
Building a Conversational User
Simulator using GANs

Lucia Lopez Rivilla

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

St Edmund’s College August 2022

Declaration

I, Lucia Lopez Rivilla of St Edmund’s College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose.

All software is implemented in Python using the PyTorch library. The code for the LSTM
model was built on the software developed on the previous MPhil project hosted by Toshiba
(Dockes, 2021). For the transformer approach, all pre-trained model implementations,
training and decoding tools were retrieved from the HuggingFace Library1.

BLEU and ROUGE evaluation metrics are retrieved from the NLTK2 package and PyPi
ROUGE3 package respectively.

Word count: 14,955

Lucia Lopez Rivilla
August 2022

1https://huggingface.co
2https://www.nltk.org/_modules/nltk/translate/bleu_score.html
3https://pypi.org/project/rouge-score/

https://huggingface.co
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://pypi.org/project/rouge-score/

Acknowledgements

First and foremost I would like to thank my supervisors Dr. Simon Keizer and Dr. Kate Knill
for their continuous guidance and support. Your input throughout the course of this project
has been invaluable. I would also like to extend my gratitude to Dr. Svetlana Stoyanchev and
Dr. Rama Doddipatla for their helpful suggestions, and to Toshiba for providing me with the
needed resources to complete this project.

Special thanks to DeepMind and the Cambridge Trust for giving me the opportunity to
study in the University of Cambridge by funding this course.

Lastly and above all, I am deeply grateful to my family for their love and unconditional
support, and to my coursemates and college family for walking this path with me and being
my rock this whole year.

Abstract

User simulators have long been used to succesfully train, test and evaluate policies of
reinforcement learning based dialogue systems. For this task, numerous types of simulators
can be deployed (rule-based, data-driven, with different input/output forms, etc).

In this context, this dissertation presents a novel approach to user simulation, focused on
developing a conversational simulator for task-oriented dialogue systems using Generative
Adversarial Networks (GANs). The motivation behind training the simulator in an adversarial
style, instead of with the standard maximum likelihood, resides in the possibility of achieving
a simulator that generates more diverse output and does not aim to exactly replicate the
training corpus, which we believe would be beneficial for training dialogue systems’ policies.

We build up on work carried out in a previous MPhil project hosted by Toshiba (Dockes,
2021). This previous system targeted GAN-based user simulation at the semantic or abstract
level of dialogue acts and results suggest that this training approach could benefit policy
training. Despite its promising results, we believe adversarial training can bring greater gains
to a simulator generating at the word level. In consequence, we expand the simulator to
output utterances directly. Starting from a base LSTM encoder-decoder architecture, we
experiment with the attention mechanism, a multitask scheme to jointly generate semantics
and utterances, and adversarial training with several modifications. We evaluate our simulator
on corpus-based metrics, achieving results comparable to a model trained with maximum
likelihood, and with human evaluation, which shows that the resultant utterances have
an acceptable level of naturalness and coherence. Lastly, we design and carry out initial
experiments in a transformer-based natural language to natural language user simulator,
which makes use of the Large Pre-trained Language Models GPT-2 and RoBERTa.

Table of contents

List of figures viii

List of tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Overview . 4

2 Background 5
2.1 User Simulation for Task-Oriented Dialogue Systems 5

2.1.1 Why simulate users? . 5
2.1.2 Early probabilistic approaches . 6
2.1.3 Agenda-Based Simulator . 8
2.1.4 Neural Simulators . 9
2.1.5 Multitask learning approach . 11

2.2 Evaluation of User Simulators . 13
2.3 Generative Adversarial Networks . 14

2.3.1 GAN architecture and training . 14
2.3.2 GANs for Text Generation . 16

3 The word level GAN Simulator: Possible Approaches 20
3.1 First Approach: LSTM . 20

3.1.1 Inputs . 20
3.1.2 Generator: LSTM Encoder-Decoder 22
3.1.3 LSTM Networks . 24
3.1.4 Discriminator . 26
3.1.5 Training . 27
3.1.6 Multitask Approach . 27

vii Table of contents

3.2 Second Approach: Transformer-based Architecture 28
3.2.1 Key Advantages . 29
3.2.2 Generator: GPT-2 . 29
3.2.3 Decoding Strategy . 32
3.2.4 Discriminator: RoBERTa . 32
3.2.5 Training . 34

4 Experimental Methods 35
4.1 Dataset . 35
4.2 Evaluation metrics used . 36

4.2.1 BLEU Score . 36
4.2.2 ROUGE . 37
4.2.3 Self-BLEU . 38
4.2.4 Other Direct Metrics . 38
4.2.5 Human Evaluation . 38

5 Experiments 40
5.1 LSTM System . 40

5.1.1 MLE Baseline Systems . 40
5.1.2 Adversarial Experiments . 41
5.1.3 Problem with Adversarial Learning from Scratch 47
5.1.4 Modifying the Loss . 48
5.1.5 Increasing Exposure to the Ground-truth: Using Constant Positive

Rewards . 49
5.1.6 Human Evaluation Results . 52
5.1.7 Multitask Learning (MTL) Experiments 54
5.1.8 Discussion LSTM approach . 57

5.2 Transformer models . 59
5.2.1 MLE baseline . 59
5.2.2 Adversarial Experiments . 59
5.2.3 Discussion Transformer Model . 63

6 Conclusion 65
6.1 Summary . 65
6.2 Future Work . 66

References 67

List of figures

1.1 Typical pipeline of a task-oriented dialogue system 1

2.1 Training scheme of user simulators and dialogue systems 6
2.2 Multitask learning approach in user simulation 12
2.3 Adversarial training framework . 15

3.1 LSTM encoder-decoder . 22
3.2 Representation of two dialogue turns with context vectors 23
3.3 Considered multitask learning approaches 28
3.4 GPT-2 architecture . 30
3.5 Linearisation of the structured data . 31
3.6 Architecture with transformers . 33

4.1 Sample dialogue used for human evaluation 39

5.1 Evolution of BLEU-1 scores on the validation set during adversarial training 42
5.2 Evolution of BLEU-2 scores during adversarial training 42
5.3 Evolution of the discriminator’s accuracy and reward with and without dense

rewards and a) without pre-training, b) with 1 epoch of pre-training 43
5.4 Distribution of utterance length for the different systems and real data distri-

bution . 44
5.5 Example utterances with adversarial training pre-trained for 10 epochs com-

pared to the transcripts. 45
5.6 Effect of batch size during training . 46
5.7 Evolution of the discriminator’s accuracy and given rewards 51
5.8 Example utterances . 51
5.9 Utterance length distribution for the two adversarial modifications proposed 52
5.10 Boxplots of the results for the samples of each model in terms of coherence

and naturalness . 54

ix List of figures

5.11 Evolution of the discriminator’s accuracy and reward for each task in a)
alternating loss MTL and b) combined loss MTL 56

5.12 Result for multitask learning with a) MLE vs b) adversarial training approach 56
5.13 Length distribution for transformer-based models. The adversarial model

implements the combined loss . 60
5.14 Evolution of the different losses during training, averaged every 1000 samples

and using the combined loss with α= 0.3, β = 0.2 61

List of tables

2.1 Classification of User Simulation in the Literature (DA stands for dialogue act). 18
2.2 (continued) . 19

4.1 Information about the DSTC-2 train, test and validation set. 35

5.1 BLEU scores for different models trained with ML. 40
5.2 BLEU scores of adversarial models on the test set. 43
5.3 ROUGE-N scores of adversarial models with different pre-training levels on

the test set. 45
5.4 BLEU scores with different discriminators. 47
5.5 Length of the generated utterances with different discriminators. 47
5.6 Effect on BLEU score of different α and β values. 48
5.7 ROUGE scores with different α and β values. 49
5.8 Effect on self-BLEU score of different α and β values. 49
5.9 BLEU scores of the models with different adversarial configurations. 50
5.10 ROUGE scores with different adversarial configurations. 50
5.11 Effect on self-BLEU score of different adversarial configurations. 50
5.12 Average ratings from the human evaluation (54 ratings per model). 53
5.13 Semantic and word evaluation with MTL-MLE. 55
5.14 Semantic and word evaluation with MTL-ADV. 55
5.15 Results for Alternating-MTL with batch size of 1, ML loss in the semantic

task and combined loss (α = 0.3, β = 0.2) in word task 57
5.16 Summary of results for LSTM models. 57
5.17 Results for MLE baseline with transformers. 59
5.18 Effect of combining losses in transformer models. 60
5.19 Effect of loss combination on the self-BLEU scores for transformer models. 60
5.20 Effect of training scheme (combined loss with α = 0.3, β = 0.2). 62

xi List of tables

5.21 Effect of training scheme on self-BLEU scores (combined loss with α = 0.3,
β = 0.2). 62

5.22 Effect of decoding strategy on BLEU and ROUGE scores (combined loss
with α = 0.3, β = 0.2). 62

5.23 Effect of decoding strategy on self-BLEU (combined loss with α = 0.3,
β = 0.2). 62

5.24 BLEU and ROUGE scores for different discriminators (combined loss with
α = 0.3, β = 0.2). 63

5.25 Self-BLEU (variability) scores for different discriminators (combined loss
with α = 0.3, β = 0.2). 63

5.26 Summary of results for Transformer models. 64

Chapter 1

Introduction

1.1 Motivation

The development of better dialogue systems for end-users has long been a goal of human-
computer interaction research, given its promising potential and commercial appeal. Ex-
amples of such systems include the well-known Siri, Alexa or Cortana, to whom users can
speak, give instructions or ask for help.

Depending on their applications, dialogue systems can be classified in two groups: task-
oriented and non-task-oriented dialogue systems (the latter also known as chat-bots) (Chen
et al., 2017). In the present work we focus on task-oriented systems, which are designed to
aid users to accomplish a particular task, like hotel search or ticket booking, and are, thus,
constrained to a specific domain and structure.

Fig. 1.1 Typical pipeline of a task-oriented dialogue system.

Task-oriented dialogues (TOD) have received a lot of attention in dialogue research
(Eshky, 2014). This is in part because they contain a clear success indicator in terms of how

2 Introduction

well the task was completed. Additionally, TOD systems are more directly applicable to
commercial applications, making them an attractive and quickly expanding field of study.

The wide approach to these systems is based on a pipeline composed of several modules
as seen in Figure 1.1. The natural language understanding (NLU) component maps user
utterances to their semantic representation in the form of dialogue acts. Following this, in the
dialogue manager the state of the dialogue is tracked and any needed information is retrieved
from knowledge databases. Given this state, the next action of the system is chosen at each
turn, according to a learned policy. Finally, the system’s action is transformed back to the
surface form in the natural language generation (NLG) module.

All four of the aforementioned components have been the subject of extensive research,
but the component that is most pertinent to the problem at hand is the dialogue manager. Its
ultimate goal is to solve tasks as efficiently as possible, for which an optimal policy must be
learned. In state-of-the-art systems reinforcement learning (RL) is used for this purpose, as
it allows online learning with a user rather than supervised learning from a static dialogue
corpus. However, RL requires training with an extensive number of dialogue interactions.
As a result, learning from scratch through interactions with real users becomes infeasible.

Another alternative consists of using a fixed corpus to train the RL agent, but this
results in little exploration of the policy state-space, given the stationarity of the data. To
overcome these drawbacks, user simulators started to gain popularity and have now become
a well-established tool for automatic dialogue management design and evaluation.

The aim of a user simulator is to mimic human behaviour in the most natural and rational
manner possible, while keeping track of the dialogue history and unobservable aspects like
the user’s goal and preferences. Moreover, its range of simulated answers must be as broad as
possible so that strategies can be learned for different types of user. After an initial training
of a policy with a simulator, online learning can be carried out with real users for further
optimization.

Among the investigated methods for simulation, which we describe in depth in Chapter 2,
the use of Generative Adversarial Networks (GANs) is starting to spark interest. GANs are
trained to generate data that is indistinguishable from real samples and, although they were
initially proposed for image generation and have seen greater success in this application,
there has recently been progress in text generation, a task which will be the focus of our
system.

Based on their main application, GANs seem to be a good fit for the challenge of imitating
real users. In this training approach a discriminator is introduced, which tries to distinguish
synthesized samples from real ones. We hypothesize that the deployment of a GAN-based
training approach, rather than the traditional Maximum Likelihood (ML), could lead to a

3 Introduction

lesser replication of the training corpus, which would be beneficial to train more robust TOD
system’s policies.

In fact, a previous investigation in GAN-based user simulation (Dockes, 2021) showed
that policies trained with the GAN simulator could achieve higher success rates than those
obtained with an MLE-trained one, supporting this alternative training.

However, although promising, this previous system was implemented at a semantic level
(dialogue acts). This form of output could impose constraints as, in practice, the limited
range of possible acts (only 30) could make the output too close to what is observed in the
real data. In fact, the dialogue act combination generated is likely to appear in the training
corpus.

Following this, adversarial training will likely have higher potential in a simulator gener-
ating words rather than semantics, considering the former’s greater complexity. Moreover,
word-level outputs entail an increased output diversity, something desirable in simulators as
it allows greater exploration of the state-space when training dialogue systems. Lastly, the
direct use of words frees us from the need of having dialogue act annotations for training,
and avoids the need of an additional NLG component to transform semantics into utterances
for training a dialogue manager that takes natural language (NL) as input. All these reasons
support the proposed modification to a word-level simulator, the focus of this dissertation.

1.2 Contributions

As a first contribution, we have extended the semantic-level simulator from (Dockes, 2021)
to word generation, and enhanced its performance by adding an attention mechanism. A
second contribution is on multi-task learning for user simulation, which, to the best of our
knowledge, has never been tested for our task and configuration. The most outstanding
results in this regard are obtained for the case of Maximum Likelihood (ML) training, where
we achieve higher scores for word generation by jointly training word and dialogue act
generation. Another contribution, perhaps our main one, is the establishment of two methods
to successfully train word-level user simulators via adversarial training, designed to avoid
traditional issues that arise with GANs, and achieving comparable scores on traditional
language generation metrics (BLEU/ROUGE) to the ML baseline, while displaying higher
output diversity as given by the self-BLEU score.

Finally, we provide one of the first word-level user simulators that use large pre-trained
language models, achieving very high BLEU and ROUGE scores. This transformer based
simulator also incorporates adversarial training, featuring a GPT-2 based generator and a

4 Introduction

RoBERTa based discriminator. We demonstrate that output diversity can be improved using
this framework.

1.3 Overview

The remainder of the dissertation is structured as follows:
In Chapter 2 we revise the literature in user simulation, particularly focusing on deep

learning approaches. We also present relevant advances in adversarial training, specifically
for text generation.

Chapter 3 describes the different architectures investigated to model the word-level
user simulator. We first build up on the previous semantic-level simulator (i.e. an LSTM
encoder-decoder) and then move on to transformers, state-of-the-art models in numerous
tasks.

Chapter 4 describes the experimental methods and evaluation metrics.
Chapter 5 includes the experiments carried out, along with results in terms of selected

evaluation metrics.
Finally, in Chapter 6 we conclude the project and outline future work.

Chapter 2

Background

In the present chapter we cover the meaningful background for our investigation, including an
overview of user simulation and its challenges as well as of adversarial training, particularly
for the task that concerns us: text generation.

