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Abstract

In federated learning, we seek to train a predictive model when the training data is sharded
across (possibly many) different clients or users’ devices. One attractive model type is
a Bayesian Neural Network (BNN) as it combines the predictive capacity of a neural
network with natural regularization and uncertainty estimates by having distributions
over the model parameters. Since the posterior distribution over the BNN’s weights
is intractable, we specify an approximating variational posterior distribution that is
tractable and optimize this approximate posterior with respect to the training data using
Variational Inference (VI). The structure of this approximating posterior consequently
affects the performance of our model. A standard—but simplistic—approximating
posterior is the mean-field variational approximation (MFVI). Ober and Aitchison [2021]
recently proposed a posterior approximation method based on global inducing points
(GI) that outperformed the MFVI method in standard Bayesian learning settings.

In this work, we extend the GI variational approximation for BNNs to the federated
learning setting and evaluate its performance. In the first part of this thesis, we provide a
more in-depth background for the problem set-up described above. We then develop the
theory necessary to extend the GI method to federated BNNs and provide a theoretical
analysis of the communication and computational complexity of a federated BNN with
GI as approximate posterior. In our evaluations, we compare it to using a standard
MFVI approximation. In the second part of this thesis, we complete an empirical
evaluation of GI and MFVI in BNNs under various federated learning settings. Due to
the computational complexity of Bayesian federated learning, we limit our experiments
to shallow BNNs with a small number of clients and medium-scale datasets. We evaluate
said methods based on their predictive performance, communication and time efficiency,
and convergence dynamics across both homogeneous and inhomogeneous client data
distributions. We demonstrate that, across every setting, GI outperforms MFVI in all
aspects except for training time efficiency, due to its computational complexity.
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xi Nomenclature

Notation

We use the following notation throughout this thesis. Bold lower case letters (x) denote
vectors, bold upper case letters (X) denote matrices, and standard weight letters (x)
denote scalar quantities. We use subscripts to denote either entire rows / columns (with
bold letters, xi), or specific elements (xij). We use subscripts to denote variables as well
(e.g. W1 : M×D), with corresponding lower case indices to refer to specific rows / columns.
We refer to the element index of a specific variable via a second subscript: for example,
w1,md denotes the element at row m column d of the variable W1. Lastly, we use ω to
denote a set of variables (e.g. the set of all BNN layers’ weights by ω = {W1, ..., WL})
and subscript with functions, e.g. fω, to denote a function parameterized by the variables
ω.



Chapter 1

Introduction

The training of a predictive model based on user data is generally difficult in many
real-world settings because the training dataset is distributed amongst the users’ devices,
which are typically unable or unwilling to upload their data to a server due to privacy
reasons and network issues. For example, consider a software company looking to improve
its recommendation system for its mobile device users. It is likely that users are unable to
train a good recommendation system locally with just their own data, but simultaneously
are also unwilling to have their data be stored on a central server. Still, the company
would like to train a single recommendation model on all clients’ data while satisfying
the privacy concerns of its users. Federated learning offers a solution to this, enabling
clients to jointly train a shared model without data sharing.

In real-world applications, we often also care about uncertainty when using a predictive
model. In tasks such as medical diagnosis and policymaking, it is paramount to understand
how uncertain a model is about its prediction. In order to rely on its predictions, the
model should also be calibrated in its uncertainty and not be overconfident. Standard deep
learning models, such as regular deep neural networks (DNN), are based on frequentist
learning, which is known to lead to overconfident predictions due to a failure to capture
epistemic uncertainty [Guo et al., 2017]. In contrast, probabilistic machine learning
methods offer a principled framework to achieve this by having a distribution over the
model parameters and its predictions. Bayesian neural networks (BNN) are probabilistic
neural networks that have the predictive performance of DNNs, but also provide calibrated
uncertainty metrics alongside its predictions.

In order to train BNNs, we typically use variational inference (VI). In probabilistic
machine learning, VI is a foundational method that reframes the task of inference from a
marginalization problem into an optimization problem [Jordan et al., 1998]. It does so
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by approximating the exact posterior distribution with another (variational) distribution
via optimization. But in the federated learning setting, standard VI does not work
because it assumes complete access to the entire dataset. Ashman et al. [2022] introduced
partitioned variational inference (PVI) to extend VI to the federated learning setting,
recovering the same solution as standard VI if it converges and obtaining state-of-the-art
results on federated learning benchmarks.

To approximate the intractable distribution over the neural network weights using
VI, we choose a simpler variational distribution to approximate with. The form of
the simpler approximating distribution is, therefore, integral to the model’s predictive
performance. It must be complex enough to capture the true distribution over the
weights (as to obtain the best predictive performance) but simple enough to be optimized
efficiently. A frequently used posterior approximation is the mean-field or fully factorized
approximation (MFVI). However, its functional form has several shortcomings, as we
will discuss shortly, including not capturing the complete predictive power of BNNs.

This brings us to the main goal of this thesis: to achieve a more powerful predictive
BNN in the federated learning setting. To do so, we draw on a posterior approximation
for BNNs introduced by Ober and Aitchison [2021], called the Global Inducing Point
(GI) posterior approximation method. They showed that GI outperforms MFVI in the
standard, non-federated VI setting. In this thesis, we integrate the GI method into the
PVI framework to extend the posterior approximation method to federated BNNs.

Outline

This thesis is structured as follows. We firstly provide a brief background on the
fundamentals of BNNs in chapter 2. We then introduce federated learning and discuss
the process of training BNNs in the federated setting using PVI in chapter 3. In chapter 4,
we comprehensively review the GI method and provide the theoretical components of this
work’s contribution: the application of GI to federated BNNs using PVI. We also provide
a theoretical analysis of the communication and computation complexity of performing
GI in the PVI setting and contrast it to MFVI. Finally, in chapter 5, we empirically
show that GI-PVI outperforms the MFVI-PVI approach in predictive performance and
communication efficiency on two datasets and under different client data distribution
assumptions. We conclude with a summary of the work presented in this thesis and
indicate future research directions in chapter 6. The code for the experiments presented
in this thesis is available at https://github.com/mbronckers/GI-PVI.

https://github.com/mbronckers/GI-PVI


Chapter 2

Background: The Foundations of
Bayesian Neural Networks

In this chapter, we provide an introduction to Bayesian Neural Networks. Starting
from the task of probabilistic machine learning, we work towards performing variational
inference in a Bayesian Neural Network to approximate the posterior distribution over the
neural network weights. We discuss the optimization objective, the resulting predictive
distribution, as well as the associated predictive uncertainty. We conclude with a
discussion of alternative (approximate) inference methods, including the commonly-
used mean-field posterior approximation method, which we use as baseline method for
experiments later in this work.

§2.1 Probabilistic Machine Learning

In (probabilistic) machine learning, we seek to find the parameter values θ ∈ Θ of
a parameterized function fθ that is most likely to have generated the observations
Y ∈ RN×Dout given our inputs X ∈ RN×Din . Via our probabilistic model specification,
we define a likelihood distribution p(y|x, θ) that describes how a given input generates
an output under parameter setting θ. Depending on our modelling task, we assume
different functional forms for the likelihood, i.e. a Gaussian likelihood for regression
or a softmax function over the model output vector for classification (equations (2.1)
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and (2.2), respectively).

p(y | x, θ) = N
(
y; fθ(x), λ−1I

)
(2.1)

p(y = k | x, θ) = exp (fθ,k(x))∑
k′ exp (fθ,k′(x)) (2.2)

where λ is the precision parameter of the Gaussian distribution.
In probabilistic Bayesian machine learning, we seek to find the posterior distribution

over the parameter space Θ given our training dataset {X, Y}, having specified a prior
belief over the parameter setting via prior distribution p(θ). To find the most likely
parameter setting, we maximize the likelihood distribution p(Y | X, θ), which is the
probabilistic model, parameterized by θ, via which the inputs are transformed into
outputs.

p(θ | X, Y) = p(Y | X, θ) p(θ)
p(Y | X) = p(Y | X, θ) p(θ)∫

p(Y | X, θ)p(θ)dθ
∝ p(Y | X, θ) p(θ)

The denominator in the posterior, i.e. the model evidence or marginal likelihood p(Y |X),
is a critical aspect of the posterior as it marginalizes the likelihood over the parameters
θ: it effectively averages the possible model parameters, weighted by our prior belief of
their probability. However, this marginalization is usually analytically intractable and,
as such, we use approximations when needed.

We use the posterior distribution to obtain the predictive distribution by integrating
over it. This process of integrating over the model parameters is called inference in
Bayesian machine learning. Note that this term is also used by the deep learning
community at large to refer to evaluation of the model at test time.

p (y∗ | x∗, X, Y) =
∫

p (y∗ | x∗, θ) p(θ | X, Y)dθ

§2.2 Variational Inference

Because the marginalization over the parameters in inference is often analytically in-
tractable, we resort to approximate inference. In particular, we introduce a variational
approximate distribution q ∈ Q that is parameterized by variational parameters ϕ that is
tractable. We proceed to approximate the true posterior via qϕ and use the approximate
variational posterior distribution qϕ in lieu of the true posterior p. Technically, any
method that uses optimization to approximate the posterior p can be called variational
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inference, including expectation propagation and belief propagation, but we focus on
Kullback-Leibler variational inference (VI) [Challis and Barber, 2013].

The Kullback–Leibler (KL) divergence is a statistical distance that measures the prox-
imity of one distribution to another. We avoid optimizing the KL(q∥p) directly, because
computing the evidence log p(x) is expensive or impossible. Instead, we maximize the
evidence lower bound LELBO(ϕ) w.r.t. the variational hyperparameters defining q instead.
The KL divergence is equal to the negative ELBO plus the evidence, which is independent
of q, meaning that minimization of the KL divergence equal is to maximization of the
ELBO.

KL(q(z)∥p(z | x)) ≜ Ez∼q

[
log q(z)

p(z | x)

]

= Ez∼q

[
log q(z)p(x)

p(x, z)

]

= Ez∼q

[
log p(x) − log p(x, z)

q(z)

]

= log p(x) − Ez∼q

[
log p(x, z)

q(z)

]
= log p(x) − LELBO(z)

=⇒ min
z

KL(q(z)∥p(z | x)) ≡ max
z

LELBO(z)

Because optimization of the ELBO is computationally more feasible than marginaliza-
tion, approximations of q to p in variational inference are possible. Despite this, the
maximization of the complete ELBO does not scale well to large data sets and can still
be intractable for complex models, including Bayesian Neural Networks as we will discuss
in §2.3.1. It is therefore important that the approximate variational distribution family
Q is flexible enough to capture the salient aspects of the posterior, yet also be scalable
and tractable for complex models.

§2.3 Bayesian Neural Networks

Bayesian neural networks (BNNs) were first introduced in the 1990s [MacKay, 1992;
Neal, 1996]. In contrast to the standard point-estimate neural networks, Bayesian neural
networks are probabilistic over their weights by specifying distributions over them. The
distributions over the model’s weights result in attractive model properties including
uncertainty estimates, regularization, and robustness to adversarial samples.
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This is achieved by placing a prior across the neural network weights: suppose a
BNN is parameterized by ω = {Wℓ}L

ℓ=0, where layer ℓ has weight matrix Wℓ. We often
place a standard normal prior distribution over the weights, i.e. p(Wℓ) = N (Wℓ; 0, I).
The likelihood specification p(Y|X, ω) is as described in §2.1. Together, this induces a
posterior distribution over the weights, i.e. the parameterization of our neural network,
given our dataset {X, Y}:

p(ω|X, Y) ∝ p(Y|X, ω) p(ω)

Because the posterior is generally intractable, we resort to VI with an approximating
variational posterior distribution, turning the inference problem into an optimization
problem. For a BNN, we denote a variational distribution q defined by hyperparameters ϕ

over the weights ω by qϕ(ω). Below, we discuss the optimization objective and inference
aspects of BNNs in more detail.

