
Deep Reinforcement Learning
for 3D Molecular Design

Adrian Salovaara Black

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Homerton College August 2022

Declaration

I, Adrian Salovaara Black of Homerton College, being a candidate for the MPhil in
Machine Learning and Machine Intelligence, hereby declare that this report and the
work described in it are my own work, unaided except as may be specified below, and
that the report does not contain material that has already been used to any substantial
extent for a comparable purpose.

In this work, I used and extensively modified the Python software package MolGym
(Simm, Pinsler, and Hernández-Lobato, 2020; Simm, Pinsler, Csányi, et al., 2021) to
incorporate new molecular modeling capabilities. Principally, I implemented a novel
infinite atom bag paradigm along with facilities for automatic entropy adjustment,
stochastic atom penalties, and imitation learning. Naturally, I also used MolGym’s
software dependencies. Of note: PyTorch (Paszke et al., 2019), Sparrow (Husch,
Vaucher, and Reiher, 2018; Bosia et al., 2021), e3nn (Geiger et al., 2022), and ASE
(Larsen et al., 2017).

The length of this dissertation is 14,962 words.

Adrian Salovaara Black
August 18, 2022

Acknowledgements

I must express gratitude to my advisors José Miguel Hernández Lobato, Gabor Csanyi,
and Gregor Simm for providing me thoughtful guidance and insights throughout this
project. I’d also like to thank Raf Czlonka for providing computing support. Lastly,
thank you to my friends and family, near and far!

Abstract

By applying machine learning to molecular design, researchers aim to tame vast
molecular search spaces and accelerate the discovery of useful structures. A notable
new approach, MolGym, leverages deep reinforcement learning to sequentially assemble
molecules on a 3D canvas. MolGym demonstrates compelling results, but is restricted
to building molecules that correspond with pre-specfied chemical formulae. To address
this limitation, we introduce a novel paradigm where agents may learn the optimal size
and composition of molecular structures. In particular, we adopt dynamic per-atom
penalties as a means to guide, but not unduly constrain, the structures agents assemble.
We also implement stochastic environments with randomized penalties in order to
further empower agents and broaden molecular diversity. Although we successfully
construct small molecules, we encounter significant optimization challenges in scaling
to larger, complex structures. We thus propose and implement an imitation learning
technique to ameliorate optimization.

Table of contents

1 Introduction 1

2 Background 3
2.1 Chemistry Fundamentals . 3
2.2 ML Approaches to Molecular Design 5

2.2.1 MolGym . 5
2.3 RL and Markov Decision Processes . 6

2.3.1 Reinforcement Learning Preliminaries 6
2.3.2 MolGym3 MDP Specification 7

2.4 The MolGym3 Model . 8
2.4.1 Covariant Neural Networks . 8
2.4.2 Action Selection . 8

2.5 Training . 10
2.5.1 State-Action Value Function Q 10
2.5.2 Soft-Actor Critic . 12

2.6 Background Summary . 19

3 Infinite Atom Bags 20
3.1 Motivation . 20
3.2 Infinite Bag Formulation . 21
3.3 Atom Penalty Determination . 22
3.4 Improving Robustness . 25

3.4.1 Temperature Hyperparameter 25
3.4.2 SAC with Automatic Entropy Adjustment 30

3.5 Infinite Bag Summary . 38

4 Randomized Atom Penalties 39
4.1 Motivation . 39

vi Table of contents

4.1.1 Motivating Example: Molecular Oxygen and Ozone 39
4.2 Implementation . 39
4.3 Full State Estimation . 41
4.4 Results: Molecular Oxygen and Ozone 43
4.5 Alternative: Dense Penalties . 43
4.6 Randomized Penalty Summary . 47

5 Scaling to Complex Structures 48
5.1 Optimization Challenges . 48

5.1.1 Exponential Growth in Chemical Formulas 49
5.1.2 Constraints on Penalty Formulation 52

5.2 Optimization Support Strategies . 53
5.2.1 Initial Probability Specification 53
5.2.2 Leveraging Expert Rollouts . 55

5.3 Optimization Summary . 60

6 Conclusion and Future Directions 61

Appendix A Supplementary Plots 67

Chapter 1

Introduction

Precisely designing molecules with desirable characteristics holds tremendous potential
in applications like material synthesis and drug discovery. However, the search space
of useful molecules is exceedingly vast. For instance, it is estimated that there are
between 1030 and 1060 synthesizable and realistic, drug-like structures (Polishchuk,
Madzhidov, and Varnek, 2013). Researches have thus sought to leverage machine
learning in the hunt for beneficial molecules.

In this work, we adopt a specific reinforcement learning approach to molecular
design: MolGym (Simm, Pinsler, and Hernández-Lobato, 2020; Simm, Pinsler, Csányi,
et al., 2021). In MolGym, an agent learns to construct molecules by sequentially
placing atoms onto a 3D canvas. The objective of the agent, encoded into a sparse
reward function, is to form molecules that are low-energy and thereby stable. This is a
complex modeling task and thus MolGym employs deep neural networks.

To build a molecule, a MolGym agent sequentially selects atoms from a finite,
pre-specified bag. As atoms are placed on the canvas, the bag is gradually emptied.
When the bag is completely empty, the molecule is considered complete. But this
framework has important limitations. For instance, one may reasonably intend the
agent to learn to cease placing atoms before the bag is empty. The currently formed
canvas molecule may be stable and forcing additional atoms energetically unfavorable.
Alternatively, the agent may run out of atoms to place when an additional atom(s)
would result in a more optimal molecule. In either case, the pre-specified atom bag
unduly constrains the agent.

The principal contribution of this work is enhancing MolGym to support an ‘infinite’
bag of atoms. Under the infinite bag paradigm, we enable MolGym agents to learn the
size and composition of optimal molecular structures. Practitioners no longer specify

2 Introduction

hard constraints on the size and makeup of molecules but soft atom penalties to guide,
but not force, certain molecular forms.

In Chapter 2 (Background), we provide a review of the key concepts necessary to
understand the technical details of this dissertation. Then in chapter 3 (Infinite Atom
Bags), we elaborate on the infinite bag paradigm and detail its implementation into
MolGym. We also discuss how practitioners might formulate atom penalties and present
a modification to the MolGym training algorithm that improves robustness. Next in
chapter 4 (Randomized Atom Penalties), we motivate randomized atom penalties as
a means to train more flexible and powerful MolGym agents. We then detail how
randomized atom penalties are carefully integrated into MolGym by revising our notion
of full state. We proceed in chapter 5 (Scaling to Complex Structures) to detail
optimization challenges in training agents to construct more complex molecules. We
propose strategies to improve optimization, including an imitation learning method
that exploits expert demonstrations. Finally, we close in chapter 6 (Conclusion) with a
discussion on future research directions.

Chapter 2

Background

In this chapter we detail the necessary technical background. First, in section 2.1, we
provide a review of basic chemistry concepts central to our molecular design objectives.
Next, in section 2.2, we outline various machine learning approaches to molecular
design including the framework adopted in this work: MolGym (Simm, Pinsler, and
Hernández-Lobato, 2020; Simm, Pinsler, Csányi, et al., 2021). In section, 2.3 we
describe Reinforcement Learning, Markov Decision Processes (MDPs), and the specific
MDP formulated by MolGym3. We proceed to detail how the MolGym3 MDP is
modeled using a neural network in section 2.4. Then in section 2.5 we discuss the
neural network’s training procedure, the soft-actor Critic (SAC) (Haarnoja, Tang,
et al., 2017), and a particular, unusual implementation of SAC permitted under the
assumptions of MolGym3.

2.1 Chemistry Fundamentals

In this work, we tackle the problem of generating useful molecules. Although a
comprehensive chemistry overview is well beyond our scope, it is worthwhile to briefly
review the basics of what molecules are and how we might define useful molecules.

The world is composed of tiny bit of matter called atoms. Atoms are themselves
composed of several subatomic particles: protons (positively charged) and neutrons
(neutrally charged) comprise an atom’s nucleus while electrons (negatively charged)
orbit the nucleus. We commonly group atoms according to their number of protons to
define elements with different properties e.g., oxygen (8 protons) or carbon (4 protons).

Molecules are groups of atoms held together by chemical bonds. There are many
sorts of chemical bonds (e.g., covalent bonds, hydogen bonds,...) and they vary in
their mechanisms of interaction and strength. Although a full treatment of bonding is

4 Background

Fig. 2.1 The energy curve for molecular oxygen shows a minimum energy is obtained
when the atoms are at a (inter-nuclear) distance slightly over 1 Angstrom.

out-of-scope, we note that atoms can obtain a lower energy state by forming bonds.
For example, in figure 2.1 we plot molecular oxygen O2 which consists of two covalently
bonded oxygen atoms.1 When the oxygen atoms are very close (< 1Å) the positively
charged nuclei strongly repel one another and the energy of system spikes. On the
other hand, when the oxygen atoms are far apart the energy of the system plateaus to
that of two independent oxygen atoms. But at middle distances (≈ 1Å), the oxygen
atoms form two covalent bonds in order to fill their outer (valence) electron shells and
the energy of the system obtains a minimum.

In designing useful molecules, there are myriad desirable properties one might
seek depending on the precise application. In this work, we focus on designing stable

1This and subsequent energy plots were obtained through the semi-empirical Parametrized Method
6 (PM6) (Stewart, 2007) with the software package Sparrow (Husch, Vaucher, and Reiher, 2018; Bosia
et al., 2021).

5 Background

molecules. In particular, as lower energy molecules are more stable we aim to generate
molecules with low energy. Later, we will detail precisely how we formulate the objective
of generating low energy molecules as a reinforcement learning problem. But first, we
will provide a broad overview of how researchers have approached molecule design with
machine learning.

2.2 ML Approaches to Molecular Design

The vast search space of potential molecules has motivated a variety of ML approaches
to molecular design. In this section, we briefly review key approaches and their
limitations before introducing the MolGym deep reinforcement learning framework.

Researchers have developed a variety of supervised generative models for synthesizing
molecules (Gómez-Bombarelli et al., 2018; De Cao and Thomas, 2018). However, such
approaches rely on large datasets to adequately explore uncharted chemical space.
Alternatively, reinforcement learning (RL) methods only require an appropriate reward
function to generate molecules (Olivecrona et al., 2017; Simm, Pinsler, and Hernández-
Lobato, 2020). A considerable recent body of work has emerged using RL operating
on graph-based molecular representations (Z. Zhou et al., 2019; You et al., 2018). Yet,
graph-based representations are fundamentally limited as they fail to represent 3D
information. In particular, graph-based representations constrain generated molecules
to a small chemical space, prevent the use of quantum-mechanical reward functions,
and make it difficult to encode geometric constraints into the design (Simm, Pinsler,
Csányi, et al., 2021). Instead we will build on an RL approach to generating molecules
where atoms are represented in 3D Cartesian coordinate: MolGym (Simm, Pinsler,
and Hernández-Lobato, 2020).

2.2.1 MolGym

MolGym uses deep reinforcement learning to train agents that build 3D molecular
structures (Simm, Pinsler, and Hernández-Lobato, 2020). Specifically, a MolGym agent
learns to assemble stable, low energy molecules through an auto-regressive policy for
sequentially placing atoms on a 3D canvas. An updated MolGym (Simm, Pinsler,
Csányi, et al., 2021) henceforth referred to as MolGym2 improved capabilities around
constructing highly symmetric molecules by employing the rotationally covariant neural
network architecture Cormorant (Anderson, Hy, and Kondor, 2019). In this work we
will enhance the latest and presently unpublished MolGym3. MolGym3 departs from

6 Background

earlier versions by using an off-policy training algorithm, namely the soft actor-critic
(Haarnoja, Tang, et al., 2017). MolGym3 also adopts the E3nn library to model
molecular rotational covariances/invariances (Geiger et al., 2022) and opts for a sparse
reward function. For clarity going forwards, we will refer to MolGym when discussing a
property consistent across all versions and otherwise explicitly name either MolGym1,
MolGym2, or MolGym3.

2.3 RL and Markov Decision Processes

We now detail reinforcement learning (RL), introduce Markov decision processes (MDP),
and elaborate on the specifics of our MDP setup for molecular design with MolGym.

2.3.1 Reinforcement Learning Preliminaries

Reinforcement learning concerns training an agent that interacts with an environment
to maximize some reward (Sutton and Barto, 2018). We formalize the reinforcement
learning environment as a Markov Decision Process M = (S,A, T , µ0, γ, r) with state
space S, action space A, transition dynamics T : S × A 7→ S, discount factor γ, an
initial state distribution µ0, and a reward function r : S × A 7→ S.2 We call such a
process Markov because the probabilities of future states are conditionally independent
of past states given the present state. We next define a policy, essentially an agent’s
strategy, as a potentially stochastic mapping from states to actions π(at|st) where
st ∈ S, at ∈ A. We can then define the value of a particular state st under policy π as
the expected discounted future reward beginning in state st and henceforth following
policy π:

V π(st) = Eτ∼π[
∑
t′=t

γt
′−tr(st′ , at′)|st] (2.1)

Note we use τ to denote a trajectory sampled from policy π consisting of successive
state-action pairs (st′ , at′).

Ultimately, the RL objective is to determine a policy π that maximizes the expected
discounted future reward from the initial state distribution. That is, the value V π of
the initial state distribution:

J(π) = Es0∼µ0 [V π(s0)] = Eτ∼π,s0∼µ0 [
∑
t′=0

γt
′
r(st′ , at′)] (2.2)

2Note that the reward function r(st, at) defines the reward for transitioning from state st by taking
an action at.

7 Background

2.3.2 MolGym3 MDP Specification

Next, we present the MDP specification for MolGym3.
A state st = (Ct, βt) comprises a 3D canvas Ct and bag of atoms βt. The canvas

Ct = C0 ∪ {(ei, xi)}t−1
i=0 consists of the initial set of atoms C0 and all atoms placed up

until episode time instance t − 1. Each placed atom is represented by its element
identity ei ∈ {H, O,} and its position in 3D Cartesian coordinates xi ∈ R3. The
initial set of atoms C0 may be defined or empty. The bag βt = {(e, m(e))} is a multiset
of to-be-placed atoms with m(e) denoting the multiplicity of element e.