2.1 User Simulation for Task-Oriented Dialogue Systems

2.1.1 Why simulate users?

The purpose of TOD systems is to assist users in completing a specific task in several
possible domains, like hotel or restaurant search, ticket booking and so on. In today’s world,
interaction with these systems, such as Siri or Alexa, continues to increase and, as a result,
making them respond more naturally and accurately to users prompts is becoming a main
point of focus.

These systems are typically trained through RL (Gašić and Young, 2014; Young et al.,
2013a), which requires a considerable amount of interactions to learn a dialogue policy.
Training with real users is infeasible given its cost and time consumption, aside from the
instability that noisy feedback can introduce in the training process. On the other hand,
directly learning from a corpus presents disadvantages like a lack of interactivity and a
reduction in the number of dialogue trajectories explored. In this context, user simulation
was raised as an alternative approach to automate interaction and to perform an extensive
evaluation and optimization of a dialogue system without manual investigation (Eckert et al.,
1997).

User simulators are trained on a reference dialogue corpus to generate synthetic utterances.
Once a user simulator has been trained, as many dialogues as desired can be performed
against a dialogue system, which allows for a more interactive, controllable and efficient

6 Background

training of dialogue policies (see Figure 2.1). Moreover, their dynamic behaviour entails
a greater range of policy exploration than a static corpus, whose accessible state-space is
limited by the recorded data.

Fig. 2.1 Training scheme of user simulators and dialogue systems.

As one could expect, the performance of the simulator directly impacts the quality of
the dialogue policy that is being trained with it (Ai et al., 2007; Schatzmann et al., 2005).
Thus, building good user simulators is of the essence. Their aim is to replicate real user
behaviour, a task that involves many challenges that have been addressed in the literature,
and which continue being investigated. The different approaches to user simulation that have
been explored can be classified according to aspects like output granularity (e.g. whether
they perform at semantic or word level) and methodology (rule-based, data-driven and
deep-learning approaches). As shown in the following sections, there has been a higher
tendency towards semantic representation, but at the present time the idea of shifting towards
natural language is gaining interest, as directly generating utterances could give outputs of
greater diversity which, as previously mentioned, increase policy exploration. In this section,
we review the advances that have been made in the field of user simulation since its first
appearance.

2.1.2 Early probabilistic approaches

The first user models that were created approached the task as a probabilistic formulation.
These models’ parameters were either manually tuned or devised from real data, and they
operated at the semantic level of dialogue acts. At this level, the aim of user simulators is to
ultimately model the distribution over the plausible user acts given the dialogue history:

p(ut |at ,ut−1,at−1,ut−2...) (2.1)

Where ut and at represent the user and system act respectively. Among these first
approaches, work in user simulation was pioneered by Eckert et al. (1997), who used n-gram

7 Background

models to predict the next user act based on previous machine and user utterances. They
handcrafted the conditional distributions grounded on intuition and characteristics observed
in their corpus, but they restricted the dialogue history to just the previous system act, which
is why this model is known as the bigram model.

Later work by the same group of authors, (Levin et al., 2000) expanded on the bigram
model to gain a more realistic degree of conventional structure in dialogues, by only allowing
“sensible” pairs of user response and system action and setting all other probabilities to zero
(Schatzmann et al., 2006).

Although this model had the advantage of being purely probabilistic and domain-
independent, it lacked consistency in user behaviour, as it only considered a bigram context.
Efforts in (Georgila et al., 2005) tried to overcome this by including higher n-grams, devising
a model similar to Eckert’s, and thus fully probabilistic, but completely induced from real
data. Although their assumption that a broader context could avoid inconsistency in the
dialogue acts appears reasonable, this context increase can be problematic due to data sparsity,
leading to inevitably undertrained models (Young et al., 2013b).

Later approaches solve this by incorporating the goal explicitly with Bayesian networks
(Rossignol et al., 2011), which can model rich conditional dependencies but also suffer from
data sparsity. A promising alternative to solve the sparsity issue was presented in (Jung et al.,
2009), where they make use of Conditional Random Fields (CRFs) to efficiently model long
sequences. Other paths of research used a hidden Markov model (HMM) for user simulation
(Cuayahuitl et al., 2005) to generate both user and system actions.

As another alternative to overcome the inconsistency drawback, goal-directed approaches
were suggested (Pietquin, 2006; Rieser and Lemon, 2006; Schatzmann et al., 2007; Scheffler
and Young, 2000). These are essentially deterministic but introduced trainable variables
where user choice was a possibility. Among them, we specifically outline the Agenda-based
simulator (Schatzmann et al., 2007), which is still widely deployed and frequently used as
baseline for comparisons. This model is described in section 2.1.3. Prior to this simulator,
the work by (Scheffler and Young, 2002) set handcrafted rules for actions that depend on user
goals, and defined probabilistic parameters to select actions that were goal-independent. They
laid out a detailed decision network that maps user behaviours to every scenario. Despite the
advance these simulation methods entailed, they require extensive manual effort which can
be impractical.

Finally, we outline work carried out by Chandramohan et al. (2011) which uses inverse
reinforcement learning (Ng and Russell, 2000) to learn appropriate user’s rewards from
human-human dialogue interactions. This reward could potentially be used to train a POMPD-

8 Background

based user simulator alongside a dialogue system, by which each system would iteratively
refine its policy to maximize this reward.

2.1.3 Agenda-Based Simulator

A simulator still widely used and that has become a baseline for comparisons is the Agenda-
Based User Simulator (ABUS) presented in (Schatzmann et al., 2007). Despite its simplicity,
it has proven to be effective. Under this approach, the user state, S, is described as an agenda,
A, and a goal, G. The goal is composed of several constraints and requests that need to be
met. In turn, the agenda consists of a stack-like structure of dialogue acts to be produced for
each goal. As the dialogue progresses the agenda and goal are dynamically updated, and user
acts are selected from the top of the agenda. Thus, the agenda becomes a convenient tool to
track the progress of the dialogue.

Despite its common use, this simulator underperforms under interaction with real users.
In fact, two important limitations can be signaled in the ABUS. Firstly, the need to extract
the handcrafted and domain-specific rules requires expert knowledge and makes this ap-
proach infeasible for complex tasks. Secondly, these handcrafted rules may not capture the
complexity of real-user behaviour to its full extent, and their specific design for a particular
domain limits transferability. Moreover, rule-based models tend to lack response diversity,
and the fact that it generates dialogue acts imposes an even greater limitation on the output
variability, something highly desirable in order to create more realistic user behaviour and to
exhaustively explore the state-space with RL.

With the aim to create more realistic user behaviour, some of the ABUS parameters can
be derived from data. Schatzmann and Young (2009) describe how this can be done with the
expectation maximisation algorithm. Keizer et al. (2010) built on the ABUS, incorporating a
decision network as a way to achieve higher variability in user behaviour.

Since these simulators perform at semantic level, a NLG component could be introduced
to transform dialogue acts into utterances as a following step. However, as found in the
literature (Li et al., 2016), it is preferable to perform training in an end-to-end manner,
limiting the number of independent components. Moreover, the use of handcrafted rules
and templates still represents the major drawback of this approach. As a way to alleviate
these disadvantages, deep-learning simulators emerged in recent years. The following section
covers the different neural models that have been previously investigated.

9 Background

2.1.4 Neural Simulators

The past non-deep-learning simulators suffer from disadvantages like the limited ability to
represent dialogue history, the need to define extensive rules (which becomes infeasible for
complex tasks and typically requires expert knowledge) or a degree of rigidity that limits
the real-user replication ability. In contrast to these methods, the rise of deep learning led to
promising alternatives which are specially relevant to our work, and which we review in the
following sections. As it can be observed, variability arises from the architecture of these
models, as well as from the form of input (feature vs natural language) and output (semantic
vs utterance level).

Sequence-to-Sequence models

Due to the sequential nature of the task, sequence-to-sequence models, firstly proposed by
Sutskever et al. (2014), became an excellent option to model user behaviour conditioning on
the previous history. One of the first deep-learning-based approaches was the sequence-to-
sequence model presented by El Asri et al. (2016). In it, user behaviour is learned directly
from data and the model tracks the dialogue history and generates pertinent dialogue acts
using an encoder-decoder recurrent neural network, in particular an LSTM. They use the
DSTC-2 dataset for training and engineer feature vectors representing in detail the context of
the dialogue, including system acts and the status of the user goal, which they use as input to
the encoder. We initially use these context vectors, which we describe further in Chapter 3.
They reported an improvement in the F-score metric compared to the ABUS, however, they
did not use the simulator to train a dialogue system and evaluate the learnt policy.

Li et al. (2016) combined the seq-to-seq architecture with the agenda-based approach,
using the latter for planning and relying on templates to generate natural language from
dialogue acts. When a generated dialogue act did not match any of the templates, a seq-to-
seq NLG was employed. Liu and Lane (2017) also employed an LSTM-based seq-to-seq
model and a NLG module to transform the dialogue acts into utterances. The novelty in
their approach resides in the way they train the simulator, through direct interactions with a
dialogue manager in a joint RL optimization scheme. Other papers (Papangelis et al., 2019;
Tseng et al., 2021) also train the simulator and dialogue system jointly through RL.

Further work by Kreyssig et al. (2018) also made use of an LSTM sequence-to-sequence
architecture. Their setup is inspired by the work in (El Asri et al., 2016), as they use
the same feature vector representation as input, as well as their exact goal generation
approach. However, they moved away from semantic representation to alternatively generate
words, with the goal of obtaining more diversified outputs and easing the semantic labelling

10 Background

requirements. Furthermore, semantic-level simulation will likely require an NLG component
to transform acts into utterances that can be taken as input by a dialogue system. Arguably, a
better alternative could be a word-level simulator like this one, which bypasses the additional
component that could introduce more errors and inconsistencies. Additionally, their model
is able to introduce goal changes, typically encountered in the available data. To generate
the utterances they apply beam search and they train a dialogue system against their model.
Their user simulator outperformed agenda-based simulators on several metrics, including
dialogue success rate.

Nie et al. (2019) take a similar approach, but replaced the handcrafted feature extractor
used by Kreyssig et al. (2018) with a graph convolutional network.

Another instance of utterance generation instead of semantics can be found in the work
of Crook and Marin (2017). They additionally also use natural language as input, building a
NL-NL model that can be automatically trained and deployed without requiring semantic
annotations, which represents the main advantage of this method. Furthermore, they introduce
connections from the GRU encoder’s summary vector to each time step of the unrolled LSTM
decoder, in order to avoid information loss, something particularly helpful when generating
longer utterances. Nevertheless, they do not condition on a specific goal and, thus, only use
their simulator for evaluating, and not for training, dialogue policies.

Work by Hou et al. (2019) implements a State2Seq model where they use the word
"state" to convey the fact that they encode the sequence of vector representations of each
turn into a general dialogue context, in the line of (El Asri et al., 2016). They focus on
semantic generation and aim to remediate the common data scarcity problem of DL models
by combining ideas from rule-based and data-driven approaches. More specifically, they
generate realistic dialogue data from templates with an auxiliary RL-based built-in agent
to improve sample diversity. They then use this data to train an LSTM-based architecture
that makes use of attention to improve the dialogue context representation for decoding. The
experiments carried out proved that attention and a refined context representation based on a
forgetting mechanism allowed the State2Seq model to outperform the sequence-to-sequence
baseline (El Asri et al., 2016) in terms of the F-score and average dialogue success rates of
policies trained.

Lastly, work by Gur et al. (2018) introduced the Variational Hierarchical User Simulator
(VHUS), inspired by hierarchical seq-to-seq models (Serban et al., 2017) which outperformed
the plain seq-to-seq in dialogue generation. Their model doesn’t require a hardcoded feature
representation, instead system actions and user goal are encoded with a series of decoupled
RNNs, allowing easier domain adaptation. They also introduce a novel goal generalization
technique to avoid longer dialogues when user turns diverge from the initial goal.

11 Background

Transformer-based models

The emergence of the transformer model (Vaswani et al., 2017) has revolutionised the field of
NLP. Although they were originally proposed as a sequence-to-sequence model for machine
translation, transformer-based models have achieved state-of-the-art performances on a
diverse range of tasks, including recently that of user simulation as presented in the work of
Lin et al. (2021). Their Transformer User Simulator (TUS) outperformed VHUS (Gur et al.,
2018), the previous data-driven state-of-the-art simulator, and policies trained with it showed
comparable success rates to those of the ABUS without requiring any handcrafting. Although
TUS uses features to represent the dialogue context, its feature extraction is designed to be
domain-independent so it can be used to model multiple domains at once, which represents
the main advantage of this approach. The domain adaptation capability of the model was
proved with a zero-shot transfer learning study. They achieved promising results, but outline
how it would be interesting to move to natural language generation as a next step, as they
currently generate dialogue acts.

Recent work by Kim and Lipani (2022) proposes a modified version of the original
transformer architecture to model user behaviour at the word level, among other tasks.

In conclusion, although the work with transformers in user simulation has a somewhat
limited literature, these models may be the key to deal with the barriers regarding intrinsic
features of language, like grammar, syntax, and semantic properties, which represent a
challenge to add on top of the simulating task.

2.1.5 Multitask learning approach

The literature reviewed so far has exclusively engaged in individual generation, either
of semantics or utterances. Nevertheless, in recent years there have been advances in
multitask learning (MTL), by which models are trained to perform several tasks, like for
instance simultaneous semantic and word generation, in an attempt to leverage shared input
representations that improve performance on all the tasks. MTL can be seen as a subset of
transfer learning which has as inspiration source the human learning behaviour, considering
we often apply prior knowledge when trying to learn a new task (Caruana, 1993; Zhang and
Yang, 2017).

There has been significant research investigating MTL. It was introduced in the field of
NLP by Collobert and Weston (2008), and Dong et al. (2015) extended the approach to the
seq-to-seq task for machine translation, where they proposed using a single encoder and
multiple decoders for translation from English to different languages. Although it has led
to improvements in performance in several cases, the reason for this is generally unclear

12 Background

(Bingel and Søgaard, 2017; Martínez Alonso and Plank, 2017). Some advantages potentially
brought by MTL that are hypothesized in the literature are:

• Introducing model regularization (Bingel and Søgaard, 2017).

• Aiding the model to identify the most significant features (Ruder, 2017).

• Obtaining a training signal from linked tasks can potentially bias the model towards
decisions that benefit both tasks (Caruana, 1993).

The literature presents several methods to perform MTL. Aside from combining the
losses, one can implement an alternating training scheme, by which different batches of
the corpus are used to train exclusively one particular task. This allows setting a main task
(dedicating more batches to it) and auxiliary tasks.

Fig. 2.2 Multitask learning approach in user simulation.

Several attempts at MTL can be found in the subfield of dialogue systems, with the
most recent work linked to the use of transformers. One of the first advances in (Xu et al.,
2021) implemented a BERT-based architecture trained on four auxiliary tasks in addition
to the main task of utterance generation. They demonstrated that the inclusion of all four

13 Background

tasks contributed to improve the generation performance. Zhang et al. (2021) presented
DialogueBERT, where they pretrained BERT in five self-supervised tasks.