2.3.1 Optimization objective

Recall that in VI, we seek to maximize the ELBO via the approximate posterior’s
variational parameters ϕ (see equation (2.3)). Because the evidence term is independent
of the approximate posterior, this reduces to minimizing the KL divergence between the
approximate posterior q and the full posterior p(ω | X, Y):

max
ϕ

LELBO = log p(X, Y) − KL(qϕ(ω) || p(ω | X, Y))

max
ϕ

LELBO ⇔ min
ϕ

KL(qϕ(ω) || p(ω | X, Y))
(2.3)

Minimizing this KL divergence between q and p(ω | X, Y) can be reduced to a
maximization of the expected log-likelihood (ELL) minus the prior divergence (see
equation (2.4)). The log-likelihood term encourages q to fit to the data by placing density
on the weights ω that explain the observed data well. In contrast, the prior divergence
term acts as a regularizer over the weights, representing the divergence between q and
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the prior over the weights.

KL (qϕ(ω)∥p(ω | X, Y)) = −

expected log-likelihood︷ ︸︸ ︷∫
qϕ(ω) log p(Y | X, ω)dω +

prior divergence︷ ︸︸ ︷
KL (qϕ(ω)∥p(ω)) + C

= −
N∑

i=1

∫
qϕ(ω) log p (yi | fω (xi)) dω + KL (qϕ(ω)∥p(ω)) + C

=⇒ LELBO =
N∑

i=1

∫
qϕ(ω) log p (yi | fω (xi)) dω − KL (qϕ(ω)∥p(ω))

(2.4)
where fω(xi) refers to the model output when xi is propagated through the BNN that is
parameterized by ω.

The ELL term in the LELBO requires computations over the entire dataset, which can
be computationally prohibitive in case of large N . Instead, we use a mini-batch estimate
to approximate the ELL term by computing the ELL over a mini-batch of size |S|:

LMB = L̂ELBO = − N

|S|
∑
i∈S

∫
qϕ(ω) log p (yi | fω (xi)) dω + KL (qϕ(ω)∥p(ω)) (2.5)

This stochastic mini-batch estimate is unbiased, meaning that our objective function
remains an unbiased as well, i.e. E[LMB] = LELBO [Hoffman et al., 2013]. We can
therefore use a stochastic optimizer with LMB to find a (local) optimum set of variational
parameters ϕ∗ that would also be an optimum to LELBO. We denote this optimal
approximate posterior over the weights by q∗

ϕ(ω).
To actually optimize the objective and find q∗

ϕ(ω), we need to estimate the ELL’s
derivatives w.r.t. the parameters of the variational posterior. There exist three main MC
estimation techniques for VI with each different characteristics and variances, evaluated
in detail by Gal [2016]. In our experiments, we use the pathwise derivative estimator,
which is also referred to in other literature as the re-parameterization trick, infinitesimal
perturbation analysis, and stochastic backpropagation [Kingma et al., 2015; Rezende et al.,
2014; Titsias and Lázaro-Gredilla, 2014]. In short, the pathwise derivative estimator
uses a change of variables and re-parameterizes qϕ(ω) to a function q(ϵ; ϕ, ω) in ϵ with
p(ϵ) = N (ϵ; 0, I) via a deterministic, differentiable bivariate transformation g(ϕ, ω). For
more detail, we refer the reader to [Kingma et al., 2015].
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2.3.2 Predictive distribution

To be able to perform inference on a model, we need to obtain a predictive distribution.
From the approximated posterior distribution over the weights q∗

ϕ(ω), we seek to obtain
the predictive posterior distribution p(y∗ | x∗, X, Y) using the predictive approximate
posterior distribution q∗

ϕ(y∗ | x∗).

p (y∗ | x∗, X, Y) =
∫

p (y∗ | x∗, ω) p(ω | X, Y)dω

≈
∫

p (y∗ | x∗, ω) q∗
ϕ(ω)dω

= Eω∼q∗
ϕ
[p(y∗ | x∗, ω)]

≈ 1
S

S∑
s=1

p(y∗ | x∗, ω(s)) where ω(s) ∼ q∗
ϕ(ω)

(2.6)

We estimate this predictive posterior distribution via S stochastic forward passes of x∗.
This means that we sample a weight parameterization ω of the BNN S times from the
approximate variational posterior and propagate x∗ for each parameterization to get the
associated network outputs. This gives us an MC estimate of the predictive posterior
distribution, as laid out in equation (2.6).

2.3.3 Model uncertainty

As mentioned earlier, one of the advantages of BNNs is their natural model uncertainty
quantification. This is invaluable to understanding how confident a model is in its
predictions given a specific input. We review how we obtain uncertainty metrics from
our BNN below.

There are three types of uncertainty in Bayesian modelling: epistemic, aleatoric, and
predictive uncertainty. Epistemic uncertainty captures the model’s uncertainty (both
in parameters and structure), which is also referred to as “reducible” uncertainty as we
can decrease it with more observed data. Aleatoric uncertainty captures the inherent
variability / noise in our observed data and is also referred to as “irreducible” uncertainty.
Predictive uncertainty conveys the model’s uncertainty in its output associated with
a specific input and is induced by epistemic and aleatoric uncertainty. We typically
evaluate a model’s predictive uncertainty, as it can be difficult to estimate a model’s
epistemic and aleatoric uncertainty separately [Depeweg et al., 2018; Kendall and Gal,
2017].
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The definition of predictive uncertainty depends on the model task. For regression,
we define it as the variance of the predictive distribution. However, this definition does
not work for classification because the variance of the resulting output logits from a single
forward pass in classification do not represent uncertainty. Moreover, the variance of
predicted classes would be dependent on class label magnitude. Because we only consider
model uncertainty in our regression experiments in §5.2.1, we show how to estimate
regression model uncertainty here. For more information on classification uncertainty
quantification, we refer the reader to [Gal, 2016].

Regression

For regression, we obtain the model uncertainty from the same stochastic forward
passes that we use to construct the predictive posterior. This is because empirical first-
and second-moments are unbiased estimators of the predictive distribution’s moments
Consequently, the empirical predictive mean and variance are unbiased estimators.1

Ẽ [y∗] := 1
S

S∑
s=1

fω̂s
(x∗) −→

S→∞
Eq∗

ϕ
(y∗|x∗) [y∗]

Ṽar [y∗] := σ2I + 1
S

S∑
s=1

fω̂s
(x∗)T fω̂s

(x∗) − Ẽ [y∗]T Ẽ [y∗]

−→
S→∞

Varq∗
ϕ

(y∗|x∗) [y∗]

(2.7)

where σ2 is the variance of the specified model likelihood function p(y∗ | x∗, ω) =
N (y∗ ; fω (x∗) , σ2I). This means that we empirically estimate the predictive mean and
variance via averaging the stochastic forward passes.

§2.4 Mean-Field Variational Approximation

When we perform inference in BNNs as described above, we need to choose a variational
approximate family that is both tractable and sufficiently flexible to capture the true
posterior distribution over all the weights of the network. One of the standard choices is
to make the mean-field assumption on the variational posterior over the weights because
it makes computations more efficient and tractable. This is also called Mean-Field
Variational Inference (MFVI).

1For proof, see Gal [2016, §3.3].
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The mean-field variational family assumes that the latent variables are mutually
independent and that the posterior factorizes across the latent variables. That is, a
mean-field variational posterior over the BNN weights assumes that each weight in the
network is distributed independently of all others.

The mean-field approximation does not put a restriction on the parametric form of
the individual factors, but we typically assume a Gaussian factor for neural network
weights. This means that we aim to find the best q∗

ϕ from the set of fully-factorized
Gaussian distributions, such that the variational parameters are just means and variances
for each weight. In other words, the mean-field approximation of layer i assumes the
weights are sampled from a multivariate Gaussian distribution with a diagonal covariance
matrix. As such, the qMF V I factorizes over the layers and the weights as follows:

qMF V I(ω) =
L∏

ℓ=0
qMF V I(Wℓ) =

L∏
ℓ=0

N (Wℓ; Mℓ, Σℓ) =
L∏

ℓ=0

Nℓ∏
i=0

N (wℓ,i; µℓ,i, σℓ,i) (2.8)

The advantage of MFVI is that it is significantly computationally less expensive to
sample from. In the number of weights per layer Nℓ, the time complexity is O(N2

ℓ ) and
avoids the expensive and numerically-unstable matrix inversion that is necessary for full
covariance matrices. The computational space requirement is also reduced from O(N2)
to O(N), where N represents the total number of weights in the BNN.

However, this computational benefit comes at a cost. The factorization assumption
of MFVI means that it cannot capture any correlations between layers or between
weights in the same layer. Because there can be strong posterior correlations in the
parameters, this diagonal approximation for the weights can be a problem [MacKay,
1992]. Though some argue that more complex approximations are unnecessary in deep
BNNs [Farquhar et al., 2021], the complexity of MFVI in deep BNNs is still prohibitively
large for many real-world settings. Moreover, as the BNN layer width approaches infinity,
the empirical evidence suggests that the MFVI posterior converges to the prior predictive
distribution, underfitting the data and underestimating predictive uncertainty [Coker
et al., 2022]. Finally, it is known that the MFVI tends to overprune its weights, limiting
its expressiveness and leading to underfitting [Trippe and Turner, 2018].

§2.5 Related work

In this section, we discuss how the methods of this thesis fit in with other (federated)
inference approaches. We also explain the reasoning for choosing to extend the GI method
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to federated BNNs through a brief discussion of alternative approaches. We present a
more technical presentation of the core methods in subsequent chapters.

In general, Bayesian learning approaches are based either on Markov Chain Monte
Carlo (MCMC) sampling or on Variational Inference (VI). While MC methods are slow
due to the construction of the sampling chain and are hard to determine convergence
of, they admit the true posterior as stationary distribution. In contrast, VI methods
are optimization-based approaches that converge more quickly, but have approximate
solutions that are limited to the expressiveness permitted by the family of approximations
Bishop [2006]. MCMC methods are usually prohibitively expensive for real-world settings.
In terms of VI methods, the mean-field method is commonly used, but has many issues,
including underfitting and overpruning as discussed in §2.4. For more background on
MCMC and MFVI, we refer the reader to [Angelino et al., 2016].

There have been improvements to the mean-field method, but most of them remain
computationally challenging. The GI method introduced by Ober and Aitchison [2021]
is one of the most promising ones, modeling correlations across the BNN layers while
reducing the computational cost by using global inducing points.

Other structured VI posterior approximation methods for BNNs include [Louizos
and Welling, 2017], who introduce multiplicative normalizing flows (MNFs), which use
pseudo-data along with matrix variate normal distributions. MNFs still factorize across
the layers, ignoring layer-wise correlations. Moreover, their method required the number
of pseudo-data points to be much smaller than the layer width. This limits the effective
dimensionality of the variational parameters and reduces the expressiveness of the MNF
method. Alternatively, [Lindinger et al., 2020] use a multivariate normal distribution
with structured covariance and inducing points similar to the GI method. However, they
use local inducing inputs for every layer and the normal distribution is used for the
unconditional posterior across all the layers, rather than the conditional posterior of a
single layer as in the GI method. The difference is that the resulting posterior of the
GI method is non-Gaussian and thus more flexible. Moreover, Lindinger et al. [2020]’s
method scales cubically in complexity w.r.t. the BNN depth, whereas GI scales linearly.