An action at = (et, xt) consists of placing an element et ∈ βt from the bag at
position xt ∈ R3 on the canvas. We thus define a deterministic transition function
T (st, at) = st+1 = (Ct+1, βt+1) that returns an updated canvas with atom (et, xt) added
and an updated bag with one et atom removed βt+1 = βt/et. We emphasize that
deterministic transition dynamics do not imply our policy is deterministic. At a
particular state st, the action at is chosen stochastically according to at ∼ π(·|st).
However, having chosen an action at ∼ π(·|st) then the next state st+1 is defined
deterministically according to st+1 = T (st, at).

In Molgym1/2, the reward function r(st, at) is defined as the negative energy
difference between the updated canvas Ct+1 and the previous canvas Ct plus the
element et (the atom just placed) set at the origin of an empty canvas. This reward
motivates the agent to place atoms that form stable, low energy structures. It also
avoids biasing the agent to just select atoms with lower intrinsic energies. MolGym3
defines a similarly motivated reward, but employs it in a sparse setting. That is, an
agent receives 0 reward at all but the terminal state, where then the reward is given by
the negative energy difference between the terminal canvas CT and the sum of energies
of all constituent atoms of CT (when individually placed at the origin of an empty
canvas):

r(st, at) =

−
[
E(CT)−∑T

i=0 E(ei, [0, 0, 0]T)
]

, T (st, at) ∈ Sterminal
0, otherwise

(2.3)

The electronic energy E is calculated via the semi-empirical Parametrized Method
6 (PM6) (Stewart, 2007) in the software package Sparrow (Husch, Vaucher, and Reiher,
2018; Bosia et al., 2021).

8 Background

Finally, we also assume the MolGym3 reward is path-independent. Taken together
with deterministic transition dynamics, we may implement the reward function r(st, at)
as a function of the next state ρ(st+1) with ρ(st+1) = ρ(T (st, at)) = r(st, at).

With the MolGym3 MDP defined, we will proceed to detail how an agent decides
both 1) what atom to place next and 2) where to place it.

2.4 The MolGym3 Model

In this section, we motivate and describe the policy π of a MolGym agent. The policy
π(at|st) can be thought of as probability function that returns the probability of an
action at given the agent is in state st. We choose to parameterize πθ(at|st) by a neural
network (with parameters θ) as the policy operates on an infinite state space S and
action space A and should learn a complex, nonlinear mapping. The network πθ should
also respect molecular symmetries to enable efficient policy learning.

2.4.1 Covariant Neural Networks

We desire a policy πθ(at|st) that is covariant to rotation and translation. That is,
if we rotate or translate the 3D canvas Ct, then the position of the next placed
atom xt (recall at = (et, xt)) should be rotated or translated accordingly (Simm,
Pinsler, and Hernández-Lobato, 2020). This is because the energy of a molecule and
a rotated/translated copy are equivalent. To learn data-efficiently it is important to
ensure these symmetries in the neural network architecture. Specifically, MolGym3
devises a covariant network architecture using the PyTorch framework e3nn (Geiger
et al., 2022). In e3nn, the scalar operations in a conventional neural network are
replaced with generalized tensor equivalents. Input features are tagged by how they
transform under rotation/parity and outputs must possess equal or higher symmetry
(Curie, 1894).

2.4.2 Action Selection

We now outline how an action, i.e., the next atom’s identity and position, is chosen
under a policy πθ in MolGym3.

First, the policy model constructs a representation of the current canvas that
resembles an enhanced graph. Specifically, we represent each canvas atom (ei, xi) as a
node and draw edges between all atoms within some predefined distance. Crucially,
we also encode the 3D position of each atom into the representation (in this way the

9 Background

approach of MolGym differs from purely graph based molecular representations e.g.,
Z. Zhou et al., 2019; You et al., 2018). The canvas graph representation is then passed
through an embedding network that outputs a covariant embedding sembi

for each
current canvas atom i that captures interactions with neighboring atoms. We then
enhance these embeddings with knowledge of the bag, through an additional geometric
tensor product, to compute covariant embeddings scovi

. We additionally generate an
invariant representation sinvi

of each current canvas atom by norming the geometric
tensors in the covariant representation. We shall later see that some operations in the
policy model should be invariant.

Using these representations, the policy model determines the next atom by sequen-
tially selecting an existing canvas focal atom ft, the identity of the next placed atom et,
the distance the next atom will lie from the focal atom dt, and finally the orientation
x̃t. The policy can thus be decomposed as:

π(at|st) = π(x̃t, dt, et, ft|st) = p(x̃t|dt, et, ft, st)p(dt|et, ft, st)p(et|ft, st)p(ft|st) (2.4)

p(ft|st): We initially select a focal atom ft from those currently on the canvas.
The focal atom serves as a local reference near which we will place the next atom.
We choose the focal atom through a multi-layer perceptron MLPf that takes each
invariant representation sinvi

as input (as the focal atom choice should be invariant
to rotation/translation). The output layer of MLPf yields a scalar representing the
unnormalized probability of selecting a current canvas atom as the focal atom. By
batching sinv we can then compute a softmax distribution over all canvas atoms and
accordingly sample ft.3

p(et|ft, st): Next, we select the element type for the next atom et through another
multi-layer perceptron MLPe which takes as input the invariant representation of the
focal atom sinvf

. As with the focal atom, the selection of et should be invariant to
rotation/translation. The output layer of MLPe then consists of a softmax over all
elements with nonzero multiplicity in the bag. Finally, the output softmax probabilities
MLPe(sinvf

) are used to parameterize a categorical distribution from which we sample
et.

p(dt|et, ft, st): We now compute the distance dt that the next atom et will lie
from the focal atom ft using a mixture density network (Bishop, 1994). Specifically,
we first concatenate the invariant representation of the focal atom sinvf

to a one hot
representation of the element et to form a representation that incorporates both ft

3We select the origin as the focal atom ft location if the canvas is empty

10 Background

and et. This representation is then input into a network that predicts the means and
mixing coefficients of a M component Gaussian mixture model (GMM).4 Finally, the
distance dt is sampled from the GMM.

p(x̃t|dt, et, ft, st): Lastly, we compute the orientation x̃t from a spherical distribu-
tion. First the distance dt is converted into a representation that uses spherical Bessel
functions (Klicpera, Groß, and Günnemann, 2020). Using weights that are a linear
function of this Bessel representation of the distance dt, we then compute a tensor
product between the covariant representation of the focal element scovf

and a one-hot
encoding of the element et. The output tensors are interpreted as spherical harmonics
and used to construct a spherical distribution from which we ultimately sample x̃t

using rejection sampling. Note, we use the covariant representation scovf
during this

step as the orientation x̃t should be covariant to rotation/translation.
Additional policy model details are available in the MolGym2 paper (Simm, Pinsler,

Csányi, et al., 2021) though the reader should be aware that some differences exist
with the updated MolGym3 implementation adopted in this work.

To actually learn πθ we perform a 2-step training iteration: First, we collect episode
rollouts according to the current policy and add the rollouts, split into state-action-
reward-state transition tuples (st, at, rt, st+1), to a training buffer.5 Then, we update
the policy following the soft-actor critic algorithm - detailed next.

2.5 Training

In this section, we describe how MolGym3 trains a model to learn a desirable molecule
generation policy. We will provide background on the state-action value function Q

and then motivate and explain the soft-actor critic (Haarnoja, Tang, et al., 2017).

2.5.1 State-Action Value Function Q

We first introduce the state-action value function Qπ(st, at) which defines the expected
discounted future reward of being in a particular state st, taking action at, and
thereafter following policy π:

4The standard deviations are treated as global network parameters and thus not output by the
mixture density network.

5To increase sample efficiency, we also generate additional ‘artificial’ rollouts from each true rollout.
Specifically, we randomize the order of atom placement to form supplementary rollouts that assemble
an identical molecule.

11 Background

Qπ(st, at) = r(st, at) + Eτ∼π[
∑

t′=t+1
γt

′−tr(st′ , at′)|st, at] (2.5)

It is similar to the value function (Equation 2.1) but the initial action at need not
be chosen according to policy π. As such, Q-functions are prominent fixtures in many
off-policy reinforcement learning approaches (e.g., Mnih et al., 2013).

In our undiscounted and finite-horizon environment the Q-function becomes:

Qπ(st, at) = r(st, at) + Eτ∼π[
T∑

t′=t+1
r(st′ , at′)|st, at] (2.6)

The Q-function can also be rewritten in terms of the value function to emphasize that
policy π has no bearing on the immediate reward r(st, at) nor next state st+1 ∼ T (st, at).

Qπ(st, at) = r(st, at) + V π(st+1) (2.7)

For notational simplicity going forwards we will omit the policy superscript π but it
should be implied that both the state value function V and state-action value function
Q are defined in terms of a policy.

Since the transition dynamics T of our environment are deterministic we can
substitute T (st, at) = st+1 into the Q-function as:

Q(st, at) = r(st, at) + V (T (st, at)) (2.8)

Then recalling our path independent reward assumption r(s, a) = ρ(T (s, a)) we
can reformulate our Q-function as entirely determined by the next state as opposed to
the current state and action. That is, the Q-function comes to closely resemble a value
function that operates on the next state but subsumes the current reward.6

Q(st, at) = ρ(T (st, at)) + V (T (st, at)) = Q(T (st, at)) = Q(st+1) (2.9)

Going forwards we will occasionally still refer to Q-functions in MolGym3 as Q(st, at)
for clarity with the wider literature. However, we emphasize that Q-functions are
specially implemented in MolGym3 to (by our environment assumptions) take only
the next state as input. When this latter formulation is vital to understanding, we will
present Q-functions as functions of the next state Q(st+1).

6The critical difference between V and Q in our sparse reward setting is that at a terminal state
sT , Q(sT) may have non-zero reward while V (sT) = 0.

12 Background

Just as we parameterize a policy πθ by a neural net to represent complex high-
dimensional (or even infinite) state and action spaces, it is common to parameterize
action-value functions Qϕ with neural nets (Schulman et al., 2015; Mnih et al., 2013).
In MolGym3, each network7 Qϕ takes the next state st+1 as input and first computes
a rotationally covariant embedding sembi

for each current canvas atom i that captures
interactions with nearby atoms. Although this step resembles the policy network πθ,
the computations now diverge. The Qϕ network, unlike the policy network, proceeds
to (for now) ignore the bag as it is designed to first compute a representation of the
present canvas configuration and then consider future additions. In detail, the covariant
canvas atom embeddings sembi

are first converted into invariant representations through
a norming operation. Each invariant canvas atom representation is then separately
passed through an MLP and the outputs summed to produce a vector representation
for the canvas. Lastly, this vector canvas representation is concatenated with the bag
and the result is passed through a final MLP that returns the scalar state-action value
output.

With this understanding of Q networks, we may now describe the soft actor-critic
(SAC) algorithm that MolGym3 uses to train agents.

2.5.2 Soft-Actor Critic

The soft-actor critic (SAC) is an algorithm for training a stochastic, deep neural network
parameterized RL agent that combines an off-policy approach, entropy maximization,
and an actor-critic architecture (Haarnoja, A. Zhou, Abbeel, et al., 2018). Let’s
examine each design aspect in detail.

Off Policy RL

Off-policy RL algorithms permit the agent to learn a target policy that differs from
the policy used to generate the data. This allows for far greater sample efficiency than
on-policy approaches as off-policy algorithms may reuse previously collected data. In
MolGym3, for instance, the model may train and continue to learn from older molecule
rollouts. However, off-policy algorithms present stability and convergence challenges
when combined with high-dimension nonlinear function approximators e.g., neural
networks (Maei et al., 2009; Tsitsiklis and Van Roy, 1996).

7We will discuss the need for multiple Q networks forthcoming

13 Background

Maximum Entropy RL

The soft actor-critic algorithm achieves improved stability compared to previous
popular off-policy approaches (Lillicrap et al., 2015) by learning a stochastic policy
with entropy regularization. That is, an agent seeks to balance maximizing expected
future reward against acting more randomly i.e., exploring. This means reformulating
the RL objective (Equation 2.2) with an entropy regularization term:

J(π) = Eτ∼π,s0∼µ0 [
T∑
t′=0

r(st′ , at′) + αH(π(·|st′))] (2.10)

where H gives the entropy over the distribution H(π(·|st′) and α is a temperature
hyperparameter that balances the relative importance of maximizing entropy and
maximizing the episode reward. In particular, increasing α will favor a more stochastic
policy. Note in Equation 2.10 that we’ve also dropped the discount factor from Equation
2.2 as we’re assuming an undiscounted setting and that the the episode terminates at
time T .8

As we parameterize the policy by neural net parameters θ, the RL objective becomes:

J(θ) = Eτ∼πθ,s0∼µ0 [
T∑
t′=0

r(st′ , at′) + αH(πθ(·|st′))] (2.11)

To then learn an optimal parameterized policy πθ, SAC employs an actor-critic
architecture.

Actor Critic Architecture

In an actor-critic architecture, a critic is used to assist an actor in learning the
optimal policy (Konda and Tsitsiklis, 1999). Actor-critic approaches to reinforcement
learning may help reduce variance and deliver faster convergence (Konda and Tsitsiklis,
1999). In the soft-actor critic a parameterized stochastic policy πθ(at|st) (the actor)
is learned with the aid of a parameterized soft Q-function Qϕ(st, at) (the critic) that
approximates state-action values under policy πθ. The Q-function is termed soft
because it approximates not only the future rewards following policy πθ but also the
entropy maximization terms:

8Although a maximum entropy objective can be formulated in a discounted setting, it is considerably
more involved and seperate from our aims. Nonetheless, details may be found in Appendix A of
Haarnoja, A. Zhou, Abbeel, et al., 2018.

14 Background

Qϕ(st, at) ≈ Qπθ(st, at) = r(st, at) +Eτ∼πθ
[

T∑
t′=t+1

r(st′ , at′) + αH(πθ(·|st′) |st, at] (2.12)

With these pieces in place, we proceed to detail how we train the soft-actor critic.

Optimization

To find an optimal policy, the soft actor-critic algorithm alternates between a policy
evaluation and a policy improvement step.

In the policy evaluation step, the Q-function parameters are updated via stochastic
gradient descent to minimize the Bellman residual. To explain this, first note that
we can recursively estimate Qϕ using a target network Qϕ′ that is computed as an
exponential moving average (to aid training stability) of recent weights Qϕ:

Q̂ϕ(st, at) = r(st, at) + Eat+1∼πθ(·|st+1)[Qϕ′(st+1, at+1)] + αH(πθ(·|st+1)) (2.13)

where st+1 is given by the deterministic transition dynamics T (st, at) = st+1.
Then by reframing the entire expression as an expectation over the next action

at+1 according to the policy πθ we can substitute in the definition of entropy (equation
2.14) and obtain equation 2.15.