Literature in MTL specifically for user simulation is, however, very limited, with the only
work being developed in parallel by Kim and Lipani (2022). In it, the authors fine-tuned a
T5 transformer model (Raffel et al., 2020) in an MTL setting, implementing a user simulator
that predicts users’ satisfaction scores and actions, and generates users’ utterances. They
show that all three tasks help each other to better simulate users, further demonstrating the
effectiveness of the MTL approach. We also hypothesized that the semantic generation task
could give a positive transfer to utterance generation when trained jointly. In consequence,
we explored this approach for our word-level simulator, limiting our tasks to semantic and
utterance generation as seen in Figure 2.2.

2.2 Evaluation of User Simulators

Despite the advances in the field of user simulation, no standardised metric of evaluation
has been developed and evaluating a simulator’s performance remains a challenging area
of research. This relates to the great diversity seen in simulators. Table 2.1 shows the
approaches discussed so far classified in terms of input/output representation, additionally
showing the evaluation methods used in each.

The literature contains several surveys on user simulation evaluation (Liu et al., 2016;
Pietquin and Hastie, 2013). As a general trend one can distinguish between two groups of
metrics: direct and indirect.

Direct methods are corpus-based evaluation metrics that compare the simulator’s output
with the available data from human users. For the case of semantic-level simulation, direct
metrics include precision, recall, balanced F-score, Kullback–Leibler (KL) divergence, and
Discourse BLEU (D-BLEU). However, for our word-focused implementation other metrics
are potentially more relevant. Traditional language modelling metrics like perplexity, BLEU,
ROUGE or NIST all belong to this group and are typically used to evaluate text generation.
Thus, papers focused on utterance generation usually choose these metrics. Rather than using
them alternatively, their complimentary use allows for a more complete evaluation, as each
answers slightly different questions. We discuss them further in the experimental methods in
Chapter 4.

On the other hand, indirect methods focus on the interaction of the user simulator
with dialogue systems, by evaluating performance of strategies learned from the different
simulation techniques. It can be argued that these methods are more representative of the

14 Background

quality of the simulator, given that its performance is being measured at their ultimate goal,
which entails interacting with the external dialogue system.

Pietquin and Hastie (2013) outline several methods in this group. Among them, the most
commonly used are task completion (which evaluates how many times the dialogue system is
able to correctly decipher the goal from the user utterances, indirectly measuring coherence
in the simulator) and evaluation of the policies learnt by a dialogue system trained against the
simulator, which can be tested against another simulator (cross-model evaluation) or against
real users.

Lastly, human evaluation can be considered. Human judges can be asked to rate a whole
dialogue, or a simulator’s utterance, and real-user transcripts can be included to evaluate
how easy it is to discern between real and generated data. However, the main drawbacks of
human evaluation are the time required and the complexity in choosing how to present this
test to humans, as opposed to using automatic evaluations.

So far we have discussed the alternative approaches to user simulation described in the
literature. However, to create our simulator, one key aspect is missing: adversarial networks,
which we describe in the following section.

2.3 Generative Adversarial Networks

In this section we expand on the literature of GANs, giving special attention to the task in
hand: text generation.

2.3.1 GAN architecture and training

GANs were presented by Goodfellow et al. (2014) as a new framework for estimating
generative models. They were first suggested for the task of image generation, where they
proved their ability to generate realistic fake images. Their success in this field demonstrated
their potential to model complex distributions, and rapidly they began to be used for other
purposes, varying from audio enhancement and synthesis to object detection and NLP.

The architecture they introduced is based on two models, a generator G, that seeks to
capture the distribution of the training data and a discriminator, D, which differentiates
between real and synthesized samples. Training can then be seen as a min-max game in
which the generative model aims to maximize the probability of fooling the discriminator, by
generating samples that are indistinguishable from real data, while the discriminator goal is
to minimize its classification error.

15 Background

Fig. 2.3 Adversarial training framework.

In our case we are only concerned with the generation task, so once a training equilibrium
is reached the discriminator is discarded. Moreover, we would like to introduce a dependence
between the generated outputs and the context of the dialogue. This requirement can be met
with conditional GANs, firstly introduced by Mirza and Osindero (2014). This modified GAN
framework allows to generate samples with a specific property by using context information
both in the generator and the discriminator, as seen in Figure 2.3.

The final objective function to optimize can be seen in Equation 2.2 where x represents
the context we condition on, y the data that we wish to replicate (text transcripts), p(x,y) the
real data distribution, z the generated samples, pG(z|x;θG) the generator output distribution
and D(x,y), D(x,z) the discriminator’s output. The generator and discriminator parameters,
θG and θD respectively, are alternatingly trained. The discriminator, parameterized by θD,
guides the generator with its output D(x,z), indicating whether sequence z belongs to the real
data or not. This discriminative model is trained with positive (real) and negative (artificial)
samples and with standard ML.

min
θG

max
θD

Ex,y∼p(x,y)log(D(x,y;θD))+Ex∼p(x),z∼pG(z|x;θG)log(1−D(x,z;θD)) (2.2)

16 Background

2.3.2 GANs for Text Generation

GANs have demonstrated outstanding capabilities at generating plausible images. Never-
theless, their applicability to text generation is hindered, and they have been shown to be
difficult to train in the domain of natural language (d’Autume et al., 2019).

The reason behind this is that these networks were designed to deal with continuous
information rather than discrete data like text. When working with continuous data, the
network parameters can be updated by optimizing the objective function in Equation 2.2
directly through gradient backpropagation. However, the sampling operation involved in text
generation is non-differentiable, making direct backpropagation of the discriminator loss
impossible. To overcome this issue, the literature in GANs widely resorts to two methods:
(1) reliance on approximating the sampling operation with Gumbel-Softmax (Kusner and
Hernández-Lobato, 2016) and soft-argmax (Zhang et al., 2017) as a strategy to make the
model differentiable, or (2) using policy gradient methods (Scialom et al., 2020; Yu et al.,
2017a) essentially deploying the REINFORCE algorithm (Williams, 1992) to get an unbiased
gradient estimator for the generator.

In particular, we focus our investigation in the RL-based approach. Following this, the
generator becomes an agent that seeks to learn a policy π(a|s), where s is the state of the
agent (text already generated), and a its actions (text to be generated). In essence, the agent
generates text based on the policy π , where actions (words) are sampled according to the
distribution defined by the same policy. Consequently, it is possible to optimize θG by
employing policy gradient methods, using the probability coming from the discriminator as a
reward signal to update the generator’s parameters. The gradient estimator is defined as:

∇θGEx∼p(x),z∼pG(z|x;θG)[D(x,z)] = Ex∼p(x),z∼pG(z|x;θG)[D(x,z)∇θGlog(pG(z|x,θG))] (2.3)

In turn, the discriminator’s parameters are still updated via ML.
Despite the efforts that have been made to accommodate GANs to sequence generation,

training them for this task remains a challenge. Aside from the difficulties introduced by the
discreteness of the data, the GAN architecture already suffers from shortcomings (Jabbar
et al., 2021) like the Nash Equilibrium (Ratliff et al., 2013), internal covariate shift (Ioffe and
Szegedy, 2015) or mode collapse (Arora et al., 2017). In consequence, several variants to the
architecture and loss of these models have been studied to stabilize training.

Specifically concerning our task, the first work in RL-based GAN training is found in
SeqGAN (Yu et al., 2017b). Despite the advance it achieved, the model lacked generalization
power and produced text with minimum diversity (de Rosa and Papa, 2021). From this point
on different configurations started to appear, aiming to find stable, better performing training

17 Background

methods and architectures. Some variants included additional information in the network to
improve performance, like LeakGAN (Guo et al., 2017), which leaked high-level features
from the discriminator into the generator, or VPGAN (Hu et al., 2020), which included
features learned by Variational Autoencoders. This method can, nonetheless, reduce diversity
in the outputs. Other work is focused instead on modifying the rewards, like DPGAN (Xu
et al., 2018), designed to alleviate repetitiveness by assigning low rewards to repetitive text
and high rewards to novel text, or the approach in (Xu and Fung, 2019), also aiming to tackle
the repetition problem through the inclusion of a modified ROUGE metric that penalizes
repeated words. Another example is RankGAN (Lin et al., 2017), whose rewards are based
on a ranking of the outputs rather than the standard binary output. These ideas inspired
different modifications performed in our experiments.

Other approaches seen in the literature slightly modify the RL training framework to
include the ML objective, like in the case of the ARAML approach (Ke et al., 2019) in
which samples to be fed to the discriminator come from a stationary distribution near the
data instead of that of the generator, inspired by the work in MaliGAN (Che et al., 2017) and
RAML (Norouzi et al., 2016).

Additional work focused on improving adversarial training can be found in (d’Autume
et al., 2019) which introduce training modifications aimed to increase stability, like increasing
the batch size, or obtaining dense rewards from the discriminator, in other words calculating
rewards at each generation step. This last technique was also suggested by Li et al. (2017),
who train a text generation model for open domain chit-chat dialogue systems through
adversarial training, a similar task to ours.

Finally, work linking adversarial training and transformers has surfaced in recent years,
in which adversarial fine-tuning is used on large pre-trained language models. For instance
in TextGAIL (Wu et al., 2021), the authors make use of these models (RoBERTa and GPT-2)
along with recent techniques in RL, like proximal policy optimization (PPO) to reduce
variance in the gradients. They also introduce an imitation replay method to stabilize the
training and, additionally, ground-truth sequences are used to train the generator as well, in
order to force occasional constant rewards and stabilize convergence. They also propose
modifications to the discriminator based on a contrastive approach, which estimates how
much more realistic a real sentence is than a generated sentence, given a context.

While we presented here several approaches targeting robust adversarial text generation,
we direct the reader to (de Rosa and Papa, 2021) for a complete review of all the advances in
the field and techniques to improve GAN training. In Chapter 5 we reiterate in the procedures
that we specifically followed to stabilize adversarial training.

18 Background

Table 2.1 Classification of User Simulation in the Literature (DA stands for dialogue act).

Reference Input Output Metrics Objectives/Results

Eckert et al.
(1997)

Last system act DA None Initial study in user simulation
based on a bigram probabilistic
model.

Levin et al. (2000) Last system act DA None Expanded on (Eckert et al., 1997)
by only allowing “sensible” pairs
of user response and system ac-
tion.

Scheffler and
Young (2002)

Last system act DA Task completion (# of
turns)

Devise a decision network map-
ping context-action, and train pa-
rameters for goal-independent ac-
tions.

Georgila et al.
(2005)

Last n sys-
tem/user acts

DA Perplexity and Task
completion (% slots
filled)

Extended (Eckert et al., 1997) n-
gram count.

Pietquin (2006) Last system act DA Performance of learnt
policy (evaluation with
own model)

Established a probabilistic goal-
directed user simulator.

Schatzmann et al.
(2007)

Last system act DA Performance of Learnt
Policy (human evalua-
tion)

Implementation of the ABUS.

Schatzmann and
Young (2009)

Last system act DA Performance of learnt
policy (cross-model and
human evaluation)

Introduce trainable parameters in
the ABUS using the EM algo-
rithm.

Jung et al. (2009) Features (manual) DA BLEU, D-BLEU, KL
Divergence

Model the user employing a
linear-chain conditional random
field.

Keizer et al.
(2010)

Last system act DA F-score, KL-divergence
and performance of pol-
icy (cross-model)

Introduce a decision network in
the ABUS.

El Asri et al.
(2016)

Features (auto-
matic extractor)

DA F-score One of the first approaches to
implement an LSTM-based sim-
ulator. They reported improve-
ment in F-scores compared to the
ABUS.

Li et al. (2016) Last system act DA Performance of learnt
policy (own-model)

Combination of seq-to-seq and
agenda-based methods. Relied
on templates to generate utter-
ances from DAs and on a seq-to-
seq NLG module in case the act
wasn’t present in said templates.

19 Background

Table 2.2 (continued)

Reference Input Output Metrics Results

Crook and Marin
(2017)

NL NL Perplexity and direct hu-
man evaluation

GRU/LSTM encoder-decoder
with intermediate connections
between both. Their system is
goal-independent and they only
test their approach in the task of
evaluating TOD systems.

Kreyssig et al.
(2018)

Features (auto-
matic extractor)

NL Performance of learnt
policy (cross-model and
human evaluation)

Extended (El Asri et al., 2016) to
NL generation

Gur et al. (2018) NL DA Perplexity and Task
completion (% slots
filled)

Introduced a new hierarchical
process to encode dialogue his-
tory and user goal.

Nie et al. (2019) Features (Graph
CNN)

NL BLEU Replacement of the manual fea-
ture extractor with a Graph CNN

Hou et al. (2019) Features (auto-
matic extractor)

DA F-score and perfor-
mance of learnt policy

Combination of rule-based and
data-driven approaches in an
LSTM architecture with atten-
tion. They report an increase in
the F-score and dialogue success
rate with respect to (El Asri et al.,
2016).

Shi et al. (2019) Features (GRU
encoder)

DA Perplexity and taks com-
pletion (% slots filled)

Implementation of six user sim-
ulators trained with different di-
alogue planning and generation
methods.

Lin et al. (2021) Features (auto-
matic, domain-
independent
extractor)

DA F-score and perfor-
mance of learnt policy

First implementation of a user
simulator with transformers.
Achieved state of the art results
and domain independence

Kim and Lipani
(2022)

NL NL,DA BLEU, ROUGE Provided proof that a transformer-
based MTL scheme can improve
performance of several tasks re-
lated to TOD systems, included
utterance generation.

Chapter 3

The word level GAN Simulator: Possible
Approaches

In this section we describe the different approaches investigated to build the user simula-
tor. Mainly we present two possible solutions, one based on an LSTM encoder-decoder
architecture, previous state-of-the-art for sequential data, and a second method grounded on
transformers, current state-of-the-art. These models differ both in the architecture and the
form of the input, as we outline here.

3.1 First Approach: LSTM

Due to the general success across a wide range of tasks of the seq-to-seq model, as well as
due to its simple design, we initially adopt this model for our user simulator.

Our investigation efforts started with a similar architecture to the one presented in
Kreyssig et al. (2018), which we cover in detail in the following section.

3.1.1 Inputs

Initially, our simulator takes a feature vector related to the restaurant domain as input, as seen
in (El Asri et al., 2016; Kreyssig et al., 2018). These vectors, automatically extracted using a
handcrafted feature extractor, allow us to capture the most information while keeping the
task of learning the context relatively simple for the encoder. Nevertheless, using features is
less convenient than using natural language directly because it requires semantic annotations
and a greater extent of manual feature engineering, supposes a more rigid representation and
prevents automatic domain adaptation, as they specifically target the restaurant domain.

21 The word level GAN Simulator: Possible Approaches

We follow the procedure in (El Asri et al., 2016) and (Kreyssig et al., 2018) to construct
our binary-vector representations. They contain information related to four aspects: user
constraints (constt), slots requested by the user (reqt), previous system act (actt) and the
occurrence of inconsistencies (inct) between the system act and the user goal. These are
concatenated as follows:

constt + reqt + inct +actt (3.1)

The constraints vector, (constt), contains information about the state of the informable
slots (constraints the user has, e.g. an area), with a value of 0 meaning a slot is still to be
informed by the user. This value turns to 1 when the information is given, and returns to 0 if
the system asks again for the slot value or makes a mistake related to it. Values not included
in the goal are set to 1 from the start.

The request vector represents which slots are still to be requested by the user. The slots
contained in the goal, and thus the ones the user requires information about, are initially set
to 0. They change to 1 once the user asks for the information. Note that this vector is linked
to a venue, and thus if the restaurant under consideration changes this vector needs to be
reset.