The aforementioned examples are instances of standard, non-distributed Bayesian
learning. In contrast, Federated Bayesian learning methods seeks to compute a global /
shared posterior distribution on data that is distributed locally amongst clients. Federated
MCMC methods are generally prohibitively slow in convergence and particularly difficult
to deploy—making them unpractical for our purposes. A state-of-the-art example of such
a method is Distributed Stochastic Gradient Langevin Dynamics (DSGLD) [Ahn et al.,
2014; Welling and Teh, 2011], which maintains a number of Markov chains updated via



12 Background: The Foundations of Bayesian Neural Networks

local Stochastic Gradient Descent while adding Gaussian noise. However, DSGLD is
impractically slow for our purposes (see [Ahn et al., 2015]). It is communication inefficient
as it operates by passing Markov chains between clients after single-update steps (multiple
steps worsen asymptotic accuracy). It also exhibits poor predictive performance under
inhomogeneous client data distributions. This is because under inhomogeneous client
data partitions, the DSGLD’s client gradient estimator is biased and the consequent
likelihood contributions will vary vastly across clients [el Mekkaoui et al., 2021]. As we
will discuss in chapter 3, the PVI framework that we use in this work naturally regularizes
this via its client-local optimization objective.

In terms of distributed VI methods, state-of-the-art results have been obtained with
Partitioned Variational Inference [Ashman et al., 2022], which relies on distributed
optimization of parametric posteriors. The PVI framework also encapsulates various
separate VI methods, including online VI [Ghahramani and Attias, 2000; Sato, 2001]
and power EP [Minka, 2004].2 Alternative distributed VI methods include Distributed
Stein Variational Gradient Descent (SVGD) [Kassab and Simeone, 2021], which is a non-
parametric framework. Distributed SVGD maintains a number of interacting particles
at the server to approximate the current iterate of the global posterior. One of the
noteworthy advantages is the ability to vary the communication load by varying the
number of particles. However, SVGD is known to work well only in low-dimensional
settings as kernel methods struggle in even moderately large dimensionality spaces [Ba
et al., 2022].

In short, relative to the aforementioned MCMC and VI methods, GI’s form promises
great posterior approximation capabilities in a comparatively cheap way. This makes
it an interesting posterior approximation to extend to the complex task of federated
learning, which we do using the PVI framework in chapter 4.

§2.6 Summary

In this chapter, we reviewed the necessary background for the problem set-up of this
work. We briefly described the concept of probabilistic machine learning and variational
inference to be able to describe the concept of Bayesian Neural Networks. We discussed
the process of inference in BNNs in more detail, including approximating the posterior
distribution over the weights via a variational distribution. We showed that the variational
optimization objective naturally balances the data fit with a regularizer term via the

2See [Ashman et al., 2022, §4] for more details.
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expected log-likelihood and KL divergence w.r.t. prior, respectively. We also discussed
how we obtain the distribution of interest—the predictive distribution—resulting from
the optimized approximate posterior via stochastic forward passes of the input data. The
resulting Monte Carlo estimates also naturally provided us with predictive uncertainty
estimates, which are one of the benefits of BNNs alluded to in chapter 1. We concluded
our background with a discussion of the mean-field posterior approximation, the de
facto default variational approximation method—highlighting the trade-off between its
computational benefit and its predictive limitations. Finally, we explained how our work
fits in with existing literature. Specifically, we discussed alternative (federated) inference
approaches and why they are impractical or infeasible for the purposes of our work.

In the following chapters, we will extend BNNs to the federated learning setting,
optimizing the approximate posterior in a distributed manner. After that, we will
introduce a more powerful posterior approximation method and compare it to the mean-
field approximation, showing that it outperforms the standard method in the complex
setting of federated learning.



Chapter 3

Federated Learning in Bayesian
Neural Networks

In this chapter, we introduce the concept of federated learning and how Bayesian Neural
Networks can be used in a federated setting. We focus on using a specific variational
inference method to do so, called Partitioned Variational Inference (PVI). PVI is an
attractive framework for learning a posterior approximation in a federated setting because
it obtains state-of-the-art performance by recovering the standard variational inference
solution efficiently. We discuss PVI’s algorithmic steps and summarize the properties of
different PVI variants.

§3.1 Federated Learning

Federated learning (FL) is a distributed model learning setting in which a single, central-
ized model is trained by a collection of edge devices (“clients”) with coordination via a
central server. The key aspect of FL is that it removes direct access to the dataset from
the learning procedure, as each client has their own local training dataset, which is never
uploaded to the server. This enables clients to collaboratively train and use a shared
global model without sharing their data directly with others. The client only computes a
local gradient update on the current global model and communicates a parameter update
back to the server. This means that the central server never observes the underlying
training data directly. This reduces privacy concerns by keeping data on-device and
security risks by limiting the possible attack surface to only the client instead of both
the client and the server [McMahan et al., 2017]. For a comprehensive overview and
taxonomy of existing of federated learning systems, we refer the reader to [Li et al., 2021].
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The setting of FL is generally also different from standard distributed learning
because of assumptions on the clients and their data characteristics. In contrast to the
assumptions in distributed learning of a controlled data center with uniform edge device
characteristics, federated learning is characterized by client heterogeneity. Possible issues
include:

1. Inhomogeneous data partitions. Clients can have differently sized or differently
balanced datasets.

2. Non-IID data. Clients’ data can be reflective of their behavior or interactions and
not representative of the population dataset.

3. Changing datasets. Clients’ datasets change over time and can exhibit covariate
shift.

4. Communication constraints. Clients can have (varying) latency, bandwidth, and
availability constraints.

5. Compute constraints. Clients can have (varying) compute bottlenecks that limit
optimization and inference ability.

Some of these issues, however, are beyond the scope of this work. In this thesis, we
focus on model performance on both homogenous and inhomogeneous data partitions in
a controlled server-client environment. We consider a fixed group of clients with reliable
communication channels, availability, and sufficient compute ability. We, therefore, do
not consider non-IID datasets, changing client datasets over time, or differing client
communication constraints. Investigation of model performance in environments with
such characteristics is a possible opportunity for future research.

§3.2 Partitioned Variational Inference

Federated learning does not accommodate direct access to the entire dataset because
the dataset is sharded amongst the clients. As such, standard VI—also referred to as
global VI—for Bayesian inference using federated learning does not work because the
maximization of the global free-energy requires access to the entire, non-partitioned
dataset. Ashman et al. [2022] introduced partitioned variational inference as a general
solution to extend VI to the federated learning case, showing that it recovers the global
VI solution in a communication-efficient manner and obtaining state-of-the-art results.

Consider a probabilistic model defined by a prior over its parameters, p(θ), and a
likelihood function, p(y|θ). If we partition the dataset y into K shards {y0, . . . , yK},
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we have a likelihood function that is composed of K data-specific likelihoods: p(y|θ) =∏K
k=1 p(yk|θ). This idea of partitioning the likelihood function into a product of data-

shard-specific likelihood terms is the foundation of PVI as an approach to variational
inference.

Specifically, PVI decomposes the standard variational posterior approximation into a
prior and a product of approximate client likelihood terms tk(θ), each of which serve to
approximate p(yk|θ), the true effect of data shard yk on the likelihood term.

q(θ) = 1
Zq

p(θ)
K∏

k=1
tk(θ) ≈ 1

p(y)p(θ)
K∏

k=1
p (yk | θ) = p(θ|y)

To solve the global variational optimization problem, the PVI framework effectively
runs a series of client-local optimizations: each client locally optimizes its own approximate
likelihood term tk(θ) on its own data and communicates this back to the server, which in
turn recomputes the new global posterior approximation q(θ) from the individual clients’
likelihood terms.

We discuss the PVI steps in more detail below. The high-level PVI server and client
flow are laid out in algorithms 1 and 2, respectively. An overview of the framework is
detailed in algorithm 3.

Algorithm 1: Partitioned Variational Inference - Server Flow

Initialize q to prior p and clients’ t to 0.
for i = 1, 2, . . . until convergence do

Determine set of clients bi to locally optimize.
Send out current q(i−1)(θ) to each client in bi.

Let each client in bi locally optimize and send back their updated t(i) to server.

Update the approximate posterior:

q(i)(θ) = p(θ)
∏
k∈bi

t
(i)
k (θ)

∏
m/∈bi

t(i−1)
m (θ).

end for

To commence PVI, we initialize the posterior to the prior. At each epoch i, we
select a set of clients whose approximate likelihood term we seek to refine via schedule
bi ∈ {1 . . . K}. The clients’ approximate likelihood terms are initialized arbitrarily via
hyperparameters. Only clients whose likelihood terms have been optimized at least once
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are included in the global posterior because we do not include randomly initialized factors.

Algorithm 2: Partitioned Variational Inference - Client (k) Flow

Receive current q(i−1)(θ) from server.
Compute new local approximate posterior qk via maximization of local VFE:

q
(i)∗

k (θ) = arg max
q(θ)∈Q

Eq(θ) [log p(yk|θ)] − KL
[
q(θ)||q(i−1)

\k (θ)
]

where q
(i−1)
\k (θ) = q(i−1)(θ)

t
(i−1)
k (θ)

= p(θ)
∏

m ̸=k

t(i−1)
m (θ).

Send back updated t
(i)
k to server.

The client, in turn, receives the global posterior and seeks to optimize it on its
own data. The client-local optimization can be done by optimizing q

(i)
k w.r.t. the local

variational free-energy (VFE) and then computing the new approximate likelihood t
(i)
k

by division. This is optimization step can be rewritten in a form similar to ELBO
maximization, consisting of a expected log-likelihood term and KL term1:

arg max
q(θ)∈Q

Eq(θ) [log p(yk|θ)] − KL
[
q(θ)||q(i−1)

\k (θ)
]

=⇒ t
(i)
k (θ) = q(i)(θ)

q(i−1)(θ)t
(i−1)
k (θ)

Alternatively but equivalently, the client can optimize the new approximate likelihood
t
(i)
k directly w.r.t. the local VFE as the only optimizable parameters in qk are those of

the local-client’s tk and the client only sends back the updated likelihood factor.

t
(i)
k (θ) = arg max

tk(θ)
Eq(θ) [log p(yk|θ)] − KL

[
q(θ)||q(i−1)

\k (θ)
]

The updates of the client’s approximate likelihood factors are communicated back to
the server, i.e. the change in factors tk∈bi

. The server updates the global approximate
posterior by multiplying the previous posterior by the product of the change in factors,
or by recomputing the new global posterior from scratch by taking the product of the
prior and the likelihood terms.

1For proof of the equivalence, see Appendix B of [Ashman et al., 2022].
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Different update schedules

The server’s approach to select optimizable clients characterizes three variants of PVI:
1. Sequential PVI: in each server iteration, only one client is optimized.

2. Synchronous PVI: in each server iteration, all clients are optimized.

3. Asynchronous PVI: in each server iteration, a subset of clients are optimized
(consisting of available clients).

In this work, we evaluate only sequential and synchronous PVI. Each PVI setting has its
advantages and disadvantages, which is discussed in detail by Ashman et al. [2022, §2.4].
To summarize: sequential PVI benefits from automatic global posterior normalization,
but generally exhibits poor wall-time efficiency due to its sequential nature (many clients
have to wait); synchronous PVI does not have automatically normalized global posteriors
and therefore requires likelihoods to lie in the same exponential family as the prior (not
a significant drawback in practice).

