
Graph Representation Learning for
Child Mental Health Prediction

Ryan Crowley

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Churchill College August 2022



I dedicate this thesis to my parents, brothers, and partner, who have all supported me
endlessly throughout the course of the degree.



Declaration

I, Ryan Crowley of Churchill College, hereby declare that except where specific reference is
made to the work of others, the contents of this dissertation are original and have not been
submitted in whole or in part for consideration for any other degree or qualification in this,
or any other university. This dissertation is my own work and contains nothing which is
the outcome of work done in collaboration with others, except as specified in the text and
Acknowledgements. This dissertation contains 14,879 words including appendices, footnotes,
tables, and equations and has fewer than 150 figures.

Existing software: The software created in this thesis utilizes fundamental Python pack-
ages (PyTorch, NumPy, Scikit-Learn, Pandas, and Seaborn) to clean data, link datasets, and
build foundational machine learning models. PyTorch-Geometric is utilized for creating and
evaluating Graph Neural Network (GNN) models. For some of the GNNs, inspiration for
implementation of code is derived from code in Rocheteau et al. [48]. All software code is
implemented by me, unless otherwise specified.

Ryan Crowley
August 2022



Acknowledgements

I would like to first thank my supervisors, Professor Pietro Liò and Dr. Anna Moore, for their
continual support and guidance throughout the course of my project. Both supervisors have
provided invaluable knowledge that has contributed substantially to the work that I was able
to produce. I am incredibly appreciative of the dual guidance regarding ML methodology
and clinical knowledge from my supervisors and am grateful for the opportunity to have
melded the two disciplines throughout the course of this thesis. I would also like to thank
Emma Rocheteau, Katherine Parkin, Dr. Alisa Anokhina, and Dr. Efthalia Massou for their
insightful commentary and work on assisting me throughout this project. Finally, I would
like to thank my friends, family, and coursemates for helping me grow both academically
and interpersonally.



Abstract

With rates of childhood depression continuing to rise, efforts to improve early identification
of mental health are gaining increasing traction within psychiatry. Machine Learning (ML)
methods for early identification of mental health provide the potential to scale these efforts
broadly and equitably. However, for these ML methods to gain the trust of clinicians and key
decision-makers within healthcare, they must demonstrate efficacy and interpretability.

This thesis thus seeks to characterize a new database for child mental health prediction
and develop novel ML methodologies that provide both high-quality performance and
interpretability. Specifically, this work focuses on creating patient graphs using novel
similarity metrics and applying Graph Neural Networks (GNNs) to these patient graphs for
child mental health prediction. Results indicate that this approach is superior to standard
Neural Network methods that do not take advantage of graphical structures. In particular,
measuring patient similarity by calculating distance between latent space embeddings of
patient data derived from an autoencoder network shows impressive performance in clustering
individuals with mental health diagnoses.

To comprehensively evaluate the performance of these methods, I conduct additional
analyses including assessments of algorithmic fairness, clinical interpretability of Graph
Attention Network models, and methods for handling missing data. Overall, this thesis
seeks to unify work within psychiatry and GNN development with findings that are broadly
applicable for both fields.
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Chapter 1

Introduction

1.1 Thesis Structure

The narrative arc of the thesis will follow the structure described below.

Chapter 1 will discuss the overarching research goals, provide necessary context for
understanding the work as a whole, and illuminate the primary contributions that will be
presented.

Chapter 2 will then discuss prior research on child mental health as well as the technical
background of Graph Neural Networks (GNNs) and other associated methods that will be
investigated in the foregoing analyses.

Chapter 3 will explore the Secure Anonymised Information Linkage (SAIL) Database,
focusing on characterizing the specific conglomeration of datasets analyzed in this work.

Chapter 4 will then discuss the development and analysis of a multitude of different
similarity metrics that can be used for homophilic graph construction. These similarity
metrics will be applied for construction of patient graphs.

Chapter 5 will explore different GNN formulations that use patient graphs for child
mental health prediction. Performance will be compared to baseline NN approaches and
analyses of model fairness will be conducted.

Chapter 6 will expand upon the GNN methods analyzed in Chapter 5 by applying
Feature Propagation (FP) for missing data and analyzing the clinical interpretability potential
of Graph Attention Networks (GATs).
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Chapter 7 will unify the preceding chapters, discuss the limitations of the methods and
modelling approaches proposed, and provide recommendations for future work.

1.2 Overall Research Goals

This thesis contributes to the overall research conducted and coordinated by Dr. Anna Moore,
a clinical psychiatrist focused predominantly on developing early identification tools for
child mental health by linking data from diverse sources. One of the overarching goals
of her research is to create the Cam-Child database, a linked administrative database that
will contain comprehensive health, educational, and social care data for all children within
Cambridgeshire and Peterborough. The Cam-Child database is intended to be used across a
range of diseases and for both exploratory research and interventions. This dataset will be a
valuable step towards improved monitoring and treatment of adolescent mental health in the
region and could inspire similar projects in other locations.

To obtain a head-start on building analysis pipelines and assessing the performance of
various models for predicting child mental health while the Cam-Child dataset is being
constructed, access to the Secure Anonymised Information Linkage (SAIL) Databank [23]
was secured. Similar to the Cam-Child dataset, the SAIL Databank comprehensively covers
all individuals within a given area and contains health, social care, and educational data.
However, the datasets differ in that the SAIL Databank is specific to Wales, is used only for
research purposes, and does not allow for the deanonymization of data to stage interventions.
Consequently, by developing new methodologies and model frameworks to predict child
mental health within the SAIL Databank, the goal is to prepare these methodologies for
potential future use in real-world applications through analysis of the Cam-Child dataset.
Given the ultimate goals of the project, the primary clinical questions that inspire the
methodological advancements proposed in this research are:

1. Can we create Machine Learning (ML) models using diverse data from linked datasets
to accurately identify children with a mental health diagnosis?

2. How can we improve the interpretability of these models to be more useful in a clinical
or administrative setting for staging mental health interventions?

To ensure that the model and findings are clinically useful, these clinical questions will
directly inform the methodologies developed. Throughout the course of this work, I will
seek to develop and validate novel ML methodologies that incorporate educational, social
care, and healthcare data to answer these two key clinical questions. This work focuses on
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GNNs specifically as an approach to incorporate additional useful clinical information into
the model for improved prediction.

1.3 Main Contributions

This work seeks to make advancements relevant to both the psychiatry literature and the
GNN literature. The primary contributions of the work are as follows:

1. Characterization of a novel dataset integrating information from diverse sources for
use in child mental health prediction.

2. Development of novel similarity metrics for homophilic graph construction including
use of an autoencoder network.

3. Evaluation of performance and fairness of GNN models in the novel domain of child
mental health prediction.

4. Application and evaluation of Feature Propagation for addressing missing data prob-
lems and incorporating information regarding the outcome labels of neighbors into
model prediction.

5. Assessment of the utility of Graph Attention Network attentional weights for adding
interpretability for clinical decision-making.

A graphical abstract showing the main structure of the thesis is shown in Figure 1.1
demonstrating the focus on creation of similarity metrics, development of GNN models, and
evaluation of the fairness and interpretability of GNN models.



4 Introduction

Fig. 1.1 Overview of the Main Approaches Adopted in this Thesis

Having discussed the overarching research goals and the main contributions of the work,
I will focus in Chapter 2 on the technical background that underpins the work conducted in
this thesis.



Chapter 2

Background

2.1 Child Mental Health

Incidence and prevalence of childhood mental health disorders are on the rise in the UK.
Measurements of the extent of the problem vary, but a recent report places the prevalence
of childhood mental health disorders at approximately 10% [34]. This increase in child
mental health disorders likely stems from a confluence of factors including widening income
inequality, changes in family environments, social media usage, and increased pressure
within school settings [3]. The WHO states that one out of four people will be affected
by mental health issues in their lives and that depressive disorders will become the second
leading cause of global disease burden trailing only ischemic heart disease [53]. The rise of
child mental health disorders is a troubling phenomenon that deserves time, attention, and
resources.

Diagnosing children with mental health issues is particularly difficult because children
may experience different symptoms depending on their age, children may be less able to
explain their feelings and behaviors, and typical childhood development is inherently a
process that involves change, making it difficult to separate development from disorder [46].
Despite the difficulties of childhood diagnosis of mental health issues, early detection of
mental health disorders is crucial as it allows for effective interventions before problems
become more severe and debilitating [45]. Furthermore, psychopathology that children
experience early in life can lead to negative outcomes that affect them throughout adolescence
and into adulthood. Early identification of child mental health disorders should be an integral
part of our systemic response to the impending mental health crisis.

The literature on child mental health focuses on Adverse Childhood Experiences (ACEs),
which encompass both direct harms such as physical abuse and neglect and indirect harms
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such as substance misuse and parental conflict [20]. Cumulative experience of ACEs is
tied to behavioral problems in children [34] and a variety of negative health outcomes
[20]. The effect of ACEs on the body is holistic; in conjunction with other factors like
socioeconomic status, ACEs even have a long-lasting impact on biological regulation [41].
Since the impact of some of these ACEs and other documented risk factors can be mitigated
by early interventions [55], early intervention programs are of incredible importance. ACEs
and adverse mental health outcomes are inextricably linked to healthcare disparities, and
there are substantially higher levels of mental health diagnoses in areas with higher social
deprivation and lower average socioeconomic status [34].

2.1.1 Clinical Prediction Models

Despite the increasing burden of mental health on healthcare systems, the growth in the
number of psychiatrists and healthcare professionals trained in mental health is significantly
outpaced by the number of people suffering [53]. Hence, clinical prediction tools provide
the potential to ameliorate the growing child mental health epidemic by aiding in the early
identification of mental health disorders. More broadly, ML approaches are becoming
increasingly commonplace in the mental health sphere. Some recent applications include
precision psychiatry applications using pharmacogenomics [31], monitoring of user activity
on social media [28], and the use of ML algorithms for improvement of virtual medical
assistants who provide support to individuals with mental health problems [2, 59] (spurred
on by research indicating that individuals may be more comfortable disclosing sensitive
information to a computer system than with a person [35]). One of the primary focuses of this
body of research is the application of ML to diagnosis tasks with some of the most commonly
assessed diseases including schizophrenia, depression, bipolar disorder, and anxiety [9].

Nevertheless, despite the promise of predictive risk tools and extensive research within
the area, no tools are yet available for clinical use within psychiatry for detection of child
mental health disorders [51]. More broadly, as of the writing of this thesis, there are currently
no FDA-cleared Artificial Intelligence (AI) applications for psychiatry [29]. Further, the
overall quality of existing mental health prediction models is generally poor. In a Cochrane
review of the literature, prognostic models for prediction of relapse and/or recurrence of
major depressive disorder in adults were assessed. The overall results indicate that few high
quality models exist and most models are at high risk of bias [42]. This discrepancy between
the vast potential for ML applications and the corresponding lack of improvement in patient
outcomes has been dubbed the "AI chasm." A predominant reason that the AI chasm exists
is that poor evaluations of model performance are rampant in medical AI; evaluations are
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typically conducted via internal validation, without proper safeguards, and using methods
that may overestimate model performance [10]. Additionally, ML studies often focus on
conducting analyses of accuracy with incredibly few studies assessing the more crucial
metric: improved patient outcomes [13].