H(πθ(·|st+1))) = Eat+1∼πθ(·|st+1) [− log(πθ(at+1|st+1))] (2.14)

Q̂ϕ(st, at) = Eat+1∼πθ(·|st+1) [r(st, at) + Qϕ′(st+1, at+1)− α log(πθ(at+1|st+1))] (2.15)

As discussed in section 2.5.1, MolGym3 implements Q-functions operating solely on
the state and that may be derived as Q(st, at) = Q(T (st, at)) = Q(st+1). Thus we may
re-express equation 2.15 as a backup estimator B that instead takes the next state st+1

and transition reward rt as input:

B(rt, st+1) =

rt, if st+1 terminal
Eat+1∼πθ(·|st+1) [rt + Qϕ′(st+2)− α log(πθ(at+1|st+1))] , otherwise

(2.16)

15 Background

We then train our neural network Qϕ to minimize the squared residual error with
the backup B estimated through the target network Q′

ϕ. We label this the policy
evaluation loss Jeval(ϕ) and compute it as an expectation over previously sampled
states and actions from a rollout data buffer D:

Jeval(ϕ) = E(st,at,rt,st+1)∼D
[
(Qϕ(st+1)−B(rt, st+1))2

]
(2.17)

Note that we sample the current state st and action at as well as the next state st+1

from previously collected rollout data. However, the next action at+1 in the backup
term B is sampled from the current policy and may differ from that collected during
the rollout.

In practice, we maintain two separate Q-networks Qϕ1 , Qϕ2 and two separate
target networks Qϕ′

1
, Qϕ′

2
, using the minimum target network estimate on each sample,

min(Qϕ′
1
(st+1), Qϕ′

2
(st+1)), to compute the backup B. This mitigates overoptimism

and empirically boosts SAC performance (Haarnoja, A. Zhou, Abbeel, et al., 2018).
Thus the policy evaluation loss becomes:

Jeval(ϕ) = E(st,at,rt,st+1)∼D
[
(Qϕ1(st+1)−min(B1(st+1, rt), B2(st+1, rt)))2

]
+
[
(Qϕ2(st+1)−min(B1(st+1, rt), B2(st+1, rt)))2

] (2.18)

where the B index refers to the target Q-network used to compute the backup e.g.,

B2(st+1, rt) =

rt, if st+1 terminal
Eat+1∼πθ(·|st+1)

[
rt + Qϕ′

2
(st+2)− α log(πθ(at+1|st+1))

]
, otherwise

(2.19)
In the policy improvement step, we update the policy by minimizing the expected

Kullbach-Leibler Divergence DKL (Kullback and Leibler, 1951) between the policy πθ

and the exponential of the updated soft Q-function Qϕ.9

Jimprv(θ) = Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣∣∣exp(1
α
Qϕ(st, ·))

Zϕ(st)

)]
(2.20)

where Zϕ(st) is a normalization factor that we will hereafter drop as the minimize
DKL objective results in the same solution for an unnormalized distribution. Addition-

9The SAC authors prove that this particular formulation ensures the new policy is superior to the
old policy (Haarnoja, A. Zhou, Abbeel, et al., 2018), albeit only for finite action spaces which is not
the case for MolGym.

16 Background

ally, bear in mind that the expectation is computed over states st that are collected
from episode rollouts and stored in a replay buffer D.

The temperature hyperparameter α may be tuned to adjust the stochasticity of
the learned policy. In the SAC paper’s derivations, the temperature hyperparameter
α is subsumed into the reward by scaling by its inverse α−1. We emphasize that
this is not because the temperature hyperparameter is unimportant but because the
authors choose to tune the reward scale (effectively the inverse temperature) instead.
In fact, the SAC authors note that the algorithm is very sensitive to the reward scale /
temperature and it was the only hyperparameter that required tuning. Although we
have some flexibility to adjust rewards in MolGym (more discussion forthcoming), the
reward scale is largely set by the energy of the molecular system. Thus, unlike in the
SAC paper we will need to carefully tune the temperature parameter α, as opposed to
the reward scale, and so we explicitly include α through the equations that follow.

By the definition of KL Divergence we can express the loss function as:

Jimprv(θ) = Est∼D, at∼πθ(·|st)

[
log πθ(at|st)−

1
α

Qϕ(st, at)
]

(2.21)

Our objective of minimizing Jimprv(θ) is unchanged if we multiply through by α

and thus we may rewrite Jimprv(θ) as:

Jimprv(θ) = Est∼D, at∼πθ(·|st) [α log πθ(at|st)−Qϕ(st, at)] (2.22)

This expectation involves sampling actions from the policy πθ and thus problemati-
cally requires taking gradients through the samples when optimizing the parameters θ

through gradient descent.

∇θJimprv(θ) = ∇θEst∼D, at∼πθ(·|st) [α log πθ(at|st)−Qϕ(st, at)] (2.23)

To resolve this, we derive a gradient update based on the REINFORCE gradient
estimator (Williams, 1992). First, we break the expectation in equation in 2.22 into
separate expectations over states Est∼D and actions Eat∼πθ(·|st):

Jimprv(θ) = Est∼D
[
αEat∼πθ(·|st) [log πθ(at|st)]− Eat∼πθ(·|st) [Qϕ(st, at)]

]
(2.24)

Taking the gradient:

17 Background

∇θJimprv(θ) = Est∼D
[
α∇θEat∼πθ(·|st) [log πθ(at|st)]−∇θEat∼πθ(·|st) [Qϕ(st, at)]

]
(2.25)

We may rectify the first term in equation 2.25 by re-expressing the term as an
integral, applying the product derivative rule, exploiting the log-derivative trick, and
finally rewriting it back as an expectation:

α∇θEat∼πθ(·|st)[log πθ(at|st)] (2.26)

= α
∫
∇θ[πθ(at|st) log πθ(at|st)] dat (2.27)

= α
∫

log πθ(at|st)∇θπθ(at|st) + πθ(at|st)∇θ log πθ(at|st) dat (2.28)

= α
∫

log πθ(at|st)πθ(at|st)∇θ log πθ(at|st) + πθ(at|st)∇θ log πθ(at|st) dat (2.29)

= α
∫

πθ(at|st) [(log πθ(at|st) + 1)∇θ log πθ(at|st)] dat (2.30)

= αEat∼πθ(·|st) [(log πθ(at|st) + 1)∇θ log πθ(at|st)] (2.31)

Similarly for the second term in equation 2.25:

−∇θEat∼πθ(·|st) [Qϕ(st, at)] (2.32)

= −
∫
∇θ[πθ(at|st)Qϕ(st, at)] dat (2.33)

= −
∫

πθ(at|st)∇θ log πθ(at|st)Qϕ(st, at) dat (2.34)

= −Eat∼πθ(·|st) [∇θ log πθ(at|st)Qϕ(st, at)] (2.35)
(2.36)

Substituting these two pieces into equation 2.25 we obtain equation 2.37. We
observe that we no longer take the gradient of an expectation over samples from πθ

and thus may optimize the policy parameters through gradient descent.

∇θJimprv(θ) = Est∼D,at∼πθ(·|st)[α(log πθ(at|st) + 1)∇θ log πθ(at|st)
−Qϕ(st, at)∇θ log πθ(at|st)]

(2.37)

18 Background

To reduce the variance of gradient estimates in practice we apply an advantage
function A(st, at) = Qϕ(st, at) − Vψ(st) in place of Qϕ(st, at). Due to the special
implementation of Q-functions in MolGym3 as operating on next states (see section
2.5.1) the advantage function may employ a single network Qϕ:

A(s, a) = Qϕ(T (st, at))−Qϕ(st) = Qϕ(st+1)−Qϕ(st) (2.38)

The gradient update is thus:

∇θJimprv(θ) = Est∼D,at∼πθ(·|st)[α(log πθ(at|st) + 1)∇θ log πθ(at|st)
−(Qϕ(st+1)−Qϕ(st))∇θ log πθ(at|st)]

(2.39)

Note that due to the deterministic transition dynamics we may implicitly determine
st+1 in equation 2.39 from st and at.

To mitigate overoptimism, each Qϕ in the advantage function is separately selected
as the minimum evaluation of the two Q-functions Qϕ1 , Qϕ2 that we learn during policy
evaluation. Our final expression for the policy improvement gradient update is thus:

∇θJimprv(θ) = Est∼D,at∼πθ(·|st)[α(log πθ(at|st) + 1)∇θ log πθ(at|st)
−(min(Qϕ1(st+1), Qϕ2(st+1))−min(Qϕ1(st), Qϕ2(st)))∇θ log πθ(at|st)]

(2.40)

We use an automatic differentiation library (PyTorch’s Autograd) to optimize
Jimprv(θ) and thus must re-express equation 2.40 as a loss function for implementation.
In this loss function (equation 2.41), we carefully distinguish policy network terms
through which we will compute gradients updates (πθ) from those that we detach from
the gradient computation graph (πdetachθ). Specifically, we detach the policy network
terms in equation 2.40 that are outside a ∇θ gradient operator.

Jimprv(θ) = Est∼D,at∼πdetach
θ

(·|st)[α(log πdetachθ (at|st) + 1) log πθ(at|st)

−(min(Qϕ1(st+1), Qϕ2(st+1))−min(Qϕ1(st), Qϕ2(st))) log πθ(at|st)]
(2.41)

Finally, we add the policy evaluation loss Jeval(ϕ) (equation 2.18) and policy
improvement loss Jimprv(θ) (equation 2.41) to formulate the overall loss as a function
of Q network parameters ϕ and policy network parameters θ.

19 Background

J(θ, ϕ) = Jimprv(θ) + Jeval(ϕ) (2.42)

Importantly, we only compute gradients for parameters θ and ϕ in the expressions
for Jimprv(θ) and Jeval(ϕ) respectively. Other modules that appear in these expressions
(e.g., the Qϕ networks in equation 2.41) are temporarily detached from the computation
graph.

As a concluding note, gradients updates in MolGym are computed using Adam
with decoupled weight decay (AdamW) (Loshchilov and Hutter, 2017). The Adam
optimizer (Kingma and Ba, 2014) uses per-parameter adaptive learning rates based on
gradient histories and AdamW incorporates weight decay.

2.6 Background Summary

We’ve now introduced the assorted background (Chemistry and Molecular Modeling,
Reinforcement Learning and MDPs, the soft-actor critic, and MolGym) essential to
understand the ideas in this dissertation. In the next chapter, we propose a key
contribution to MolGym: infinite atom bags.

Chapter 3

Infinite Atom Bags

3.1 Motivation

An important limitation of MolGym1 (Simm, Pinsler, and Hernández-Lobato, 2020)
is that the agent must construct molecules from a prespecified initial atom bag. For
example, to build thionyl tetrafluoride (SOF4) the intial atom bag must consist exactly
of 1 sulfur, 1 oxygen, and 4 flouride atoms. But in practice the target element
multiplicities may be unknown in advance. After all, a key aim of MolGym is to help
discover novel molecules.

MolGym2 (Simm, Pinsler, Csányi, et al., 2021) provides agents more flexibility
by introducing a stochastic-bag task. This involves sampling the initial bag from
a distribution over bags prior to each episode. Specifically, the initial bag B0 is
constructed by sampling the initial bag element counts from a multinomial distribution
(m(e1), ..., m(emax)) ∼Mult(ζ, pe) where m(ei) specifies the multiplicity of an element
in the initial bag, pe defines the multinomial event probabilities for selecting each element
type, and ζ is the size of the bag which is itself sampled uniformly from a predefined
interval [ζmin, ζmax]. But although MolGym2 provides some facility for constructing
molecules without prespecified bags, it still effectively requires a practitioner to set a
range of bags. Moreover, the range of bags is narrowly constrained by the multinomial
distribution parameters. In turn, the size and composition of generated structures
becomes a combination of the practitioners constrained multinomial range specification
and the random initial bag draws. Critically, the agent is not able to actually learn
the optimal size and composition of structures.

Instead of exactly specifying element multiplicities (or encoding element multiplicity
likelihoods into a multinomial distribution) practitioners may instead prefer to specify
variable per-element cost penalties. Why might this be useful? Consider training

21 Infinite Atom Bags

an agent in the standard prespecified bag setting with {B0 = C5H5}. It may be
very energetically favorable to place a sixth carbon atom to build benzene C6H6 and
yield a higher reward. But alas there is a hard constraint on the agent that prevents
placing more than five carbon atoms. In contrast, if the agent could potentially place
unlimited carbon atoms (subject to some, possibly variable per-atom penalty) then the
agent could itself decide to place a sixth carbon if the additional reward exceeded the
additional penalty. This is a powerful paradigm that allows the agent to learn to build
structures of different sizes and compositions. In the next section, we detail precisely
how we formulate this infinite bag setting in MolGym.

3.2 Infinite Bag Formulation

Recall from section 2.3.2 that the bag βt = {(e, m(e))} is a multiset of to-be-placed
atoms. Figure 3.1 (top) illustrates the evolution of the bag tensor over the course of
constructing an H2O molecule in the standard finite bag setting. As the molecule is
built, the counts in the bag tensor decrease until there are no atoms left to place and
the episode terminates. The bottom of figure 3.1 illustrates how we modify the bag
tensor in the infinite bag setting. We fix the atoms remaining in the bag to 1 at every
time-step (top row) so there are no longer hard restrictions on the agent selecting
particular atoms. We also introduce a STOP atom Z which the agent may select
to terminate the episode. Lastly, we append a row of per-atom penalties. At each
timestep, the agent incurs the current penalty of the chosen atom. In this example, the
oxygen penalty increases once the agent places a single oxygen atom while the hydrogen
penalty increases once the agent has placed two hydrogen atoms. At this point, both
hydrogen and oxygen penalties are relatively high and the agent next chooses the Z

atom to terminate the episode. All accrued penalties are then added to the original
energy reward (equation 2.3) at episode termination to form a new reward function:

r(st, at) =

−
[
E(CT)−∑T

i=0 E(ei, [0, 0, 0]T)
]

+ Paccrued, T (st, at) ∈ Sterminal
0, otherwise

(3.1)

where CT is the terminal molecular structure on the canvas and Paccrued tallies all
penalties accrued over the course of constructing CT .

