,a)
i ,Y

(2,b)
j )/τ)

)
.

In addition, subsets from the same row are encouraged to have closer representations with an
additional MSE distance loss given by

LD =
2

NK(K − 1)

∑
(a,b)∈S

N∑
i=1

d∑
j=1

(Y
(2,a)
i,j −Y

(2,b)
i,j )2.

The loss for h2 is then L2 = LC + LD, while the total loss is L = L1 + L2.
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A.2 Experimental details

In this appendix we provide further details, that may be helpful when reproducing our results.
Table A.1 specifies the exact number of training epochs used for each dataset. For proteomics
examples, we determined a maximum number epochs that was sufficient for convergence
across all drugs. In no cases was overtraining during self-supervision found to detriment
performance. Table A.2 specifies default hyperparameters used for various methods. These
were chosen to be typical moderate values, and drawn from the original papers when possible
(as in SubTab (Ucar et al., 2021)).

Table A.1 The number of epochs used for self-supervision when training on various datasets
and methods. These numbers were conservatively determined to be sufficient by monitoring
for convergence of an unlabelled validation loss.

Dataset
Model MNIST Blog Income Synthetic Proteomics

VIME 300 500 200 200 300
SCARF 250 500 200 200 –
SubTab 400 500 200 200 –
DAE 300 500 200 200 –
Context Encoders 300 500 200 200 –

Table A.2 Default hyperparameter choices for various self-supervised methods. β is the
weighting of cross-entropy loss and τ an InfoNCE contrastive loss temperature parameter. In
SubTab, K is the number of subsets used and r the proportion of overlap, and our choices are
based on (Ucar et al., 2021).

Model Defaut hyperparameters

VIME α = 2, β = 0.1

SCARF τ = 0.1

SubTab K = 4, r = 0.75 (MNIST), K = 7, r = 0.75 (Blog),
K = 5, r = 0.25 (Income), K = 3, r = 0.25 (Synthetic).

DAE β = 0.1

Context Encoders β = 0.1
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A.3 Additional visualisations

Fig. A.2 A comparison of validation and training losses for SCARF on UCI Blog. Values
were smoothed by taking averages over a sliding window of size 20.
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Fig. A.3 The total importance (sum over the aggregate importance vector A) for a variety of
models. This metric does not correlate well with downstream performance, due to rapidly
growing feature importance scores in the central region as p increases, that dwarf reductions
elsewhere.
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Fig. A.4 The quantity U(e) with a threshold ε = 1. This metric measures aggregated feature
importance values with magnitudes greater than ε. It does not correlate well with downstream
performance, due to neglecting importance differences between positive and negative feature
importance scores.
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