The reasons underlying the AI chasm within medicine are often magnified within psy-
chiatry. Datasets used for AI applications to psychiatry are often small and validation is
typically conducted internally without appropriate safeguards [9]. Additionally, psychiatry
models suffer from low generalizability and interpretability, assessments are predominantly
conducted in homogeneous populations in affluent countries, and external validations of
model performance are exceedingly rare [40, 4, 29]. Finally, model performance is often
poor due to a lack of knowledge regarding the underlying pathology of psychiatric diseases
and a lack of understanding of the assumptions of ML models [11]. These issues relating to
clinical and technical knowledge are likely compounded by faulty or missing communication
between ML scientists and clinicians.

Most of the ML research within psychiatry has been conducted using standard, baseline
models such as Random Forest and Support Vector Machines, which do not take advantage
of the inherent graphical nature of health data [9]. Hence, this project seeks to address
the numerous problems within the field of ML algorithms for psychiatry by developing
and validating novel graphical ML approaches to create a diagnostic tool for child mental
health prediction. As in many other AI applications, there exists the potential for AI to
exacerbate issues related to fairness, transparency, privacy, security, and accountability. In
this work, I seek to address many of the limitations prevalent in the literature by focusing
on interpretability of GNNs, assessments of algorithmic fairness, and taking an integrated
approach that includes perspectives from both ML scientists and clinicians. Fairness and
transparency, specifically, will be discussed in detail in Chapters 5 and 6 in order to help
counteract the tendency of AI algorithms to reinforce historical patterns of discrimination
and systemic bias [30]; however, the topics of privacy, security, and accountability will be
left for future work focused upon implementation.

2.2 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs), the methodological focus of this thesis, are a subclass
of Neural Networks designed to perform inference on data presented in a graphical form.
GNNs use feature propagation and aggregation methods to combine feature information and
graph structure in order to learn better representations of data [33]. Different GNN models
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diverge in their approaches to neighborhood aggregation and node transformation methods.
In this thesis, I choose to concentrate on three standard GNNs: GraphSAGE (SAGE) [18],
Message Passing Neural Networks (MPNN) [15], and Graph Attention Networks (GAT)
[56]. Detailed theoretical treatment and derivations of these models can be found in their
accompanying papers cited above. In relation to health data specifically, GNNs are gaining
increasing traction as a method for dealing with heterogeneous Electronic Health Record
(EHR) data [32, 44, 1]. Other common ML approaches to EHR data include the use of Long
Short-Term Memory (LSTM) Networks or other similar Recurrent Neural Network (RNN)
models that incorporate temporal information [52], though these models will not be the focus
of this work due to the lack of granular time data in the SAIL Databank. I conjecture that
adapting graphical approaches for use within the SAIL database could help to leverage the
rich information inherent within the clinical data to achieve performance superior to that
obtained by more traditional ML methods utilized for diagnosis in psychiatry.

Most research on graphs for EHR data has focused on using knowledge graphs to inject
clinical knowledge into the model. For instance, GRaph-based Attention Model (GRAM)
supplements EHR data with the hierarchical information present within medical ontologies
[8]. Alternative approaches include the use of a variationally regularized encoder-decoder
graph network that implicitly learns the graph structure via a self-attention mechanism
[62] and Knowledge-Based Attention Model (KAME), which uses a medical ontology to
learn embeddings that are later fed into an RNN for diagnosis prediction [36]. All of these
methods are centered around the popular approach of knowledge graphs; in contrast, patient
graphs are rarely explored within the literature. To the best of my knowledge, the only other
examples of patient graphs are the use of a patient affinity graph for missing data imputation
in prediction of in-hospital mortality [38] and the creation of a patient similarity graph using
the hierarchical information present within ICD-10 codes for prediction of length of stay
using a hybrid LSTM-GNN model [48].

The methods proposed in this thesis differ from existing work on GNNs in that this
work focuses on the understudied task of child mental health prediction, incorporates diverse
data extending beyond solely healthcare data, explores novel similarity metrics for patient
graph construction, assesses data imputation methods, and conducts analyses of graph
interpretability. In the ensuing chapter, I will first focus upon characterizing the SAIL
dataset to provide a deeper understanding of the underlying data to be used for mental health
prediction.



Chapter 3

Characterization of SAIL Database

3.1 Motivation

This chapter delves into description and characterization of the SAIL Database. This dataset,
containing diverse data on children from Wales, will be used for development and evaluation
of the methods applied in this thesis. I explore relevant aspects of the dataset including preva-
lence of mental health outcomes, amount of missing data, and demographic characteristics.

3.2 SAIL Database Overview

3.2.1 Baseline Cohort

The SAIL Databank contains a plethora of information about the population of Wales across
a variety of databases. The Adolescent Data Platform (ADP) includes information relating
to youth within Wales with databases that contain demographic data, acute care data, NHS
outpatient data, General Practicioner (GP) data, educational attainment data, substance misuse
data, and other additional data. The baseline cohort consists of >1,000,000 individuals aged
0-17 years within the years 2013 to 2020, plus any retrospective and subsequent data relating
to these young people. To the best of my knowledge, no one has utilized the SAIL database
to predict mental health disorders in children, so this research could provide incredibly
important insights relevant to child psychiatry.

With the help of Dr. Yasmin Friedman and others, I linked 18 different datasets containing
pertinent information. This process included utilizing demographic information and local
identifiers from the 18 different datasets to link all individuals to a unique Anonymous
Linking Field (ALF), an anonymous identifier assigned to each child in the cohort. Given the
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diverse nature of local identifiers for the social care, healthcare, and education datasets, this
was an intensive process. Once completed, the data from each of the different datasets could
be collated for prediction. All 18 datasets were then grouped into the following categories for
easier interpretation: demographics, education, social care, GP, community healthcare, and
acute healthcare. The groupings of the different datasets, their names, and their abbreviations
are shown in Figure 3.1.
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Fig. 3.1 Schematic of SAIL Dataset Groupings

Together, these datasets encapsulate a diverse array of informative variables related to
mental health that are often analyzed independently with few efforts seeking to unify this
information into a single, linked dataset. The different databases also vary in relation to the
time periods that they cover. Figure 3.2 shows the temporal coverage of each of the databases.
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Although some databases existed before 1996, our cohort only consists of individuals born
in 1996 or later, so the lower-bound for all databases is 1996. Moreover, the most recent
information from the datasets is from early 2022 so the upper bound is set accordingly.

Fig. 3.2 Temporal Coverage Afforded by SAIL Datasets

Examining the information in Figure 3.2, we find that most datasets are still collecting
data through the current day. The two notable exceptions are the education dataset (EDUW)
and the Children in Need Wales Dataset (CINW). The EDUW dataset, which has not
collected new data since 2019, was likely affected by school closings due to COVID-19,
which hindered the ability to collect education data with a high level of precision. Moreover,
the CINW database became the CRCS dataset following the enactment of the Social Services
and Well-being (Wales) Act in April 2016. The CINW and CRCS datasets provide similar
information relating to children in need with substantial overlap.

3.2.2 Delphi Study Identifying Risk Factors

In order to improve the understanding of the diverse risk factors relevant to mental health
prediction, Katherine Parkin and others undertook a rapid review and Delphi process that iden-
tified over 250 variables grouped into seven domains: social and environmental, behavioural,
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education and employment, biomarkers, physical health, psychological and mental health,
and patterns of service use. A special eighth domain highlighting risk factors especially
pertinent for underserved populations was also included. The risk factors from the Delphi
study were then mapped by Katherine Parkin to the variables in the SAIL databank for use
as clinical prediction features. This process included cross-referencing all risk factors from
the Delphi with all variables from SAIL in order to identify which risk factors were directly
measurable or derivable from the variables present within SAIL, leading to the creation of
the list of variables used in these analyses.

3.2.3 Social Care Datasets

In order to keep analysis tractable, I have focused my ML development methods on in-
dividuals with social care data available. The social care datasets are particularly helpful
because they contain a variety of pertinent risk factors (substance misuse, disability status,
etc.) combined with lower levels of data missingness. As mentioned above, the Children In
Need Wales (CINW) Dataset precedes the Children Receiving Care and Support (CRCS)
Dataset, and both datasets contain information for children who have a care and support plan.
Looked after children also have a care and support plan so they comprise a subset of this
population.

There are 31,423 individuals with data present within CINW, 26,041 individuals with
data present within CRCS, and 10,772 individuals in both datasets. In total, there are 46,704
unique individuals with social care data who will form the cohort explored in this work. In
situations where individuals have data present in both datasets, all applicable data is used for
prediction. Variables were also included from the other 18 datasets, as long as the variable of
interest had missing values for less than 70% of the individuals within the social care cohort.

3.2.4 Time Series Feasibility and Dataset Splitting

Many EHR methods have shown success by utilizing LSTM or RNN model structures to
model time-series data [17, 48, 50]. Hence, I critically assessed the possibility of utilizing
methods that explicitly model time for child mental health prediction. The variables included
within the model all contain time stamps which indicate when the individual experienced
that risk factor. However, the social care data stems from an annual census. Thus, this lack
of granular time series data led me to avoid explicitly modelling time within the model. In
addition, the frequency of many timestamps is irregular, the time stamps may not correspond
to when risk factors actually occurred, and there is some missingness for time stamps. Hence,



14 Characterization of SAIL Database

although I lose some important temporal information by not explicitly modelling time, this is
the only viable decision and provides additional flexibility in our computational approach
that will be explored in later sections.

To follow with standard conventions and ensure that model performance is not over-
estimated, the dataset is randomly split such that 70% of individuals fall into the training
dataset, 15% into the validation dataset, and 15% into the testing dataset. This corresponds
to 32,692 individuals in the training set, 7,006 individuals in the validation set, and 7,006
individuals in the test set.

3.3 Dataset Characterization

3.3.1 Demographic Information

After linkage and extensive data cleaning was completed, characterization of the dataset
ensued to gain a deeper understanding of the information present within the dataset. Informa-
tion from the Welsh Demographic Service Dataset (WDSD) was utilized to conduct analyses
of the biological sex (Table 3.1), age (Table 3.2), and ethnicity (Table 3.3) of all individuals
within the cohort. Age is calculated for the entire cohort as of January 1st, 2022.