It is worth highlighting that the agent selects an action at based solely on the
current bag βt (and current canvas Ct). This implies that the agent’s policy model takes

22 Infinite Atom Bags

Fig. 3.1 The evolution of the bag tensor in constructing H2O in the finite (top) and
infinite (bottom) bag setting. In the finite bag setting, the bag tensor maintains counts
of to-be-placed atoms. In the infinite bag setting, we fix these counts to 1 for each atom
so that the agent can always choose to place any atom. Additionally, we introduce a
STOP atom Z that the agent selects to terminate an episode. Lastly, we append a row
of per-atom penalties that evolve over the course of an episode. In this example, the
hydrogen penalty rises once the agent places 2 hydrogen atoms and the oxygen penalty
rises once the agent places 1 oxygen atom. This incentivizes the agent to construct
H2O.

only the current atom penalties as input (i.e., those encoded into βt). The agent may
nonetheless learn how these penalties are expected to change through future timesteps
in order to guide the current decision.

We’ve now described the infinite bag structure, but glossed over how the per-atom
penalties are initialized and evolve. In the next section, we discuss how a practitioner
might specify appropriate penalty values.

3.3 Atom Penalty Determination

Practitioners guide the infinite bag MolGym agent to construct certain structures
(or families of structures) by specifying a schedule of per-atom penalties. In the
preceding section, the penalty for placing hydrogen and oxygen atoms were raised
after placing 2 hydrogen and 1 oxygen atom, respectively, so to motivate the agent to
build water. Generally, the penalty schedule will vary considerably depending on the
practitioner’s objectives. Nevertheless, penalties ought to be selected to roughly match

23 Infinite Atom Bags

the magnitudes of the original energy reward function for likely generated structures.
This ensures neither the original energy objective nor per-atom penalties completely
dominate the agent’s reward function. Mathematically this means the terms Paccrued

and −
[
E(CT)−∑T

i=0 E(ei, [0, 0, 0]T)
]

in the reward function (equation 3.1) ought to
be scaled similarly.

As an example, atom penalties may be practically motivated by examining dis-
sociation curves. In figure, 3.2 we show the dissociation curve for O2. A system of
two oxygen atoms at an optimal distance may attain a minimum energy of -21.23
Hartrees (dashed green line). If the oxygen atoms are spread far apart than the system
energy amounts to the dashed purple line, equivalently the sum of energies for two
isolated oxygen atoms.1 Recall that the original reward of an episode (equation 2.3)
is the negative energy difference between the terminal molecular system and the sum
of energies of all constituent atoms. Thus the reward for building O2, assuming no
atom penalties, is the dip from Energy Separated (dashed purple line) to Min Energy
(dashed green line). It follows that the agent should learn to build O2 so long as the
penalty for placing 2 oxygen atoms is no greater than that dip. Assuming the penalty
of placing the first and second oxygen are equivalent, the agent should generally build
O2 if the per-oxygen atom penalty is no greater than half the energy dip. We caveat
with generally because we optimize not just reward but also policy entropy and these
objectives need to be properly balanced via the temperature hyperparameter. It’s also
usually helpful to add margin. We thus label 1/4 the dip as the ‘Build Cost’ as it is
favorable for the agent to construct new O2 molecules (by placing the 1st O). On the
other hand, we label 3/4 the dip as the ‘Cease Cost’ as although it is favorable to still
complete any outstanding O2 molecule constructions, the agent should thereafter cease.

Of course it is not always so clear how to set appropriate penalties for more complex
molecules. Nevertheless, examining dissociation curves can help guide the approximate
scale of penalties. For instance, consider an agent that should learn to construct H2O.
By examining the dissociation curves for HO, O2, and H2 (figure 3.3) we can motivate
a high penalty for placing a second oxygen atom since the O2 energy dip is relatively
large. Specifically, we might consider a penalty ≈ −0.5Å to discourage O2 formation.

An idea worth emphasizing is that the infinite bag formulation of MolGym affords
the practitioner some flexibility in setting atom penalties. Nonetheless, the scale
of the new reward function (i.e., now incorporating atom penalties) remains largely

1Technically the Energy (blue line) should smoothly converge to the Energy Separated (dashed
purple line). However, approximating dissociation curves precisely can be difficult for semi-empirical
quantum chemical methods. Ultimately, we favor the speed of such methods and as incorrect
dissociation energies typically only result in a shift in return/reward.

24 Infinite Atom Bags

Fig. 3.2 Dissociation curve for O2 superimposed with example construction penalties.

Fig. 3.3 Dissociation curves for O2, OH, and H2, superimposed with example penalties.

25 Infinite Atom Bags

predetermined by the scale of the original energy reward function. This is particularly
important because unlike in conventional RL, the optimal policy in maximum entropy
RL depends on the reward function scale. Specifically, the reward scale changes the
stochasticity of the optimal policy. This is evident in the SAC policy improvement
step objective (equation 2.20 repeated below as equation 3.2) as the reward scale
inevitably alters Q-function magnitudes and thus the policy stochasticity. In particular,
larger reward magnitudes correspond to a more deterministic optimal policy and
smaller reward magnitudes to a less deterministic optimal policy. It is then crucial
to appropriately tune the temperature hyperparameter α to the reward scale as a
sub-optimal temperature may induce an inappropriately stochastic policy (Haarnoja,
A. Zhou, Abbeel, et al., 2018; Haarnoja, A. Zhou, Hartikainen, et al., 2018).

Jimprv(θ) = Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣∣∣exp(1
α
Qϕ(st, ·))

Zϕ(st)

)]
(3.2)

3.4 Improving Robustness

3.4.1 Temperature Hyperparameter

Although the soft actor-critic algorithm is robust to most hyperparameter settings,
it is fairly brittle to the temperature α (Haarnoja, A. Zhou, Abbeel, et al., 2018;
Haarnoja, A. Zhou, Hartikainen, et al., 2018). We may observe this in MolGym when
constructing even simple molecules. In figure 3.4, we train an agent to build H2O under
the infinite bag setting for a range of temperatures α. Evidently, the temperature α

must be carefully calibrated to avert seriously degraded performance. Moreover, even
a fine-tuned temperature may be problematic.

In figure 3.5 we continue training the successful run (with α = .02) from figure 3.4.
We observe that although the agent momentarily learned to build H2O it eventually
breaks catastrophically. The root of this is partly a flaw in our implementation. But it
also illuminates a more fundamental drawback in the SAC algorithm.

Consider that the reward scale changes over the course of training. Specifically,
reward magnitudes shrink as the policy becomes better and the agent learns to avoid
highly negative states. As previously discussed, smaller reward magnitudes correspond
to a less deterministic optimal policy during the policy improvement step (equation
3.2). This means the the agent will update the correct policy to become increasingly
random! Accordingly, in figure 3.5 (bottom row) we observe policy entropy gradually
increases once the correct policy is found.

26 Infinite Atom Bags

Fig. 3.4 In each column, we train MolGym in the new infinite bag setting with a
different temperature parameter α. The top row shows the episode return over the
course of training. Subsequent rows provide estimated probabilities for placing a
particular element during the first 4 episode steps. These estimates are computed as
the mean probabilities over evaluation runs. When α is well-tuned (middle column)
the agent learns to obtain maximum reward by sequentially placing H,H,O, and finally
Z to terminate the episode. But if α is incorrectly set the agent fails to learn to build
even a simple molecule like H2O.

27 Infinite Atom Bags

Fig. 3.5 The seemingly successful H2O run with α = .02 in figure 3.4 is continued,
only to eventually break calamitously. The top row shows episode the return over
the course of training. The following 4 rows indicate the estimated probabilities for
placing a particular element during the first 4 episode steps in evaluation. The bottom
row provides policy entropy (computed as Est∼D,at∼π(·|st)[− log π(at|st)] over training
batches). Once the agent finds the correct policy, policy entropy begin to increases
gradually, then suddenly, and model performance degenerates.

.

28 Infinite Atom Bags

This phenomena is especially striking because our implementation relies on advan-
tage function estimates Aϕ(st, at). That is, the update objective (equation 3.2) really
resembles:

Jimprv(θ) = Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣∣∣exp(1
α
Aϕ(st, ·))

Zϕ(st)

)]
(3.3)

After learning the correct policy, the advantage function estimates along correct
policy trajectories are both accurate, as they are well-sampled, and very small in
magnitude. The small magnitudes occur because the value of the current state should
be similar to the optimal next state (especially in MolGym’s undiscounted setting).
Thus for a learned correct policy, the advantage function estimates in equation 3.3 tend
to be smaller than the q-function estimates in equation 3.2. This implies an update to
a policy πθ with relatively higher entropy in our advantage function implementation.

The dependence of the policy entropy on the reward scale is particularly problematic
in the infinite bag setting. Agents act naively early in training and thus typically incur
significant per-atom penalties. As a result, reward scales vary more dramatically over
the course of training compared to the finite bag setting. An appropriate temperature
α for the initial rollouts may then be much too high in later iterations.

Nonetheless, an agent following a nearly correct stochastic policy should be able to
learn that its occasional, random sub-optional actions are undesirable. But instead
we observe the agent continue to take sub-optimal actions and eventually completely
destabilizes. The root of this behavior is apparent in figure 3.6 which breaks down the
entropy of the policy into the entropy of the focus, element, distance, and spherical
orientation distributions. Evidently, the distance p(dt|et, ft, st) distribution entropy
drives the overall entropy blowup. Why? Recall, that the SAC objective (equation
2.11) includes an entropy maximization term. This term is usually balanced against
the reward maximization objective. However, for the STOP atom Z, the agent can
arbitrarily increase the entropy of the distance distribution because the STOP atom’s
distance dT has no effect on the reward. The agent is thus able to initially increase
the entropy of the distance distribution for the STOP atom innocuously. But this
eventually destabilizes the parameters governing the distance distributions for the
other atoms and in turn the model breaks.2 To correct for this, we sever the backward
gradient computation for the STOP atom’s distance distribution entropy. We also do

2In additional detail: Recall that the distance distribution is a Gaussian mixture model parameter-
ized by a neural network. Continuing to arbitrarily increase the GMM entropy ultimately corrupts
the parameters of the underlying neural network from outputting appropriate GMM parameters for
all atoms

29 Infinite Atom Bags

Fig. 3.6 Detailed entropy statistics for the initially successful but then degenerate H2O
run with α = .02. Plots show reward and policy entropy over the course of training.
The policy entropy (computed as Est∼D,at∼π(·|st)[− log π(at|st)] over training batches)
is broken into the entropy of its constituent distributions. Evidently the blowup in
overall policy entropy is driven by the entropy of the distance distribution.

.

30 Infinite Atom Bags

this for the STOP atom’s orientation distribution.3 In figure 3.7, we show that this
prevents blowing up the entropy and breaking the model.

We still observe in figure 3.7 that policy entropy slightly increases after the agent
learns the correct policy. This is because the optimal policy entropy still depends on
the reward scale and the relatively small advantage function estimates of the correct
policy imply a higher entropy policy update. In this case, nothing calamitous occurs
and the agent just injects a bit more randomness into the order of atom placement.
Nonetheless, if reward magnitudes vary more significantly over the course of training,
an appropriate temperature at the beginning of training (when reward magnitudes are
high) may be far too high once the agent determines the correct policy (and reward
magnitudes are low). To then compensate for a potentially more varied reward scale, we
implement a newer variant of the soft actor-critic with automatic entropy adjustment
(Haarnoja, A. Zhou, Hartikainen, et al., 2018). As we shall see, SAC with automatic
entropy adjustment not only prevents policy entropy from escalating at the conclusion
of training. It also provides more hyperparameter robustness than by using a fixed
temperature (as in figures 3.4 and 3.8) and averts a catastrophic entropy blowup (as in
figure 3.6) even without severing the STOP atom’s distance/orientation distribution
entropy gradients.

3.4.2 SAC with Automatic Entropy Adjustment

The key idea in SAC with automatic entropy adjustments (Haarnoja, A. Zhou, Har-
tikainen, et al., 2018) is to recast the original SAC objective (equation 2.10) as now
determining a stochastic policy that maximizes return subject to a minimum expected
entropy constraint:

max
π0:T

E(st,at)∼ρπt

[
T∑
t=0

r(st, at)
]

s.t. E(st,at)∼ρπt
[− log(πt(at|st))] ≥ H ∀t (3.4)

where H is the target minimum entropy, πt specifies the policy at timestep t, and
ρπt denotes the state action marginal distribution induced by the policy πt. Critically,
the entropy of the optimal policy no longer depends on the scaling of rewards. Instead,
the policy entropy must exceed a fixed minimum entropy H at every time t. Ensuring
this requires incorporating and appropriately updating a dynamic temperature α. More

3Although the distance entropy clearly engenders the entropy blowup in our example, we also risk
arbitrarily increasing the entropy of the STOP atom’s orientation distribution as its orientation x̃T

likewise has no effect on reward.

31 Infinite Atom Bags

Fig. 3.7 Successfully building H2O in the infinite bag setting by severing backward
gradient computation for the STOP atom’s distance and orientation distribution
entropies. Left column plots show reward and policy entropy over the course of training.
Right column plots provide estimated probabilities for placing a particular element
during the first 4 episode steps. After the agent fixates on the correct policy (at roughly
180 iterations) entropy rises slightly due to the shrunken reward scale. However, we
prevent entropy from further blowing up (in contrast to figure 3.6) by blocking gradient
flows from the STOP atom’s distance and orientation distribution entropies.

32 Infinite Atom Bags

Fig. 3.8 In each column we train MolGym in the new infinite bag setting with a
different temperature hyperparameter α, similar to figure 3.4. However, in these runs
we sever backward gradient computation for the STOP atom’s distance and orientation
distribution entropies. Although this prevents the catastrophic entropy blowup in the
run with α = .02, it does not resolve the more fundamental brittleness of the SAC
algorithm to the temperature hyperparameter. The agent with α = .03 ultimately
obtains a suboptimal reward by building hydrogen peroxide H2O2 (instead of H2O)
while the agent with α = .005 performs even worse.