Thirdly, the inconsistency vector is used to signal whether any mistakes or incorrect
assumptions about the user’s constraints were made by the system. These values are set to 0
if no mistakes occurred.

Finally the system’s act vector indicates the previous action taken by the system, out of
the 16 possible.

22 The word level GAN Simulator: Possible Approaches

For illustration purposes, Figure 3.2 shows two turns of a dialogue with the corresponding
vectors that would be used to get the next user response.

3.1.2 Generator: LSTM Encoder-Decoder

The first configuration uses the previous state-of-the-art models for sequential language
generation: Recurrent Neural Networks, in particular a Long Short Term Memory (LSTM)
encoder-decoder architecture (Hochreiter and Schmidhuber, 1997). In the next section we
include a description of the LSTM building block.

Fig. 3.1 LSTM encoder-decoder.

23 The word level GAN Simulator: Possible Approaches

Fig. 3.2 Representation of two dialogue turns with context vectors. The user had to inform
constraints related to area and pricerange and request the address (as seen in the goal and
the initial vector). Once it has informed the area in Turn 1 we see how the corresponding
slot changes to 1 for the next turn. As the system explicitly asks for the food in Turn 1, this
slot changes to 0 (although the user is not constrained in this regard it now has to inform as
much).

24 The word level GAN Simulator: Possible Approaches

3.1.3 LSTM Networks

LSTMs are recurrent networks capable of learning long-term dependencies. Its core particu-
larity is the inclusion of a memory cell state, in which the flow of information is regulated
through three gates (sigmoid layers), as shown in Figure 3.1. The first of them is the forget
gate, ft , which establishes how much information is to be discarded from the previous cell
state, ct−1. The second layer, the input gate, it , regulates how much new information is
included in the update of the cell state. For this update in particular, a tanh function, gt , plays
the role of providing new candidates for the cell state, which are scaled by the input gate.
Finally, the output gate, ot determines how much of the new state, ct , is actually passed on to
the hidden state going to the next layer. The final output is the Hadamard product between
the output gate and the cell state, firstly put through a tanh to push the values in the range
[−1,1].

All gates can be seen in Equations 3.2-3.7, where matrices W and biases b are parameters
to be learnt.

it = σ(Wiixt +bii +Whiht−1 +bhi) (3.2)

ft = σ(Wi f xt +bi f +Wh f ht−1 +bh f) (3.3)

gt = tanh(Wigxt +big +Whght−1 +bhg) (3.4)

ot = σ(Wioxt +bio +Whoht−1 +bho) (3.5)

ct = ft ⊙ ct−1 + it ⊙gt (3.6)

ht = ot ⊙ tanh(ct) (3.7)

These LSTM networks compose the encoder and decoder of our first architecture. We include
below the specific implementation of each.

Encoder

The encoder takes as input all past context vectors up to the turn for which we wish to generate
a user utterance. The final configuration implemented consists of one hidden LSTM layer of
size 32. After encoding the context vectors, the final hidden vector (created sequentially) is
used to initialize the hidden state of the decoder.

25 The word level GAN Simulator: Possible Approaches

Decoder

The decoder is composed of an LSTM layer of size 32, equivalent to the encoder 1. Its hidden
and cell states are initialized with the final values from the encoder, and the start of sequence
token is fed to start the generation.

At each time step t the decoder generates continuous outputs from a linear layer, parame-
terised as:

yt = htW +b (3.8)

These continuous representations are transformed into valid probability distributions over the
vocabulary with a softmax layer.

pit =
exp(yit)

∑ j exp(y jt)
(3.9)

Where pit represents the probability of the ith token in the vocabulary. We sample from this
distribution at each step to obtain the next word in the utterance. In particular, we employ a
typical technique in LSTMs, teacher-forcing, with a probability of 0.5.

Whenever teacher-forcing is applied we feed the ground-truth tokens to the decoder at
each time step, instead of the sampled tokens. Kreyssig et al. (2018) always use teacher-
forcing during training, but we found that establishing a lower teacher-forcing ratio (0.5
specifically) was preferable. This could also avoid the problem of “exposure bias” (Bengio
et al., 2015) (i.e. not having the ground-truth available) which could degrade the generation
capability during inference.

Adding attention

Attention is a learning mechanism that enables the decoder to focus on different parts of the
encoding when generating the output at each time step. Rather than relying solely on the last
hidden vector to represent the context, attention enables shortcuts between the input sequence
and the final context vector used at decoding. Then for each output step, the weights of these
dynamic context vectors are learnt.

Experiments in (Hou et al., 2019) proved that adding attention to the dialogue context
improved the user model and the agent policy. We tested this in our own user simulator.

Mathematically, the decoder is trained to predict the next word given all previous words
and a context. Without attention, this context vector c is simply the encoder’s final hidden
representation:

1Experiments with different hidden sizes did not result in a meaningful fluctuation in performance.

26 The word level GAN Simulator: Possible Approaches

p(y) =
T

∏
i=1

p(yi|y1, ...,yi−1,c) (3.10)

However, by including attention, this context can change at each time step of the generation:

p(y) =
T

∏
i=1

p(yi|y1, ...,yi−1,ci) (3.11)

The variable context vector ci will depend on the sequence of annotations outputted by the
encoder at each step (h1, . . . ,hT), each of them containing information on all previous inputs
but with an emphasis on the ones closer. Specifically, ci is computed as:

ci =
T

∑
j=1

αi jh j (3.12)

Where αi j is a weight computed for each of the encoder outputs:

αi j =
exp(ei j)

∑k exp(eik)
(3.13)

And where ei j represents the alignment between the jth input and the ith output. This
score would depend in the previous decoder hidden state (hD

i−1) and the encoder output h j:

ei j = a(hD
i−1,h j) (3.14)

This alignment is implemented as a feed-forward network.

3.1.4 Discriminator

We initially consider the same discriminator used for the previous semantic-level simulator, a
feed-forward (FF) network that takes as input the concatenation of the last context vector
and the one-hot embeddings representing each of the generated tokens. We pad this input
up to the maximum allowed generation length (25 tokens). The architecture then includes a
hidden layer of size 64 and a final softmax-activated layer, outputting a 2-dimensional vector
representing the probability that the utterance was real. We use this as the reward during
training.

Additionally, an LSTM-based discriminator was also proposed. Among the several
possible configurations, we implement one which takes the final encoded hidden and cell
states from the generator’s encoder as initialization for the discriminator’s hidden layer. In

27 The word level GAN Simulator: Possible Approaches

this case, unlike in the FF discriminator, the sequence generated is fed one time step at a
time.

3.1.5 Training

Training is performed with the REINFORCE algorithm, by generating sequences and feeding
them to the discriminator along with the context to obtain a reward, R. This reward is then
used along with the log-probabilities outputted by the model at each step to calculate the loss
for the generator:

L =−R log(pG(z|x,θG)) (3.15)

3.1.6 Multitask Approach

Although we consider this to be beyond the scope of this project, we would be interested in
generating both dialogue acts and utterances for a future interaction of the LSTM-simulator
with a dialogue system, as this requires the user dialogue acts to update the input context
vector. This was not needed during training of the simulator, considering the dialogue acts are
taken from the corpus, but when deploying it against a dialogue system it needs to actually
generate them. Instead of developing a NLU module to decode the semantic meaning out
of sentences, we propose a multitask learning scheme aiming to output accurate utterances
along with dialogue acts. Further motivation to perform multitask learning relates to the
positive transfer between tasks seen in the literature, as reviewed in Chapter 2. In essence,
we also aim to determine whether learning both tasks simultaneously, leveraging common
representations for different decoders, could lead to a performance improvement.

As described in Chapter 2 there are several ways to train a multitask learning model. We
focus on two possibilities as shown in Figure 3.3. The first is to alternate between training
decoders for a given number of batches, i.e. training only one task per batch. This allows
a greater focus on our main task, utterance generation, by dedicating a higher number of
batches to it while treating the semantic generation as an auxiliary task.

The second method combines both losses and updates both decoders and the encoder
with it.

For MLE these updates are through backpropagation, whereas in adversarial training
we continue using the REINFORCE algorithm, but with a network now composed of two
discriminators, one for words and another for semantics. Additionally, each task could be
trained with a different training approach.

28 The word level GAN Simulator: Possible Approaches

Fig. 3.3 Considered multitask learning approaches.

3.2 Second Approach: Transformer-based Architecture

One drawback of the use of DL approaches in the field of dialogue systems is related to
data scarcity, which can lead to undertrained models or, contrarily, models biased towards a
specific corpus as discussed by Shi et al. (2019).

Recent progress in pre-training language models has shown promising results in allevi-
ating the data scarcity problem (Budzianowski and Vulić, 2019). These models, typically
pre-trained on large texts with self-supervised objectives like language modelling (Radford
et al., 2019), can be fine-tuned to a specific task, what has led to performance improvements
on a wide range of NLP applications.

Moreover, while the use of LSTMs entails less complexity and computational cost, one
major drawback they display is that no variability can be observed outside of what is present
in the data, as the model is constrained to the relatively small vocabulary size of a particular
dataset. Thus, the only output variability one can expect from these models comes essentially
from grammatical and syntactical variations. Conversely, transformer models are pre-trained
on a extensive vocabulary, which theoretically would allow other variations like synonymy.
This is why we decide to apply these models to our user simulator.

29 The word level GAN Simulator: Possible Approaches

In this section we describe how to incorporate pre-trained language models into our task,
first highlighting several advantages brought by them.

3.2.1 Key Advantages

While architectural complexity and memory cost can greatly increase with the use of pre-
trained transformer models, this approach can bring meaningful advantages compared to the
LSTM simulator:

• Potential increase in output variability considering the increase in vocabulary size
(previously 565 words, with this approach 50257 tokens2).

• Incorporation of previous knowledge in language modelling.

• Ability to use attention to capture information from long-range sequences.

• Parallelization thanks to its non-sequential operations (allowed by positional embed-
dings).

• Possibility to output the values for the slots without the need for delexicalization.

• Need for semantic annotations is eased, which reduces the efforts needed to obtain
more data for training.

• Increase in the model’s ability to capture past information. For instance, if the system
proposed several restaurants, we would be able to refer to any of them (e.g asking
questions about whether the newly proposed restaurant is more expensive than the
previous one). This was impossible with the LSTM model due to the rigidity imposed
by the context vector.

• Easier domain adaptation thanks to the flexibility given by the NL inputs.

We now present the pre-trained language models chosen for our generator and discriminator.

3.2.2 Generator: GPT-2

GPT-2 (Radford et al., 2019) is a transformer-based language model trained on the WebText
dataset. Derived from the initial transformer architecture, GPT-2 only uses the decoder side
of a transformer. More specifically, GPT-2 is made of stacked decoders, 12 in the particular
version that we use (GPT-2 small), with 12 heads and 117M parameters.

2We use Byte Pair Encoding not Word Pair Encoding, so the 50257 are not exclusively complete words

30 The word level GAN Simulator: Possible Approaches

Fig. 3.4 GPT-2 architecture.

One of the model’s most crucial aspects is its masked multi-head self-attention, which
allows to model associations between words, enabling to focus to a higher or lesser extent
on previous outputted tokens when processing the current output, as seen in Figure 3.4.
Aside from the attention layer, each decoder additionally includes a feed-forward and a
normalization layer.

We take this pre-trained language model from Hugginface transformers, and fine-tune it
including a LM head (GPT2LMHead) in our task of user simulation.

Generator’s Input

GPT-2 operates exclusively with inputs in the form of strings, unlike most previous simulators
which tend to rely on numerical vector representations.

Our data is structured and needs to be “linearised” into sequences. Linearisation is a
technique by which inputs from a datastructure are transformed into sequenced data through
the inclusion of special tokens that help maintain the information.

In consequence, we design the inputs as follows:

1. The goal is encoded using a special token, <GL>. It includes the constraints and the
slots to be requested by the user, the latter identified by another special token, <RQ>.

31 The word level GAN Simulator: Possible Approaches

Additionally, the special token <SEP> is created to separate different slots in the goal.

<GL> food indian<SEP>area north<SEP>price expensive<RQ>phone

2. The dialogue history is represented directly by the system and user utterances. At
each turn we accumulate information from all past turns (a limit of 512 tokens is set
as the maximum allowable length; if this limit is passed the history gets truncated to
exclude initial turns). For system/user differentiation we include the special tokens
<SYS> and <USR>. Moreover, to perform ML training, the last user utterance at each
turn (i.e. what we aim to predict) is enclosed in the special tokens <bos> and <eos>,
beginning and end of sequence respectively.

Figure 3.5 shows an example of data linearisation.

Fig. 3.5 Linearisation of the structured data.

Once we have the input string for each turn, they are tokenized along with the labels
(ground-truth responses). The labels consist of strings of the same length as the input, but
where the context is padded with the ignore token.

There exists several methods of tokenization, in particular GPT-2 makes use of the
Byte Pair Encoding technique, a middle ground between character and word level. It uses
word-level inputs for frequent symbol sequences and character level inputs for those that
are infrequent. Since we use a pre-trained model we maintain the tokenizer that was trained
with it, which the authors in (Radford et al., 2019) optimized to reduce the vocabulary size to
50257 tokens.

32 The word level GAN Simulator: Possible Approaches

Along with these tokens, positional embeddings are required, considering the transformer
architecture does not receive input sequentially, as was the case of LSTMs. Instead, every
past turn is inputted at once.

Lastly, training is performed in batches that should be of the same size, so we pad inputs
to the maximum length in the batch.

3.2.3 Decoding Strategy

The final output generated by the last linear layer of the fine-tuned model can be put through
a softmax layer to get a valid distribution, i.e. the conditional distribution over all possible
tokens given all the previously generated tokens (see Figure 3.4). This distribution is
outputted at each step of the sequence.

However, one aspect to consider is that the generated sequences will depend on the
particular decoding method. As these sequences directly determine the loss we use to
optimize the model (considering it is based on their tokens’ log-probabilities and the reward
given by the discriminator to them), making sure the decoding strategy is optimal becomes
crucial.

Typical decoding methods include:

• Greedy search: only the token of highest probability is considered.

• Beam search: with a beam of size n, we expand on the n tokens of highest probability.

• Top-k sampling: top k tokens are kept and the probability is redistributed among them,
sampling is then performed.

• Nucleus sampling (top-p): instead of keeping the k outputs of highest probability, we
keep the smallest number of outputs whose cumulative probability surpasses p. Then
the distribution is normalized.

3.2.4 Discriminator: RoBERTa

We chose a transformer of the BERT family (Devlin et al., 2019) for our discriminator, given
their typical use for the task of classification. In particular, RoBERTa (Liu et al., 2019)
maintains BERT’s architecture, but changes its training scheme by (1) training for longer,
(2) including bigger batches over more data and longer sequences, (3) excluding the next
sentence prediction objective, and (4) dynamically changing the masking pattern applied to
the training data. As a result, it surpassed BERT on several metrics, which is why we choose

33 The word level GAN Simulator: Possible Approaches

this particular variant. Moreover, it was trained with the same tokenization scheme as GPT-2
(BPE).