Table 3.1 Distribution of Biological Sex within Cohort

Biological Sex # of Individuals Percent of Cohort
Male 25,179 53.91

Female 21,525 46.09
Total 46,704 100
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Table 3.2 Distribution of Age within Cohort

Age # of Individuals Percent of Cohort
4-7 1644 6.21

8-11 7,926 16.97
12-15 11,124 23.82
16-19 11,455 24.53
20-23 9,355 20.03
24-27 3,989 8.54
Total 46,704 100

Table 3.3 Distribution of Ethnicity within Cohort

Ethnicity # of Individuals Percent of Cohort
Asian 855 1.83
Black 542 1.16
Mixed 1,317 2.82
Other 3,122 6.68
White 40,868 87.50
Total 46,704 100

Table 3.1 shows that the cohort consists of 46,704 individuals with a larger percentage
of males than females with social care data. I will explore whether this discrepancy in data
quantity for different genders affects model performance in Chapter 5. In Table 3.2, we can
see that the age bands containing the highest number of individuals are 12-15 years and
16-19 years. The youngest individual within the social care dataset is 4.69 year old, the oldest
individual within the dataset is 26.02 years old, the median age of individuals within the
dataset is 16.49 years, and the mean age of individuals within the dataset is 16.41 years. It is
important to note that many individuals within the cohort are no longer considered youth as
the CINW dataset has been in existence since 2010. However, although the individual may
no longer be a minor, their associated social care data and other pertinent information utilized
in the model are taken from their childhood years. Table 3.3 demonstrates that the dataset is
comprised predominantly of White children with non-White children comprising just 12.50%
of the dataset. This lack of ethnic diversity is important to consider when assessing model
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generalizability, and the impact of ethnicity on model performance and health equity will be
explored in Chapter 5.

3.3.2 Missing Data

In order to gain greater insight into methodological approaches suitable for this cohort, an
initial assessment of missing data was conducted. Missing data was calculated both on an
individual level and on a variable level. Nonsense values such as a birth weight of 0.0 grams
or a maternal age of 215 years were classified as missing data. The missing data on a per
individual level is shown in Figure 3.3, where the y-axis is the count of individuals within
that specific bin.

Fig. 3.3 Percentage of SAIL Variables with Missing Data Per Person

Figure 3.3 shows that individuals typically have a relatively small amount of missing
data, and most individuals have missing data for less than 20% of variables included within
the model. The mean percent of variables missing for an individual is 10.35%, the median
is 9.09%, the minimum is 0.00%, and the maximum is 51.51%. This intermediate level
of missingness indicates that the dataset likely has data that is of sufficient quality for
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meaningful ML prediction. Missing data is also assessed on the level of variables in Figure
3.4, where the y-axis indicates the number of variables within that specific bin.

Fig. 3.4 Percentage of Missing Values Per SAIL Variable

Examining the percentage of missing values per variable in Figure 3.4, we can identify
that many variables have less than 10% of their values missing. These variables with low miss-
ingness predominantly correspond to variables from the social care datasets and demographic
variables like age and gender. Other variables have substantially larger missingness including
some variables that are missing data for over 50% of individuals within the cohort. These
variables with large amounts of missingness predominantly relate to health variables like
birth weight and Apgar scores. The mean percent of values missing per variable is 10.36%,
the median is .95%, the minimum is 0.00%, and the maximum is 64.82%. Techniques for
addressing this missing data are explored in Chapter 6.

3.3.3 Description of Variables

Variables from the social care CINW/CRCS datasets as well as variables from the other
datasets were cleaned and prepared for use. Categorical variables are listed in Table 3.4 and
continuous variables are listed in Table 3.5.
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Table 3.4 SAIL Categorical Variables Included in Modelling Approach

Variable Name Dataset
Asylum Seeker Status CINW/CRCS

Autistic Spectrum Disorder Status CINW/CRCS
Breastfeeding Status (Birth) MIDS

Breastfeeding Status (8 Weeks) MIDS
Category of Need CINW/CRCS

Child Protection Register Status CINW/CRCS
Dental Check Status CINW/CRCS
Disability (Memory) CINW/CRCS
Disability (Mobility) CINW/CRCS

Disability (None) CINW/CRCS
Disability (Sensory) CINW/CRCS

Free School Meal Status EDUW
Gender WDSD

Health Surveillance Checks Status CINW/CRCS
Immunizations Status CINW/CRCS

Labour Onset NCCH
Looked After Child Status CINW/CRCS

Maternal Smoking NCCH
Parenting Capacity (Domestic Abuse) CINW/CRCS

Parenting Capacity (Learning Disabilities) CINW/CRCS
Parenting Capacity (Mental Health) CINW/CRCS

Parenting Capacity (Physical Health) CINW/CRCS
Parenting Capacity (Substance Misuse) CINW/CRCS

School Exclusion Category EDUW
Substance Misuse CINW/CRCS

Urban/Rural Status ADBE
Youth Offending Status CINW/CRCS
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Table 3.5 SAIL Continuous Variables Included in Modelling Approach

Variable Name Dataset
Age WDSD

Apgar 1-Minute NCCH
Apgar 5-Minute NCCH

Birth Weight NCCH
Gestation Age NCCH

Welsh Index of Multiple Deprivation WDSD

Since I focused solely on individuals with social care data, many of the variables come
from the social care datasets because these variables are more likely to meet the minimum
criteria for amount of complete data necessary for inclusion. Some of the variables used for
modelling relate to an individual’s early life and child development (maternal smoking status,
birth weight, etc.), while some relate to basic demographic data (sex, age, urbanicity, etc.),
and others relate to difficult childhood experiences (disabilities, domestic abuse, substance
misuse, etc.). Taken together, these variables contain diverse information relating to risk
factors relevant at many different stages of an individual’s life course.

3.3.4 Diagnosis and Operation Data

Some of the richest clinical information contained in the SAIL database is found within
diagnosis codes and operation codes. Diagnosis codes within SAIL are predominantly
found in the PEDW and OPDW datasets and follow the format of ICD-10, a medical
classification list that contains hierarchical codes for diseases, signs and symptoms, and
social circumstances. Operation codes are also found within SAIL in the PEDW and OPDW
datasets and follow the format of the OPCS-4 Classification of Interventions and Procedures,
a medical classification list that contains hierarchical codes for operations. Any codes that
begin with "F" within ICD-10 are removed because these codes relate to mental health and/or
neurological disorders. Read codes from GP data are also incredibly information-rich, but
their heterogeneity and variability make them quite difficult to use, so they are not explored
in this study.

Despite the importance of this clinical information, it is difficult to incorporate diagnosis
and operations data into clinical models due to the high dimensionality and sparsity of this
data; consequently, rare diseases and operations often do not have sufficient data for accurate
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prediction. Within this cohort, there are 6,325 unique diagnosis codes and 4,080 unique
operation codes. 79.43% of individuals have a diagnosis listed within their clinical data
and 48.15% of individuals have an operation listed. There are 626,728 total diagnoses and
224,007 total operations. The relative frequency of each of these diagnostic clinical codes
is shown in Figure 3.5 and the frequency of each of these operation clinical codes is shown
in Figure 3.6, where data is presented in a similar way to [48] with the red dashed line
representing the mean frequency.

Fig. 3.5 Distribution of Operation Occurrence in Cohort
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Fig. 3.6 Distribution of Diagnosis Occurrence in Cohort

As shown in Figure 3.5 and Figure 3.6, the distribution of diagnoses and operations are
both heavily skewed. Most diagnoses and operations in the data are exceedingly rare while a
small number are quite common. This disparity in data frequency will be addressed in the
following chapter. Since the diagnosis data includes mental health diagnoses, this information
could be combined with read codes from the GP data to measure mental health diagnoses for
children in the cohort. Utilizing this approach could be helpful to both validate the quality
of the mental health information within the social care data and gain more granular data on
diagnoses for prediction. By using established code lists [22], one could use this diagnosis
data for measurement of mental health outcomes for mental health prediction algorithms.
Although this approach was not utilized for this thesis, it is currently being explored by other
members of Dr. Anna Moore’s research team.

3.3.5 Measuring Mental Health Outcomes

The accurate measurement of mental health outcomes is critical to the overall performance
and viability of the methods. The health status of individuals within the social care databases
is tracked over time including monitoring of their mental health status. In the social care
datasets, positive mental health status corresponds to individuals diagnosed with mental
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health problems by a medical practitioner or individuals on a waiting list for such services.
These diagnoses include mental health problems such as depression, eating disorders, and
self-harming. However, the diagnoses do not include learning disabilities or substance misuse
if they are not accompanied by other mental health issues. Utilizing the data provided from
the social care datasets, I measured the mental health status of the cohort. Results are shown
in Table 3.6.

Table 3.6 Mental Health Status of SAIL Cohort

Mental Health Status # of Individuals Percent of Cohort
Positive 6,706 14.36
Negative 39,998 85.64

Total 46,704 100

Overall, we can see in Table 3.6 that the vast majority of individuals within the dataset
(85.64%) do not have a diagnosed mental health problem. Hence, the dataset is unbalanced
since there are many more healthy children than children with mental health issues; this issue
of class imbalance will be tackled in later sections. The class imbalance in the dataset is
likely exacerbated by the underdiagnosis of mental health issues within children since many
cases of children experiencing mental illness go undetected [21]. Children who experience
barriers to receiving proper psychiatric support may be especially likely to have a missed
diagnosis.

Given the binary nature of the mental health labels, I frame the prediction problem
as a classification problem discriminating between the presence/absence of mental health
problems rather than classifying more specific mental health pathology. I therefore will
frame this predication task as one of binary classification. This choice to focus on binary
classification of mental health is supported by the literature. Interventions relating to child
mental health are often similar regardless of the underlying pathology. Moreover, prior
research has shown that the labels of a psychiatry diagnosis are not sufficient to create
high-performing models due to the fact that psychiatric diseases are often heterogeneous,
multifactorial, and highly comorbid [40, 29]. Together, these factors make psychiatric
diseases particularly difficult to disentangle. These diagnostic challenges can be magnified
for children. Various approaches to dealing with the heterogeneous nature of mental health
labels exist such as predicting symptoms or functional consequences [29]. However, this
work will focus upon the presence/absence of any mental health disorder as our primary
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outcome measure. Although a degree of granularity is lost with this approach, it provides the
best modelling approach given the limitations of the data.

There are two classes of tasks related to the prediction of child mental health: diagnosis
and prognosis. Diagnosis refers to assessing whether an individual currently is experiencing
mental illness. In contrast, prognosis refers to assessing whether an individual will experience
mental illness in the future. Due to the low quality of time assessments, the most natural
formulation for early identification of child mental health is diagnosis. Further, diagnosis
most closely aligns with existing node prediction tasks within the GNN literature. Now that I
have described the SAIL database in depth and defined the prediction task, the next chapter
will build upon this characterization work by focusing on the development of similarity
metrics that utilize the SAIL Databank for graph construction.



Chapter 4

Similarity Metrics for Graph
Construction

4.1 Motivation

GNN models provide additional predictive power by incorporating information from a node’s
neighbors into the feature representation for that node. In our prediction task, we intend
to create a neighborhood that informs the prediction of child mental health. Thus, the
overall goal of the creation of these similarity metrics is to group together individuals who
share pertinent characteristics that may be predictive of their mental health status. Hence,
by exploring various similarity metrics, we aim to create an intelligent graph structure
that will provide additional predictive power by creating edges between "similar" patients.
This approach can be interpreted as adding sparsity to the graph structure. Although a
fully-connected graph could theoretically recreate this structure, the approach proposed
here decreases noise and lowers computational overhead during training and evaluation of
GNNs. However, one distinct disadvantage of these methods is that they are computationally
intensive. This computational overhead is driven by the pairwise computations which have a
computational complexity of O(n2), where n is the number of patients in the dataset.