33 Infinite Atom Bags

precisely, a dual objective may be derived from equation 3.4 but the derivation4 relies
on assumptions that do not hold for neural networks. Nonetheless, the authors observed
that updating gradients on the temperature α with the following objective5 still works
empirically:

Jtemp(α) = Est∼D, at∼π(·|st)
[
−α(log π(at|st) +H)

]
(3.5)

By implementing automatic entropy adjustment we decouple the optimal entropy
from the reward scale and thus prevent the policy from growing more stochastic as
reward magnitudes shrink. Moreover, although the objective imposes only a lower
bound on entropy, we also mitigate the policy from blowing up with excessively high
entropy (as in figures 3.5 and 3.6). Specifically, the loss function (equation 3.5) causes
the temperature of the policy to decrease if the current policy entropy H is greater
than the minimum target entropy H. We derive this conclusion as follows:

Jtemp(α) = Est∼D, at∼π(·|st)
[
−α(log π(at|st) +H)

]
(3.6)

= α (Est∼D, at∼π(·|st) [− log π(at|st)]−H) (3.7)
= α (H−H) (3.8)

Taking the gradient with respect to α:

∇αJtemp(α) = H−H =⇒ ∇αJtemp(α) > 0 (if H > H) (3.9)

Since we minimize Jtemp(α) the corresponding update to α is negative:

α← α− λα∇αJtemp(α) (3.10)

where λα is a learning rate. Thus if the policy has excessively high entropy, the
temperature is updated to dynamically shrink.

In figure 3.9 we show that an agent with an auto-tuned temperature α successfully
finds and maintains the correct H2O build policy even without severing gradient flows
from the STOP atom’s distance/orientation entropy. Figure 3.9 also demonstrates how
the temperature α is adjusted over the course of training so that the optimal policy
attains a particular target entropy H = 2.

4Details of the derivation are available in Haarnoja, A. Zhou, Hartikainen, et al., 2018.
5Note that we’ve made minor adjustments to the notation in the SAC with automatic entropy

adjustment paper (Haarnoja, A. Zhou, Hartikainen, et al., 2018) to align with our own.

34 Infinite Atom Bags

Fig. 3.9 Comparison building H2O between an agent with a fixed temperature α
(column 1) and an agent with a dynamic, auto-tuned temperature α (column 2). Note
that the STOP atom gradient’s on the distance/orientation distribution entropy are
not severed for the purposes of this comparison. Both agents initially determine the
correct policy, but the agent with the fixed temperature α eventually degenerates
when entropy escalates late in training. In contrast, the auto-tuned temperature agent
dynamically adjusts α so that the policy entropy (and temperature) remain low once
the agent determines the correct policy.

35 Infinite Atom Bags

Using SAC with automatic entropy adjustment requires us to set two hyperparam-
eters (an initial α0 and a minimum target entropy H) as opposed to a single fixed
α. Nonetheless, basic ablation experiments (figures A1, A2) show these are decently
robust, especially when compared with the brittleness of setting a fixed temperature α

as noted in the literature (Haarnoja, A. Zhou, Abbeel, et al., 2018; Haarnoja, A. Zhou,
Hartikainen, et al., 2018) and also evident in our experiments (figures 3.4, 3.8).

Nevertheless, SAC with automatic entropy adjustment is no panacea. We note for
instance that even in the successful H2O training run (figure 3.9, column 2) that the
agent spends over 200 training iterations following a degenerate near-deterministic
policy wherein it places the STOP atom at the start of each episode. Fortunately, the
agent is able to eventually recover as it’s programmed to ignore such bad rollouts and
train exclusively on the varied, interesting episodes it accrued earlier. Nonetheless,
it is certainly not ideal that the agent quickly fixates on a poor near-deterministic
policy as this behavior slows convergence. Often we may prefer greater exploration
at the outset i.e., the temperature α and optimal entropy to more gradually fall than
in figure 3.9. We’re able to adjust initial exploration somewhat by tuning the target
entropy and initial temperature (figures A1 and A2). But although we may realize
moderate convergence speedups through tuning, an issue remains: the target entropy
is, we recall, the minimum target entropy over the entire course of training. Thus it
needs to be set sufficiently low so the agent can learn the usually near-deterministic
correct policy. In turn, the temperature often falls too steeply at the beginning of
training in order for the current policy entropy to roughly match the minimum target
entropy (e.g., see figures 3.9, A.2, A.1).

To encourage sufficient early exploration we may lower the learning rate λα for the
temperature parameter.6 In figure 3.10 we see that by lowering λα appropriately we
may avoid adopting an incorrect, overly-deterministic policy early in training. However
if λα is set too small, the agent takes excessively long to lower α to where the correct
near-deterministic policy may be realized. In summary, by specifying λα we gain greater
control over initial exploration, but we also introduce an additional hyperparameter.7

A straightforward alternative is to dynamically adjust the temperature α according
to a decay schedule. In figure 3.11 we show that by lowering α over the course of
training we can explore amply at the outset and avoid blowing up the entropy of

6In practice we implement gradient updates on α (equation 3.5) using an AdamW optimizer
(Loshchilov and Hutter, 2017) and so lower the learning rate parameter of AdamW.

7Of course the learning rate λα must be specified regardless. But if we set λα to the same AdamW
learning rate as the model optimizer (instead of distinctly setting λα) then we effectively avoid needing
to tune it.

36 Infinite Atom Bags

Fig. 3.10 Building H2O with an auto-tuned temperature α for different temperature
learning rates λα. By tuning λα appropriately, the agent may explore sufficiently at
the outset of training and converge to the correct policy sooner.

37 Infinite Atom Bags

Fig. 3.11 Comparison building H2O with an auto-tuned temperature (top 2 rows) and
an exponentially decaying temperature (bottom 2 rows). In all, the initial temperature
is set at α0 = .1. We observe that if the exponential decay rate is tuned appropriately,
we can explore sufficiently at the beginning of training and find the correct policy
promptly.

the optimal policy as the reward scale shrinks later in training. This approach also
involves setting only two hyperparameters (the initial temperature α0 and decay rate
r) versus three in the auto-tuned SAC variant (the initial temperature α0, minimum
target entropy H, and learning rate λα).

There is no absolute answer to whether a fixed, exponentially decaying, or auto-
tuned temperature is optimal. However, if the reward scale varies significantly over
the course of training, as may occur in the infinite bag setting, either a exponentially
decaying or auto-tuned temperature is likely preferred. The auto-tuned temperature
is well motivated and cleverly adjusts to a dynamic reward scale but may induce
insufficient initial exploration without an appropriate temperature learning rate λα.

38 Infinite Atom Bags

Lastly, a decaying temperature provides the flexibility to explore amply at the outset,
but needs to be carefully tuned to the timescale of a run. All options are now
implemented in MolGym and simple to switch between.

3.5 Infinite Bag Summary

In this chapter, we motivated infinite atom bags as a compelling new paradigm that
enables MolGym agents to now learn the optimal size and composition of molecular
structures. We proceeded to detail our implementation of the infinite bag setting into
MolGym using per-atom penalties. Finally, we addressed the brittleness of the SAC
algorithm’s temperature hyperparameter by implementing a more robust variant: SAC
with automatic entropy adjustment (Haarnoja, A. Zhou, Hartikainen, et al., 2018).
Altogether, we successfully built small molecules (e.g., H2O) under the infinite bag
setting while improving hyperparameter robustness. Next, we will explore how to
further empower MolGym infinite bag agents with randomized atom penalties.

Chapter 4

Randomized Atom Penalties

4.1 Motivation

In the previous chapter, we enabled MolGym agents to learn to build molecules based on
dynamic per-atom penalties. The penalties were dynamic in the sense that they varied
over the course of a molecule’s construction. However, the underlying penalty schedule
remain fixed. For example, to encourage O2 construction we set the environment to
always raise the penalty on oxygen after 2 oxygen were placed. In this chapter, we
explore randomizing the penalty schedule. This allows practitioners to create more
powerful agents that flexibly react to changing penalty conditions and are capable of
constructing a broader diversity of molecules.

4.1.1 Motivating Example: Molecular Oxygen and Ozone

As a guiding example we will consider training a MolGym agent that should build
both molecular oxygen (O2) and ozone (O3). This implies that our environment should
behave stochastically; it should sometimes raise the penalty on oxygen after 2 are
placed and sometimes raise the penalty on oxygen after 3 are placed.

4.2 Implementation

We implement environment stochasticity by drawing a randomized penalty schedule
at the start of each rollout. In our example, the penalty schedule is constructed such
that the penalty increases on oxygen after n ∼ randint(2, 3) oxygens are placed. More
generally we enable the practitioner to specify a random range for each atom and
additionally allow multiple penalty increases. For instance, a practitoner may specify

40 Randomized Atom Penalties

Fig. 4.1 An agent is trained to construct both O2 and O3 through randomized penalties.
We classify the molecules built over 4 evaluation rollouts for each of the final 100
training iterations. Evidently, the agent learns to always construct either O2 or O3 but
often chooses the incorrect molecule to build. O3 Incorrect means that the agent built
O3 when the oxygen penalty increased after 2 oxygens were placed and thus could’ve
achieved a higher reward by building O2. Similarly, O2 Incorrect means that the agent
built O3 when the oxygen penalty did not increase after 2 oxygens were placed and
thus could’ve achieved a higher reward by building O3.

that the penalty on sulfur increases after n ∼ randint(2, 3) sulfur are placed and then
increases again after another n ∼ randint(0, 2) sulfur are placed. This provides the
flexibility to construct highly adaptable MolGym agents.

If we now train our agent to build O2/O3, we find that although the agent learns
to build both molecular oxygen and ozone it fails to distinguish when constructing
each is appropriate (see figure 4.1). That is, the agent fails to learn to build O2 when
the oxygen penalty increases after 2 oxygen are placed (and O3 when the oxygen
penalty increases after 3 oxygen are placed). To resolve this, we must reconsider what
constitutes the agent state under the infinite bag setting.

41 Randomized Atom Penalties

4.3 Full State Estimation

In this section, we will establish how randomized penalties subvert our current notion
of full state, describe why this is problematic given the SAC policy update, and finally
derive a fix that restores a true full state.

We’ll explain by an example. First, consider two environments:

• In env A, the oxygen penalty increases after 2 oxygen are placed. Thus the agent
receives a high reward for building O2 and a lower reward for building O3

• In env B, the oxygen penalty increases after 3 oxygen are placed. Thus the agent
receives a low reward for building O2 and a higher reward for building O3

Let state s3O consists of a canvas containing O3 and a bag where the oxygen penalty
is high.1. Next let’s consider the Q-function estimates for state s3O. Recall that in
MolGym, the Q-function effectively acts only on the next state as opposed to the
current state and action (for details see section 2.5.1). Additionally recall that rewards
are sparse. That is, all rewards are zero except at episode termination where the reward
consists of the standard energy reward plus all accrued penalties (equation 3.1).

• In env A, Qϕ(s3O) should be low because although the agent has successfully
built O3 the agent placed an oxygen atom after the penalty on oxygen was raised.

• In env B, Qϕ(s3O) should be high because the agent successfully built O3 and
placed all three oxygens before the oxygen penalty was raised.

This is problematic as the confusion over the correct value of Qϕ(s3O) results in
suboptimal policy updates. To illustrate this, recall the policy improvement step
(equation 2.20 reproduced here with a Q-function that operates on the next state):

Jimprv(θ) = Est∼D

[
DKL

(
πθ(·|st)

∣∣∣∣∣∣∣∣exp(1
α
Qϕ(st+1))

Zϕ(st)

)]
(4.1)

Now let state s2O come from a rollout of environment A with 2 oxygen atoms on
the canvas. Our policy improvement step becomes:

Jimprv(θ) = DKL

(
πθ(·|s2O)

∣∣∣∣∣∣∣∣exp(1
α
Qϕ(st+1))

Zϕ(s2O)

)
(4.2)

Note that if Qϕ(s3O) is high then we update the policy πθ to more frequently select
the suboptimal action (placing a third O) that results in st+1 = s3O. Alternatively,

1Note in either environment that the oxygen penalty will be high after 3 oxygens are placed

42 Randomized Atom Penalties

if Qϕ(s3O) is low we correctly select that action less frequently. However, in the case
Qϕ(s3O) is low but s2O comes from a rollout of environment B then we update the
policy πθ to less frequently select the optimal action that results in st+1 = s3O. In
summary, for either setting of Qϕ(s3O) faulty policy updates are certain to arise.

We emphasize that the poor calibration of Qϕ(s3O) is not simply because Qϕ(s3O)
reflects environment uncertainty. It is true that, for instance, the value estimate of the
initial state Qϕ(sinit) should reflect environment uncertainly as the agent does not yet
know when penalties will increase. But the environment uncertainty should be resolved
at the moment the agent computes Q(s3O) as penalties have already increased.

Interestingly, although Qϕ(s3O) should differ between environments A and B, the
optimal action from state s3O will not. In fact, the optimal action from any state s

is the same in environment A and B. This is because the agent’s current goal is to
maximize reward from state s and the action to achieve so is entirely dependent on s,
and in particular independent of all previously incurred penalties. In this sense the
MolGym Markov decision process is fully observable with the state s just consisting
of the canvas, bag, and current penalties. However, a complication with observability
arises due to our choice of a decision algorithm (SAC) that depends on value estimates
of s. Specifically, the next action decision is mediated by Q-function estimates that
depend on previously incurred penalties. Since s does not contain such information,
we effectively end up with a partially obersvable Markov decision process.2

A solution to restore full observability to the MDP is to incorporate the total
penalty accrued into the state s. Thus we redefine the state as s′ = s ∪ p where p is
the total penalty accrued from state s0 to state s. This resolves the conundrom with
environments A and B as the Q-functions now take slightly different inputs:

• In env A, Qϕ(s3O ∪ pA) where pA is relatively high

• In env B, Qϕ(s3O ∪ pB) where pB is relatively low

After incorporating the total accrued penalty into the state, we need only adapt
the Q-network. This is because, as noted previously, the optimal next action is to
maximize future reward and independent of past accrued penalties. Thus we may
dismiss the total accrued penalty as an input to the policy network. For the Q-network,
recall that the final computation involves concatenating an embedding of the canvas
with the bag and passing the results through a MLP. We modify this slightly so that

2Note this is only true for randomized penalty schedules as otherwise s suffices to correctly estimate
Qϕ once the agent learns the penalty schedule

43 Randomized Atom Penalties

Table 4.1 An agent trained to build both oxygen (O2) and ozone (O3) is evaluated over
100 rollouts once training concludes. For each episode a random penalty schedule is
selected such that the penalty on oxygen increases after either 2 or 3 oxygen are placed
on the canvas. We observe that the agent has correctly learned to build oxygen when
the penalty increases after 2 oxygen are placed and ozone when the penalty increases
after 3 oxygen are placed.