As any BERT-derived model, RoBERTa is composed of stacked transformer encoders (12
blocks with 12 attention heads and 125M parameters). We fine-tune a model with a binary
classification head, provided by HuggingFace (RoBERTaForSequenceClassification),
and include a softmax layer to output a valid distribution. Unlike GPT-2, which has con-
strained attention (only pays attention to context to the left), RoBERTa employs bidirectional
self-attention.

Fig. 3.6 Architecture with transformers.

34 The word level GAN Simulator: Possible Approaches

Discriminator’s Input

Initially the input to RoBERTa will be the context and user utterance, separated by the special
token SEP.

Additionally, we include at the beginning of each input sequence the special BERT token
CLS, which specifies that the task of classification is to be performed, with context {x}N

i=1,
output sequence {y}M

i=1 and label l ∈ [0,1].

[CLS]x1,x2, ...,xN [SEP]y1,y2, ...,yM [EOS]

As in the first approach, we will use the probability of a generated utterance being real as
reward for GPT-2.

3.2.5 Training

As mentioned, we train both GPT-2 with a LM head and RoBERTa with a classification head.
Sequences outputted by GPT-2 are translated to RoBERTa tokens and preprocessed

for the discriminator. RoBERTa receives sequences with the generated utterance and the
ground-truth (as separate inputs initially, but later we modify the architecture to input both
simultaneously) and gives a score to each, which we use to compute the negative log-
likelihood loss to train the discriminator. The reward given to the generated sequence is used
along with the log-probabilities of the decoded tokens to optimize the generator.

Chapter 4

Experimental Methods

4.1 Dataset

Our experiments use the data from the second Dialogue State Tracking Challenge (DSTC2)
(Henderson et al., 2014). This dataset constitutes a large corpus of dialogues between users
(crowd-sourced through Amazon Mechanical Turk) and three telephone-based dialogue
systems, and it focuses on the restaurant domain. Information for the train, test and validation
sets can be seen in Table 4.1. No caller from the train set appears in the validation set. We use
the test set for evaluation of the trained models and the validation set to monitor performance
evolution during training. In each dialogue the users were asked to request one or several
slots (among area, food, price range, name, address, phone number, postcode, and signature
dish) of a restaurant that met a set of constraints related only to the area, price range and food
type. This dataset also introduced changes in the goal whenever a restaurant match could not
be found for the selected constraints.

For training LSTM-based user simulation models we delexicalise the specific values of
the informable slots (food type, name, area, price range; e.g. italian becomes the predefined
token <foodtype> and north is changed to <area>). Thus, the first model learns to generate
delexicalized responses. These are later replaced by the real string values, following what is

Table 4.1 Information about the DSTC-2 train, test and validation set.

Train Test Validation

Dialogue count 1612 1117 506
Turns 11677 9890 3934
Goal change (%) 40.1 37.0 44.5

36 Experimental Methods

stated in the current user goal. Delexicalisation is no longer needed with transformer models.
We also preprocess the data to fix obvious misspellings in the annotations.

4.2 Evaluation metrics used

Due to time constraints we only evaluate our simulator through direct metrics and leave
indirect evaluation as future work, as it would require significant integration effort. A wide
range of metrics can be found for the task of language generation, where we differentiate
between word, character or embedding-based approaches. We consider word-based metrics,
particularly BLEU and ROUGE score due to their popularity (Sai et al., 2022). Moreover,
these are the metrics used in (Kim and Lipani, 2022), which implements a multitask simulator
based on a transformer model and capable of generating utterances.

Considering these metrics have limitations, we further conduct human evaluations to
measure the models’ generation quality.

4.2.1 BLEU Score

BLEU (Papineni et al., 2002) considers the ratio of the number of overlapping n-grams with
the reference to the total number of n-grams in the hypothesis. This can be seen in Equation
4.1 below:

precisionn =
∑n−gram∈hypothesisCountclip(n−gram)

∑n−gram∈hypothesisCount(n−gram)
(4.1)

However, as observed in Equation 4.1, the total count of overlapping n-grams in the hy-
pothesis is clipped by the maximum count of that n-gram in any of the reference sentences
we compare the hypothesis against. This helps to avoid giving high scores to sentences
with repeated words that overlap. For instance, if a particular n-gram appears thrice in the
hypothesis, but twice in one reference and once in another reference, then we would consider
the overlapping n-gram count as 2 and not 3.

In essence, this clipped count can be defined as:

Countclip(n−gram) = min(matched n-gram count,maxr∈re f erences(n-gram count in r))
(4.2)

Precision is computed separately for different values of n and then the expected value
is calculated as seen in Equation 4.4. Finally, another aspect to take into consideration is
the hypothesis length. Precision depends only on its overlap and not on its length, so this
metric can display high scores when the simulator generates only a few matching or common
words/n-grams. To circumvent short meaningless hypotheses, BLEU includes a brevity

37 Experimental Methods

penalty term, BP, described in Equation 4.3 below:

BP =

1 |h| ≥ |r|

exp(1− |r|
|h|) |h|< |r|

(4.3)

Where |h| and |r| represent the hypothesis and the reference length. The weighted BLEU
score is multiplied by this term to get the final formula in Equation 4.4 below:

BLEU-N = BP · exp(
N

∑
n=1

wnlog(precisionn)) (4.4)

This metric’s value is within the [0,1] interval, with a value close to the unit signaling
the greatest similarity between the hypothesis and the reference sentences, and thus higher
quality.

The training, test and validation sets are used as references, but to account for the context-
dependent generation, we condition the references available based on the last dialogue context
vector. If we only considered the one real answer seen in the data for each instance of the test
set, we would be penalizing the simulator for not replicating the data, which is the opposite
of what we want to accomplish. By considering more references aside from the one real
answer given by the real user, we increase the degree of variability that is deemed acceptable,
as other responses that occurred in the same context should be valid.

For each hypothesis we obtain its best cumulative BLEU-1 to BLEU-4 scores against all
possible references, and we report the average across all hypotheses for the test set.

4.2.2 ROUGE

ROUGE (Lin, 2004) was originally proposed for summarization, however its use has been
generalized to other NLP tasks.

It has several variants, but we focus on ROUGE-N. Like BLEU-N, ROUGE-N counts
n-gram matches between the hypothesis and reference, however, it’s a recall-based metric
whereas BLEU is precision-based. It is defined as seen in Equation 4.5:

ROUGE-N =
∑n−gram∈re f erenceCountmatch(n−gram)

∑n−gram∈re f erenceCount(n−gram)
(4.5)

Where Countmatch(n−gram) is the number of n-grams co-ocurring in hypothesis and refer-
ence. In essence, BLEU measures how much the words (n-grams) in the machine generated

38 Experimental Methods

utterances appeared in the references and ROUGE measures how much the words in the
references appeared in the generated utterances.

As with BLEU, we report the average of the best ROUGE-1-R and ROUGE-2-R scores
of all hypotheses1.

4.2.3 Self-BLEU

Introduced by Zhu et al. (2018), self-BLEU measures the variability in the sequences
outputted by a model, by considering each utterance as the hypothesis while the rest are
taken as references. Contrarily to BLEU and ROUGE, we seek low scores in this metric,
implying that there is little overlap between the generated sequences.

4.2.4 Other Direct Metrics

We additionally consider utterance length as a straightforward metric to measure diversity,
and additionally F-score values are reported to evaluate semantics in the multitask learning
approach.

4.2.5 Human Evaluation

Human evaluation aims to measure subjective metrics. Depending on the task and the goal
of the evaluation, different evaluators can be considered (experts/non-experts, paid/unpaid...).
Due to time constraints, we resort to a smaller-scale evaluation and leave crowd-sourcing for
future work. We create a survey containing dialogues and fragments of dialogues coming
from different models and real transcripts (including in all the user goal). Volunteers are
unaware of the existence of different models and are asked to read the samples and give two
rating for the user behaviour (see Figure 4.1 for an example). The average rating is reported.
Thus, we focus the evaluation on the following two metrics:

• Coherence: aims to gain insight into the consistency of the user simulator in a dialogue
against a system, i.e. determine whether the user is consistent in its actions.

• Naturalness: we aim to measure how human-like the utterances appear. This metric
inherently includes aspects like diversity in the vocabulary and grammar used, fluency
and repetitiveness.

1The final R in ROUGE-R stands for recall.

39 Experimental Methods

Fig. 4.1 Sample dialogue used for human evaluation.

Chapter 5

Experiments

In this section we describe all experiments, firstly for the LSTM approach and secondly for
the transformer-based. In both cases, we first train and evaluate an MLE model that acts as
a baseline. Then, in an effort to alleviate the instability of adversarial training we perform
several modifications to the initial model, reward and loss function, and measure their effect
in performance.

5.1 LSTM System

5.1.1 MLE Baseline Systems

Firstly, experiments testing different configurations for a baseline system, trained with the
traditional MLE approach, were carried out. The optimal configuration found will be used to
compare the utterances generated with GAN-based models. We specifically experimented
with different hidden layer sizes (we end up using a size of 32) and tested the effect of adding
attention. Results in the test set of the best performing models are shown in Table 5.1.

Table 5.1 BLEU scores for different models trained with ML.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
No attention 0.721 0.298 0.212 0.188
Attention (teacher-forcing ratio = 1) 0.760 0.489 0.414 0.399
Attention (teacher-forcing ratio = 0.5) 0.760 0.491 0.426 0.405

From the results in Table 5.1 we conclude that attention helped to increase the BLEU
score and led to more sensible utterances per our judgement. This improvement can be
explained by the enhancement in dialogue representation that attention brings, as the decoder

41 Experiments

can dynamically refer to all previous contexts, whereas without attention the model can be
biased to the final contexts which in our case was proven to not be optimal.

Differences in the teacher-forcing ratio were not significant in the case of ML, but
given the improvement of performance seen with a ratio of 0.5, which potentially relates
to the reduction of exposure to the ground-truth forcing the model to learn even without
it, we consider the architecture with attention and this ratio for the single-task adversarial
experiments.

5.1.2 Adversarial Experiments

Subsequently, we test several settings for the adversarial approach, starting from the best
configuration found in the MLE experiments. Specifically, we explore different levels of
pre-training, the use of rewards at every generation step (what d’Autume et al. (2019) call
dense rewards), batch size and modifications to the discriminator, reward and loss. We keep
the learning rate deemed optimal in the semantic-level simulator (0.001), as we experimented
with lower rates, but saw worse results.

MLE Pre-training and Dense Rewards

One common strategy in adversarial training for text generation is to start training with ML.
Following this, we train the generator and discriminator via MLE for some predefined epochs.
Subsequently, we switch to adversarial training for 20 epochs.

Figure 5.1 shows the effect of pre-training during adversarial training by comparing the
BLEU-1 scores obtained in the validation set after each epoch. As observed, pre-training has
a significant effect and, as expected, models with more pre-training start from a BLEU score
much higher than those with less pre-training.

Additionally, following suggestions in (d’Autume et al., 2019; Li et al., 2017) we test the
effect of using “dense rewards” during training, by giving rewards to subsequences instead
of the whole sequence. While using dense rewards with pre-trained models did not appear to
greatly impact performance, this method was a must when no pre-training was performed,
as otherwise the model only outputted long, random utterances that received extremely low
BLEU scores.

In Figure 5.2 BLEU-2 scores are shown instead. Here the reason for the low scores in
the non-pre-trained model could relate to the fact that the generator is learning to output
very short utterances (when tested on the test set only 7% of the utterances were longer than
one word). Thus, pre-training is necessary to avoid this behaviour. However, a 10 epoch

42 Experiments

Fig. 5.1 Evolution of BLEU-1 scores on the validation set during adversarial training.

Fig. 5.2 Evolution of BLEU-2 scores on the validation set during adversarial training.

43 Experiments

pre-trained model displayed unstable behaviour during training, and even degradation in
BLEU-2 with dense rewards.

Fig. 5.3 Evolution of the discriminator’s performance with and without dense rewards and a)
without pre-training, b) with 1 epoch of pre-training.

Moreover, in Figure 5.3 we show the difference in the evolution of the discriminator’s
performance during adversarial training without pre-training and with one epoch of ML. Both
discriminators tend to learn easily what distinguishes real and fake utterances, as observed in
the upward trend in accuracy, but without pre-training this is more pronounced. In addition,
without pre-training and with normal rewards, the discriminator directly reaches a plateau
at very high accuracies, as the generator keeps outputting long, random utterances that are
obviously fake.

Table 5.2 BLEU scores of adversarial models on the test set.

No. of pre-training BLEU-1 BLEU-2 BLEU-3 BLEU-4
epochs

0 (normal rewards) 0.099 0.001 - -
0 0.534 0.003 - -
1 0.626 0.125 0.001 -
10 0.726 0.261 0.310 0.339

MLE baseline 0.760 0.491 0.426 0.405

Table 5.2 displays the BLEU scores in the test set for the best-performing models with
different pre-training. As observed, scores are significantly lower than the MLE baseline.
Moreover, only the models with several epochs of pre-training have acceptable BLEU-3

44 Experiments

and BLEU-4 scores, as the other configurations resulted in an extremely low number of
utterances of three or more words, for which scores were, in addition, extremely low. This
clearly signals that more than 1 epoch of pre-training is needed. Something outstanding is
the high score obtained in BLEU-4 by the 10 epoch pre-trained model. Although compared
to the other models this improvement is certainly meaningful, we noticed that over 50% of
the utterances of more than four words were the sentence “thank you good bye”, which the
system would output accurately in most cases. What we want to convey with this is that,
even if pre-training helped to increase quality, the trend observed for adversarial training was
that short utterances were predominant, something ultimately undesirable for our purpose of
increasing output diversity (see Figure 5.5 for examples of utterances).

Fig. 5.4 Distribution of utterance length for the different systems and real data distribution.

Table 5.3 displays ROUGE scores in the test set of the best-performing models. As
expected, increasing pre-training approaches the models to the MLE baseline, although the
difference is considerable.

Figure 5.4 includes the generated utterance length distribution for several models and the
real data (all adversarial models in this case were trained with dense rewards and from now
on, unless otherwise stated, this should be the configuration assumed). As observed, MLE
replicates the data distribution but the adversarial models output mostly one-word responses.
As mentioned previously, we hypothesize that the peak in the number of utterances in the

45 Experiments

Table 5.3 ROUGE-N scores of adversarial models with different pre-training levels on the
test set.

Model No. of pre-training ROUGE-1 ROUGE-2
epochs

Adversarial 1 0.496 0.110
10 0.645 0.260

MLE baseline - 0.781 0.508

four or more category obtained with a greater amount of pre-training is essentially due to the
increase in “thank you good bye”.

Fig. 5.5 Example utterances with adversarial training pre-trained for 10 epochs compared to
the transcripts.

Batch size effect

Aside from experimenting with pre-training and with the use of dense rewards, d’Autume
et al. (2019) also suggest increasing the batch size with the purpose of stabilizing convergence,
as this encourages a reduction in variance.

Indeed, increasing the batch size to values higher than one (the one previously used) led
to less fluctuation in the intermediate BLEU scores on the validation set (see Figure 5.6), but
larger batch sizes did not improve performance in a meaningful way, and in fact a preference
towards small batch sizes was observed. Following this we keep a batch size of 1. Another
noticeable aspect is that batch size seems to have less impact when using dense rewards.

46 Experiments

Fig. 5.6 Effect of batch size during training. Smaller batch size seems to give better results,
either using normal or dense rewards. In fact, for normal rewards a batch size of 1 is the only
one that achieves BLEU-2 scores significantly greater than zero.