4.2 Data Preparation for Similarity Metrics Calculation

To prepare the data for similarity metrics calculation, I converted all categorical variables
to one-hot encodings. To ensure that continuous and categorical variables have a similar
magnitude of impact on similarity metric calculations, continuous variables were mapped to a
categorical space by splitting each continuous variable into five bins, each bin containing 20%
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of the data. In addition, for both categorical and continuous variables, I represented missing
data as its own unique value within the model with a corresponding one-hot encoding.

Information relating to diagnoses and operations was also incorporated into the similarity
metrics. Due to the high dimensionality of this data, there is no standard way of incorporating
this information into clinical models. In this application, to ensure that the diagnosis
information does not dominate the score of the similarity metrics, I implemented a prevalence
cut-off of 5% for all 2-character codes. I chose to focus solely on the first two characters of
the ICD-10 and operations codes because 2-character codes represent a broad category of
related diseases. For example, the ICD-10 code "E0" refers to disorders of the thyroid gland.
Although this approach inherently leads to the loss of pertinent disease information, this
intermediate level of granularity is likely sufficient for modelling the association between
physical health diagnoses and adverse mental health events. Utilizing this approach, I
included 34 unique diagnoses and seven unique operations as variables for the similarity
metrics. These diagnoses and operations were incorporated into the model using one-hot
encodings.

4.3 Baseline Similarity Metric

As a baseline, I first focused on an approach that assigns equal weight to each feature. Given
the one-hot encodings described above, the similarity metric can then be defined for patient i
and patient j as:

Mi, j = ∑
f∈Features

1[ fi = f j] (4.1)

The similarity score can then be normalized by dividing by the total number of features to
yield a score that varies from 0 to 1. This normalized metric is defined such that Mi,i = 1
and such that two patients who share no features in common have a similarity score of
0. Although the simplifying assumption of equal importance of features is limiting, this
approach is unsupervised, satisfies the principle of parsimony, and provides the additional
benefit of not requiring the use of any learnable parameters.

However, this method is quite limited in its expressive power. For instance, this method
treats all features independently and does not account for associations between features.
Furthermore, closely tied to the No Free Lunch Theorem in ML, this approach directly
incorporates the patient data first into the formation of the graph and later into the node
features of the graph. Hence, there is a substantial redundancy of model information that
could limit the viability of this approach. Figure 4.1 shows an assessment of whether the top
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five closest individuals based upon this similarity metric are more likely to have the same
mental health outcome for all individuals within the validation set.

Fig. 4.1 Discriminative Performance of Baseline Distance Metric

In Figure 4.1, the top dashed black line corresponds to the percentage of individuals
without a mental health diagnosis in the cohort (85.64%), while the bottom dashed black line
corresponds to the percentage of individuals with a mental health diagnosis (14.36%). In this
and subsequent analyses, error bars are not included due to computational constraints. One
would expect a similarity metric that has no predictive power to have performance roughly
corresponding to these dashed lines based upon random chance alone. Model performance
for the validation dataset is above the dashed lines indicating that the metrics are performing
above the level of null performance. Individuals positive for mental health on average have
25.62% of their five closest neighbors also positive for mental health in the validation cohort.
Overall, these results indicate that this baseline similarity metric provides utility in helping
to discriminate between individuals with and without a mental health diagnosis. The results
are nearly identical for both the training set and validation set, an unsurprising result given
that this approach does not contain any parameters that are trained using the training data.
Since the following metrics will all be trained on the training data, performance will only be
shown on the validation cohort.
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4.4 Full Diagnosis Graph Approach

This section builds on, and follows the notation of, the work previously done by Rocheteau
et al. [48]. ICD-10 diagnoses are first transformed into a matrix of size m by N where m
represents the number of unique diagnoses and N represents the number of patients. To
maintain the hierarchical structure, diagnoses are included at each class level. If the specific
code is "G11.2", then "G", "G1", "G11", and "G11.2" will all be included. A prevalence
cut-off of .5% is applied, corresponding to keeping 673 out of the 7,613 total diagnoses.
Since diagnoses are hierarchical, if a diagnosis does not meet the prevalence threshold, it
will still be included via any parent classes that meet the threshold. The diagnostic similarity
score MD

i, j of two patients i and j can be defined as:

MD
i, j = a

m

∑
µ=1

(DiµD jµ(d−1
µ + c))−

m

∑
µ=1

(DiµD jµ) (4.2)

In Equation 4.2, a and c are tunable constants and dµ refers to the frequency of a
specific diagnosis. This equation corresponds to assigning greater similarity to patients who
share more diagnoses, while upweighting the importance of sharing a rare diagnosis and
downweighting individuals with many diagnoses.

In the original paper detailing this similarity metric method [48], they solely looked
at diagnoses. Given that the SAIL dataset also contains operation codes, I conjecture that
there could be additional predictive power from also incorporating in information regarding
operations. Applying the same prevalence cut-off, we keep 74 out of the 3,174 total operations.
Then, the operations similarity score MO

i, j of two patients i and j can be defined as:

MO
i, j = a

m

∑
µ=1

(OiµO jµ(o−1
µ + c))−

m

∑
µ=1

(OiµO jµ) (4.3)

To ensure that the two similarity scores are in a form amenable to combination, each
diagnostic and operation raw score is converted to a percentile. To account for the different
scales of the metrics, the percentiles are computed for operations and diagnoses separately.
Then, the similarity scores can be combined using Equation 4.4.

Mi, j = α ∗MO
i, j +(1−α)∗MD

i, j (4.4)

By using α , we can assess the performance of a metric incorporating information from both
the diagnoses and operations, while weighting which information receives more attention.
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An α value of 0 would correspond to only considering diagnosis information, an α value
of .5 would correspond to equal weighting, and an α value of 1.0 would correspond to only
considering operations information. Results from assessing this metric on the validation set
can be seen in Table 4.1 and Figure 4.2.

Table 4.1 Discriminative Performance of Full Diagnosis/Operation Similarity Metric on
Validation Set

α Value % Same Neg % Same Pos
0 87.32 16.46
.1 86.45 17.42
.2 88.74 15.64
.3 88.56 15.46
.4 88.67 15.46
.5 88.55 15.40
.6 88.59 15.38
.7 87.50 12.62
.8 88.59 15.2
.9 88.50 15.36

1.0 92.18 10.06

(a) Performance for individuals with mental
health diagnosis

(b) Performance for individuals without mental
health diagnosis

Fig. 4.2 Discriminative Performance of Full Diagnosis/Operations Graph as Function of
Weighting Term α
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In Table 4.1 and and Figure 4.2, the model tends to perform better when giving more
weight to the diagnosis information than to the operations information. This aligns with our
intuition because individuals in the dataset tend to have many more diagnoses than operations.
In fact, more than 50% of individuals have no operations information at all. In this and
subsequent analyses, I will focus predominantly upon the ability of the distance metric to
cluster individuals with a mental health diagnosis rather than the ability to cluster individuals
without a mental health diagnosis. I choose this focus because there is substantially more
variance in the performance of clustering of individuals with a mental health diagnosis and
because clustering individuals with a mental health diagnosis will be more important for
the future prediction task. The model achieves the best performance with an α value of .1,
corresponding to weighting the diagnosis information as nine times more important. However,
even for this optimal setting of α , the performance for both classes is only marginally better
than chance.

It is important to note that this approach cannot be directly compared to the other ap-
proaches as it does not take into account all of the variable information; rather, this framework
attempts to insert additional information into the model by intelligently incorporating infor-
mation from rare diagnoses. Nevertheless, the metric does not contribute much predictive
capability. This finding stands in stark contrast to the performance of this general approach
in the context of length of stay prediction in the Intensive Care Unit (ICU) where the metric
greatly improves model performance. This discrepancy can likely be attributed to the nu-
anced relationship between diagnosis information and child mental health prediction [6]. For
instance, individuals with a chronic health issue are more likely to experience depression [5].
Additionally, children oftentimes accumulate physical health diagnoses on their way to an
ultimate mental health diagnoses [14]. Hence, physical and mental health are inextricably
linked, and the relationships between the two may be difficult for this metric to effectively
untangle in this dataset. In contrast, the relationship between diagnostic history and length of
stay in an ICU may be more easily modelled by this approach.

4.5 Standard Autoencoders

Autoencoders are a family of artificial neural networks that learn efficient codings of data in
an unsupervised fashion. They consist of an encoder which maps the input data through a
series of layers to a latent space and a decoder which then attempts to regenerate the input
from the representation in the latent space [25]. The motivation underlying the application
of autoencoders to this task stems from the inability of simple similarity metrics like those



30 Similarity Metrics for Graph Construction

described above to model associations between features. Thus, by mapping to a reduced
latent space, I hope to model the underlying associations between different features in order
to create a similarity metric that more accurately separates individuals based upon their
mental health status.

The form of the autoencoder applied to this problem follows a simple structure. It consists
of an encoding layer comprised of a singular hidden layer with ReLU activations, a bottleneck
layer (called the latent layer in this thesis), and a decoding layer that mirrors the structure of
the encoding layer to map back to the input space. This particular autoencoder structure can
be seen in Figure 4.3 using a graphic created with NN-SVG.

Fig. 4.3 Autoencoder Structure (Number of Nodes Not to Scale)

The model utilizes an L2 loss function over the latent space, as defined by Equation 4.5
where X is the original input and X̂ is the reconstructed input created by the autoencoder.

Reconstruction Loss = (X − X̂)2 (4.5)

To use the autoencoder as a similarity metric, the autoencoder model is first trained
to effectively reconstruct the data by training on the training dataset. After training, the
encoding portion of the autoencoder network can be used to create latent space embeddings
for each patient. Euclidean distance is then utilized to measure distance between vectors in
this latent space. In this framework, increased similarity scales with decreased Euclidean
distance in the latent space. Performance of the autoencoder was assessed using various sizes
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for both the hidden layer the latent layer. The results on the validation dataset are shown in
Table 4.2 and Figures 4.4-4.5.