Furthermore, both PVI settings can demand the need for damping of the client
approximate likelihoods via a damping factor ρ ∈ (0, 1]:

t
(i)
k (θ) ∝

 q
(i)
k (θ)

q(i−1)(θ)

ρ

t
(i−1)
k (θ)

The intuitive reason for damping is that the product aggregation of client factors can
result in a poor performing global posterior when the clients’ factors disagree significantly
with each other. Damping effectively decreases the magnitude of changes in a client’s
likelihood factor after local optimization. In fact, there is no guarantee that the product
aggregation in the (a)synchronous PVI case is normalizable and can consequently result
in an improper distribution.

Damping decreases the magnitude of changes in the parameters of a client’s approx-
imate likelihood, such that the factor remains closer to the previous global iteration.
Collectively, this causes smaller updates and leads to worse communication-efficiency in
return for stable convergence. It is important to note that the dynamics of damping are
not well understood yet. A comprehensive investigation into the effects and requirements
of damping are beyond the scope of this work and left for future research.

As we will see in chapter 5, the need for dampening depends on the posterior
approximation method and data inhomogeneity. Ashman et al. [2022] found in their
experiments that damping of ρ ∝ 1

Nclients
was required for sequential MFVI-PVI in

inhomogeneous data splits and for synchronous MFVI-PVI in all data splits. We
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confirmed this. In contrast, the GI posterior approximation method—which we introduce
in the next chapter—did not require dampening in any setting.

Algorithm 3: Partitioned Variational Inference

Input: data partition {y1, . . . , yK}, prior p(θ).
Initialize:

t
(0)
k (θ) := 1 for all k = 1, 2, . . . , K.

q(0)(θ) := p(θ).

for i = 1, 2, . . . until convergence do
bi := set of indices of the next approximate likelihoods to refine.
Communicate previous iteration’s posterior q(i−1)(θ) to each client in bi.

Compute new approximate likelihoods:
for k ∈ bi do

Compute the new local approximate posterior:

q
(i)
k (θ) := arg max

q(θ)∈Q

∫
q(θ) log q(i−1)(θ)p(yk|θ)

q(θ)t(i−1)
k (θ)

dθ.︸ ︷︷ ︸
local VFE

Update the approximate likelihood:

t
(i)
k (θ) ∝ q

(i)
k (θ)

q(i−1)(θ)t
(i−1)
k (θ)

Communicate ∆(i)
k (θ) ∝ t

(i)
k

(θ)
t
(i−1)
k

(θ)
to server.

end for

Update approximate posterior:

q(i)(θ) ∝ q(i−1)(θ)
∏
k∈bi

∆(i)
k (θ).

end for
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§3.3 Summary

In this chapter, we discussed the setting of federated learning and how it differs from
standard learning as well as distributed learning. Because the data is partitioned
across clients in federated learning, we cannot apply standard VI for Bayesian inference.
Instead, we use the framework of Partitioned Variational Inference (PVI). PVI effectively
decomposes the likelihood function into a product of data-partition specific likelihood
factors (one for each client). We discussed the pseudocode of PVI at both the server
and client level. We concluded with a summary of the different PVI settings, defined
by different client-selection schemes. We will look at how to use PVI in more detail in
the next chapter as we introduce a more powerful posterior approximation method and
extend it to the PVI framework.



Chapter 4

Global Inducing Point Posterior
Approximations for Federated BNNs

In this chapter, we first discuss the Global Inducing Point (GI) posterior approximation
method for BNNs introduced by Ober and Aitchison [2021]. After, we provide the
theoretical contribution of this thesis: the incorporation of GI into the PVI framework.
We explain how the global approximate posterior decomposes and detail the functional
form of the pseudo-likelihood factors. Given the layer-conditional form of the GI method,
we discuss the pseudocode of the client’s pseudo-likelihood factor optimization in more
detail. Finally, we provide a theoretical analysis of the communication and computation
cost of the GI-PVI method, showing its computational complexity.

§4.1 Global Inducing Points Approximate Posterior

4.1.1 Posterior form

The usage of a factorized approximate posterior, such as a mean-field approximation, can
be problematic in neural networks because of the lost correlations between layers. Ober
and Aitchison [2021] propose an approximate posterior q for a Bayesian neural network
that is correlated over the weights at all layers. They achieve this by constructing the
approximate posterior as a product of layer-specific weight posteriors that are conditional
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on the weights of all previous layers:

q(ω) = q
(
{Wℓ}L+1

ℓ=1

)
= q(WL+1|WL, . . . W1) . . . q(W2|W1)q(W1)

=
L+1∏
ℓ=1

q
(
Wℓ | {Wℓ′}ℓ−1

ℓ′=1

)
.

(4.1)

The conditional layer-specific weight posteriors are recursively defined by considering the
optimal final-layer weight posterior. Consider the final layer L + 1, where we would want
the optimal approximate posterior to be equal to the true final-layer weight posterior,
given the previous layers’ weights:

q
(
WL+1 | {Wℓ}L

ℓ=1

)
= p

(
WL+1 | Y, X, {Wℓ}L

ℓ=1

)
Using Bayes’ theorem and the conditional independencies of a BNN model, we can
decompose the conditional layer-specific weight posteriors into a prior and likelihood.
Specifically, we can decompose them into a prior over that layer’s weights WL+1 and
a likelihood of that layer’s outputs given the weights WL+1 and the previous layer’s
outputs FL.

q
(
WL+1 | {Wℓ}L

ℓ=1

)
= p

(
WL+1 | Y, X, {Wℓ}L

ℓ=1

)
∝ p (Y | WL+1, FL) p (WL+1)

(4.2)

Because the previous layer’s outputs FL are incorporated into the next layer, this
decomposition naturally incorporates correlations between layers into the approximate
posterior.

However, we can only decompose the final layer this way because we have associated
outputs Y with the inputs X. Since intermediate network layers do not have observed
outputs, Ober and Aitchison [2021] introduce a likelihood function N

(
vℓ; Fℓ, Λ−1

ℓ

)
for

each layer ℓ using variational parameters, where vℓ represents noisy “pseudo-observed
outputs” of the layer ℓ’s true outputs, Fℓ, distributed according to a normal distribution
with precision parameter Λℓ. These variational parameters ϕ = {vℓ, Λℓ}L+1

ℓ=1 can be
viewed as pseudo-observed outputs and pseudo-noise parameters for the intermediate
layers, respectively.

4.1.2 Inducing points

Ober and Aitchison [2021]’s approximate posterior method relies on so-called “global
inducing points”, a concept that is common in the literature of Gaussian Processes
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[Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2005; Wilson and
Nickisch, 2015]. As such, we refer to the posterior approximation as the global inducing
point (GI) method.

Inducing points are used to mitigate the computational cost of optimization, a
problem in using BNNs with large datasets. Consider a BNN with weights {Wℓ}L+1

ℓ=1 with
Wℓ ∈ RDℓ−1×Dℓ and activation function ϕ(·). Rather than propagating the entire dataset
X ∈ RN×D0 , we can instead propagate only M << N global inducing inputs U ∈ RM×D0 ,
which are defined only at the input layer and propagated through the network to obtain
inducing inputs at subsequent layers:

U1 = UW1, Uℓ = ϕ (Uℓ−1) Wℓ ∀ ℓ = 1, . . . , L

These global inducing inputs U are part of the variational parameters that we optimize
with respect to the VI objective. Instead of having to compute the gradients w.r.t. the
entire training batch of size N , they only have to be computed for the M global inducing
points. Note that the usage of global inducing inputs differs from other methods such as
Salimbeni and Deisenroth [2017], which use a different set of inducing points for each
layer.

When we assume a Gaussian prior over the weights p(wℓ
λ) ∼ N (0, Sℓ), the conditional

approximate posterior is Gaussian and analytic (equation (4.3)). However, the resulting
unconditional approximate posterior is not Gaussian and, thus, able to approximate
more complex true posteriors than factorized approximate posteriors. The Gaussian
form of the conditional approximate posterior is useful because it enables optimization
of the variational parameters via standard reparameterized VI using an optimizer such
as Adam [Kingma and Ba, 2017]. As we will discuss below, this functional form makes
GI also attractive for PVI.

q
(
Wℓ | {Wℓ′}ℓ−1

ℓ′=1

)
∝

Nℓ∏
λ=1

p
(
wℓ

λ

)
N

(
vℓ

λ; ϕ (Uℓ−1) wℓ
λ, Λ−1

ℓ

)

=
Nℓ∏

λ=1
N

(
wℓ

λ | Σw
ℓ ϕ (Uℓ−1)T Λℓvℓ

λ, Σw
ℓ

)
where Σw

ℓ =
(
Nℓ−1S−1

ℓ + ϕ (Uℓ−1)T Λℓϕ (Uℓ−1)
)−1

(4.3)

The ELBO estimation for the GI method is computed iteratively as we propagate
the inducing inputs throughout the network. Because the layer-conditional posterior is
Gaussian, we sample weights from the posterior given the inducing inputs and use these to
propagate the inducing points forward. We also compute the KL of the layer-conditional
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posterior over the weights with respect to the prior. After having sampled weights at
every layer, we use the cached weight samples to propagate through the training batch
and compute the expected log likelihood of the data (conditioned on the sampled weights).
From the computed KL and expected log likelihood, we can compute our ELBO estimate.

§4.2 Unification of PVI and GI

Unfortunately, we cannot directly apply Ober and Aitchison [2021]’s GI method as
posterior approximation in federated BNNs because of the global VI assumption: access
to the entire dataset and a single set of variational parameters ϕ = (U0, {Vℓ, Λℓ}L

ℓ=0).
To use the GI method as posterior approximation for federated BNNs, we adapt its

form to fit the PVI framework. Intuitively, the GI method can be viewed as a product of
layer-specific priors and pseudo-likelihood factors (equation (4.2)). To conform to PVI’s
posterior form requirements, we decompose GI’s layer-specific pseudo-likelihood factor
into a product of K client-local pseudo-likelihood terms to obtain a layer-conditional
posterior (equation (4.4)). This modified approximate layer-conditional posterior can
then be optimized via PVI as detailed in algorithm 3.

q
(

Wℓ |
{
Wℓ′}ℓ−1

ℓ′=1

)
∝

Dℓ∏
d=1

p
(
wℓ

d

) K∏
k=1

tk

(
wℓ

d |
{
Wℓ′}ℓ−1

ℓ′=1

)
,

where tk(wℓ
d | {Wℓ′}ℓ−1

ℓ′=1) = N
(
vℓ

k,d ; Mℓ
k, Σℓ

k

)
,

Mℓ
k = Σℓ

k ϕ
(
Uℓ−1

k

)T
Λℓ

k Vℓ

Σℓ
k =

(
ϕ

(
Uℓ−1

k

)T
Λℓ

k ϕ
(
Uℓ−1

k

))−1

(4.4)

where tk(wℓ
d | {Wℓ′}ℓ−1

ℓ′=1) is client k’s pseudo-likelihood contribution for the lth layer at
that client’s inducing points Uk. This decomposition means that each client maintains a
set of variational parameters for their own inducing points and pseudo-likelihood factors,
i.e. the variational parameters of client k are ϕk = (Uk, {Vℓ

k, Λℓ
k}L

ℓ=0).
The Gaussian form of GI’s conditional posterior makes it attractive for PVI because

the resulting global layer-conditional q
(

Wℓ |
{
Wℓ′

}ℓ−1

ℓ′=1

)
from multiplying all the clients’

factors remains Gaussian if a Gaussian prior is used (a property of the exponential family
of distributions).
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Client optimization

When a client is selected for optimization by the server, it follows the pseudocode as
described in algorithm 4. As prescribed by PVI, it receives the current posterior q(i−1)

from the server and optimizes the new local posterior q(i) with respect to the local
variational-free energy until convergence. As discussed in §3.2, the local variational free
energy optimization is equivalent to variational KL optimization, which is of similar form
to the ELBO:

q
(i)∗

k (θ) = arg max
q(θ)∈Q

Eq(θ) [log p(yk|θ)] − KL
[
q(θ)||q(i−1)

\k (θ)
]

(4.5)

where q
(i−1)
\k (θ) = q(i−1)(θ)

t
(i−1)
k

(θ)
= p(θ) ∏

m̸=k t(i−1)
m (θ) is also referred to the cavity distribution

and is equal to the current posterior without client k’s contribution. Intuitively, the
expected log-likelihood term in equation (4.5) ensures that the local posterior fits to the
client’s local data, while the KL term regularizes how far a client’s local factor moves
from the other clients. This aims to prevent disagreement amongst the client factors,
which could lead to a poor performing global posterior.