47 Experiments

Changing the Discriminator

As mentioned in Chapter 3, we also experimented with an LSTM discriminator. We trained
the system without pre-training and using dense rewards and it also led to short utterances,
more so than with the feed-forward architecture, as seen in Table 5.5. Despite the increase
in BLEU-1 score (Table 5.4) this extreme behaviour is undesirable, so we keep the initial
configuration for further experimentation.

Table 5.4 BLEU scores with different discriminators.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
FF 0.534 0.003 - -
LSTM 0.850 - - -

Table 5.5 Length of the generated utterances with different discriminators.

One word Two Three Four or more
FF 9218 656 16 -
LSTM 9830 60 - -

5.1.3 Problem with Adversarial Learning from Scratch

The behaviour seen so far is that adversarial training, even with pre-training, gives the
undesirable outcome of short utterances. This relates to the fact that the generator is only
exposed to the ground-truth in an indirect manner, through the discriminator’s reward, which
promotes or discourages the generator’s sequences. Then once the generator performs badly
for some batches, the discriminator can easily recognize the fake sequences, giving them a
low reward that results in the generator getting lost. As explained in (Li et al., 2017), the
generator may know that its sequences are bad, but at the same time it is unaware of what
sequences are good. The odds of escaping this situation are low as the chances of randomly
generating a good response are minimal considering all the possible sequence combinations
in our vocabulary. From what we observe in the output sequences, it appears the generator
rapidly gets stuck at this low-reward local minimum, and learns in this case that generating
shorter utterances diminishes the loss. In consequence, we derive two approaches that would
increment the exposure to the data, first by mixing different types of losses, and secondly by
training the generator on the ground-truth labels with a constant positive reward.

48 Experiments

5.1.4 Modifying the Loss

As a way to alleviate the problem of short utterances we experimented with adding, to some
degree, direct exposure to the target sequences, by combining the negative log-likelihood and
the adversarial loss. While the adversarial loss is focused on optimizing the output to achieve
good rewards from the discriminator, the ML loss aims to capture the real data distribution.

We go one step further, adding a similarity loss based on the BLEU score. However, if
only the ground-truth for each sample were used as reference to compute this score, this
combined loss may end up emphasizing too much the importance of replicating the data,
which in our case is undesirable. To damp this effect, we instead allow for multiple references
coming from the same context. In this way we aim to encourage, or at the least to not penalize,
output variability. The formula for this loss can be seen in Equation 5.1. All losses are in
logarithmic form and the aim is to minimize the combination. As such, LSIM is defined as
the negative logarithm of the BLEU score given to the utterance, so low BLEU scores are
penalized.

L = (1−α −β)LNLL +αLADV +βLSIM (5.1)

Using this combined loss we manage to avoid short utterances which, a priori, should en-
tail a higher degree of variability. A grid search was performed to tune the hyperparameters β

and α in Equation 5.1. Table 5.6, 5.7, 5.8 show results in the test set of different combinations
for BLEU, ROUGE and self-BLEU scores respectively. Correlation is observed between
BLEU-ROUGE scores and an inverse correlation exists between these and the self-BLEU
scores. This may indicate that the variability that self-BLEU is detecting could be coming
from added randomness in the utterances, instead of from an effective and accurate increase
in diversity.

Table 5.6 Effect on BLEU score of different α and β values.

α β BLEU-1 BLEU-2 BLEU-3 BLEU-4
0 0 0.760 0.491 0.426 0.405

0.50 0 0.706 0.423 0.281 0.208
0.50 0.10 0.702 0.436 0.280 0.200
0.30 0.20 0.717 0.443 0.290 0.210
0.33 0.33 0.674 0.372 0.231 0.163

Out of all these models, that with α = 0.3 and β = 0.2 provides a good trade-off
between correctness (BLEU/ROUGE) and variability (self-BLEU) when compared against
the baseline MLE (α = 0 and β = 0).

49 Experiments

Table 5.7 ROUGE scores with different α and β values.

α β ROUGE-1 ROUGE-2
0 0 0.781 0.508

0.5 0 0.690 0.328
0.5 0.1 0.692 0.331
0.3 0.2 0.711 0.345

0.33 0.33 0.683 0.316

Table 5.8 Effect on self-BLEU score of different α and β values.

α β Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
0 0 0.992 0.922 0.862 0.798

0.50 0 0.989 0.890 0.651 0.462
0.50 0.10 0.991 0.885 0.655 0.453
0.30 0.20 0.992 0.886 0.675 0.486
0.33 0.33 0.989 0.883 0.646 0.445

Real Data 0.995 0.980 0.960 0.927

These models show similar BLEU and ROUGE scores to the 10 epoch pre-trained ad-
versarial model, but this approach manages to stop short utterances, as seen in the utterance
length distribution in Figure 5.9. To test whether the utterances generated with the com-
bined loss and this hyperparameter configuration can be considered acceptable in terms of
naturalness and coherence, we perform human evaluation, with results shown in Section
5.1.6.

5.1.5 Increasing Exposure to the Ground-truth: Using Constant Posi-
tive Rewards

In this section we explore another possibility to improve the model performance through a
more direct exposure to the ground-truth. Previously when we were applying teacher-forcing
we would feed the decoded sequence to the discriminator to get a reward for it. Now we train
the generator with the correct labels, giving it a fixed positive reward whenever we apply
teacher-forcing. This is a way to guide the generator to the correct distribution, considering
we have seen previously that it is very easy for it to get lost. We set the positive reward to
a value of 2 and consider an initial exposure to the ground-truth of 30%, which we decay
continuously per epoch up to a minimum of 10%, similarly to the approach taken in (Wu
et al., 2021).

50 Experiments

Results on the test set for both BLEU (Table 5.9) and ROUGE (Table 5.10) reach values
comparable to the MLE baseline, while a decrease in self-BLEU is still observed (Table
5.11). Table 5.11 also shows results in the self-BLEU scores for the real data, which gives a
sense of the variability observed in it.

Comparing this approach to the previous one (combined loss) we observe that we obtain
better results in BLEU-3 and BLEU-4, with a consequent increase in self-BLEU-3 and
self-BLEU-4. Moreover, despite the lower BLEU-1 and BLEU-2 compared to the model
combining losses, the ROUGE-1 and ROUGE-2 scores increase with this approach, which
signals that this model has enhanced recall.

Figure 5.7 additionally shows the discriminator’s accuracy decreasing during training,
what signals that the generator is indeed managing to improve itself.

Table 5.9 BLEU scores of the models with different adversarial configurations.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
Combined Loss 0.717 0.443 0.290 0.210
Guided + constant rewards 0.710 0.397 0.373 0.360
MLE baseline 0.760 0.491 0.426 0.405

Table 5.10 ROUGE scores with different adversarial configurations.

ROUGE-1 ROUGE-2
Combined Loss 0.711 0.345
Guided + constant rewards 0.726 0.420
MLE baseline 0.781 0.508

Table 5.11 Effect on self-BLEU score of different adversarial configurations.

Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
Combined loss 0.992 0.886 0.675 0.486
Guided + constant rewards 0.998 0.862 0.760 0.683

MLE baseline 0.992 0.922 0.862 0.798
Real Data 0.995 0.980 0.960 0.927

What is most interesting about this approach is the fact that no MLE is used (neither in a
pre-training phase nor in combination in the loss) and yet this purely adversarial model was
able to compete against the ML baseline in terms of direct metrics. Moreover, this method
represents another way to control the amount of exposure to the labels. If we consider

51 Experiments

other initial teacher-forcing ratios or decide to not decay it we obtain similar but slightly
different results. The design decisions made in our case aimed to reach a balance between
BLEU/self-BLEU.

Fig. 5.7 Evolution of the discriminator’s accuracy and given rewards.

Fig. 5.8 Example utterances.

52 Experiments

These utterances are also tested with human evaluation in the following section and the
utterance length distribution of this approach is also included in Figure 5.9. Some examples
showing the user responding differently to the system’s first prompt are shown in Figure 5.8.

Fig. 5.9 Utterance length distribution for the two modifications proposed, along with that of
the MLE baseline and real data for comparison purposes. As observed, both of the proposed
approaches led to more reasonable distributions than those obtained through the standard
adversarial framework.

5.1.6 Human Evaluation Results

Human evaluation was performed to measure the degree of coherence and naturalness of the
outputs. This would determine whether the decrease in self-BLEU related entirely to added
randomness.

We sample dialogues from the combined-loss model, the model guiding the generator
with constant positive rewards, the baseline MLE model and the real data. There are a total
of 36 samples in the survey, 9 in each category. A total of 6 users rated each dialogue in
terms of coherence and naturalness, on a 6 point Likert scale. Table 5.12 displays the average
ratings.

As expected the real data received the highest ratings in both categories but as can be
seen, all models show an acceptable level of coherence and naturalness. Interestingly, the two

53 Experiments

Table 5.12 Average ratings from the human evaluation (54 ratings per model).

Coherence Naturalness BLEU-1 BLEU-4 ROUGE-1 ROUGE-2
Real data 5.15 4.53 - - - -
MLE 4.31 3.55 0.760 0.405 0.781 0.508
Combined Loss 4.45 3.35 0.717 0.210 0.711 0.345
Guided + const rewards 4.35 3.71 0.710 0.360 0.726 0.420

models that were trained adversarially achieved similar ratings to the MLE baseline. Figure
5.10 further visualizes the results for the samples evaluated. For each model, it shows the
distribution of the ratings of the sample dialogues. In this plot we observe that coherence in
the generated dialogues tends to be higher than naturalness. Moreover, models’ naturalness
seems to be more variable, which makes sense considering the greater subjectivity of this
metric. One outstanding aspect is the presence of several outliers in the coherence of the
combined loss model. As we have little data points it would be required to get more data to
confirm this, but this plot could be signalling that coherence is very consistent in this model,
while naturalness is still variable (although shifted towards greater values). If more data
proved this, this model’s characteristic would be helpful, as having consistently-coherent
utterances that can be more or less natural could give a beneficial variability for training
the dialogue system. Nevertheless, the coherence of the guided adversarial model is greater
(even greater than MLE) and we still see variability (resembling a normal distribution) in
naturalness, always within acceptable levels. As a result, this initial evaluation seems to
convey that this model is preferable.

In addition, the final goal of the user simulator is to push the dialogue system to explore
the policy state-space by presenting to it diverse prompts to decipher, and possibly this could
be achieved with generally sensible but occasionally noisy utterances, like the ones that are
likely being achieved by the models presented.

Lastly, we added a subset of the direct metrics (BLEU/ROUGE) to check consistency
between them and human evaluation. We observe that MLE and the guided model achieved
higher values in these metrics, and also seem to receive similar coherence and naturalness
ratings (see Figure 5.10 and Table 5.12). The combined loss model had lower BLEU/ROUGE
scores and also lower naturalness. Surprisingly it obtained high coherence, although the
increased presence of outliers may be influencing this.

54 Experiments

Fig. 5.10 Boxplots of the results of each model’s samples (for coherence and naturalness).

5.1.7 Multitask Learning (MTL) Experiments

The experiments presented so far have been with models trained for the single task of
utterance generation. In this section, we explore a multitask scheme which also involves
dialogue act generation.

MTL-MLE

We again begin training with ML, with results for the two proposed MTL methods (combined
vs alternating loss) shown in Table 5.13.

As observed, combining the losses led to small increases in the BLEU scores, although
we did not observe the same positive transfer from word to semantic generation, as given
by the decrease in F-score. On the other hand, the alternating approach led to performance
degradation in both tasks, and increasing the batch size damaged performance even further.
The word-focus model aimed to increase the focus on the word task by dedicating more
batches to it than to semantic generation. However, this approach did not improve the BLEU
scores, and made the F-scores significantly worse.

On the whole, performing multitask learning with ML showed evidence that improvement
in performance can potentially be achieved. We now test if this can also aid the adversarial

55 Experiments

framework, without the need to modify the reward or the training procedure as done in
previous sections.

Table 5.13 Semantic and word evaluation with MTL-MLE.

Model Batch Size F-score BLEU-1 BLEU-2 BLEU-3 BLEU-4
Combined Loss 1 0.440 0.772 0.478 0.454 0.453
Alternating 1 0.415 0.707 0.430 0.381 0.360
Alternating (word focus) 1 0.009 0.700 0.420 0.384 0.324
Alternating 15 0.276 0.614 0.292 0.167 0.145

Single-task baseline 1 0.530 0.760 0.491 0.426 0.405

MTL-ADV

Table 5.14 Semantic and word evaluation with MTL-ADV.

Model Batch Size F-score BLEU-1 BLEU-2 BLEU-3 BLEU-4
Combined Loss 1 0.365 0.099 0.0006 - -
Alternating 1 0.313 0.585 0.007 - -

MTL-MLE baseline 1 0.440 0.772 0.478 0.454 0.453

Results for both approaches with adversarial training can be seen in Table 5.14. Com-
bining losses from both tasks gave the best results with ML training, but with adversarial
training we find that, while improvement is observed in the semantic task, no learning seems
to occur for utterance generation. Checking the train losses we do observe a downward trend
for both tasks but, interestingly, Figure 5.11 b) suggests that learning may not be occurring,
as the rewards from the utterance discriminator are consistently small.

We then switched to the alternating approach, which gave more reasonable results (see
Figure 5.11 a) and Table 5.14). For this case, we tested with batch sizes of 1 and 10 and found
that increasing batch size again damaged performance. Nevertheless, the same short-utterance
trend was observed, which explains the low scores in BLEU-2. Finally, performance in the
semantic task was also negatively affected, as given by the decrease in F-scores with respect
to the adversarial semantic baseline in (Dockes, 2021).

Figure 5.12 sums up the best results obtained in the multitask experiments, for ML and
adversarial training.

In conclusion, although the slight increase in the direct metrics tested for the ML model
seemed promising, the same improvement was not observed with adversarial training.

56 Experiments

Fig. 5.11 Evolution of the discriminator’s accuracy and reward for each task in a) alternating
loss MTL and b) combined loss MTL.

Fig. 5.12 Result for multitask learning with a) MLE vs b) adversarial training approach.
Despite the increase in direct metrics with MLE, adversarial training does not appear to
benefit from it.

Lastly, given that the modified adversarial loss (with configuration α = 0.3 and β = 0.2)
led to improvements in performance and longer utterances than pre-trained adversarial
models, we carried out multitask experiments with this loss for utterance generation, and
maximum likelihood loss in the semantic task. Results are shown in Table 5.15.

Interestingly, this configuration led to higher F-scores than the MTL-MLE baseline,
but BLEU scores still decreased. The same behaviour was observed when using the other
successful adversarial approach (guided generator with constant positive rewards) to train

57 Experiments

Table 5.15 Results for Alternating-MTL with batch size of 1, ML loss in the semantic task
and combined loss (α = 0.3, β = 0.2) in word task

F-score BLEU-1 BLEU-2 BLEU-3 BLEU-4
Multitask 0.463 0.710 0.299 0.227 0.186
Word Task - 0.717 0.443 0.290 0.210
Multitask MLE 0.440 0.772 0.478 0.454 0.453

word generation and ML for semantics. Nevertheless, these results suggest that with further
exploration and hyperparameter fine-tuning, multitask learning could potentially be applied
successfully, which would make the integration of the LSTM simulator with a dialogue
system more straightforward (although one caveat that would remain a challenge would be
to ensure consistency between word and semantic outputs).