Table 4.2 Discriminative Performance of Autoencoder Similarity Metric with Networks of
Varying Size

Latent Layer Size Hidden Layer Size % Same Neg % Same Pos
10 25 88.48 24.52
10 50 88.43 22.46
10 75 88.54 22.88
10 100 88.10 21.98
15 25 88.21 22.02
15 50 89.14 26.16
15 75 88.34 22.44
15 100 87.87 22.22
20 25 88.79 23.60
20 50 88.30 24.70
20 75 88.32 22.66
20 100 88.52 23.00
25 25 88.73 24.14
25 50 88.35 23.32
25 75 88.45 23.9
25 100 88.91 24.38
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Fig. 4.4 Discriminative Performance of Autoencoder Similarity Metric with Networks of
Varying Size (Individuals with Mental Health Diagnosis)

Fig. 4.5 Discriminative Performance of Autoencoder Similarity Metric with Networks of
Varying Size (Individuals without Mental Health Diagnosis)
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Examining Table 4.2 and Figures 4.4-4.5, all models achieve relatively similar results
which are on par with the results from the baseline approach. There are not any easily
discernible trends relating to the impact of the size of layers on model performance. The
model with a latent layer size of 15 and a hidden layer size of 50 appears to achieve the best
performance. 89.14% of the top five closest neighbors for an individual without a mental
health diagnosis do not have a mental health diagnosis, and 26.16% of the closest neighbors
for an individual with a mental health diagnosis also have a mental health diagnosis. This
analysis could be expanded by also exploring how altering the number of decoding layers and
encoding layers could affect model performance. It is possible that deeper networks could
improve model performance. Nonetheless, the results as presented indicate that distance
between encoded points in this latent space is a sensible metric.

It is important to note the trade-off inherent in choosing the dimension of the latent space.
In typical autoencoder models, smaller latent spaces protect against overfitting by forcing the
model to learn an effective lower-dimension representation, while larger latent spaces provide
additional modelling flexibility that allows for more effective reconstruction of training data
points. In our specific case, there exists a trade-off between how faithful the reconstruction
is to our original data points and the ability to learn a useful dimensionally-reduced latent
representation.

4.6 Dual-Loss Autoencoders

Experiments from the previous section validate the approach of using autoencoders to
calculate distances between patients in a reduced latent space. Expanding upon this idea,
I assessed how an additional loss function could further induce the latent space to learn
a representation helpful for classifying individuals. An output layer with a single node is
connected to the latent bottleneck layer, while the rest of the model framework including
the decoding layer is left unaltered. This output layer is utilized to predict the mental health
status of an individual. The structure of this additional use of the latent layer can be seen in
the diagram in Figure 4.6, which is created using NN-SVG. The strucuture includes a sigmoid
activation on the output layer and the use of binary cross entropy loss with a weighted loss
function (described in detail in Chapter 5) which is not propagated through the decoding
layer.
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Fig. 4.6 Partial Autoencoder Structure for Dual-Loss (Number of Nodes Not to Scale)

The rationale underlying this dual-loss structure is to learn a latent space structure that is
useful for both reconstruction of the original input and prediction of an individual’s mental
health status. Balancing the training of these two different loss functions can be achieved by
introducing a weighting term as described in Equation 4.6.

Loss Total = α ∗ (Reconstruction Loss)+(1−α)∗ (Prediction Loss) (4.6)

The autoencoder model is trained on the training data with the two loss functions. Then,
the encoding portion of the autoencoder network is used to create latent space embeddings
for each of the training points with Euclidean distance utilized to measure similarity in this
latent space. Model performance using various latent layer sizes and values for α is shown in
Table 4.3 and Figures 4.7-4.8. All analyses are conducted with a hidden layer size of 100 for
both the encoding layer and decoding layer, and performance is assessed on the validation
dataset.
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Table 4.3 Discriminative Performance of Dual-Loss Autoencoder Similarity Metric with
Varying Latent Layer Size and Varying α

Latent Layer Size ααα % Same Neg % Same Pos
10 .9 87.54 23.46
10 .75 88.25 23.18
10 .5 88.47 24.92
10 .25 89.52 28.72
10 .1 89.77 29.90
10 .01 89.45 30.94
15 .9 88.45 23.38
15 .75 88.22 25.56
15 .5 88.87 24.50
15 .25 89.51 28.70
15 .1 89.59 29.98
15 .01 89.35 32.38
20 .9 89.18 25.64
20 .75 88.81 24.02
20 .5 89.27 26.22
20 .25 89.36 29.36
20 .1 89.88 29.84
20 .01 89.55 31.96
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Fig. 4.7 Discriminative Performance of Dual-Loss Autoencoder Similarity Metric with
Varying Latent Layer Size and Varying α (Individuals with Mental Health Diagnosis)

Fig. 4.8 Discriminative Performance of Dual-Loss Autoencoder Similarity Metric with
Varying Latent Layer Size and Varying α (Individuals without Mental Health Diagnosis)
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In Table 4.3 and Figures 4.7-4.8, the model with the best performance has a latent layer
with 15 nodes and uses an α of .01, corresponding to weighting the prediction loss as 99
times more important than the reconstruction loss. Overall, models with lower values of α

typically perform superior to the models with higher values of α . This weighting trend is
partially explained by the reconstruction loss typically being an order of magnitude larger
than the prediction loss for this specific task. This difference in magnitude cannot fully
account for the effect, indicating the importance of the prediction loss in identifying an
effective latent space. The training dynamics for the best-performing metric with 15 nodes in
the latent layer and an α of .01 can be seen in Figure 4.9.

Fig. 4.9 Training Dynamics Dual-Loss Autoencoder (Loss Weighted by Alpha Value)

In Figure 4.9, we can see that the model is able to drive down both the reconstruction
loss and the prediction loss, effectively creating a latent space that is well-suited for both
tasks. Although the model focuses predominantly on driving down the prediction loss, the
model is able to effectively achieve solid performance on both tasks. Finally, in order to
better understand the dynamics of the latent space created by the autoencoder, t-SNE with
two dimensions was used to visualize the latent space for the best-performing Dual-Loss
autoencoder for two different random seeds. Results are shown in Figures 4.10- 4.11.
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Fig. 4.10 2-Dimensional t-SNE Visualization of Latent Space of Best-Performing Dual-Loss
Autoencoder 1st Seed

Fig. 4.11 2-Dimensional t-SNE Visualization of Latent Space of Best-Performing Dual-Loss
Autoencoder 2nd Seed
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Figures 4.10- 4.11 demonstrate that the latent space is able to effectively cluster individu-
als with a mental health diagnosis. In this two-dimensional space, individuals with a mental
health diagnosis are often surrounded by other individuals with a mental health diagnosis in
various hubs dispersed throughout the graph. Moreover, in the bottom right of Figure 4.10
and the bottom left of 4.11, there are regions of the graph dominated by individuals without
mental health diagnoses. Overall, these results vindicate the choice of dual-loss autoencoder
for its ability to induce a latent space that separates individuals with and without a mental
health diagnosis. Conducting a more thorough interpretation of the t-SNE space could prove
informative. For instance, one could assess which characteristics of individuals correspond
to areas dominated by individuals with high risk of mental health disorders.

4.7 Comparing Similarity Metrics

To assess the relative advantages of each technique, the best performing models from each of
the different approaches are collated and compared in Figure 4.12.

(a) Performance for individuals with mental
health diagnosis

(b) Performance for individuals without mental
health diagnosis

Fig. 4.12 Discriminative Performance Comparison of Best-Performing Similarity Metrics

Figure 4.12b demonstrates the all four models perform comparably for individuals
without a mental health diagnosis, though the diagnostic graph approach shows slightly
worse performance. However, for individuals with a mental health diagnosis, the dual-loss
autoencoder demonstrates superior performance where individuals with a positive mental
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health diagnosis are, on average, grouped with 31.58% other individuals with a mental
health diagnosis, more than two times greater than the expected value based upon the mental
health prevalence of 14.36% in the dataset. Both the baseline and single-loss autoencoder
approaches demonstrate solid performance as well. In order to assess how the inclusion of
these metrics for graph construction affects GNN model performance, the baseline metric
and top-performing dual-loss autoencoder will be utilized for graph construction for GNNs
in the following chapter.



Chapter 5

Mental Health Prediction With Graph
Neural Network Models

5.1 Motivation

Having created similarity metrics that help to cluster individuals, I will now evaluate the
performance of these metrics. This assessment will focus on two similarity metrics (dual-loss
autoencoder and baseline similarity metric) and three GNN layer types (SAGE, GAT, and
MPNN). Performance of GNNs will be compared to a baseline NN model, and the potential
of the derived models to exacerbate disparities in care will be explored by conducting analyses
of model fairness.

5.2 Data Preparation

Data was prepared following the same procedure for the similarity metrics with minor changes
reflecting the difference in the tasks. To retain the most information from continuous variables
while normalizing data magnitudes, continuous variables were standardized using sample
means and standard deviations with absolute cut-offs applied at ±4 standard deviations from
the mean. To retain as much useful clinical information as possible, a prevalence cut-off
of 2.5% was used for diagnosis and operation codes, leading to the inclusion of 61 unique
diagnoses and 26 unique operations. The similarity/distance metrics were passed as edge
attributes for MPNN models.

In the dataset, there are many more healthy individuals than individuals with a mental
health diagnosis; thus, accuracy is a misleading metric as a model could trivially obtain high
accuracy by predicting all children to be healthy. To address this problem, the weight of the
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training samples are adjusted to obtain a classifier with real-world utility. The formula for
weighting is shown in Equation 5.1 for individuals with a mental health diagnosis and shown
in Equation 5.2 for individuals without a mental health diagnosis.

Positive Weight =
Number of Samples

2∗ (Number of MH + Individuals)
(5.1)

Negative Weight =
Number of Samples

2∗ (Number of MH - Individuals)
(5.2)

There is a prevalence of mental health diagnoses of 14.36% in this dataset, corresponding
to a positive class weight of 3.48 and a negative class weight of 0.58. This is equivalent to
upweighting the loss of the positive samples by approximately six times. To account for the
trade-off between performance on the positive samples and negative samples, AUROC is
utilized as the primary assessment of model performance. AUROC can be interpreted as
representing the probability that a classifier will rank a randomly chosen positive instance
higher than that of a randomly chosen negative instance [12]. For cases of extreme class
imbalance where there is low value in true negative decisions, AUPRC has been proposed as
an effective measure. Since class imbalance is not incredibly large and there is substantial
value in true negative decisions (correctly identifying a children without a mental health
diagnosis) in this context, I designate AUROC as the primary metric. I use AUPRC as a
secondary metric to obtain a more nuanced view of overall model performance. Finding an
ideal threshold that balances the clinical impact of false positives and false negatives is left
for future work.

5.3 Baseline Models

To my knowledge, no one has attempted to predict child mental health using SAIL data; as
such, there are no existing benchmarks against which I can evaluate model performance.
Thus, in order to assess the additional predictive power afforded by graphical methods, ML
models that treat the variables within SAIL as a flat bag-of-features will be assessed as
baselines. Within the psychiatry field, meta-analyses have noted that simpler models can
provide comparable performance to more complex models with high levels of interpretability
[55, 51]. This is especially true in clinical settings with a low signal to noise ratio [40]. As
such, basic Neural Network (NN) models of varying size will be utilized as our baseline for
model comparison.