Because of GI’s layer-conditional posterior structure, the local posterior is computed
iteratively over the layers. For each layer, the client k computes the local layer ℓ-
specific posterior qk,ℓ by multiplying the prior by all clients’ factors, which results in a
Gaussian distribution as described in equation (4.4). After sampling S weights from
this distribution, the client computes the layer-specific KL divergence with respect to
the cavity distribution q

(i−1)
\k (θ), and propagates forward both its training inputs and

inducing points. After the local posterior has converged, the client computes the new
local pseudo-likelihood factor t

(i)
k and communicates this back to the server.

§4.3 Computational Analysis

The amending of GI to PVI as laid out above perhaps disguises the computational cost
of the method. This section seeks to shine additional light on this and dives deeper into
the computation and communication that is required at both the server and client level.
We discuss the computational and communication complexity of the significant GI-PVI
steps in the order of the algorithm (see algorithms 1 to 3).
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Algorithm 4: GI-PVI - Client (k) Flow

Receive current q(i−1)(θ) from server.
for i = 1, 2, . . . until convergence do

for ℓ ∈ {1, . . . , L} do
Compute mean and precision of local layer-conditional posterior
qk,ℓ = pℓ(θ) t

(i)
k,ℓ(θ) ∏

m ̸=k t
(i−1)
m,ℓ (θ).

Sample weights from qk,ℓ

Compute layer-specific KL w.r.t. cavity prior
Propagate the training batch and inducing points using sampled weights

end for
Compute expected log likelihood Eqk(θ) [log p(yk|θ)]
Optimize (U, {Vℓ, Λℓ}L

ℓ=0) w.r.t local VFE
end for
Send back updated tk to server.

Communication load

In terms of communication, recall that the server needs to send out the current posterior
to the clients being optimized in the current global iteration. Because of the layer-
conditional GI posterior form, the server needs to send out the components that make
up the posterior for each layer of the network. Therefore, to each client being optimized,
the server has to send out the prior for each layer and every client’s set of variational
parameters, i.e. the global inducing points as well as the pseudo-observations and pseudo-
noise for every layer: {ϕi = (Ui, {Vℓ

i , Λℓ
i}L

ℓ=0) | i ∈ 1 . . . Nclients}. This means that the
downstream communication load from server to a single client scales not only with the
number of network layers, but also with the total number of clients. Fortunately, the
upstream communication load per server-client channel does not increase with the number
of clients. A client has to only communicate back its own set of variational parameters
ϕk to the server after concluding client-local optimization.

In contrast, MFVI-PVI only needs to send out the sufficient statistics for each layer-
specific posterior because the layer-posteriors do not depend on the realized weight
samples as in GI-PVI. This means that the downstream communication load only scales
with the number of layers and not with the number of total clients as in GI-PVI. The
upstream communication load in MFVI-PVI is the client’s set of variational parameters
ϕk = {Mℓ

k, Σℓ
k}L

ℓ=0.
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Computational load

The GI method has a computationally expensive posterior approximation because the
posterior is conditional on the previous layer’s weights. This means that the posterior
over the weights for a specific layer can only be constructed after samples from the
previous layer have been drawn. Both the server and the client need to construct the
posterior for inference and optimization. The difference is that the server only needs
to construct the posterior when it wants to perform inference (e.g. once every global
iteration) whereas the client needs to do so every client-local optimization iteration to
find the optimal client-local posterior. We discuss the computation load of doing so in
more detail below.

As discussed in §4.2, the client needs to compute the optimal local posterior q
(i)
k

by optimizing the variational parameters of tk w.r.t. the local variational free energy.
The client can directly optimize the posterior via the local factor t

(i)
k (see section 3.2).

The costs of this optimization are bound by the number of iterations the clients has to
perform inference:

1. The number of iterations needed to converge on q∗
k

2. Cost of propagation

3. Cost of computing the local layer-conditional posterior

4. Cost of sampling weights from the local layer-conditional posterior
(1). Because the number of iterations depends on the optimization process, which

varies with the dataset and hyperparameter settings, we do not theoretically analyze
and include the bound in our complexity cost analysis, but we inspect the empirical
optimization convergence of GI versus MFVI in the experiments in chapter 5.

(2). The complexity of propagation is determined by the number of layers in the
BNN and their dimensionality. If a layer ℓ has input and output dimensionality Din,
Dout, respectively and the number of training points is N , then propagation of a layer ℓ

takes O(N × Din,ℓ × Dout,ℓ) from the matrix multiplication. This propagation complexity
is identical for GI and MFVI.

However, GI requires more propagation of points than MFVI due to the global
inducing points. In both GI and MFVI, we need to propagate the batch of Nbatch training
points to estimate the expected log likelihood for the ELBO estimate. Additionally, in the
standard GI method, the M inducing points need to be propagated because every layer
is conditioned on the previous layer’s weights and the inducing outputs. But in GI-PVI,
we need to propagate all Nclients clients’ inducing points to compute the layer-specific
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posterior for a single iteration of client-local optimization. So, for every layer, GI-PVI
needs to propagate through all clients’ inducing points in addition to the training inputs.
In contrast, MFVI needs to only propagate through the training inputs. This means
that, for each layer in the BNN, GI-PVI has to compute an additional Nclients matrix
multiplications of cubic complexity. Relative to MFVI, This results in an additional
propagation cost per BNN layer for GI-PVI that is equal to:

O(
propagate clients inducing points︷ ︸︸ ︷

Nclients × M × Din × Dout)

(3). Computing the local layer-conditional posterior qℓ involves multiplying the prior by
the product of all clients’ pseudo-likelihood factors conditioned on the previous layers’
weights. In our implementation, we represent the normal distribution N (µ, Σ) using the
natural parameterization (η1 = Σ−1µ, η2 = Σ−1). Because the resulting layer-conditional
client factors are normal distributions (see equation (4.4)), this enables an efficient
computation of the layer-conditional posterior because the product of two naturally
parameterized distributions reduces to just a single matrix addition operation for each of
the sufficient statistics. The complexity of the matrix addition operation is O(Dout × M).
Multiplying all client factors, therefore, is O(Nclients × Dout × M). This means that the
cost of computing for a single layer-conditional posterior is

O(qℓ) = O(
compute client factors︷ ︸︸ ︷

Nclients × T +
multiply client factors︷ ︸︸ ︷

Nclients × (Dout × M))

where Nclients is the number of clients and T is the cost of computing a single client’s
likelihood factor t conditioned on the previous layers’ weights. We discuss the cost of T

next.
To compute a single client’s likelihood factor for a layer conditioned on the previous

layers’ sampled weights, we need to compute the sufficient statistics of the resulting
normal distribution as originally laid out in equation (4.4). The factor’s distribution and
its statistics are restated here in equation (4.6).

tk(wℓ
d | {Wℓ′}ℓ−1

ℓ′=1) = N
(
vℓ

k,d ; Mℓ
k, Σℓ

k

)
,

where Mℓ
k = Σℓ

k

“XLY”︷ ︸︸ ︷
ϕ

(
Uℓ−1

k

)T
Λℓ

k Vℓ −→ XLY ∈ RDout×M

(Σℓ
k)−1 =

“XLX”︷ ︸︸ ︷(
ϕ

(
Uℓ−1

k

)T
Λℓ

k ϕ
(
Uℓ−1

k

))
−→ XLX ∈ RDout×M×M

(4.6)
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To lighten notation, we use tℓ to denote a client’s ℓth layer pseudo-likelihood factor
conditioned on the previous layers’ weights. The mean of tℓ is the covariance matrix Σ
multiplied by a matrix-product we refer to as XLY . In turn, the covariance matrix Σ is
the inverse of a matrix-product we refer to as XLX. Here, X refers to the previous layer’s
inducing outputs ϕ(U ℓ−1) ∈ RM×Din ; L refers to the precision of the pseudo-observations
Λℓ ∈ RDout×M×M ; and Y to the pseudo-observations V ℓ ∈ RDout×M . Assuming a naïve
cubic-complexity of the matrix-product operation, the complexity of computing XLX

and XLY for a layer is O(M2 × Din) and O(M × Din + M2), respectively.
Recalling that the natural parameterization is related to the default parameterization

via (η1 = Σ−1µ, η2 = Σ−1), the natural parameterization of a tℓ is given by N (η1 =
XLY, η2 = XLX). Therefore, the cost of computing a single client’s layer-specific pseudo-
likelihood factor conditioned on the previous weights is equal to the cost of computing
XLX and XLY :

O(T ) = O(
compute XLX︷ ︸︸ ︷
M2 × Din +

compute XLY︷ ︸︸ ︷
M × Din + M2) = O(M2Din)

(4). To sample weights from the layer-conditional posterior, we sample from the
resulting multivariate normal distribution. Because of the re-parameterization trick
(§2.3.1), we use the common method of sampling ϵ from a standard normal and multiplying
this by the Cholesky of our target distribution’s covariance matrix, to which we add the
target distribution mean:

ŵ = M +
dW︷︸︸︷
Cϵ , where ϵ ∼ N (0, 1), ϵ ∈ R[1×Dout] and Σ = CT C

We have to compute both terms regardless of posterior method. Because of the naturally-
parameterized normal distribution in our implementation, we use the backsubstitution
algorithm rather than naïve matrix product and matrix inversion operations for both M
and dW :

solve UM = XLY for M

solve U dW = ϵ for dW where U = chol(precision) ⇐⇒ UT U = XLX = Σ−1

The backsubstitution algorithm is more efficient and more numerically stable than directly
inverting the precision matrix. The computational complexity of backsubstitution is
O(N2). However, we cannot avoid the cubic complexity (as with direct matrix inversion)
because we have to provide a triangular matrix for the backsubstitution algorithm. To



30 Global Inducing Point Posterior Approximations for Federated BNNs

do so, we compute the Cholesky decomposition of the precision, which is O(N3). This
means that sampling from the layer-conditional GI posterior takes O(D3

out) and is cubic
in the layer output.

Though sampling from a MFVI posterior also entails computing both terms, the
posterior form allows for faster operations. Because the MFVI posterior is factorized, we
can invert just the precision diagonal directly, which is O(N) rather than having to resort
to computing Cholesky decompositions and backsubstitution operations. The subsequent
matrix multiplications and additions for M, dW and ŵ are O(N2). This means that
sampling a layer posterior in MFVI takes O(D2

out) and is quadratic in layer output.
To summarize, the computational cost of inference in the GI method is high relative

to the MFVI. This due to the layer-conditional nature of GI’s posterior, which forces the
server or client to construct a posterior iteratively. This complexity is multiplied by the
fact that it has to be repeated Nclients times to construct each client’s likelihood factor
after propagating through each client’s inducing points. In contrast, a client using MFVI
directly receives the local-posterior distribution. In total, the computational complexity
of constructing GI’s posterior for a single layer ℓ is provided in equation (4.7).