5.1.8 Discussion LSTM approach

As our approach to user simulation is new to the best of our knowledge, we lack direct
state-of-the-art comparisons. The closest work to ours is the NUS (Kreyssig et al., 2018),
considering we use the same form of input and output and generator architecture. However,
they train with ML and only report indirect metrics.

Our results are aligned with what has been previously observed in text generation with
GANs. The suggestions made by d’Autume et al. (2019) proved to stabilise training, which
was also observed in the semantic GAN-based simulator, but their impact on performance
seemed arbitrary.

Table 5.16 Summary of results for LSTM models.

BLEU Self-BLEU ROUGE

1 2 3 4 1 2 3 4 1 2
MLE baseline 0.76 0.49 0.43 0.41 0.99 0.92 0.86 0.80 0.78 0.51
Adversarial 10 epoch pt 0.73 0.26 0.31 0.34 0.99 0.83 0.84 0.82 0.65 0.26
Combined loss 0.72 0.44 0.29 0.21 0.99 0.89 0.68 0.49 0.71 0.35
Guided + const reward 0.71 0.40 0.37 0.36 1.0 0.86 0.76 0.68 0.73 0.42

Overall, allowing the free interaction between generator and discriminator during training
resulted in a GAN-based simulator capable of outputting coherent utterances given a context,
but the short length of the responses (typically one word) did not allow the output variability
desired. The discouragement to generate long utterances that was observed with the adversar-
ial approach is likely due to the dependence of the loss on this length. Despite the efforts

58 Experiments

carried out to modify the training, we did not observe significant growth of the utterance
length. Pre-training aided, but short utterances were still typical (which could explain the low
ROUGE scores obtained by the 10 epoch pre-train model seen in Table 5.16, entailing low
recall), and it seems plausible that for some contexts, like for instance the closing line “thank
you good bye”, the model simply learns a formula to use in all cases. This would explain
the high self-BLEU of this model for the 3 and 4-gram cases in Table 5.16. Additionally,
one possible reason why pre-training is not as helpful as one could expect may relate to the
abrupt change from the ML loss to the REINFORCE one, which confuses the generator and
can even damage performance.

From what we observed, we believe the root cause of this behaviour comes from the
generator-discriminator interaction, as both of them showed the expected performance when
individually tested (the generator is successfully trained with MLE and when pre-training the
discriminator against a fixed generator we observe that it increases its accuracy, what entails
that learning is indeed taking place). It is challenging to balance their individual learning,
and, as explained in section 5.1.3, it is easy for the generator to lose track of what would be
considered correct utterances if the learning is imbalanced and the discriminator achieves a
high accuracy, giving low rewards. With this in mind, we tried guiding the generator more
directly, modifying the loss by combining it with MLE loss and our particular similarity loss
(based on the BLEU score), and by training it on ground-truth labels with a constant positive
reward. Both methods seemed to avoid short utterance generation and gave acceptable BLEU
scores in the test set. Furthermore, a small-scale human evaluation signals that the utterances
are of adequate quality in terms of coherence and naturalness, comparable (or even better) to
those from the MLE model.

Due to time constraints and the lack of availability of a dialogue system fitted to be
trained directly with utterances instead of semantics, we were not able to test our system
in an indirect manner, i.e. through comparing the performance of a TOD system trained
against the user simulator. As a consequence, we can only rely on direct metrics to compare
the GAN-based simulator to the MLE one. The latter performed better in these (except on
self-BLEU, see Table 5.16), as we expected and as previously seen in the semantic simulator
(Dockes, 2021).

Referring back to what was discussed in Chapter 2, the text generation task is particularly
tricky, more so if trained in an adversarial style, as the model needs to learn how words
connect between themselves aside from the relationship between dialogue context and user
response, and all of this added to the need to alleviate typical issues related to GANs in
general. We hypothesize that such problems could potentially be solved with a more robust
pre-learning step, in which pre-trained embedding models substitute MLE pre-training.

59 Experiments

5.2 Transformer models

In this section we move on to experiments performed with the transformer-based approach.

5.2.1 MLE baseline

Following the structure from the LSTM approach, we first include the results obtained when
training GPT-2 with ML for 4 epochs (we stopped training once convergence was reached
in the validation set). We use a batch size of 1, accumulating gradients for 8 steps, and a
learning rate of 10−5. Table 5.17 contains results for the BLEU scores in the test set.

Table 5.17 Results for MLE baseline with transformers.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
GPT-2 MLE 0.842 0.950 0.821 0.906
LSTM MLE 0.760 0.491 0.426 0.405

As observed, using GPT-2 as generator leads to substantially higher scores than the LSTM
model, which proves the greater power of the new design to model the data distribution. We
now move to the adversarial framework.

5.2.2 Adversarial Experiments

Initially, we tested adversarial training without any modification, but this led to empty
utterances being outputted, in line with the short utterances that we saw in the LSTM
models. In consequence, we transfer the knowledge gained from this previous approach and
experiment with mixing the different losses and forcing the model to generate user responses
closer to the ground-truth.

Combined Loss

We employ the same combined loss with the best values for α and β found in the LSTM
model (α= 0.3, β = 0.2). We additionally train a model with the same values for α but no
similarity loss (β = 0), to check whether adding the latter is indeed improving the model.
Table 5.18 shows the results.

In line with our findings with the LSTM architecture, the models no longer generate very
short utterances that resulted in very low BLEU scores (see Figure 5.13). Moreover, from
the results in Table 5.18 we can conclude that adding the BLEU-derived similarity loss can
help improve the training while reducing MLE impact (and, thus, potentially replication, as

60 Experiments

Table 5.18 Effect of combining losses in transformer models.

α β BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2
0 0 0.842 0.950 0.821 0.906 0.903 0.618

0.30 0 0.789 0.920 0.813 0.895 0.874 0.601
0.30 0.20 0.795 0.919 0.824 0.890 0.867 0.570

supported as well by the slight decrease in self-BLEU seen in Table 5.19). Although BLEU
also encourages replication, it does so in a less constrained way, as we compute it against
multiple, variable utterances (as described in Chapter 4). In fact, we obtain a model that
outperforms the MLE baseline for BLEU-3, although the difference is almost negligible.

Fig. 5.13 Length distribution for transformer-based models compared against the real data
and the LSTM-MLE model. The adversarial model implements the combined loss.

Table 5.19 Effect of loss combination on the self-BLEU scores for transformer models.

α β Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
0 0 0.999 0.998 0.996 0.992

0.30 0 0.999 0.998 0.995 0.995
0.30 0.20 0.999 0.995 0.994 0.992

61 Experiments

The similarity in BLEU and self-BLEU scores leads us to believe that these training meth-
ods are likely reaching the same local optima. Nevertheless, although arguably negligible,
our model with the loss combination reduced self-BLEU scores compared to the baseline, a
small indicator that this method could potentially help to diversify the output. We checked if
this was due to the adversarial and similarity loss being of significantly smaller magnitude
compared to the ML loss, but found that this was not the case (see Figure 5.14).

Fig. 5.14 Evolution of the different losses during training, averaged every 1000 samples and
using the combined loss with α= 0.3, β = 0.2.

Alternate training

We maintain the combined loss and experiment with a different approach to training in which,
instead of updating discriminator and generator after each batch, we first train the generator
with multiple batches while keeping the discriminator fixed, and then switch to training the
discriminator with the contexts from the same batches and the corresponding utterances from
the updated generator. Specifically we train each for 24 samples (accumulating gradients
every 8 samples). As seen in Table 5.20 and Table 5.21 we did not observe meaningful
changes, neither in the BLEU and ROUGE nor in the self-BLEU scores.

62 Experiments

Table 5.20 Effect of training scheme (combined loss with α = 0.3, β = 0.2).

Training Updates BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2
Simultaneous 0.795 0.918 0.824 0.890 0.866 0.570
Alternating 0.784 0.880 0.809 0.880 0.867 0.599
MLE Baseline 0.842 0.950 0.821 0.906 0.903 0.618

Table 5.21 Effect of training scheme on self-BLEU scores (combined loss with α = 0.3,
β = 0.2).

Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
Simultaneous 0.999 0.995 0.994 0.992
Alternating 0.999 0.995 0.991 0.994
MLE Baseline 0.999 0.998 0.996 0.992

Decoding Strategy

We also explore different decoding methods to generate the sequences during training.
Particularly we perform nucleus sampling (p = 0.9) and beam search with a beam size of
5. As seen in Table 5.22, we find that, while performing nucleus sampling is detrimental,
augmenting the beam size gives enhanced BLEU scores and does not lead to a consistent
increase in self-BLEU. In fact, as shown in Table 5.23, self-BLEU scores are reduced with
respect to the MLE baseline.

Table 5.22 Effect of decoding strategy on BLEU and ROUGE scores (combined loss with
α = 0.3, β = 0.2).

Training Updates BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2
Nucleus Sampling 0.781 0.884 0.799 0.865 0.854 0.562
Greedy 0.795 0.918 0.824 0.890 0.866 0.570
Beam search (n = 5) 0.866 0.925 0.841 0.901 0.903 0.560
MLE Baseline 0.842 0.950 0.821 0.906 0.903 0.618

Table 5.23 Effect of decoding strategy on self-BLEU (combined loss with α = 0.3, β = 0.2).

Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
Nucleus 0.999 0.995 0.988 0.990
Greedy 0.999 0.995 0.994 0.992
Beam search 0.999 0.998 0.986 0.990
MLE Baseline 0.999 0.998 0.996 0.992

63 Experiments

Contrastive Discriminator

We lastly move to a contrastive discriminator. This architecture proved to give good results
in the TextGAIL (Wu et al., 2021), as they argue that the sigmoid loss in the binary classifier
saturates early on (i.e. the discriminator learns to differentiate samples easily), creating bad
rewards for the generator. They propose instead to feed both real and generated user response
to the discriminator at the same time, along with the context, for it to model which one is
more realistic.

Table 5.24 BLEU and ROUGE scores for different discriminators (combined loss with
α = 0.3, β = 0.2).

Training Updates BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2
Binary Classifier 0.795 0.918 0.824 0.890 0.866 0.570
Contrastive 0.775 0.869 0.801 0.857 0.849 0.580

Table 5.25 Self-BLEU (variability) scores for different discriminators (combined loss with
α = 0.3, β = 0.2).

Training Updates Self-BLEU-1 Self-BLEU-2 Self-BLEU-3 Self-BLEU-4
Binary Classifier 0.999 0.995 0.994 0.992
Contrastive 0.998 0.997 0.990 0.990

As seen in Table 5.24, using a contrastive discriminator did not lead to enhanced results
as in the TextGAIL, which could indicate that the reason of weight behind their results resides
in the use of PPO. However, we do notice some decrease in self-BLEU (Table 5.25).

5.2.3 Discussion Transformer Model

The experiments in this section represent one of the first cases of using GPT-2 for word-level
user simulation. By training the simulator with ML we achieved very high BLEU scores,
considerably greater than the LSTM model (see Table 5.26), but also very high self-BLEU
scores, which indicates little diversity in the outputs. The significant reduction on ROUGE-2
could also be signalling this.

Adversarial experiments with transformers were limited due to time constraints. While
we did not have time to thoroughly explore different hyperparameter configurations to
increase variability, we were able to develop a user simulator that correctly captures the data
distribution, as given by the high BLEU scores, but this had to be done through combining
the adversarial loss with MLE and our similarity loss, as training adversarially from scratch

64 Experiments

or using the teacher-forcing technique with constant rewards deployed in the LSTM model
led to empty utterances.

Table 5.26 Summary of results for Transformer models.

BLEU Self-BLEU ROUGE

1 2 3 4 1 2 3 4 1 2
LSTM MLE 0.760 0.491 0.426 0.405 0.992 0.922 0.862 0.798 0.781 0.508
GPT MLE 0.842 0.950 0.821 0.906 0.999 0.998 0.996 0.992 0.903 0.618
Alternate Training 0.784 0.880 0.809 0.880 0.999 0.995 0.991 0.994 0.867 0.599
Greedy 0.795 0.918 0.824 0.890 0.999 0.995 0.994 0.992 0.866 0.570
Beam search 0.866 0.925 0.841 0.901 0.999 0.998 0.986 0.990 0.903 0.560
Contrastive disc 0.775 0.869 0.801 0.857 0.998 0.997 0.990 0.990 0.849 0.580

The closest model that we can compare it with is the multitask user simulator presented by
Kim and Lipani (2022), who use the T5 transformer model and present results for the single
task of utterance generation in terms of BLEU and ROUGE scores. They only report BLEU-1
and BLEU-4 for this task, showing results considerably lower than what we obtained in our
experiments. We believe such a big gap could be due to the different nature of the data (they
use other datasets like MultiWOZ), considering DSTC-2 has a smaller vocabulary and less
variation.

Overall, these models reached a behaviour very similar to MLE and in all cases out-
put diversity was restricted, as given by the high self-BLEU scores, although for some
configurations we manage to slightly decrease them compared to the MLE baseline.

Nevertheless, we have established a system that allows to regulate the amount of adver-
sarial training to include, and with further exploration it could be possible to further increase
its output diversity.

Chapter 6

Conclusion

6.1 Summary

In this dissertation we have described the implementation of a word-level neural user simula-
tor. Starting from a semantic-level simulator, we have tested the suitability of the previous
LSTM model to the word generation task. To enhance its performance, we introduced
several modifications, including most importantly an attention mechanism and changes to
the discriminator (particularly in the input encoding). The MLE-simulator with attention was
proven to perform significantly better in terms of direct metrics. Moreover, an MTL-scheme
merging semantic and word generation was proposed, and in the case of MLE it increased
BLEU scores.

In the adversarial setting, we tested several strategies shown to tackle the typical problems
in text generation with GANs, and although they seemed to help to some extent, we found
that jointly training generator and discriminator was still challenging. Although convergence
could be reached, in most cases it led to a model generating generally coherent but extremely
short utterances. We believe the most challenging part resides in the loss used to optimize
the generator, which is directly dependent on the reward. To diminish this dependence we
combined the loss with MLE, which gave promising results. Moreover, we tried guiding the
generator further by training it on the ground-truth with a constant positive reward. Both
these approaches led to acceptable BLEU and ROUGE scores and to more natural utterances
(as established through human evaluation), while a decrease in self-BLEU was achieved.

Moreover,we established the basis for a transformer-based user simulator that could
potentially entail more promising results in terms of output diversity. Experiments carried out
allowed us to see that training in an adversarial manner from scratch is challenging, as was
the case with the LSTM-based models. Better utterances (with comparable or even improved
BLEU scores to the MLE baseline) can be obtained when applying the techniques designed

66 Conclusion

to increase the exposure to the real data distribution, but in the case of transformers these
utterances tended to be invariable, seeming like the model learnt a formula for each context.
Although this model did not achieve our diversity expectations, we obtained significant
increases in terms of BLEU and ROUGE scores, and with some configurations we observed
a decrease in self-BLEU scores compared to the MLE baseline.

In essence, after seeing the effect in both models, we can conclude that some exposure
to the ground-truth can be beneficial, or even necessary in some cases, to achieve good
results with conditional adversarial training in text generation. Applying this, we were able
to generate relatively coherent and natural utterances that had slightly increased variability
which we believe could be beneficial to enhance training of systems’ policies.