43 Mental Health Prediction With Graph Neural Network Models

Baseline NN models contain the same features as the node features for the GNN models.
The Multilayer Perceptron (MLP) models devised for this baseline task are evaluated with
varying sizes and numbers of hidden layers. By assessing model performance for increasingly
complex models, I aim to identify the best-performing baseline NN for mental health
prediction. Models are implemented using a binary cross entropy loss function with ReLU
activations between the layers. Initial results from these models can be seen in Table 5.1 and
Figure 5.1.
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Table 5.1 Model Performance of MLPs of Varying Configurations

Number of Layers Number of Nodes Maximum AUC Validation
2 20 .786
2 40 .792
2 60 .789
2 80 .792
2 100 .791
4 20 .786
4 40 .787
4 60 .792
4 80 .789
4 100 .792
6 20 .784
6 40 .790
6 60 .788
6 80 .790
6 100 .787
8 20 .622
8 40 .610
8 60 .568
8 80 .541
8 100 .591

10 20 .579
10 40 .593
10 60 .525
10 80 .529
10 100 .500
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Fig. 5.1 Model Performance of MLPs of Varying Configurations

Table 5.1 visualizes model performance and Figure 5.1 indicates that performance quickly
degrades with too may layers, while the number of nodes per layer does not appear to have
a substantial impact on model performance. Most network configurations with less than
eight layers perform comparably. I chose the overall best-performing model on the validation
dataset, a model with four layers and 60 nodes per layer trained for 250 iterations. Training
dynamics for the model are shown in Figure 5.2 and results for the model are compared to
GNN models in Table 5.2.
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Fig. 5.2 Training Dynamics of Best-Performing Baseline MLP Model with 4 Layers and 60
Nodes Per Layer

The training dynamics shown in Figure 5.2 indicate that the model is able to quickly
learn with performance peaking at 250 iterations and the model subsequently overfitting the
training data. This overfitting is evident as the training performance continues to increase
past 500 iterations, while the validation performance declines after 250 iterations.

5.4 Structure of GNNs

Patient graphs are constructed using the similarity metrics derived and validated in the
previous section. These graphical structures consist of patients as nodes with directed edges
and edge weights representing similarity relationships between patients. Different methods
for graph construction such as establishing a similarity threshold for edge creation could
be utilized. However, to ensure that all nodes have neighbors and no nodes dominate as
connectivity hubs, each node is connected to itself and the N other closest patients, where N
is treated as a hyperparameter. As such, the in-degree of each node is fixed to N, while the
out-degree of each node is not restricted. This general graph structure for a single example
node is shown in Figure 5.3.
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Fig. 5.3 Sample Patient Graph Used for GNN Prediction

In Figure 5.3, patients with higher degrees of similarity have a thicker line connecting
them. For instance, Patient A and Patient B are more similar demographically and share
a diagnosis of Type 1 Diabetes. This similarity is reflected in the thicker edge connecting
them. All of the similarity metrics explored are designed such that patients are more similar
to themselves than to any other patient within the dataset.

For this prediction task, an inductive learning approach is undertaken, following the
neighborhood sampling techniques proposed by Hamilton et al. [18]. During training, nodes
and their neighbors are sampled only from the training set. During testing, nodes are sampled
from the test set but neighbors are sampled from both the training set and the test set. The
same approach is used to evaluate performance on the validation set. The following GNN
layer types are explored: Graph Attention Networks, GraphSAGE, and Message Passing
Neural Networks. GraphSAGE and Graph Attention Networks are implemented with two
layers. All three models are coded using PyTorch-Geometric.
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5.5 Hyperparameter Search and Model Results

To identify optimal model performance settings, an extensive hyperparameter grid search
is conducted. This hyperparameter search evaluates models with the two top-performing
similarity metrics, varying numbers of neighbors, and different internal model parameters.
The best-performing models on the validation set for each layer type and similarity metric
are retained. The specific model configurations for top-performing models can be found
in the Appendix. Performance is calculated on the validation set and test set with AUROC
values and AUPRC values averaged over 15 runs, and results are reported in Table 5.2 with
95% confidence intervals for error margins. Figure 5.4 compares AUROC results on the test
set and Figure 5.5 compares AUPRC results on the test set.

Table 5.2 Performance Comparison of GNN Models

Model Sim Metric AUROC Val AUPRC Val AUROC Test AUPRC Test
NN NA .781 ± 5.7e-4 .409 ± 1.9e-3 .800 ± 1.1e-3 .441 ± 2.1e-3

SAGE Baseline .802 ± 6.9e-4 .438 ± 1.5e-3 .815 ± 7.0e-4 .481 ± 1.4e-3
SAGE Dual-Loss Auto .778 ± 1.1e-3 .386 ± 2.3e-3 .797 ± 9.0e-4 .413 ± 3.9e-3
GAT Baseline .773 ± 3.2e-4 .382 ± 2.4e-4 .783 ± 9.1e-4 .427 ± 2.0e-3
GAT Dual-Loss Auto .769 ± 6.4e-4 .369 ± 6.4e-4 .780 ± 4.1e-4 .380 ± 1.6e-3

MPNN Baseline .790 ± 1.2e-3 .425 ± 1.9e-3 .807 ± 6.9e-4 .467 ± 2.1e-3
MPNN Dual-Loss Auto .762 ± 2.1e-3 .361 ± 4.4e-3 .773 ± 1.7e-3 .380 ± 6.3e-3
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Fig. 5.4 Comparison of AUROC Model Performance on Test Set

Fig. 5.5 Comparison of AUPRC Model Performance on Test Set
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The best-performing model in Table 5.2 on the test dataset is the SAGE model using
the baseline similarity metric for graph construction, which achieves an AUROC of .815,
a modest but statistically significant improvement over the baseline NN. It is also worth
noting the good performance of MPNN and SAGE configurations with both of these models
achieving superior performance in comparison to the baseline NN model. In contrast, the
GAT models perform slightly worse than the baseline NN model, indicating that this model
type may not be well-suited to this particular task. It is possible that the GAT models are
not able to effectively apportion the attention between neighbors, leading to overfitting and
inferior model performance.

For all GNN models, performance is improved using the baseline autoencoder for patient
graph construction, though the extent of improvement varies based upon layer type. This
is a surprising result since the dual-loss autoencoder demonstrated superior discriminative
performance compared to the baseline metric in Chapter 4. It is possible that there is a
more complicated relationship than expected between effectively separating individuals into
groups based upon output label and improving GNN performance. One initial conjecture
is that the problem stems from the α value of .01 for the dual-loss autoencoder. Since this
alpha value corresponds to prioritizing the prediction loss over reconstruction loss, it is
possible that individuals in this latent space may be similar in terms of mental health status
but starkly different in terms of their input features. Since individuals in a neighborhood may
not share many risk factors, GNN model performance may be affected. Further experiments
are necessary to disentangle this relationship.

It is also interesting to note that all models performed better on the test set than on the
validation set, despite being tuned for performance on the validation set. It is likely that the
overall trends relating risk factors and mental health outcomes observed in the test set are
more similar to those in the training set than the trends in the validation set. That is, due to
chance and the relatively small size of the datasets, the test set tends to be "easier." Finally,
scores from AUROC generally aligned quite well with AUPRC scores, and the SAGE model
with baseline similarity metric achieved the top scores for both metrics. For this specific
task, both metrics appear similarly suited to assess model performance. In relation to clinical
utility, the performance of the best-performing model with an AUROC of .815 is promising.
A model that performs at this level could merit usage as a predictive tool for measuring child
mental health and staging interventions for children at high risk. However, external validation
of the model and determination of an optimal model threshold would be necessary before
clinical application of such a model should be pursued. Collectively, the results indicate
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that infusing additional information into the model via a graph structure provides additional
predictive benefit.

5.6 Model Fairness

Algorithmic fairness has gained increasing traction within the ML community in recent years
[47]. Within the healthcare field, the need for fair AI models to address existing healthcare
disparities and prevent further magnification of biases is particularly important. A landmark
study in 2019 found evidence of substantial racial bias in an algorithm used for millions of
patients for helping to predict patients with complex health needs [43]. Hence, in order to
better understand how well this model performs for individuals with different identities, the
fairness of the GNN models is evaluated for two salient characteristics: biological sex and
ethnicity. Algorithmic fairness is a nebulous term that encapsulates many different definitions.
Three of the most commonly used definitions of fairness are: demographic parity, predictive
parity, and equalized odds. To complicate the situation, the impossibility theorem of fairness
[26] states that no two of these three metrics can be true at the same time for a well-calibrated
classifier and an attribute that could introduce bias.

In our specific task, demographic parity refers to parity in the prevalence of positive
mental health predictions for the groups of interest. Since demographic parity only assessees
the rate of positive predictions and not the quality of these predictions, this metric will be
discarded in favor of the other two fairness metrics. Equalized odds parity is satisfied when
the True Positive Rate (TPR) and True Negative Rate (TNR) are equivalent for the groups
of interest. TPR is oftentimes referred to as sensitivity, while the TNR is referred to as
specificity. Predictive parity, in contrast, is satisfied when the Positive Predictive Value (PPV)
and Negative Predictive Value (NPV) are equivalent for the groups of interest. Equations for
these four values are shown for reference in Equations 5.3-5.6. For all four metrics, a higher
value indicates better performance than a lower value.

T PR =
T P

T P+FN
(5.3)

T NR =
T N

T N +FP
(5.4)

PPV =
T P

T P+FP
(5.5)

NPV =
T N

T N +FN
(5.6)
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All assessments of equity are conducted on the test dataset using the best performing
models from the previous section. The statistical values relating to these fairness metrics are
shown in Table 5.3 for equalized odds and Table 5.4 for predictive parity.