OGI(qℓ) = O(Nclients × (
compute client factors︷ ︸︸ ︷

M2 × Din +
multiply client factors︷ ︸︸ ︷

Dout × M +
propagate inducing points︷ ︸︸ ︷

M × Din × Dout ))

= O(Nclients × (M2Din + MDinDout))
(4.7)

An optimized implementation can parallelize the computation of all the client factors as
well as the propagation of the inducing points, reducing the empirical time-complexity
significantly depending on the computational constraints. Finally, the sampling from a
GI posterior is cubic in the layer width whereas MFVI is quadratic because GI’s precision
matrix is not a diagonal matrix as in MFVI:

OGI(Ŵℓ) = D3
out

OMF V I(Ŵℓ) = D2
out

As we will see in chapter 5, these two aspects of the GI method will lead to considerably
worse wall-time efficiency in non-parallelized implementations relative to MFVI.
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§4.4 Summary

In this chapter, we introduced Ober and Aitchison [2021]’s GI posterior approximation
method and extended it to the federated learning setting using Ashman et al. [2022]’s
PVI framework. A key feature of GI is the ability to model cross-layer dependencies
via global inducing points, which propagate through the network. The cross-layer
dependencies enable GI to capture a larger family of posterior distributions, while the use
of inducing points reduces the optimization cost. We amended GI to the PVI framework
by decomposing GI’s pseudo-likelihood into a product of client-local pseudo-likelihood
factors, explaining the resulting client-local optimization procedure.

Subsequently, we analyzed the communication and computational complexity of GI-
PVI and compared it to that of MFVI in a federated learning setting. We showed that the
cost of inference for GI is high relative to MFVI in a multi-client setting because of GI’s
layer-conditional posterior form; in a federated setting, each client has to recompute all
clients’ pseudo-likelihood factor for every layer. This means that GI’s client computation
load scales with the total number of clients, whereas for it is constant for MFVI. Moreover,
as with any structured covariance matrix, the cost of sampling for GI is cubic in the
layer width, whereas MFVI is quadratic.

In the following chapter, we will evaluate the method’s performance and will investigate
whether the computational cost is alleviated by the fact that clients converge more quickly
in GI than in MFVI or compensated by other predictive performance benefits.



Chapter 5

Experimental Evaluation

In this chapter, we evaluate the GI method against the MFVI method on multiple datasets
with various PVI settings. We evaluate both posterior approximation methods in a
single-client setting (global VI ) and multi-client sequential and synchronous PVI setting.
We report the marginal log-likelihood and accuracy on the test set to quantitatively
evaluate the model fit and out-of-sample predictive performance. We firstly consider
the methods on a one-dimensional toy regression dataset, followed by an evaluation of
performance on two classification datasets.

Experiment details

We discuss the details and configurations of the experiments below. We use a BNN with
two hidden layers followed by a ReLU activation function for all experiments. For the
regression task, we use 20 units per hidden layer. For the classification task, we use 50
units per hidden layer.

Prior: It is standard practice to choose a standard normal prior across the weights
(StandardPrior), independent of the number of layers or weights. However, in wide or
deep networks, this leads to large variance in function space. Following Foong et al. [2020];
Ober and Aitchison [2021], we consider a layer-specific prior that scales the variance by
the number of input weights to that layer: N (0, 1

Din
I). This prior is also referred to as

the NealPrior by Ober and Aitchison [2021].
Posterior initialization: For MFVI, the layers’ means are initialized randomly

from N (0, 1). For GI, the inducing points for the first layer and pseudo-observations
of the output layer are initialized to the first batch of training data. If the number of
inducing points M < batch size, a random subset of training data is selected to initialize
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the inducing points to. If M > batch size, the additional inducing points are randomly
initialized. Intermediate layers’ pseudo-observations are also randomly initialized from
N (0, 1). For GI and MFVI, we initialize the precisions of the pseudo-observations and
weights, respectively, to the same value: 103 − Din. When using the NealPrior, this
means that the posterior’s precisions in both methods are tightly initialized to 103.

Optimization: During training, we use S = 2 weight samples from the posterior
for local VFE optimization. For inference, we draw I = 50 weight samples. For the KL
term, we use the analytical KL rather than Monte Carlo estimate based on the sampled
weights. For client-local optimization, we use Adam as optimizer [Kingma and Ba, 2017].
We use a learning rate of 10−2 and 10−3 and a batch size of 40 and 256 for the regression
and classification tasks, respectively.

PVI related settings: For all multi-client PVI settings, we use 10 clients (Nclients).
In synchronous PVI, we apply no damping to GI and damping of ρ = 0.2 to the MFVI
model. This ρ setting was also used by Ashman et al. [2022] on the UCI datasets. The
damping is implemented by multiplying the change in likelihood factor’s parameters
after the client-local optimization with ρ before the client communicates its factor to the
server.

Number of communications: Because a single global iteration implies a different
number of optimized clients for each VI/PVI setting, we optimize the model for an equal
number of communications across PVI settings. In both posterior methods, a single client
optimization requires 2 communications between client and server: one for the sending
the current posterior and one for communicating back the updated client likelihood
factor.

In the regression case, we optimize for 4 × Nclients communications, meaning we
optimize every client twice. In the classification setting, we optimize for 20 × Nclient

communications, meaning that we optimize every client 10 times. This is so that we
can evaluate both methods in reasonable computational time. We evaluate the global
posterior after every global iteration.

We optimize the client(s) with each 10, 000 local iterations and no early stopping
in the regression experiment. In the classification experiment, we optimize the client(s)
with each 20, 000 local iterations and apply early stopping after having optimized every
client once.

We check for convergence (early stopping) by checking whether the most recent VFE
has improved relative to the past 20 reported VFEs. We do not check this every iteration
due to the natural stochasticity of mini-batching. Since we only report client VFE and
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check for early stopping every 50 iterations, this approximately means that a client has
converged when its VFE has not improved in a 1000 gradient updates. Using these
settings, we noticed that clients typically converged after 4, 000 iterations or less.

§5.1 Toy Regression

In this section, we evaluate GI and MFVI in multiple settings on the toy regression
dataset used by Ober and Aitchison [2021]: y = x3 + ϵ, ϵ ∼ N (0, 9), normalizing the y

values (N = 40). The toy regression experiment serves two roles. Firstly, it shows the
dynamics of the sequential and synchronous PVI settings relative to the global VI setting.
Secondly, because it is a one-dimensional regression problem, it provides a visual canvas
to compare the GI method to MFVI by plotting the predictive distribution. In particular,
we highlight the improved predictive uncertainty of GI in parts of the domain that were
not seen during training and show the inducing point behavior of the GI method.

Figure 5.1: Illustration of the predictive uncertainty of both posterior methods for
x ∈ [−2, 2]. GI is able to capture predictive uncertainty across parts of the domain not
seen during training, whereas MFVI collapses in between training data.

In figure 5.1 we illustrate the improved predictive uncertainty of GI over MFVI,
confirming the examples shown by Ober and Aitchison [2021]. GI is able to represent
predictive uncertainty in the part of the domain between the training data. In contrast,
MFVI’s predictive distribution collapses and is overly confident for x ∈ [−2, 2]. We
note that because of the small dataset size (N = 40), the prior has a more pronounced
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effect on the predictive uncertainty; the NealPrior induces a relatively small predictive
uncertainty of GI outside the training data distribution on the toy-regression dataset.

Figure 5.2: Illustration of the posterior convergence of the GI-PVI method. As expected,
the GI-PVI method converges to the same predictive distribution as the single-client
global VI setting.

Figure 5.2 shows the convergence of the predictive distribution of the GI method
under sequential and synchronous PVI to the global VI solution. Ashman et al. [2022]
prove that any fixed point solution of the PVI framework is also a local optimum of
the global VI algorithm and empirically show that MFVI-PVI recovers the global VI
solution. For the GI method, the posterior for sequential and synchronous PVI will
converge to, but not be identical to, the global VI solution. This is because every client
has their own set of inducing points rather than a single set as in the global VI setting.
This is supported by the results in figure 5.2 as the differences between in predictive
distributions are minute.1

Because the GI method constructs a likelihood factor t via the matrix products XLY

and XLX as discussed in §4.3, the number of inducing points M is an effective dimen-
sionality bottleneck on the variational parameters as Vℓ ∈ RDℓ

out×M , Λℓ ∈ RDℓ
out×M×M ,

and U ∈ RM×Din . Because the number of inducing points also has a large impact on the
computational cost, it is natural to evaluate the effect of varying M on the predictive
distribution. We consider the GI method with M ∈ {1, 5, 10, 40} on the toy regression

1Note that the confidence interval is sensitive to the I = 50 sampled weights, meaning that multiple
draws from the same posterior would also result in slightly different confidence intervals.
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dataset and the same N = 40 training points. Figure 5.3 shows the inducing points
and predictive distribution after training the BNN. We empirically find that on the
toy-regression dataset M ≥ 2 was sufficient to capture the true posterior, but that M = 1
causes the predictive distribution to break. Moreover, we note that the number of induc-
ing points empirically does not affect the converged predictive distribution, as evident
from the bottom row in figure 5.3. As M increases beyond an arbitrary (dataset-related)
threshold, we observe that a large proportion of the inducing points move away from the
training data towards x = 0, meaning that the inducing input locations are set (close) to
zero. When an inducing input is 0, it effectively does not contribute to the subsequent
layer’s output and brings the posterior closer to the prior, satisfying the KL term inside
the client’s variational objective. This behavior of VI reduces the complexity penalty
without incurring a large penalty for increasing the variance in predictions [Trippe and
Turner, 2018].

Figure 5.3: Visualization of the inducing point behavior and predictive distribution
with varying the number of inducing points M . The predictive distribution appears to
be independent of M . As M increases, more inducing points move towards x = 0 to
satisfy the prior term in the local VFE optimization.

We investigated the distribution of the pseudo-observations’s variance at the final
layer across the M configurations (figure 5.4), which confirms this behavior. We notice
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that as M increases, there are more pseudo-observations with very large variances. These
are associated with the inducing locations that are set to zero as M = 5 has no large
variances. These inducing points effectively sit at the prior and do not contribute (much)
to the overall posterior. As we will discuss at the end of this chapter (§5.3), the number
of inducing points is an interesting hyperparameter—being an effective bottleneck on the
posterior which can affect convergence dynamics in multi-client settings.

Figure 5.4: Visualization of the distribution of pseudo-observation variance Λ−1
ℓ=L in the

final GI-BNN layer with varying the number of inducing points M . As we increase M ,
we notice that more pseudo-observations have very large variances, which are associated
with the inducing input locations that move towards x = 0. These pseudo-observations
effectively do not contribute to the posterior and reduce the complexity penalty.
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§5.2 Classification

In this section, we evaluate the performance of GI-PVI relative to MFVI-PVI on small-
scale classification tasks under both homogeneous and inhomogeneous client data distri-
butions. We use two binary classification datasets from the UCI database: Adult and
Bank. Adult has a feature dimensionality of 108 and the task is to determine whether
yearly income exceeds 50K USD based on census data. Bank has a feature dimensionality
of 51 and the task is to determine whether a client will subscribe to a term deposit. The
purpose of this experiment is to assess the predictive performance and convergence of
said methods under various federated learning settings and client data distributions.