Oxygen penalty rises after..
2 oxygen placed 3 oxygen placed

Over 100 eval rollouts... # O2 built 45 0
O3 built 0 55

the MLP takes as input a concatenated tensor consisting of the canvas embedding,
bag, and total accrued penalty.

4.4 Results: Molecular Oxygen and Ozone

With the modifications to the state described in the previous section, we may now
empower an agent to build both oxygen and ozone. Specifically, we train an agent
on rollouts where the oxygen penalty randomly increases after between 2 or 3 oxygen
are placed on the canvas. In figure 4.2 we demonstrate how the evaluation element
probabilities vary over the course of training. The agent initially learns to build O2

exclusively but eventually learns to tailor its molecular construction to the particular
penalties it encounters over a rollout. We may confirm the agent has learned to
correctly alter its actions according to current penalties through both the final training
iterations (figure 4.3) and supplementary evaluation results (table 4.1).

4.5 Alternative: Dense Penalties

Rather than incorporating the total accrued penalty into the state st, we may resolve
the trouble with randomized penalties by reformulating them as dense (negative)
rewards. Consider in MolGym’s sparse reward paradigm that penalties are not realized
until an episode terminates. In other words, the environment tracks the penalties
incurred at each step but does not communicate accrued penalties to the agent until
the episode concludes.

Instead, we may direct the environment to immediately return the penalty incurred
at each episode step. This creates a framework where Qϕ(st) should estimate the sum
of all future penalties from state st plus the final molecule energy reward. Thus, using

44 Randomized Atom Penalties

Fig. 4.2 Reward and evaluation element probabilities over the course of training an
agent to build both oxygen O2 and ozone O3. Early in training, the probability of
placing a third oxygen is always zero (the agent builds O2 exclusively) but eventually
the probability of placing a third O jumps between 0%, 25%, 50%, 75%, & 100% at
every iteration. This is because each evaluation iteration consists of 4 rollouts and
each rollout is equally probable to have raised the penalty on oxygen at the second or
third step. Thus the average probability that the agent places the third O is correctly
dependent on how many episodes (out of 4) involve the later penalty increase.

45 Randomized Atom Penalties

Fig. 4.3 An agent is trained to construct both O2 and O3 through randomized penalties,
as in figure 4.1, but now we incorporate the total accrued penalty into the state. We
classify the molecules built over 4 evaluation rollouts for each of the final 70 training
iterations. Evidently, the agent learns to always correctly construct either O2 or O3
depending on the penalty schedule.

46 Randomized Atom Penalties

our earlier example, Qϕ(s3O) should estimate the same value for both environments A
and B. This is because Qϕ(st) no longer depends on any past penalties as the agent
has already incurred them as (negative) rewards. Thus, we need not introduce the
total accrued penalty into the state sT .

We’ve glossed over an important detail relating to MolGym’s implementation of
Q-functions as acting solely on the next state Q(st+1) = Qϕ(T (st, at)) (see section
2.5.1 for additional detail). Specifically, that implementation relies on sparse rewards
to ensure path independence. In the case of dense rewards, the transition dynamics
are still deterministic but Qϕ(st+1) depends on the now nonzero reward incurred
transitioning from st to st+1. Thus we may no longer recast Qϕ(st+1) = Qϕ(T (st, at))
as the penalties incurred transitioning into state st+1 may vary.

The straightforward resolution is to simply undo the Qϕ(st+1) = Qϕ(T (st, at))
simplication in MolGym by implementing Q-functions that operate on both state
and action (ie., the standard way: Q(st, at)). However, this presents a far tougher
modeling challenge. In particular, the Q-function must learn to not just model states,
but how those states are augmented by actions. This is needlessly complicated given
the deterministic transition dynamics. By exploiting those dynamics, we can rewrite
the Q-function as operating on the next state as before plus a transition reward penalty
rpt:3

Qϕ(st, at) = Qϕ(T (st, at), rpt) = Qϕ(st+1, rpt) (4.3)

The function Qϕ(st, at) estimates the sum of all future rewards from st if the agent
takes action at. In MolGym, this is the final molecule energy plus the value of all
penalties incurred from state st onwards. Thus we can futher simplify:

Qϕ(st+1, rpt) = Qϕ(st+1) + rpt (4.4)

where Qϕ(st+1) estimates the final molecule energy plus the value of all future
penalties incurred from state st+1 and rpt is the penalty incurred transitioning from
state st to st+1. As a result, we may implement dense penalties into MolGym with
a minimal modification to the current Q-function Qϕ(st+1): we must simply add the
reward penalty rpt that was incurred transitioning into state st+1.

3We are careful to use the notation rpt to distinguish the (negative) reward penalty incurred at
timestep t from the total reward rt incurred at that timestep. This is because although the reward
penalty constitutes the entire reward at most timesteps, the terminal reward will also include the
energy reward.

47 Randomized Atom Penalties

Dense penalties are now enabled as a hyperparamter option for the MolGym infinite
bag setting. However, we found that incorporating the total accrued penalty into
the state usually functioned better (quicker convergence, more robust) in resolving
randomized penalties.

4.6 Randomized Penalty Summary

In this chapter, we discussed incorporating randomized atom penalties into MolGym’s
infinite bag setting. We first described how randomized penalties may bring about
more versatile MolGym agents and then outlined a straightforward implementation.
We next proved why MolGym states don’t incorporate sufficient information to model
randomized atom penalties through the soft-actor critic Q-function estimates. To resolve
this, we integrate the accrued penalties over a rollout into the state. Alternatively, we
showed how using dense penalties also corrects the Q-function estimates. Ultimately,
we managed to train an agent that alternatively built molecular oxygen O2 or ozone
O3 according to a random penalty schedule. We’ve now seen MolGym’s infinite bag
successfully applied in constructing small molecules under different settings. In the
next chapter, we explore scaling to larger molecular structures.

Chapter 5

Scaling to Complex Structures

In the preceding chapters, we’ve introduced the powerful infinite bag setting into
MolGym and demonstrated its success in building small molecules. Next, we detail
efforts to scale MolGym to construct larger and more complex molecules under the
infinite bag setting. As we will show, this presents thorny optimization challenges
due to the enormous space of potential molecules. We thus propose both a simple
technique to robustify optimization (specifying initial probability distributions) and a
more involved strategy (applying a variant of Soft Q Imitation Learning).

5.1 Optimization Challenges

Optimization on infinite bag MolGym agents routinely failed in learning more complex
structures. More precisely, first suppose we encode penalties such that an agent
obtains maximum reward by building a particular, now more complex, target molecule.
This agent policy ordinarily corresponds to the global minimum loss.1 However, the
optimizer often stumbled in locating parameters near the global minimum loss and thus
the agent failed to learn the target molecule. The loss landscape under the infinite bag
setting was likely difficult to optimize due to 1) the exponential growth in constructable
chemical formulas and 2) constraints on penalty formulation.

1This policy only ordinarily corresponds to the global minimum loss because of the additional
entropy maximization objective. However, if the penalties and temperature are tuned appropriately
then the statement strictly holds.

49 Scaling to Complex Structures

5.1.1 Exponential Growth in Chemical Formulas

In the original MolGym finite bag setting we specified a bag (e.g., SOF6 to construct
pentafluorosulfur hypofluorite) and then in every rollout constrained the agent to place
exactly those atoms. Moreover, the agent was trained on rollouts consisting exclusively
of SOF6.

Under the infinite bag setting, this becomes far more complex. Now the agent may
place any number of S,F , and O and is trained on rollouts that may’ve built extremely
varied configurations (e.g, S, S3F4O6, S8O2, etc...). Specifically, an agent trained on
M distinct elements with a maximum canvas size of N is capable of building molecules
with an exponential number O(MN) of different chemical formulas. In contrast, under
the finite bag setting the number of unique chemical formulas is just 1.

Unsurprisingly, we rarely sample rollouts consisting of exactly the desired SOF6

atoms early in training. Assuming that we initially select from S,O,F and the STOP
atom Z with equal probability, then we expect to sample SOF6 every 4681 rollouts in
expectation.2 Moreover, that rare sample of SOF6 merely consists of the atoms SOF6

and almost certainly doesn’t geometrically resemble pentafluorosulfur hypofluorite
on the canvas. Of course, we intend to collect better rollouts later in training and
regardless the agent is capable of learning from the transitions of suboptimal rollouts,
SOF6 or otherwise. But clearly the agent’s optimization is far less constrained toward
the objective (building SOF6) than under an explicit finite bag specification. As a
consequence, optimization often gets stuck far from the global minimum loss.

In figure 5.1 we observe that an agent trained with penalties that incentive SOF6

construction ends up building structures like SOF2, S2OF5, and SOF5 + O.3 We
emphasize that the energy reward and our selection of penalties imply that the agent
would receive a markedly higher reward if it instead constructed SOF6. So why does
the optimizer get stuck? In the SOF2 run, the shrunken gradient norms suggest the
optimizer has become trapped near some sort of critical point (Goodfellow, Bengio,
and Courville, 2016). We note that although the optimizer may have lurched into a
local minimum, saddle points tend to be more common in high dimensional spaces
(Goodfellow, Bengio, and Courville, 2016). In the other runs, the less convergent
gradient norms, particularly in the case of S2OF5, prevent us from conclusively labeling

2The probability of randomly sampling SOF6 is 1
4

9 ∗ 8 [options for step that S is chosen] ∗
7 [options for step that O is chosen] . Note that the step the STOP atom Z is chosen is fixed (the
final step) and the steps F is chosen are thereby determined to the 6 remaining steps. Then, to
calculate the expected number of rollouts before sampling SOF6 we simply invert this probability.

3In the case of constructing SOF5 + O, the plus signifies that the agent builds the molecule SOF5
(Pentafluoro(oxido)-lambda6-sulfane) and places a separate, nearby oxygen atom.

50 Scaling to Complex Structures

a critical point as the culprit. The optimizer may not technically be stuck in that it
continues to make meaningful updates to the network weights. However, we observe
that the nearly certain odds of initially placing either 2 oxygen (when generating
SOF5 + O) or 2 sulfur (when generating S2OF5) create rollouts that sharply diverge
from resembling SOF6. When such rollouts come to dominate the training buffer, the
network is optimized primarily with respect to them, and thus a vicious cycle emerges
as the agent becomes entrenched generating more rollouts with 2 oxygen (or 2 sulfur)
for training. This severely limits, if not outright prevents (depending on the buffer
size), the agent from finding the optimal policy i.e., building SOF6.

Figure 5.2 demonstrates how dominating suboptimal rollouts may induce a severely
adverse training cycle. We observe that if the agent building SOF5 +O simply dropped
the isolated oxygen atom, reward would increase significantly. It might seem easy for
the agent to realize this simple improvement, at least relative to constructing SOF6.
However, recall the agent is optimized over rollout data collected in a training buffer.
That buffer has come to consist largely of state-action-reward-state (SARS) tuples
(st, at, rt, st+1), where the state variables contain 2 canvas oxygens. One might presume
this arises particularly because the 2 oxygens are placed first and thus most SARS
samples contain states with 2 canvas oxygens. In fact, we randomize a rollout’s order
of atom placement before it is subsumed into the training buffer. But evidently this
insufficiently mitigates the extent to which states with 2 canvas oxygens influence the
buffer. Ultimately, the agent fails to learn to place just a single oxygen molecule and
generate the higher rewarding SOF5.

Notwithstanding the difficulties constructing SOF6, we must remind ourselves
that a key motivation for MolGym is to design novel molecular structures. That we
set out to build SOF6 (pentafluorosulfur hypofluorite) but ended up constructing
other, similar molecules is perhaps even somewhat desirable. In the preceding experi-
ments, we constructed two identifiable molecules: SOF2 (Thionyl fluoride) and SOF5

(pentafluoro(oxido)-lambda6-sulfane). The chemical formula for the final molecule
(S2OF5) could not be found in the National Institute for Standard and Technology
Chemistry WebBook (Linstrom and Mallard, 2001) or PubChem (Kim et al., 2021)
databases. However, its training run was intentionally stopped early when the buffer
became overwhelmed by suboptimal rollouts and the agent deemed unlikely to build
molecules with a single S and thus learn SOF6. Moreover, higher gradient norms
suggest the networks are still making significant updates. In turn, though the agent is
unlikely to recover to build SOF6, it may still discover other structures. Regardless, it

51 Scaling to Complex Structures

Fig. 5.1 Agents trained to build pentafluorosulfur hypofluorite (SOF6) get stuck over
the course of optimization constructing other moleculues: SOF2, SOF5 + O, and
S2OF5. In all cases, the agent could hypothetically obtain a higher reward of ∼ 0.7 if
optimized correctly to build pentafluorosulfur hypofluorite. The top figures display a
typical structure built in evaluation. The plots below show the reward obtained over
the course of training along with the hypothetical target reward for building SOF6.
The next row contains the gradient norms for the q functions and policy networks over
the course of training. Note that the shrunken norms for the SOF2 run suggests the
optimizer is stuck around a critical point. In the final 2 rows, we show the evaluation
element probabilities for the first 2 steps of a rollout. Evidently, the S2OF5 + O and
S2OF5 runs learn to first place 2 oxygen or 2 sulfur, respectively, with near certainty.
This is problematic as the optimizer may become stuck in a vicious cycle generating
and training on suboptimal rollouts.

52 Scaling to Complex Structures

Fig. 5.2 Comparison of reward for building SOF5 + O versus simply SOF5. Although
the agent may achieve a substantially higher reward by just constructing SOF5, the
agent continues to build SOF5 + O as its training buffer is overwhelmed by rollouts
containing 2 oxygen atoms.

is not necessarily problematic that the agent has learned to construct an unrecognized
molecule. After all, MolGym is intended to discover new molecules.

MolGym thus retain some utility even when the optimizer fails to locate the global
minima. Still, the optimization complexity is quite troubling for MolGym’s infinite
bag setting when applied to larger molecules. Moreover, optimization difficulties
may subvert even simple molecules when penalties are not, or can not be, suitably
discriminative.