Table 5.3 Equalized Odds Model Comparison (Biological Sex)

Model TPR Women TPR Men TNR Women TNR Men
Baseline .688 .707 .760 .754
SAGE .690 .665 .780 .782
GAT .678 .684 .769 .752

MPNN .740 .741 .733 .718

Table 5.4 Predictive Parity Model Comparison (Biological Sex)

Model PPV Women PPV Men NPV Women NPV Men
Baseline .343 .315 .931 .941
SAGE .364 .328 .933 .936
GAT .348 .307 .929 .937

MPNN .335 .296 .939 .945

The models assessed in Table 5.3 operate at relatively similar thresholds, effectively
balancing the TPR and TNR. There are no easily identifiable performance biases related
to biological sex for either predictive parity or equalized odds. All four models achieve
relatively equivalent TPR and TNR for men and women. The MPNN stands out as showing
exceptional gender parity with nearly equivalent TPR for women and men and an increased
TNR for women compared to men. Since the models assessed in Table 5.4 attempt to balance
TPR and TNR and the baseline prevalence of mental health diagnoses within the cohort of
14.36%, the corresponding PPV and NPV are quite imbalanced. In practice, this corresponds
to a much higher rate of false positives which drive down the PPV. In relation to gender equity,
the models again do not demonstrate any easily-identifiable biases, though women generally
have a lower NPV but higher PPV in the models. It is refreshing to see that the model
achieves relative parity with respect to predictions based upon biological sex, especially
given that there are more males than females in the cohort. Similar analyses for ethnicity
are shown in Table 5.5 and Table 5.6 for equalized odds and Table 5.7 and Table 5.8 for
predictive parity.
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Table 5.5 Equalized Odds Model Comparison (Ethnicity Pt. 1)

Model TPR Asian TPR Black TPR White TNR Asian TNR Black TNR White
Baseline .286 .500 .702 .923 .811 .746
SAGE .429 .333 .680 .966 .919 .767
GAT .143 .500 .686 .906 .919 .745

MPNN .429 .500 .746 .880 .797 .713

Table 5.6 Equalized Odds Model Comparison (Ethnicity Pt. 2)

Model TPR Mixed TPR Other TNR Mixed TNR Other
Baseline .769 .667 .799 .810
SAGE .692 .688 .832 .850
GAT .731 .667 .799 .846

MPNN .731 .729 .754 .799

In contrast, the results relating to equalized odds for ethnicity show some disparities in
model performance. For instance, the TPR of Asian and Black children within the dataset
is substantially lower than that of White children, indicating that the mental health crises
of Black and Asian children would be identified less often with clinical implementation of
this tool. Although the corresponding TNR for Black and Asian children is higher, it is still
disconcerting to see a differential in model performance based upon ethnicity. Trends relating
to model performance for children of mixed ethnicity and children of an ethnicity other than
those listed are not as easily discernible. It is likely that this difference in model performance
for Black and Asian children stems from differences in representation within this dataset,
as Asian children comprise only 1.83% of the dataset while Black children comprise only
1.16% of the cohort. Bias in data and model performance may occur when there is unequal
representation of groups [27]; further, the smaller amount of data for these individuals leads
to greater variance in calculations of fairness metrics. One general solution to these problems
is to increase the diversity of the dataset [37], but this approach is not viable in this scenario
as this dataset contains all individuals within Wales with social services contact. Hence,
up-sampling approaches such as SMOTE [7] could be utilized, though these methods could
lead to a trade-off between aggregate model performance and model equity.
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Table 5.7 Predictive Parity Model Comparison (Ethnicity Pt. 1)

Model PPV Asian PPV Black PPV White NPV Asian NPV Black NPV White
Baseline .182 .176 .333 .956 .952 .933
SAGE .429 .250 .345 .966 .944 .930
GAT .083 .333 .327 .946 .958 .929

MPNN .176 .167 .319 .963 .952 .940

Table 5.8 Predictive Parity Model Comparison (Ethnicity Pt. 2)

Model PPV Mixed PPV Other NPV Mixed NPV Other
Baseline .357 .274 .960 .958
SAGE .375 .330 .949 .962
GAT .345 .317 .953 .959

MPNN .302 .280 .951 .965

The results in Table 5.7 and Table 5.8 indicate that predictive parity biases related to
model performance across ethnicities are also present within these models. For instance,
the PPV for White children tends to be higher than the PPV for Black and Asian children.
Again, this is partially offset by an increased NPV for Asian and Black children, but the
results are troubling. Future work could explore the applications of methods to reduce these
biases when making predictions for groups with less data. Moreover, although discrepancies
in model performance due to biological sex and ethnicity were explored, this work does not
comprise a comprehensive analysis of model equity. For instance, one could also look into
other salient characteristics that may affect model performance including data missingness,
socioeconomic status, disability status, and intersectional identity. The ensuing chapter will
expand upon the GNN models trained and evaluated in this section by delving into issues of
missing data and model interpretability.



Chapter 6

Interpretability of Graph Attention
Networks and Missing Data Methods

6.1 Motivation

Having evaluated model performance in the previous chapter, I now focus in this chapter
upon analysis of GNN interpretability and applying Feature Propagation (FP) in hopes of
improving model performance. This chapter thus seeks to further refine GNN methods in
order to increase their potential clinical utility.

6.2 Feature Propagation Methods

6.2.1 General Feature Propagation

The GNN layer types assessed in this work impose strict assumptions that all nodes contain
full feature sets. However, this assumption rarely holds up in practice, especially within
the healthcare domain. Missing data is a rampant problem within healthcare data that often
reduces the predictive power and generalizability of developed models [57]. In the SAIL
dataset, some nodes are missing up to 50% of their features. Although various techniques
like mean imputation can be used, these techniques are not ideally suited for GNNs since
they do not take advantage of the graph structure. Rossi et al. proposed a general approach
for addressing this problem using an iterative method that they named Feature Propagation
(FP) [49]. In this method, unknown features are first initialized to arbitrary values, values are
then propagated via the normalized adjacency matrix, and known features are then reset to
their ground truth value. These operations are run until convergence [49]. Since there is a
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large amount of missing data within the SAIL dataset, I will apply the FP method to attempt
to improve model performance for individuals with substantial missing data.

6.2.2 Feature Propagation for Missing Data

FP was implemented by adapting code from the GitHub associated with the paper from Rossi
et al. [49]. Distinct advantages of FP include its low computational overhead and efficient
convergence. Results for this technique applied to the models from Chapter 5 are shown in
Table 6.1. Results relating to the AUROC of different models on the test set are visualized in
Figure 6.1.

Table 6.1 Feature Propagation for Missing Data GNN Model Performance

Model Sim Metric AUROC Val AUPRC Val AUROC Test AUPRC Test
SAGE Baseline .798 ± 8.2e-4 .428 ± 1.7e-3 .810 ± 1.1e-3 .474 ± 1.5e-3
SAGE Dual-Loss Auto .781 ± 8.9e-4 .388 ±2.6e-3 .796 ± 9.1e-4 .416 ± 3.7e-3
GAT Baseline .761 ± 3.9e-3 .355 ± 1.4e-2 .769 ± 4.0e-3 .399 ± 1.2e-2
GAT Dual-Loss Auto .766± 8.2e-4 .362 ± 2.5e-3 .776 ± 1.0e-3 .377 ± 1.8e-3

MPNN Baseline .784 ± 1.8e-3 .422 ± 1.2e-3 .802 ± 1.4e-3 .461 ± 2.0e-3
MPNN Dual-Loss Auto .758 ± 3.1e-3 .360 ± 2.6e-3 .769 ± 2.4e-3 .379 ± 5.3e-3
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Fig. 6.1 Comparison of AUROC Model Performance on Test Set for Feature Propagation of
Missing Data

These models using FP tend to perform comparably or slightly worse than the models
without FP, opposing the trend of improved performance found by Rossi et al. [49]. For the
SAIL dataset, it is likely that missingness of data is pertinent information that the model
should incorporate. Hence, by propagating node feature values from surrounding nodes,
this signal regarding the importance of data missingness is smoothed over and lost. This
indicates that retaining this information related to data missingness could be conducive
to model performance. From a clinical perspective, the importance of missing data lends
credence to the idea that patterns of service use could be predictive of mental health status.
For example, having numerous healthcare contacts or very few healthcare contacts could
both be concerning as an indicator that a child is not doing well. In this vein, neglect could
be a potential contributing factor to missingness of data. Moreover, the original datasets
upon which FP was evaluated do not incorporate the diverse node features encountered
in this dataset. For instance, when propagating missing values for a categorical variable
with five different possible values, five different node features corresponding to the one-hot
encodings are updated. This creates a new hybrid categorical variable dissimilar from all
other non-missing values in the dataset.
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6.2.3 Feature Propagation for Output Label Propagation

During the training and evaluation process, the output labels of a node’s neighbors are an
unused piece of information. Hence, I expanded the use of FP by applying it to output label
propagation. In this formulation, an extra node feature is added for each node that I will call
the node output feature. To ensure that the model does not have access to the output label
when making a prediction for a specific node, the value for that specific node output feature
is treated as "missing." Then, the FP algorithm is applied for the node output feature, creating
a new representation for that feature which is an aggregation of the node output features of
all of the node’s neighbors. Since this method requires a graph that changes for each node
to predict, it must be implemented using a batch size of one. Results from this method can
be seen in Table 6.2. Results relating to the AUROC of different models on the test set are
visualized in Figure 6.2. In order to compare model performance across different techniques,
results from the best models without FP, with FP for missing data, and with FP for output
label are shown in Figure 6.3.

Table 6.2 Feature Propagation for Output Label Propagation GNN Model Performance

Model Sim Metric AUROC Val AUPRC Val AUROC Test AUPRC Test
SAGE Baseline .788 ± 2.2e-3 .422 ± 3.8e-3 .803 ± 2.5e-3 .462 ± 2.6e-3
SAGE Dual-Loss Auto .763 ± 1.9e-3 .344 ± 3.7e-3 .776 ± 2.3e-3 .367 ± 4.0e-3
GAT Baseline .771 ± 6.5e-3 .395 ± 8.8e-3 .785 ± 5.8e-3 .441 ± 7.1e-3
GAT Dual-Loss Auto .771 ± 1.9e-3 .371 ± 2.9e-3 .783 ± 1.4e-3 .389 ± 2.1e-3

MPNN Baseline .783 ± 2.3e-3 .421 ± 5.8e-3 .806 ± 2.4e-3 .468 ± 5.3e-3
MPNN Dual-Loss Auto .769 ± 3.6e-3 .384 ± 6.0e-3 .782 ± 3.4e-3 .394 ± 9.8e-3
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Fig. 6.2 Comparison of AUROC Model Performance on Test Set for Feature Propagation of
Output Label

Fig. 6.3 Comparison of AUROC Model Performance on Test Set for Best-Performing Models:
Baseline NN (NN), No Feature Propagation (No FP), Feature Propagation for Missing Data
(FP Miss Data), Feature Propagation of Output Labels (FP Output)
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The best-performing model in Table 6.2 on the test dataset is the MPNN model using the
baseline metric for graph construction, which achieves an AUROC of .806. The SAGE model
with baseline metric and MPNN model with baseline metric achieved the best performance
in all analyses indicating the broad flexibility and solid performance of these two GNN types.
In relation to aggregate performance, inclusion of the output label propagation does not affect
model performance substantially. Figure 6.3 demonstrates that the best-performing model
without FP outperforms both forms of FP. It is important to note that the FP models for
output labels did not undergo an extensive hyperparameter tuning specific to the new batch
size of one, so it is possible that performance gains could be even greater and the variance in
model performance smaller with hyperparameters tuned specifically to this task. Although
this FP method for output labels is limiting in that it requires running FP for every node
independently, it is worth continuing to explore the additional predictive benefit that this
knowledge of the output labels of a node’s neighbors provides.

6.3 Graph Interpretability Methods

6.3.1 Motivation

In healthcare settings, model interpretability is a critical prerequisite to clinical adoption.
Model interpretability is crucial because physicians feel more comfortable incorporating
interpretable models into their clinical decision-making and interpretable models are more
amenable to the identification and minimization of pernicious biases and inequities [60].
Like algorithmic fairness, interpretability within ML is a nebulous term generally referring
to methods that provide insight into model functioning that help humans understand what is
going on inside of the "black box." For the purposes of this thesis, interpretability can be
broken down more concretely into two categories: model-level interpretability and instance-
level interpretability. Model-level interpretability refers to methods that provide high-level
and general explanations for model performance without reference to a specific example. In
contrast, instance-level methods provide input-dependent explanations of model outputs by
identifying important input features [61].