Client data distribution

For each dataset, we use an 80/20 split for training and test data. In the standard VI
setting, we only have 1 client and assign all the training data to that client. Therefore,
the global VI setting only has a homogeneous data partition. In the federated learning
setting, we evaluate two separate data distribution settings among the 10 clients. In
partition split A, we homogeneously partition the data in size and label balance. In
partition split B, we heterogeneously partition the data amongst the 10 clients identically
to the data distribution scheme used by Ashman et al. [2022] for UCI datasets. The
degree of heterogeneity is determined by two parameters affecting the label and size
imbalance (k and β). When having 10 clients with data split B, these imbalance settings
assign half of the clients to have β = 0.95 of the data and k = 0.9 of the positive class
labels.

5.2.1 Results

For every experiment, we report the marginal log-likelihood (mll) and accuracy (acc)
on the test set to quantitatively evaluate the model fit and out-of-sample predictive
performance. In the figures and tables, we refer to the global VI setting as GVI, sequential
PVI as SEQ, and synchronous PVI as SYNC.

We first discuss the results of experiments using the homogeneous data partition (split
A). Then, we consider the results under the inhomogeneous data partition (split B). We
report the marginal log-likelihoods and aggregate run-times across all experiments in
table 5.1 and table 5.2, respectively.
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Remark (MFVI results). Many aspects of our experiment settings are inspired
by [Ashman et al., 2022]’s investigations of PVI on the UCI datasets. However,
it is important to note that their MFVI results are not directly comparable with
ours because they use a logistic regression model, which has a noticeably smoother
convergence due to the simpler approximate posterior. They note this in their
MIMIC-III experiments as well. We also observed smoother convergence and
different marginal log-likelihood values when evaluating single-hidden layer BNN
models. Moreover, our test sets are not exactly identical to theirs, meaning that
small differences in test log likelihoods and accuracies are expected.

Table 5.1: Marginal log-likelihoods of experiments on test set. Log-likelihoods are
reported in nats. Best performing methods are marked in bold.

split A split B

MFVI GI MFVI GI

Adult
GVI -0.356 -0.315 - -
Seq -0.331 -0.324 -0.365 -0.328
Sync -0.438 -0.356 -0.422 -0.353

Bank
GVI -0.250 -0.213 - -
Seq -0.235 -0.232 -0.239 -0.225
Sync -0.392 -0.241 -0.325 -0.253

Homogeneous data split

In figure 5.5, we show the predictive performance of GI and MFVI on the homogeneous
client dataset split A. As can be seen from the figure, there is a significant difference in
test log likelihood between GI and MFVI in the global VI setting on both datasets after
20 communications (i.e. 200K mini-batch updates across entire dataset). This confirms
the predictive performance benefits indicated by Ober and Aitchison [2021].

In the sequential PVI setting, the difference in predictive performance between the
two methods is smaller, mainly because sequential GI does not recover its global VI
performance. This is something we discuss in §5.3. GI does have a slightly improved
communication efficiency over MFVI in the sequential setting, converging in 20 commu-
nications versus MFVI’s 40 to 50 communications. However, as reported in table 5.2, its
wall-clock runtime is about 3x slower than MFVI’s—removing any practical benefits in a
sequential PVI setting. Practically speaking, this means that sequential MFVI attains
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Figure 5.5: Illustration of the predictive performance of BNNs with GI and MFVI
approximate posterior methods on homogeneously split UCI datasets.

approximately the same level of predictive performance as sequential GI when the data
distribution amongst clients is homogeneous.

We do observe predictive performance benefits of GI over MFVI in the synchronous
PVI setting, despite GI not entirely recovering even its sequential performance. As can be
seen in figure 5.5, synchronous MFVI does not converge to GI’s predictive performance
in 200 communications: the test set accuracy does not improve beyond 0.76 and 0.88 for
Adult and Bank, respectively, and the log likelihoods have not even converged yet. This
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is due to the damping necessary in synchronous MFVI (even on split A) which forces
client’s factor updates to be less pronounced, preventing large disagreement between
client factors. As Ashman et al. [2022] note, damped updates lead to a greater number
of updates necessary to attain convergence and mention that damping was necessary for
their BNN with MFVI in the synchronous PVI setting. We found that synchronous MFVI
without damping exhibited very large oscillations in log likelihoods, leading to divergent
behavior. As such, damping is a necessary evil in synchronous MFVI. It introduces an
additional hyperparameter that requires careful tuning: too conservative damping leads
to diverging behavior, while too aggressive leads to much longer wall-clock times and
worse communication efficiency. We used the same dampening factor ρ = 0.2 as Ashman
et al. [2022] for their logistic-regression MFVI model.

The main benefit of synchronous GI over MFVI in the homogeneous split is that it
does not require damping and achieves good predictive performance in just a few global
iterations. As can be seen from figure 5.5, on the Bank dataset, synchronous GI recovers
the same level of predictive performance as sequential GI in 80 communications (4
global iterations). On Adult, the predictive performance is slightly worse than sequential
GI, but it converges in 60 communications. In short, the lack of damping improves
communication efficiency drastically. This, in combination with the improved (real-
world)2 time-efficiency of synchronous updates, makes synchronous GI a contending
method in low-communication environments where we want to quickly train a shared
model using just a few updates from every client.

Client dynamics

In 5.6, we show the optimization dynamics of client0 across all the local optimization
steps (total iterations). As expected, the behavior of sequential and synchronous PVI
on the first client are identical. In the first global iteration, GI converges slightly later
and achieves a worse local VFE than MFVI because of the initial KL term. The initial
KL term scales with M as the intermediate layers’ pseudo-observations and precisions
Vℓ, Λℓ are randomly initialized, meaning that the terms inside matrix products XLX

and XLY scale with the number of inducing inputs. As such, the resulting means and
variances of the initial posterior are much larger (see equation (4.6)) and the initial KL
divergence w.r.t the prior is larger.

2Note that because we did not parallelize our synchronous PVI models, we cannot speak to the
empirical time-efficiency of synchronous GI.
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Figure 5.6: Illustration of client-local optimization dynamics when M = 100. Every
20K total iterations denotes the start of a new client0 local optimization. GI appears
resilient to clients’ factor disagreement post-aggregation. GI has a worse initial local
VFE due to its initial KL term that scales with M . Synchronous MFVI, despite the
applied damping, does suffer from oscillations after aggregating all clients’ factors and
takes much longer to recover the local optimum.

Moreover, the number of iterations for a single client optimization needed for GI
and MFVI is similar under our early stopping parameters, as can be seen in the figure.
This depends on the early stopping parameters, but this suggests that there is no client
optimization efficiency improvement of GI relative to MFVI.
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Finally, we observe the idiosyncrasies of synchronous MFVI discussed above: where
synchronous GI recovers the sequential performance almost immediately, synchronous
MFVI needs much longer to recover due to the necessary damping. We note the slight
drop in VFE for synchronous GI after the second global iteration, but notice that it
immediately recovers the old level of VFE. Synchronous GI quickly recovers from any
oscillation after aggregating all clients’ factors without the need for damping, showing its
resilience as method to client factor disagreement.

Inhomogeneous data split

We show the predictive performance of both posterior methods on the inhomogeneous
data split in figure 5.7. As explained in §5.2, the inhomogeneous data split B means that
half of the clients collectively have 0.95 of the data with 0.9 of the positive class labels
such that there is significant label and size imbalance amongst the clients. Ashman et al.
[2022] note that the order in which clients are updated will affect the convergence rate of
sequential PVI. In the results below, the first five optimized clients are the “small” clients
with collectively 0.05 of the training data with 0.1 of the positive labels; this explains
why both sequential methods only converge after having seen a large client. We did not
evaluate different client optimization orders as it does not affect the converged predictive
performance of either method.

Despite being relatively simple datasets, the results in figure 5.7 demonstrate the
comparatively poor performance of the MFVI method in the presence of inhomogeneity
across clients. The magnitude of improvements naturally depend on the dataset, but
the significance is apparent. In just a 20 communications, GI achieves a 0.859 and 0.838
accuracy on Adult in the sequential and synchronous PVI setting, respectively, in contrast
to MFVI’s best accuracy of 0.81. On Bank, GI converges in 40 communications and
achieves an accuracy of 0.90 versus MFVI’s 0.88.

Moreover, sequential MFVI exhibits oscillations due to the inhomogeneity and lack
of damping, aligning with the observations made by Ashman et al. [2022]: “sequential
[MFVI-PVI] can perform poorly in the presence of inhomogeneous partitions, and can
even fail to converge when M is large unless damping is used”. This is because the
approximate posterior in the sequential case is biased towards the most recently updated
client. As a result, sequential MFVI requires around 100 communications on both
datasets to converge in log likelihoods, while still achieving worse predictive performance
than GI.
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Figure 5.7: Illustration of the predictive performance of BNNs with GI and MFVI
approximate posterior methods on inhomogeneously split UCI datasets.

Finally, while synchronous MFVI exhibits the same slow convergence behavior due
to the damping as in split A, synchronous GI exhibits almost no oscillation in log
likelihoods across datasets and recovers the predictive performance of sequential GI
almost entirely—without any need for damping.

The performance of GI in presence of inhomogeneity is noteworthy for three reasons.
One, GI converges in the sequential setting after just a single global iteration. Two,
synchronous GI converges, again, without damping and exhibits great performance
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after only two global iterations. This is significant because we expect client factor
disagreement to be more pronounced in light of data inhomogeneity. Three, GI recovers
its homogeneous split predictive performance in both PVI settings. Together, this shows
the flexibility and effectiveness of GI in the presence of inhomogeneity across clients.

Empirical computational complexity

We ran our classification experiments on a single NVIDIA A100 GPU with two AMD
EPYC 7763 64-Core 1.8GHz CPUs (128 cores in total). The GPU has 19.5 TFLOPS of
FP32 precision. We report aggregate wall-clock times of the experiments in table 5.2.
Please note that the synchronous experiments were not parallelized and are not indicative
of parallelized models’ time-efficiency in a real-world synchronous PVI setting.

Table 5.2: Wall-clock time of experiments. Time is reported in (h:mm). GI takes only
2x as long as MFVI in a single-client setting, but around 3.5 to 4x in multi-client settings.
(Note that synchronous models were not parallelized).

MFVI GI Multiple factor

Adult
GVI 0:08 0:14 1.8x
Seq 1:17 4:43 3.6x
Sync 0:57 3:52 4.0x

Bank
GVI 0:07 0:14 2.1x
Seq 1:12 4:09 3.4x
Sync 0:56 3:34 3.8x

The multiple factors in table 5.2 reveal the computational complexity of GI. In
a single-client setting, GI is only 2x as computationally expensive as MFVI; 20,000
client-local gradient updates with M = 100 on Bank took 5.5 minutes, whereas MFVI
took 3 minutes. As the number of clients increase, however, this factor increases to 3.5x.
As explained in §4.3, this is caused by the additional computation necessary as Nclients

increases to compute the layer-conditional posterior at the client and server level.
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§5.3 Discussion

In the previous section §5.2.1, we detailed the empirical observations from evaluating a
BNN with the GI and MFVI method under different settings. In this section, we discuss
the implications of our empirical findings.

Let us start with the attractive aspects of GI as approximate posterior method.
Firstly, GI exhibited stable convergence in both homogeneous and inhomogeneous
data partitions and proved resilient to client factor disagreement without the need for
damping. This is an extremely desirable model property in federated learning, as non-IID
data is ubiquitous in real-world settings and can worsen predictive accuracy in federated
point-estimate models by up to 55% [Zhao et al., 2018].