5.1.2 Constraints on Penalty Formulation

We’ve previously discussed the importance of carefully constructing atom penalties to
both accord to the scale of the energy reward objective and incentive the formation of
desired structures (see section 3.3). Tuning penalties to more explicitly discriminate
desirable and undesirable structures is often helpful for optimization. However, some-
times appropriate penalties are necessarily constrained to a relatively narrow range and
may not as sharply guide what to construct. We will illustrate this with a practical
example.

Earlier we successfully built H2O by raising the penalty on hydrogen after 2
hydrogens were placed on the canvas and on oxygen after 1 oxygen was placed on the
canvas. The actual penalties values were in particular selected so that we incentived
the formation of H2O over other molecules (H2,O3, etc..). Now consider training an
agent to build multiple H2O molecules. A sensible approach is to first set the hydrogen
penalty to half the energy dip of H2 so that the agent is not encouraged to just build

53 Scaling to Complex Structures

H2. Then we need to set the oxygen penalty so that the reward for building H2O

exceeds that of other molecules. The challenge now is that we can’t just raise the
penalty on oxygen after a single O is placed because that would discourage building
additional H2O molecules. Fortunately, as evident in figure 5.3, appropriate initial
penalties on oxygen exists that incentive the formation of H2O over other molecules.
However, figure 5.3 also shows that the range of appropriate penalties is narrow and
all provide the agent only a limited reward boost for preferring to build H2O. This
renders the H2O optimum difficult to locate as alternative molecules (e.g., O3) provide
a close, if inferior reward. In fact, if the agent has learned to optimize the geometric
configuration of an alternative like O3, but not H2O, the reward for O3 may actually
be higher than a typical rollout of H2O. All in all, this creates optimization difficulties
that may prevent learning even simple structures when the penalty formulation is
adversely constrained. To exemplify this challenge, we trained 35 agents with the H2O

penalty schedule described above and only 2 eventually achieved the optimal reward
by building H2O.

5.2 Optimization Support Strategies

In this section we describe two strategies that were implemented to aid optimization:
1) initial probability specification 2) leveraging expert rollouts.

5.2.1 Initial Probability Specification

Before we may begin training, we must collect random rollouts to initially fill the
training buffer. Typically, we collect 10-100x more rollouts during the first iteration
than in subsequent iterations. This is to ensure right from the start of training that
the buffer is sufficiently large and contains suitably diverse experience.

To help guide the learning procedure towards an intended molecule (or class of
molecules), we can overwrite the element probability distributions for the first iteration’s
rollouts. That is, instead of letting the agent select elements randomly we may specify,
for example, that S is chosen with probability 70% and O, F, Z each with probability
10%. In turn, we are far more likely to sample rollouts that construct molecules like
SOF6 into the initial training buffer. This helps optimization avoid some local pitfalls
by shifting network updates to weigh more on transitions from SOF6 like rollouts. In
particular, by defining the initial rollout S, O, F, Z probabilities as above we were able
to train an agent that built SOF4 (Thionyl tetrafluoride) and consequently achieved a

54 Scaling to Complex Structures

Fig. 5.3 Ablation studies on initial oxygen penalty for H2O. Each plot shows reward
that an agent would achieve in building different molecules subject to different initial
oxygen penalties. In the top plot, the penalty schedule involves increasing the initial
penalty on oxygen after a single oxygen is placed. In the bottom plot, we aim to
create multiple H2O molecules and thus the oxygen penalty is not increased until
some arbitrary point in the future. Evidently, the range of appropriate initial oxygen
penalties (i.e., those that favor the construction of H2O) is considerably more narrow
in the bottom plot and the reward differential therein more limited.

55 Scaling to Complex Structures

Fig. 5.4 A MolGym agent trained with penalties to incentive SOF6 construction is
additionally guided by initial rollout element probabilities (S=70%, O=10%, F=10%,
Z=10%). The trained agent is able to outperform previous attempts by building
SOF4. In particular, we compare the superior SOF4 reward to a sample of outcomes
obtained without specifying the initial rollout element probabilities: SOF2, S2OF5,
and SOF5 + O (for additional detail see figure 5.1). Nevertheless, the agent still fails
to learn to construct SOF6 or SOF5 when those molecules would yield an even higher
reward.

significantly higher reward than was obtained by previous agents using random initial
probabilities (see figure 5.4). Nonetheless, the agent still failed to build SOF6, or even
SOF5, when both constructions could provide a notably higher reward. To further
support the agent in learning to construct SOF6, we expand on the idea of priming
the training buffer and introduce expert rollouts.

5.2.2 Leveraging Expert Rollouts

Motivation

By specifying initial element rollout probabilities, practitioners may nudge the training
buffer to include more rollouts assembling target molecules (e.g., SOF6). But the prac-
titioner’s influence remains fairly limited. Consider that in specifying the probabilities
S=70%, O=10%, F=10%, and Z=10%, we only expect to sample the atoms SOF6

56 Scaling to Complex Structures

every 152 rollouts.4 Furthermore, we emphasize that such rollouts merely contain the
atoms SOF6 and very improbably actually geometrically resemble the molecule SOF6

(Pentafluorosulfur hypofluorite) on the canvas.
Practioners may exact considerably more sway over the composition of the training

data by instead pre-filling the buffer with expert demonstrations. That is, instead of
training just on the rollouts generated by the agent over the course of training, we
also train on a set of expert rollouts that correctly assemble a target molecule e.g.,
SOF6. This procedure may appear to assume that we’ve already managed to build the
target molecule. However, our implementation relies on the practitioner supplying just
a 3D representation of the molecule (i.e., the identities and locations of each atom in
3D space) and thus the data for expert demonstrations may be sourced from outside
MolGym. Moreover, often a practitioner’s intention is not so much to learn to build
a known molecule like SOF6, but discover alike but novel structures. In this case,
we may pretrain with expert demonstrations to help direct the optimizer towards a
desired region of parameter space before eventually unleashing the optimizer to explore
unconstrained.

Imitation Learning and SQIL

Our approach to leveraging expert rollouts is related to the field of imitation learning
and specifically Soft Q Imitation Learning (SQIL) (Reddy, Dragan, and Levine, 2019).
Whereas agents are trained to maximize an extrinsic reward function in reinforcement
learning, imitation learning concerns training agents to imitate expert behavior (Imita-
tion Learning Lecture Notes; CS234 Stanford University 2021). A basic approach to
imitation learning is Behavior Cloning (BC) which involves using supervised learning
methods to minimize the discrepancy between an expert’s demonstrated actions and
those selected by the learned policy. Unfortunately, BC often performs poorly as
the learned policy usually can not reason well about states outside the distribution
demonstrated by the expert. This is problematic as the agent may easily drift away
from the demonstrated states due to compounding errors. An approach to mitigate the
drawbacks of BC that also integrates well with the soft actor-critic algorithm is Soft
Q Imitation Learning (SQIL) (Reddy, Dragan, and Levine, 2019). SQIL, which may
be theoretically motivated as a regularized variant of BC, incentives the agent to not

4The probability of randomly sampling SOF 6 is 7
10

6 ∗ 1
10

3 ∗ 8 [options for step that S is chosen] ∗
7 [options for step that O is chosen] . Note that the step the STOP atom Z is chosen is fixed (the
final step) and the steps F is chosen are thereby determined to the 6 remaining steps. Then, to
calculate the expected number of rollouts before sampling SOF6 we simply invert this probability.

57 Scaling to Complex Structures

only imitate the expert in demonstrated states, but also select actions that return the
agent to demonstrated states should it stray. Practically, SQIL involves modifying the
SAC algorithm so that the buffer is initially filled with transitions tuples (st, at, rt, st+1)
from expert rollouts and each training step involves a balanced sample of expert and
non-expert (meaning agent generated) transitions where all expert transitions provide
a reward of r = 1 and all non-expert transitions provide a reward of r = 0.

At first, we incorporated SQIL unmodified into MolGym but obtained underwhelm-
ing results. However, we may both boost performance and broaden the usefulness of
expert demonstrations by altering SQIL so that we still leverage an extrinsic reward
function. Specifically, we embrace the ideas of prefilling the training buffer with expert
rollouts and ensuring every training step balances expert and non-expert transitions.5

However, we choose to keep our reward function (equation 3.1), consisting of the energy
reward plus penalties, instead of adopting the binary 1/0 rewards for expert/non-expert
transitions. Why? Put simply, we have a meaningful extrinsic reward function and
should avail ourselves of it. Usually imitation learning problems are framed such
that an agent must learn without an extrinsic reward function and just from expert
demonstrations. But since we have a well-motivated reward function, it can make sense
to incorporate it. In particular, by using an extrinsic reward function, the agent may
learn beyond imitating the expert. Specifically, the agent may begin by pretraining on
expert/non-expert transitions but, at some trigger point, switch to training only on
non-expert transitions (i.e., the standard SAC training procedure). With unmodified
SQIL, in contrast, the binary rewards compel the agent to only imitate the expert. If
training is eventually switched to a regime with our extrinsic reward function than there
is a mismatch in rewards with the pretraining stage that subverts further optimization.

As we don’t exactly perform SQIL we lose its theoretical guarantees. However, we
maintain the two key ideas that motivate SQIL’s approach. First, our method still
integrates information on transition dynamics into the policy by training with RL.
This helps avoid suboptimally greedy action selection as under BC. Second, whereas
SQIL regularizes implicit rewards with a sparsity prior, our method incorporates an
explicit sparse reward function.

To summarize, we implemented an expert pretraining procedure that essentially
involves ensuring each gradient update minibatch balances transitions from expert
and non-expert rollouts. We can motivate our approach both as extending the idea of
specifying initial probabilities to more deftly design the training buffer and as modifying
Soft Q Imitation Learning so to still make use of an extrinsic reward signal.

5Note the exact balance need not be 1:1 and may be configured via a hyperparameter

58 Scaling to Complex Structures

Fig. 5.5 We successfully train an agent to construct SOF6 by modifying the training
algorithm to exploit expert rollouts (for details on our technique see section 5.2.2).
On the left, we show an SOF6 molecule produced during evaluation. At right, we
display mean training and evaluation rewards over the course of training along with
the optimal reward for building SOF6.

Results

At last, by leveraging expert demonstrations, we successfully trained an infinite bag
MolGym agent that constructed SOF6 (see figure 5.5). Specifically, we first collected
several hundred approximately optimal 3D configurations of SOF6 by training a
finite bag MolGym agent. Next, from those SOF6 molecules we devised expert
rollout trajectories and built a supplementary training set consisting of expert rollout
transitions. Finally, for each gradient update we ensured mini-batches balanced expert
and non-expert transitions in a 1:2 ratio (although other ratios are possible).

Notwithstanding success in building SOF6, some optimization challenges persist. In
figure 5.6 we display several training runs that by using our expert training procedure
manage to construct molecules resembling SOF6. However, these runs all appear
to converge slightly below the optimal SOF6 reward. In examining the actual 3D
molecules built we observe that they closely, but perhaps not perfectly, resemble
SOF6. This may simply be the result of the temperature configuration (recall that our
training objective balances both maximizing episode reward and maximizing entropy)
but it is nonetheless a troubling optimization detail that agents may nearly, but not
quite perfectly, learn a molecule’s ideal geometry. As a practical matter, this is less
concerning than another optimization obstacle: model brittleness.

59 Scaling to Complex Structures

Fig. 5.6 Applying our expert training procedure, we generate several runs that suc-
cessfully train agents to construct molecules resembling SOF6. However, the runs’
evaluation rewards converge to levels that are slightly suboptimal and the actual 3D
molecules (as generated during evaluation) closely, but not always perfectly, resemble
SOF6.

60 Scaling to Complex Structures

We’ve discussed and plotted successful SOF6 runs but must note that a majority
either produced other (suboptimal) molecules or broke under exploding gradients. That
is, significantly different outcomes result from varying hyperparamters or even just
setting new random seeds. This is at least partly because the random sample of initial
rollout varies substantially between runs. If we don’t collect enough suitably diverse
rollouts then training fixates on a small, concentrated dataset and can destabilize. In
particular, because we discard rollouts that fall below a minimum reward6 we may
randomly end up with relatively few initial rollouts. Supplementing these rollouts
with expert demonstrations only goes so far as we can’t arbitarily increase the relative
proportion of expert to non-expert transitions. This is because the agent will initially
just derive simplistic rules from the demonstrations (e.g., placing F is good) that
destabilize training before the agent can learn the more complex mapping. Collecting
enough interesting initial rollouts is thus still key to ensuring that early training
proceeds smoothly.

To recap, we’ve developed an expert training procedure that allows MolGym to
build more complex molecules with infinite bags. However, we still require carefully
configured hyperparameters and typically several runs from different random seeds.

5.3 Optimization Summary

In this chapter, we’ve discussed why MolGym’s infinite bag paradigm raises difficult
optimization challenges. We also proposed two mitigation strategies. Most notably,
we introduced a method similar to Soft Q Imitation Learning that leverages expert
demonstrations and allowed us to, at last, train an agent that built SOF6. Still however,
we needed to scrupulously tune hyperparameters and run with several random seeds in
order to yield compelling results.

6Discarding especially poor rollouts helps focus training updates on more worthwhile transitions.
The minimum reward threshold may be configured by a hyperparameter.

Chapter 6

Conclusion and Future Directions

In this dissertation we enhanced MolGym (Simm, Pinsler, and Hernández-Lobato, 2020;
Simm, Pinsler, Csányi, et al., 2021), a reinforcement learning approach to 3D molecular
design, by developing a powerful new learning paradigm: the infinite atom bag. Under
the infinite bag setting, MolGym agents are no longer constrained to construct molecules
according to prespecified chemical formulae. Instead, agents learn the optimal size and
composition of molecular structures as guided by practitioner determined per-atom
penalties. To further empower infinite bag MolGym agents, we introduced randomized
atom penalties and thereby enabled agents that respond to dynamic penalty conditions
and construct more diverse molecules. Moreover, to mitigate model brittleness we
implemented a variant of the soft-actor critic with automatic entropy adjustment
(Haarnoja, A. Zhou, Hartikainen, et al., 2018). Although now able to train agents that
construct small molecules (e.g., H2O, O3) with relative ease, optimization challenges
persisted in scaling to larger molecules and building structures with insufficiently
discriminative per-atom penalties. Thus to robustify optimization we incorporated a
technique to leverage expert rollouts in the vein of Soft Q Imitation Learning (Reddy,
Dragan, and Levine, 2019). By doing so, we managed to train an agent to construct
SOF6, which had heretofore proved an elusive target. All in all, we implemented several
powerful new capabilities into MolGym through the infinite bag paradigm. However,
to encourage practical adoption we must first address the limitations of our work.