6.2 Future Work

Due to the advantages that the transformer-based model represents it would be more signifi-
cant to, in the future, focus on advancing this particular architecture.

In this case, it would be interesting to evaluate the system’s utterances using a method
similar to BERTscore, where the information contained in word embeddings is used to
measure similarity between reference and hypothesis. It would also be interesting to base
our similarity loss in this metric rather than BLEU (to account not only for grammatical and
syntactical variation, but also consider synonymy).

Augmenting the dataset by including synonyms to increase variability, using for instance
WordNet-based synonym replacement, would be of interest, as perhaps the utterances in the
DSTC-2 dataset are not the most appropriate for this task, considering their high self-BLEU
scores. Using other datasets such as MultiWOZ could also be meaningful.

Additionally, due to memory constraints, we were not able to use large pre-trained
transformer models (GPT-2 medium or large) which could potentially lead to more diverse
vocabulary being used, so it would be interesting to explore this. Moreover, a more in-depth
hyperparameter tuning could give enhanced results.

Although the results obtained with direct evaluation are insightful, it is likely that MLE
performs better in these corpus-based metrics like BLEU or ROUGE, as it is aiming to
replicate the data, while the purpose of adversarial training is to introduce some level of
variability into the outputs. As a result, what is perhaps the most meaningful step to perform,
would be to interface the current user simulator with a dialogue system to corroborate if it,
indeed, leads to better policies, as observed in the semantic-level simulator.

References

Ai, H., Tetreault, J., and Litman, D. (2007). Comparing user simulation models for dialog
strategy learning. In Human Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Linguistics; Companion Volume,
Short Papers, pages 1–4, Rochester, New York. Association for Computational Linguistics.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017). Generalization and equilibrium in
generative adversarial nets (GANs). In Precup, D. and Teh, Y. W., editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 224–232. PMLR.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence
prediction with recurrent neural networks. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems - Volume 1, NIPS’15, page 1171–1179,
Cambridge, MA, USA. MIT Press.

Bingel, J. and Søgaard, A. (2017). Identifying beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pages 164–169,
Valencia, Spain. Association for Computational Linguistics.

Budzianowski, P. and Vulić, I. (2019). Hello, it’s GPT-2 - how can I help you? towards the
use of pretrained language models for task-oriented dialogue systems. In Proceedings
of the 3rd Workshop on Neural Generation and Translation, pages 15–22, Hong Kong.
Association for Computational Linguistics.

Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias. In
ICML.

Chandramohan, S., Geist, M., Lefèvre, F., and Pietquin, O. (2011). User simulation in
dialogue systems using inverse reinforcement learning. In INTERSPEECH.

Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W., Song, Y., and Bengio, Y. (2017). Maximum-
likelihood augmented discrete generative adversarial networks.

Chen, H., Liu, X., Yin, D., and Tang, J. (2017). A survey on dialogue systems: Recent
advances and new frontiers. 19(2):25–35.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, page 160–167, New York, NY, USA.
Association for Computing Machinery.

68 References

Crook, P. A. and Marin, A. (2017). Sequence to sequence modeling for user simulation in
dialog systems. In INTERSPEECH.

Cuayahuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2005). Human-computer
dialogue simulation using hidden markov models. In IEEE Workshop on Automatic Speech
Recognition and Understanding, 2005., pages 290–295.

d’Autume, C. d. M., Rosca, M., Rae, J., and Mohamed, S. (2019). Training Language GANs
from Scratch. Curran Associates Inc., Red Hook, NY, USA.

de Rosa, G. H. and Papa, J. a. P. (2021). A survey on text generation using generative
adversarial networks. Pattern Recogn., 119(C).

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computational Linguistics.

Dockes, C. (2021). Building a conversational user simulator using generative adversarial
networks. Master’s thesis, University of Cambridge.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-task learning for multiple
language translation. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1723–1732, Beijing, China. Association for
Computational Linguistics.

Eckert, W., Levin, E., and Pieraccini, R. (1997). User modeling for spoken dialogue system
evaluation. In 1997 IEEE Workshop on Automatic Speech Recognition and Understanding
Proceedings, pages 80–87.

El Asri, L., He, J., and Suleman, K. (2016). A sequence-to-sequence model for user
simulation in spoken dialogue systems.

Eshky, A. (2014). Generative probabilistic models of goal-directed users in task-oriented
dialogs. Master’s thesis, University of Edinburgh.

Gašić, M. and Young, S. (2014). Gaussian processes for pomdp-based dialogue manager
optimization. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(1):28–40.

Georgila, K., Henderson, J., and Lemon, O. (2005). Learning user simulations for information
state update dialogue systems. pages 893–896.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
page 2672–2680, Cambridge, MA, USA. MIT Press.

Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., and Wang, J. (2017). Long text generation via
adversarial training with leaked information.

69 References

Gur, I., Hakkani-Tür, D. Z., Tür, G., and Shah, P. (2018). User modeling for task oriented
dialogues. 2018 IEEE Spoken Language Technology Workshop (SLT), pages 900–906.

Henderson, M., Thomson, B., and Williams, J. D. (2014). The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), pages 263–272, Philadelphia, PA, U.S.A. Association
for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,
9(8):1735–1780.

Hou, Y., Fang, M., Che, W., and Liu, T. (2019). A corpus-free state2seq user simulator for
task-oriented dialogue. ArXiv, abs/1909.04448.

Hu, Z., Turki, T., and Wang, J. T. L. (2020). Generative adversarial networks for stochastic
video prediction with action control. IEEE Access, 8:63336–63348.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, page 448–456.
JMLR.org.

Jabbar, A., Li, X., and Omar, B. (2021). A survey on generative adversarial networks:
Variants, applications, and training. ACM Comput. Surv., 54(8).

Jung, S., Lee, C., Kim, K., Jeong, M., and Lee, G. G. (2009). Data-driven user simulation
for automated evaluation of spoken dialog systems. Computer Speech and Language,
23(4):479–509.

Ke, P., Huang, F., Huang, M., and Zhu, X. (2019). ARAML: A stable adversarial training
framework for text generation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 4271–4281, Hong Kong, China.
Association for Computational Linguistics.

Keizer, S., Gašić, M., Jurčíček, F., Mairesse, F., Thomson, B., Yu, K., and Young, S.
(2010). Parameter estimation for agenda-based user simulation. In Proceedings of the
SIGDIAL 2010 Conference, pages 116–123, Tokyo, Japan. Association for Computational
Linguistics.

Kim, T. E. and Lipani, A. (2022). A multi-task based neural model to simulate users in
goal-oriented dialogue systems.

Kreyssig, F., Casanueva, I., Budzianowski, P., and Gašić, M. (2018). Neural user simulation
for corpus-based policy optimisation of spoken dialogue systems. pages 60–69.

Kusner, M. and Hernández-Lobato, J. (2016). Gans for sequences of discrete elements with
the gumbel-softmax distribution.

Levin, E., Pieraccini, R., and Eckert, W. (2000). A stochastic model of human-machine
interaction for learning dialog strategies. Speech and Audio Processing, IEEE Transactions
on, 8:11 – 23.

70 References

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017). Adversarial learning
for neural dialogue generation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2157–2169, Copenhagen, Denmark.
Association for Computational Linguistics.

Li, X., Lipton, Z., Dhingra, B., Li, L., Gao, J., and Chen, Y.-N. (2016). A user simulator for
task-completion dialogues.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text Sum-
marization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational
Linguistics.

Lin, H.-c., Lubis, N., Hu, S., van Niekerk, C., Geishauser, C., Heck, M., Feng, S., and Gasic,
M. (2021). Domain-independent user simulation with transformers for task-oriented
dialogue systems. In Proceedings of the 22nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 445–456, Singapore and Online. Association for
Computational Linguistics.

Lin, K., Li, D., He, X., Zhang, Z., and Sun, M.-T. (2017). Adversarial ranking for language
generation. Advances in neural information processing systems, 30.

Liu, B. and Lane, I. R. (2017). Iterative policy learning in end-to-end trainable task-oriented
neural dialog models. 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 482–489.

Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., and Pineau, J. (2016). How
NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2122–2132, Austin, Texas.
Association for Computational Linguistics.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692.

Martínez Alonso, H. and Plank, B. (2017). When is multitask learning effective? semantic
sequence prediction under varying data conditions. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, pages 44–53, Valencia, Spain. Association for Computational Linguistics.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. ArXiv,
abs/1411.1784.

Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML
’00, page 663–670, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Nie, X., Lin, Z., Huang, X., and Zhang, Y. (2019). Graph Neural Net-Based User Simulator,
pages 638–650.

71 References

Norouzi, M., Bengio, S., Chen, z., Jaitly, N., Schuster, M., Wu, Y., and Schuurmans, D.
(2016). Reward augmented maximum likelihood for neural structured prediction. In Lee,
D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc.

Papangelis, A., Wang, Y.-C., Molino, P., and Tür, G. (2019). Collaborative multi-agent
dialogue model training via reinforcement learning. In SIGdial.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Pietquin, O. (2006). Consistent goal-directed user model for realisitc man-machine task-
oriented spoken dialogue simulation. In 2006 IEEE International Conference on Multime-
dia and Expo, pages 425–428.

Pietquin, O. and Hastie, H. (2013). A survey on metrics for the evaluation of user simulations.
The Knowledge Engineering Review, 28(1):59–73.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67.

Ratliff, L. J., Burden, S. A., and Sastry, S. S. (2013). Characterization and computation of
local nash equilibria in continuous games. In 2013 51st Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 917–924.

Rieser, V. and Lemon, O. (2006). Cluster-based user simulations for learning dialogue
strategies. In Proc. Interspeech 2006, pages paper 1127–Wed2WeS.1.

Rossignol, S., Pietquin, O., and Ianotto, M. (2011). Training a BN-based user model
for dialogue simulation with missing data. In Proceedings of 5th International Joint
Conference on Natural Language Processing, pages 598–604, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks.

Sai, A. B., Mohankumar, A. K., and Khapra, M. M. (2022). A survey of evaluation metrics
used for nlg systems. ACM Comput. Surv., 55(2).

Schatzmann, J., Stuttle, M., Weilhammer, K., and Young, S. (2005). Effects of the user model
on simulation-based learning of dialogue strategies. In IEEE Workshop on Automatic
Speech Recognition and Understanding, 2005., pages 220–225.

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., and Young, S. (2007). Agenda-
based user simulation for bootstrapping a POMDP dialogue system. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Companion Volume, Short Papers, pages 149–152, Rochester,
New York. Association for Computational Linguistics.

72 References

Schatzmann, J., Weilhammer, K., Stuttle, M. N., and Young, S. J. (2006). A survey of
statistical user simulation techniques for reinforcement-learning of dialogue management
strategies. The Knowledge Engineering Review, 21:97 – 126.

Schatzmann, J. and Young, S. (2009). The hidden agenda user simulation model. IEEE
Transactions on Audio, Speech, and Language Processing, 17(4):733–747.

Scheffler, K. and Young, S. (2000). Probabilistic simulation of human-machine dialogues.
volume 2, pages II1217 – II1220 vol.2.

Scheffler, K. and Young, S. (2002). Automatic learning of dialogue strategy using dialogue
simulation and reinforcement learning. pages 12–19.

Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., and Staiano, J. (2020). Coldgans:
Taming language gans with cautious sampling strategies. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 18978–18989. Curran Associates, Inc.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y.
(2017). A hierarchical latent variable encoder-decoder model for generating dialogues.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17,
page 3295–3301. AAAI Press.

Shi, W., Qian, K., Wang, X., and Yu, Z. (2019). How to build user simulators to train
RL-based dialog systems. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1990–2000, Hong Kong, China. Association
for Computational Linguistics.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In NIPS.

Tseng, B.-H., Dai, Y., Kreyssig, F., and Byrne, B. (2021). Transferable dialogue systems and
user simulators. In ACL/IJCNLP (1), pages 152–166.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn., 8(3–4):229–256.

Wu, Q., Li, L., and Yu, Z. (2021). Textgail: Generative adversarial imitation learning for text
generation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(16):14067–
14075.

Xu, J., Ren, X., Lin, J., and Sun, X. (2018). Diversity-promoting GAN: A cross-entropy based
generative adversarial network for diversified text generation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 3940–3949,
Brussels, Belgium. Association for Computational Linguistics.

73 References

Xu, P. and Fung, P. (2019). A novel repetition normalized adversarial reward for headline
generation.

Xu, R., Tao, C., Jiang, D., Zhao, X., Zhao, D., and Yan, R. (2021). Learning an effective
context-response matching model with self-supervised tasks for retrieval-based dialogues.
In AAAI.

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013a). Pomdp-based statistical
spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179.

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013b). Pomdp-based statistical
spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017a). Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 2852–2858. AAAI Press.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017b). Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence,
volume 31.

Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., and Carin, L. (2017). Adversarial
feature matching for text generation. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page 4006–4015. JMLR.org.

Zhang, Y. and Yang, Q. (2017). A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering, PP.

Zhang, Z., Guo, T., and Chen, M. (2021). DialogueBERT: A Self-Supervised Learning Based
Dialogue Pre-Training Encoder, page 3647–3651. Association for Computing Machinery,
New York, NY, USA.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., and Yu, Y. (2018). Texygen: A
benchmarking platform for text generation models. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, SIGIR ’18, page
1097–1100, New York, NY, USA. Association for Computing Machinery.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Overview

	2 Background
	2.1 User Simulation for Task-Oriented Dialogue Systems
	2.1.1 Why simulate users?
	2.1.2 Early probabilistic approaches
	2.1.3 Agenda-Based Simulator
	2.1.4 Neural Simulators
	2.1.5 Multitask learning approach

	2.2 Evaluation of User Simulators
	2.3 Generative Adversarial Networks
	2.3.1 GAN architecture and training
	2.3.2 GANs for Text Generation

	3 The word level GAN Simulator: Possible Approaches
	3.1 First Approach: LSTM
	3.1.1 Inputs
	3.1.2 Generator: LSTM Encoder-Decoder
	3.1.3 LSTM Networks
	3.1.4 Discriminator
	3.1.5 Training
	3.1.6 Multitask Approach

	3.2 Second Approach: Transformer-based Architecture
	3.2.1 Key Advantages
	3.2.2 Generator: GPT-2
	3.2.3 Decoding Strategy
	3.2.4 Discriminator: RoBERTa
	3.2.5 Training

	4 Experimental Methods
	4.1 Dataset
	4.2 Evaluation metrics used
	4.2.1 BLEU Score
	4.2.2 ROUGE
	4.2.3 Self-BLEU
	4.2.4 Other Direct Metrics
	4.2.5 Human Evaluation

	5 Experiments
	5.1 LSTM System
	5.1.1 MLE Baseline Systems
	5.1.2 Adversarial Experiments
	5.1.3 Problem with Adversarial Learning from Scratch
	5.1.4 Modifying the Loss
	5.1.5 Increasing Exposure to the Ground-truth: Using Constant Positive Rewards
	5.1.6 Human Evaluation Results
	5.1.7 Multitask Learning (MTL) Experiments
	5.1.8 Discussion LSTM approach

	5.2 Transformer models
	5.2.1 MLE baseline
	5.2.2 Adversarial Experiments
	5.2.3 Discussion Transformer Model

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	References