The first explanation for GI’s resilience to non-IID data is that the effective number
of parameters in GI enable clients to find better local posteriors that fit both theirs and
other clients’ data. The second hypothesis is that superfluous inducing points (beyond
what is necessary to fit the client’s data) move to satisfy the cavity KL term in the local
VFE objective—thereby reducing client factor disagreement and improving convergence.
We observed that a larger number of inducing points M = 100 improved convergence
both in stability and in communication efficiency in the classification task.3 Increasing M

increases the family of posteriors that GI can capture as M is an effective dimensionality
bottleneck on the variational parameters. This more flexible approximate posterior
enables the client to find a local posterior that fits well to their data and agrees with
other clients’ factors—thereby improving convergence.

The additional possible explanation is that the additional inducing points move to
converge the posterior towards the prior. In the regression experiment, we saw that most
of the inducing points move to satisfy the KL term in the local VFE. In a multi-client
setting, this term is the divergence between the local posterior and the cavity distribution.
Satisfying this term means reducing the divergence between the client’s factor and other
clients’ factors, thereby mitigating client factor disagreement. However, it is hard to
verify this hypothesis as KL divergence terms are not cross-comparable across various M

settings.
Secondly, GI exhibited high communication efficiency, recovering converged

predictive performance after only a few rounds of communications. In the sequential
setting, GI converged after a single global iteration, having seen every client exactly
once. Synchronous GI only needed two to four global iterations to achieve convergence.

3When using fewer inducing points (M = 10), we observed slower convergence and slight oscillations
in the first few global iterations of synchronous PVI. See the plots in Appendix A for more detail.
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Interestingly enough, synchronous GI needed more communications on homogeneous
data than it did on inhomogeneous data. We believe this is optimization-setting related
rather than structurally indicative of synchronous GI performance on homogenous data
partitions.

Thirdly, GI showed better predictive performance than MFVI in both log
likelihoods and accuracies, albeit it less pronounced under homogeneous data partitions.
Particularly under inhomogeneous data partitions, we observed GI’s robustness con-
trasting MFVI’s fragility. In scenarios where client data is heavily inhomogeneously
distributed, GI is a solid choice for practitioners, despite its complexity, as MFVI breaks
down without dampening.

This brings us to the single disadvantage of GI: its computational cost. GI scales
poorly with respect to many hyperparameters, but in particular to the number of clients
(discussed in §4.3): GI took 2x as long as MFVI when Nclients = 1 and 3.5x times as
long when Nclients = 10. This shows how poorly GI scales with the number of clients,
because in almost every local update, the client has to recompute all the other clients’
factors and propagate their inducing points for every BNN layer. Theoretically, the client
could parallelize the computation of all the clients’ factors as well as the inducing point
propagation as they are independent of each other—but even this is hard to do when
Nclients is large. In essence, the GI method is limited to a small number of clients.

Despite this, GI-PVI can be a strong method in environments where we want to
quickly train a shared model using just a single / few update(s) from every client.
Particularly synchronous GI is of interest because of its improved time efficiency in
sequential GI. Primarily because of the synchronous updates, but secondarily because of
the first global iteration: the first local optimization of every client is independent of all
other clients’ factors—which in sequential setting only holds for the first client. This is
because the cavity distribution in the first global iteration merely consists of the prior.

In short, GI is an attractive posterior approximation method in certain settings.
Because of the method’s complexity, GI is only a viable method when either the com-
putational constraints are relaxed or the number of clients and input dimensionality
are small. In these scenarios, GI is a well-performing, robust method that improves
over MFVI—particularly under inhomogeneous client data distributions. Especially
in synchronous PVI settings, GI offers converged predictive performance after just a
few iterations in a time-efficient manner as the computation in the first iteration is
independent of the number of clients.
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5.3.1 Limitations

Hyperparameter optimization is a well-known and hard problem in federated learning
[Kairouz et al., 2021; Khodak et al., 2021, §3.4.1]. Because of the significant wall-time of
experiments, it is difficult to tune the hyperparameters as to obtain the best possible
performance. Moreover, the complexity of learning a shared posterior in Bayesian
federated learning means that the effect of hyperparameters can be even more important.
The lack of hyperparameter tuning is most likely also the reason that the GI method
did not attain the same level of predictive performance in multi-client settings as it
did in the single-client global VI case. Still, we observed the relative outperformance
of GI under our—perhaps sub-optimal—hyperparameter settings. Hyperparameter
optimization in (Bayesian) federated learning is a computationally expensive task and
poor hyperparameter settings can limit the ability for the posterior approximation to
capture the true posterior, thereby reducing the predictive performance.

Another inherent limitation of our experiments is the usage of synthetic datasets and
client data distributions. It is a standard approach of existing work to take synthetic
datasets and create non-IID partitions with distribution skew by partitioning based on
labels and size. However, real-world federated datasets likely contain a multitude of
non-IID characteristics extending beyond mere label and size imbalance, such as covariate
shift, concept shift, and concept drift [Kairouz et al., 2021, §3.1]. Caldas et al. [2019]’s
LEAF collection of datasets is a good attempt at establishing a suite of realistic federated
datasets, but its adoption is not wide-spread and the underlying datasets are still limited
in their representation of real-world federated learning tasks. The lack of open-source,
real-world, federated non-IID datasets inherently limits the ability to evaluate posterior
approximation methods and assessing their resilience to real-world client heterogeneity.

§5.4 Summary

In this chapter, we presented the main results of our thesis: an empirical evaluation of
GI against MFVI as posterior approximation method in the federated learning setting.
We compared both methods on a toy-regression task and two classification datasets,
evaluating their performance under both homogeneous and inhomogeneous client data
splits w.r.t. label and size imbalance. In each experiment, we considered the sequential
and synchronous federated learning setting and provided the single-client global VI setting
as baseline. We discussed the implications and limitations of our empirical findings. We
concluded that GI is a well-performing federated posterior approximation method that is
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robust to client heterogeneity. Due to its computational complexity, its practicality is
restricted to settings where the number of clients and input dimensionality are small or
the computational constraints of clients are relaxed.



Chapter 6

Conclusion

In this work, we set out to extend and evaluate the richer GI posterior approximation
method in BNNs under the federated learning setting. To do so, we provided a theo-
retical computational complexity analysis and an empirical evaluation of the predictive
performance and contrasted it to the default mean-field posterior approximation method
(MFVI).

Our theoretical analysis highlighted that GI’s ability to model cross-layer dependencies
via its inducing points increased the communication and computation load relative
to MFVI considerably; GI’s layer-conditional posterior form means that a client has
propagate through every clients’ inducing points and recompute all clients’ pseudo-
likelihood factors for every layer. This means that the downstream communication load
and computation load scale with the total number of clients, whereas it is constant for
MFVI. Finally, the complexity of sampling a layer’s weights for GI is cubic in the layer
width (as with any structured covariance matrix) while it is quadratic for MFVI.

Our empirical evaluation of both posterior approximations consisted of a regression
task and two classification tasks. On the regression task, we visualized GI’s improved
ability to model predictive uncertainty in between the training data, as MFVI was overly
confident in regions of the domain not seen during training. We also investigated the
inducing point behavior of GI as we varied the number of inducing points. We observed
that, although the predictive distribution did not change on the toy-regression dataset,
more inducing points moved to satisfy the prior KL divergence as we increased the
number of inducing points.

In the classification experiments, we evaluated the predictive performance and con-
vergence on two medium-scale datasets from the UCI repository. We considered both
homogeneous and inhomogeneous client data partitions and both sequential and syn-
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chronous PVI settings. To succinctly summarize our findings, GI improved over MFVI in
every aspect but empirical time-efficiency. Across all client data splits and PVI settings,
GI demonstrated:

• stable convergence, without the need for damping.

• high communication efficiency, converging after only a few rounds of communica-
tions.

• better predictive performance, in terms of both log-likelihoods and accuracy on the
test set.

We also observed the rather poor scaling of the GI method with respect to the number
of clients. For the same number of communications, GI took 2x and 3.5x as long as MFVI
in single- and ten-client settings, respectively. However, GI’s improved communication
efficiency means that the time-efficiency is better than that. Particularly in a synchronous
PVI setting, GI can offer excellent predictive performance in a time-efficient manner due
to its synchronous updates and the fact that the computation in the first global iteration
is independent of the number of clients.

In general, federated learning is a challenging problem setting, and even more so
from a Bayesian perspective. The task of approximating the true posterior remains
computationally expensive, independent of the approximating method. As we showed
in this work, the default mean-field posterior approximation method underperforms or
breaks down under client heterogeneity. Particularly in real-world settings, we suspect
MFVI to be inviable as client heterogeneity is likely more significant than we were able
to capture in our experiments. Considering this, the robustness and excellent predictive
performance of GI-PVI makes it a very attractive method for federated BNNs. At the
same time, GI’s computational complexity possibly limits its practicality to smaller-scale
environments.

§6.1 Future opportunities

Concluding our findings, we discuss the future research directions concerning the GI
method that we believe are fruitful. We believe that future opportunities lie in reducing
the computational cost of deploying GI in a BNN without sacrificing the method’s
performance.

One option would be to use the GI method only in the final layer of a federated
BNN. For example, Ober and Aitchison [2021] report the scores of a BNN with factorized
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posteriors in the early layers followed by a GI layer. In their UCI experiments, this
model has very competitive log likelihoods and RMSEs on the regression datasets—often
outperforming the factorized and global inducing models. This model would limit the
computational cost of the GI method to just a single layer, rather than every layer.

Another setting in which we believe the GI method can be deployed effectively is
the domain of personalized federated learning (PFL). In short, PFL methods seek to
combine the benefits of a shared global model with client-locally trained models. For
more information on PFL, a complete taxonomy is provided in Tan et al. [2022]. Inspired
by Zhang et al. [2022]’s approach of using a trained global model as prior distribution for
client-local model optimization, GI can be deployed as posterior approximation method
at the client optimization level since the number of clients would be reduced to just one.
A cheap global model could be trained on all the clients using MFVI and could be used
as prior for the client-local posterior approximation method. Together, the expectation
is that the GI method refines the shared global model around the client’s data while
limiting the computational cost.

Future directions related to computational improvements include reducing the client-
computation load from scaling with the total number of clients. One possible direction is to
investigate the effect of restricting the number of included clients in every communicated
posterior by the server. By subsampling the client factors that are included in the
communicated posterior and cavity distribution, we limit the client computation only
to scale with the number of included clients in the posterior. Intuitively, this means
that each client in a global iteration update would only optimize its factor with respect
to its own data and the clients included in the cavity distribution (and the prior). By
randomly subsampling for every global iteration, we still ensure that the client’s factor
does not move far away from all the other clients’ factors. At the cost of likely increasing
the number of communications necessary to converge, this would significantly reduce the
client computation load and scale the GI-PVI method up to a larger number of clients.

F • f
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Figure A.1: Illustration of the predictive performance of BNNs with GI and MFVI
approximate posterior methods on homogeneously split UCI datasets. GI model has
M = 10 inducing points and 10, 000 maximum local updates. While still outperforming
MFVI, GI exhibits more oscillations and slower convergence than with M = 100.
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Figure A.2: Illustration of the predictive performance of BNNs with GI and MFVI
approximate posterior methods on inhomogeneously split UCI datasets. GI model has
M = 10 inducing points and 10, 000 maximum local updates. While still outperforming
MFVI, GI exhibits more oscillations and slower convergence than with M = 100.
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Figure A.3: Illustration of client-local optimization dynamics when M = 10. Every 10K
total iterations denotes the start of a new client0 local optimization. GI converges to a
better local VFE and appears resilient to clients’ factor disagreement post-aggregation.
Synchronous MFVI, despite the applied damping, does suffer from oscillations after
aggregating all clients’ factors and takes much longer to recover the local optimum.
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