Optimization brittleness still hinders the real-world use of MolGym’s infinite bag
paradigm. Although we managed to construct a more complex molecule (SOF6) by
leveraging our expert training procedure, it was necessary to tune hyperparameters
extensively. In fact, just the random seed could decisively sway a run’s ultimate
performance through the (random) initial rollouts. Now it must be said that these
optimization challenges don’t outright prevent practitioners from adopting MolGym’s

62 Conclusion and Future Directions

infinite bag paradigm as-is. Many machine learning problems require extensive hyper-
parameter tuning and starting optimization from different points (e.g., with different
random seeds) is a tried and true technique. Moreover, insofar as a key objective of
MolGym is to design novel molecular structures, it is not necessarilly problematic
that an agent incentivized to construct SOF6 sometimes learns to construct SOF2

or SOF4. Still, a typical practitioner may not be deeply familiar with tuning RL
hyperparamters (which can be notoriously tricky) and thus to facilitate adoption we
ought to further investigate ameliorating optimization. Four potential directions are
integrating other imitation learning approaches, considering alternative optimizers,
increasing the capacity of the network, and exploring more advanced hyperparameter
tuning procedures.

Let’s start by discussing optimizers. MolGym’s optimizer, Adam with decoupled
weight decay (Loshchilov and Hutter, 2017), is widely regarded as effective and relatively
robust. But there are competitive alternatives like RMSProp (Hinton, Srivastava, and
Swersky, 2012) and intriguing variants of Adam such as Adam with Nesterov momentum
(NAdam) (Dozat, 2016) and Adam with rectified early training variance (RAdam)
(Liu et al., 2019). Additionally, although Adam adjusts per-parameter learning rates,
we do not currently decay the global learning rate / upper bound. It may thus be
worthwhile to consider a global learning rate scheduler based on the epoch count or
some validation metric. Now we must remark that, given the effectiveness of AdamW,
we’re skeptical how much improvement may arise from reconfiguring the optimizer.
Nonetheless, it may still be worthwhile considering the ease of interchanging optimizers
and configuring schedulers in PyTorch.

Another direction is to investigate incorporating other imitation learning algorithms.
We made significant progress by integrating a modified version of Soft Q Imitation
Learning (Reddy, Dragan, and Levine, 2019). This suggests that there’s value in
capitalizing on expert demonstrations to remedy optimization. Two additional imitation
learning approaches that look compelling and appear to integrate with MolGym’s
soft-actor crtic architecture are Self-Imitation Learning (Oh et al., 2018) and IQ-Learn,
Inverse soft-Q Learning for Imitation (Garg et al., 2021).

Future research could also consider integrating more elaborate hyperparamter tuning.
The finite bag MolGym already involves quite a few sensitive hyperparamters and
the infinite bag setting stacks up several more. Optimizing all these hyperparameters
through grid or random search presents a significant computation burden. It’s thus
sensible to explore Bayesian or bandit based approaches (e.g. L. Li et al., 2017) that
may help direct the hyperparameter search and hopefully uncover more robust settings.

63 Conclusion and Future Directions

Lastly, optimization troubles may stem from the neural network no longer possessing
sufficient capacity to succeed on the more intricate modelling challenge posed by infinite
bags. In scaling to more complex molecules, we widened several fully-connected layers
in both the policy and Q networks. Further research could explore deepening the
networks, particularly the MLPs that integrate the bag tensor into the model. Doing so
could help establish if network capacity is bottlenecking optimization on more complex
modeling objectives.

Beyond robustifying optimization, future work on MolGym should follow the aims of
practitioners. We’ve demonstrated MolGym’s infinite bag paradigm capable of training
agents on several molecule targets (e.g., H2O, SOF6, O2 vs. O3). Now research should
move beyond proof-of-concept to more practical use cases. For instance, it may be
interesting to build out MolGym’s facilities for constructing repeated structures. Note
this is now only possible because of the infinite bag setting. It would also be intriguing
to explore using MolGym to assemble molecules that fit specific protein bonding sites.
Recent research has taken a supervised approach (Luo et al., 2021) and we’re curious
how RL with MolGym might compare. Specifically, we might suspect an RL agent more
capable at generalization. The infinite bag setting is again of great use as agents are
no longer constrained to form molecules according to pre-specified chemical formulae.
Instead, agents may learn to assemble molecules with a size and configuration that fits
the bonding site.

To conclude, I hope you enjoyed reading this dissertation and learning about the
exciting frontiers of molecular design with deep reinforcement learning.

References

Anderson, Brandon, Truong Son Hy, and Risi Kondor (2019). “Cormorant: Covariant
molecular neural networks”. In: Advances in neural information processing systems
32.

Bishop, Christopher M. (1994). Mixture density networks. Tech. rep.
Bosia, Francesco et al. (Dec. 2021). qcscine/sparrow: Release 2.0.1. Version 2.0.1. doi:

10.5281/zenodo.5782828. url: https://doi.org/10.5281/zenodo.5782828.
Curie, Pierre (1894). “Sur la symétrie dans les phénomènes physiques, symétrie d’un

champ électrique et d’un champ magnétique”. In: Journal de physique théorique et
appliquée 3.1, pp. 393–415.

De Cao, N and Kipf Thomas (2018). “An implicit generative model for small molecular
graphs. arXiv preprint 2018”. In: arXiv preprint arXiv:1805.11973 3.

Dozat, Timothy (2016). “Incorporating nesterov momentum into adam”. In.
Garg, Divyansh et al. (2021). “IQ-Learn: Inverse soft-Q Learning for Imitation”. In:

Advances in Neural Information Processing Systems 34, pp. 4028–4039.
Geiger, Mario et al. (Apr. 2022). Euclidean neural networks: e3nn. Version 0.5.0. doi:

10.5281/zenodo.6459381. url: https://doi.org/10.5281/zenodo.6459381.
Gómez-Bombarelli, Rafael et al. (2018). “Automatic chemical design using a data-driven

continuous representation of molecules”. In: ACS central science 4.2, pp. 268–276.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:

//www.deeplearningbook.org. MIT Press.
Haarnoja, Tuomas, Haoran Tang, et al. (2017). “Reinforcement learning with deep

energy-based policies”. In: International Conference on Machine Learning. PMLR,
pp. 1352–1361.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor”. In:
International conference on machine learning. PMLR, pp. 1861–1870.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic
algorithms and applications”. In: arXiv preprint arXiv:1812.05905.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky (2012). “Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent”. In: Cited on
14.8, p. 2.

https://doi.org/10.5281/zenodo.5782828
https://doi.org/10.5281/zenodo.5782828
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381
http://www.deeplearningbook.org
http://www.deeplearningbook.org

65 References

Husch, Tamara, Alain C Vaucher, and Markus Reiher (2018). “Semiempirical molecular
orbital models based on the neglect of diatomic differential overlap approximation”.
In: International journal of quantum chemistry 118.24, e25799.

Imitation Learning Lecture Notes; CS234 Stanford University (Feb. 2021).
Kim, Sunghwan et al. (2021). “PubChem in 2021: new data content and improved web

interfaces”. In: Nucleic acids research 49.D1, pp. D1388–D1395.
Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980.
Klicpera, Johannes, Janek Groß, and Stephan Günnemann (2020). “Directional message

passing for molecular graphs”. In: arXiv preprint arXiv:2003.03123.
Konda, Vijay and John Tsitsiklis (1999). “Actor-critic algorithms”. In: Advances in

neural information processing systems 12.
Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”.

In: The annals of mathematical statistics 22.1, pp. 79–86.
Larsen, Ask Hjorth et al. (2017). “The atomic simulation environment—a Python

library for working with atoms”. In: Journal of Physics: Condensed Matter 29.27,
p. 273002.

Li, Lisha et al. (2017). “Hyperband: A novel bandit-based approach to hyperparameter
optimization”. In: The Journal of Machine Learning Research 18.1, pp. 6765–6816.

Lillicrap, Timothy P et al. (2015). “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971.

Linstrom, Peter J and William G Mallard (2001). “The NIST Chemistry WebBook: A
chemical data resource on the internet”. In: Journal of Chemical & Engineering
Data 46.5, pp. 1059–1063.

Liu, Liyuan et al. (2019). “On the variance of the adaptive learning rate and beyond”.
In: arXiv preprint arXiv:1908.03265.

Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regularization”. In:
arXiv preprint arXiv:1711.05101.

Luo, Shitong et al. (2021). “A 3D generative model for structure-based drug design”.
In: Advances in Neural Information Processing Systems 34, pp. 6229–6239.

Maei, Hamid et al. (2009). “Convergent temporal-difference learning with arbitrary
smooth function approximation”. In: Advances in neural information processing
systems 22.

Mnih, Volodymyr et al. (2013). “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602.

Oh, Junhyuk et al. (2018). “Self-imitation learning”. In: International Conference on
Machine Learning. PMLR, pp. 3878–3887.

Olivecrona, Marcus et al. (2017). “Molecular de-novo design through deep reinforcement
learning”. In: Journal of cheminformatics 9.1, pp. 1–14.

66 References

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., pp. 8024–8035. url: http :
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

Polishchuk, Pavel G, Timur I Madzhidov, and Alexandre Varnek (2013). “Estimation
of the size of drug-like chemical space based on GDB-17 data”. In: Journal of
computer-aided molecular design 27.8, pp. 675–679.

Reddy, Siddharth, Anca D Dragan, and Sergey Levine (2019). “Sqil: Imitation learning
via reinforcement learning with sparse rewards”. In: arXiv preprint arXiv:1905.11108.

Schulman, John et al. (2015). “Trust region policy optimization”. In: International
conference on machine learning. PMLR, pp. 1889–1897.

Simm, Gregor N. C., Robert Pinsler, Gábor Csányi, et al. (2021). “Symmetry-Aware
Actor-Critic for 3D Molecular Design”. In: International Conference on Learning
Representations. url: https://openreview.net/forum?id=jEYKjPE1xYN.

Simm, Gregor N. C., Robert Pinsler, and José Miguel Hernández-Lobato (2020).
“Reinforcement learning for molecular design guided by quantum mechanics”. In:
International Conference on Machine Learning. PMLR, pp. 8959–8969.

Stewart, James JP (2007). “Optimization of parameters for semiempirical methods V:
Modification of NDDO approximations and application to 70 elements”. In: Journal
of Molecular modeling 13.12, pp. 1173–1213.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction.
MIT press.

Tsitsiklis, John and Benjamin Van Roy (1996). “Analysis of temporal-diffference learning
with function approximation”. In: Advances in neural information processing systems
9.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning”. In: Machine learning 8.3, pp. 229–256.

You, Jiaxuan et al. (2018). “Graph convolutional policy network for goal-directed
molecular graph generation”. In: Advances in neural information processing systems
31.

Zhou, Zhenpeng et al. (2019). “Optimization of molecules via deep reinforcement
learning”. In: Scientific reports 9.1, pp. 1–10.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=jEYKjPE1xYN

Appendix A

Supplementary Plots

68 Supplementary Plots

Fig. A.1 Ablation study on the initial temperature α0 hyperparameter for SAC with
automatic entropy adjustment (Haarnoja, A. Zhou, Hartikainen, et al., 2018) as
applied to the construction of H2O in MolGym’s infinite bag setting. The auto-tuned
temperature algorithm appears more robust than the original SAC fixed temperature
implementation wherein the temperature demanded careful tuning to find the correct
policy (see figures 3.4, 3.8). In contrast, all runs with an auto-tuned temperature
learned the correct policy. Nonetheless performance, as measured by iterations to
convergence, varied considerably and rather unpredictably across α0 settings. For
example, the run with α0 = .03 took an extremely long time to learn the correct policy,
while runs with both higher and lower initial temperatures converged much earlier.
Note all runs used a minimum target entropy H = 2.

69 Supplementary Plots

Fig. A.2 Ablation study on the minimum target entropy H for SAC with automatic
entropy adjustment (Haarnoja, A. Zhou, Hartikainen, et al., 2018) as applied to the
construction of H2O in MolGym’s infinite bag setting. The auto-tuned temperature
appears more robust than the original SAC fixed temperature implementation wherein
the temperature demanded careful tuning to find the correct policy (see figures 3.4, 3.8).
Only a single run with auto-tuned temperature failed to find the correct policy (due
to excessively high minimum target entropy). Nonetheless performance, as measured
by iterations to convergence, varied considerably and rather unpredictably across H
settings. Note all runs used a initial temperature of α0 = .01.

	Table of contents
	1 Introduction
	2 Background
	2.1 Chemistry Fundamentals
	2.2 ML Approaches to Molecular Design
	2.2.1 MolGym

	2.3 RL and Markov Decision Processes
	2.3.1 Reinforcement Learning Preliminaries
	2.3.2 MolGym3 MDP Specification

	2.4 The MolGym3 Model
	2.4.1 Covariant Neural Networks
	2.4.2 Action Selection

	2.5 Training
	2.5.1 State-Action Value Function Q
	2.5.2 Soft-Actor Critic

	2.6 Background Summary

	3 Infinite Atom Bags
	3.1 Motivation
	3.2 Infinite Bag Formulation
	3.3 Atom Penalty Determination
	3.4 Improving Robustness
	3.4.1 Temperature Hyperparameter
	3.4.2 SAC with Automatic Entropy Adjustment

	3.5 Infinite Bag Summary

	4 Randomized Atom Penalties
	4.1 Motivation
	4.1.1 Motivating Example: Molecular Oxygen and Ozone

	4.2 Implementation
	4.3 Full State Estimation
	4.4 Results: Molecular Oxygen and Ozone
	4.5 Alternative: Dense Penalties
	4.6 Randomized Penalty Summary

	5 Scaling to Complex Structures
	5.1 Optimization Challenges
	5.1.1 Exponential Growth in Chemical Formulas
	5.1.2 Constraints on Penalty Formulation

	5.2 Optimization Support Strategies
	5.2.1 Initial Probability Specification
	5.2.2 Leveraging Expert Rollouts

	5.3 Optimization Summary

	6 Conclusion and Future Directions
	Appendix A Supplementary Plots