In this work, I will only address instance-level methods as these methods are most
important for clinical decision-making situations in which it is important to understand how a
model arrived at a specific decision. Specifically, due to the built-in interpretability of GATs
through learned attentional weights [16, 56], I will conduct an analysis of the additional
information related to model performance that these attentional weights provide and how the
interpretability of these models could be applied to the clinical domain for child mental health
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prediction. GATs allow this implicit specification of different weights on neighborhood
nodes through self-attention over node features. Thus, for a prediction regarding a patient,
GATs provide an interpretable weight for the impact of neighboring nodes on prediction.

6.3.2 Baseline Interpretability

A logistic regression model was trained using the training data to gain insight into model
performance and the variables important for model prediction. Model weights for each of the
different features are shown in Figure 6.4.

Fig. 6.4 Baseline Variable Importance Analysis (Weights Given by Logistic Regression
Model)

No single variable dominates the model, which indicates that a variety of features play a
role in the prediction of child mental health. Some of the risk factors that are most predictive
of a mental health diagnosis are: substance misuse (largest coefficient), youth offending
status, and having a Black or Indian ethnicity. Intriguingly, all of these risk factors relate to
characteristics specific to the individual, rather than characteristics that also relate to one’s
family situation like physical ill health of parents or domestic abuse. A complete exploration
of the importance of individual variables is beyond the scope of this study.
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6.3.3 Graph Attention Network (GAT) Interpretability

The best-performing GAT model on the test dataset from Chapter 5 was used for all inter-
pretability analyses. I first analyzed how the central node attention weight varies based upon
the number of neighbors present in the model. Results from this analysis are shown in Figure
6.5.

Fig. 6.5 Variability in Central Node Weight of GAT By Neighborhood Size

In Figure 6.5, the blue line refers to the average weight on the central node from the
head in the first attention layer, the orange line refers to the average weight on the central
node over all heads in the second layer, and the green line shows the trend that one would
expect if the weight on the central node was equivalent to the weight of all neighboring nodes.
Unsurprisingly, the weight on the central node decreases as more neighbors are added. The
second layer generally follows the baseline trend expected with increasing neighbors, while
the first layer maintains a higher average weight on the central node. This indicates that the
first layer may focus more on the features of the central node, while the second layer with its
additional modelling complexity may focus more on features of surrounding nodes.

Additionally, I looked into whether the model is able to deduce a relationship between
the quality of data in the central node (represented by the amount of missingness in the node
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features) and the corresponding weight on the central node in the first layer. If the model is
able to deduce a relationship, one would expect that the model would place less weight on
the central node in situations where the node features of that node have higher missingness.
An analysis of this relationship is shown in Figure 6.6 with a scatter plot of the variables and
a regression model describing the fit of the two variables.

(a) Relationship between 1st Layer Central Node
Weight GAT and Data Missingness

(b) Relationship between 2nd Layer Central
Node Weight GAT and Data Missingness

Fig. 6.6 Scatter Plot and Regression Line Between Central Node Weight GAT and Data
Missingness

In Figure 6.6a, we can see that there is a weak relationship between data missingness
and central node weight, with increasing missingness correlating with decreased central
node weight. In contrast, in Figure 6.6b, there is not a relationship between the amount of
missingness in the node features and the weight of the central node. Hence, the first layer of
the model may be discerning a weak relationship between data quality and output certainty,
borrowing information from neighbors when the central node data is missing. It is possible
that this relationship is not stronger because the missingness of data remains informative for
model prediction.

6.3.4 Clinical Utilization of Graph Attention Weights

Graph attention weights provide for the possibility of adding additional interpretable infor-
mation for individuals making decisions based upon model outputs. For instance, it would
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be possible to build a dashboard where physicians could see the result of the model for
an individual, the neighbors of that particular individual, and the relative weight that the
model afforded to each neighbor. By gaining an understanding of how the model took into
account the graph structure of the data to output a label, physicians may gain greater trust
in the model. This concept of making decisions regarding patient care based upon previous
experiences with similar patients in the past is an integral aspect of how physicians make
decisions using their own clinical judgement [24]. This similarity between approaches could
lead to greater up-take of these algorithms. It is important to note that GNNs are complicated
models, so physicians would require proper educational support regarding ML methods and
GNN methods specifically.



Chapter 7

Conclusion and Future Directions

7.1 Synopsis of Salient Points

By exploring the intersection of GNN models and child mental health, I have endeavored
to integrate clinical knowledge into the development and evaluation of ML methods. Using
similarity metrics derived from patient characteristics in conjunction with GNN models
constitutes a broadly applicable technique that can provide a boost in model performance
over standard NN methods. Although these methods provide only a modest performance
boost for this dataset, it is possible that there could be a greater performance boost in more
extensive datasets with lower data missingness and greater time stamp data. Moreover, the
results relating to algorithmic fairness based upon biological sex and ethnicity highlight
how biases in data quality can affect model performance. Thus, great caution should be
exercised and fairness should be evaluated when applying ML methods to datasets where
gender or ethnic minorities comprise only a small portion of the dataset population. This
caution should be magnified for health datasets where model decisions translate to medical
consequences in order to avoid exacerbating existing healthcare disparities. Moreover, my
explorations of GAT attentional weights demonstrate that these weights can be helpful for
both instance-level interpretability by providing intuitive descriptions of the relative impact
of neighbors on model output and model-level interpretability by showcasing how the model
functions differently based upon missing data and the number of neighbors.

From a clinical perspective, this work constitutes an important contribution. With the best-
performing model achieving an AUROC of .815, these methods merit strong consideration for
implementation in a clinical setting. The strong performance of models on this dataset also
indicates that integrating educational, social care, and health data is integral to development
of a holisitic and effective model. Moreover, despite the importance of early identification of
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child mental health problems, there is little work on using ML to predict child mental health
with existing studies often limited based upon size or generalizability [39, 19, 53]. In this
vein, the linked SAIL dataset is one of the largest and most informationally diverse datasets
used for prediction of mental health status in children. Another finding of particular interest
to psychiatry is that missing data can itself be predictive. For mental health specifically,
it is likely that missing data is heavily tied to patterns of service use and the fact that an
individual has fewer contacts with services may be predictive of their mental health status.
Hence, in further analyses of datasets related to mental health, great care should be taken to
appropriately handle missing data to harness its predictive potential.

7.2 Limitations

It is important to recognize that the generalizability and clinical utility of these findings
are affected by a variety of limitations. By explicitly listing out the limitations of this
work, I hope that future researchers will be aware of the inherent difficulties and biases
associated with the research approach adopted and will be able to identify ways to avoid
being encumbered by such limitations. Where applicable, I have also listed the ways in
which I have worked to remediate the difficulties associated with these limitations.

7.2.1 Dataset Limitations

The first substantial limitation encountered was the overall quality of the SAIL data. The
lack of time stamp granularity hindered our ability to model the data utilizing time-series
approaches like RNNs. Hence, I was limited to modelling the dataset utilizing a structure
that is static in time, which may have hindered model performance. The quality of the
metadata for the various datasets was often quite poor, forcing me to to make assumptions
regarding the meaning of values or omit otherwise useful indicators. Additionally, the
dataset suffers from the presence of significant missing data. These problems were partially
remediated by limiting the cohort to only include individuals with social care encounters and
was additionally addressed by exploring various methods such as FP for missing data. It is
important to note that, by choosing to focus solely on individuals with social care encounters,
the overall generalizability of the model to the entire youth population of Wales is greatly
diminished.

In addition to the aforementioned quality of temporal data and data missingness, the
SAIL cohort lacks key parental information that could be invaluable for model prediction.
Since our dataset contains only children, the models do not have access to maternal data or
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other important data on family members. This limited our ability to assess the exposure of
children to ACEs as this data is often contained within the health records of parents, rather
than the health records of patients. For instance, a study assessing a similar linked database
for children found that 72.3% of ACEs were found only in maternal records [54]. Overall, it
is important to recognize that the overall performance of these models is inextricably linked
to the quality of the data; thus, improving the quality of temporal data and decreasing levels
of missingness in future datasets will be integral to overall model performance success.

7.2.2 Modelling Limitations

Specific modelling limitations have been discussed in previous chapters where applicable.
Thus, this section seeks to address the broad modelling limitations present within this project.
To begin, the project focuses solely upon prediction, rather than clinical utility. Although
accurate model prediction is a precursor to clinical utility, high accuracy is not sufficient
for a model to be effectively integrated into healthcare practice. Accuracy is one small
piece of a more complicated implementation system that depends on factors including
model interpretability, model robustness, clinical decision-making, and effectiveness of
interventions. Thus, by focusing solely upon model prediction, the utility of this model in a
clinical setting is limited without further evaluation.

Another model limitation is that I focused solely on binary classification of presence
versus absence of a mental health diagnosis rather than delving more thoroughly into different
subtypes of mental health diagnoses. Specific mental health disorders are particularly difficult
to diagnose in children given the overlapping symptomology of different disorders and the
complications with disentangling general child development from abnormal psychiatric
disorders. Although the interventions related to child mental health disorders are somewhat
agnostic to mental health subtype, predicting disease subtype could be helpful in increasing
the diagnostic potential of this approach. Furthermore, since the outcome labels are likely
skewed towards including mental health diagnoses for individuals with more severe mental
health problems and groups with greater access to services, it is incredibly difficult to build an
equitable classifier. Although I did not extensively explore methods to build more equitable
classifiers, I conducted an initial exploration of model equity by assessing model performance
for two salient characteristics of individuals (biological sex and ethnicity).

Finally, computational resources were limited. Due to concerns regarding privacy of
patient data, SAIL maintains its own proprietary systems for providing additional processing
power and RAM. Hence, although money from a grant was allocated towards processing
power within SAIL for this project in April 2022, access to the increased processing power
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was not provided during the timeframe this study was conducted. This limited my ability to
conduct comprehensive experiments addressing all possible combinations of methods.

7.3 Future Directions

The approaches detailed in this work illuminate a variety of intriguing possibilities for
future research directions. The most direct path forward for this avenue of research is
implementation of similar GNN methods within the CAM-Child database. Since the CAM-
Child database will share salient characteristics with the SAIL database, many of the lessons
learned from applying ML methods to SAIL will be directly applicable. Although the
implementation challenges and details will inevitably vary for the CAM-Child database, it
is my hope that this thesis provides key insights into handling linked data for child mental
health prediction.

More broadly, this thesis provides a generic framework for building out clinically mean-
ingful patient graphs. The framework involves a process of first utilizing similarity metrics
to group together similar patients and then applying a GNN model over the graph structure
to make predictions. This framework is adaptable to any number of prediction tasks. Thus,
explorations of this generic framework to other datasets where shared characteristics of
observations could provide predictive value are merited. In particular, the application of
distance metrics to the latent space of autoencoders warrants greater exploration. Further ex-
periments could assess whether variational autoencoders can achieve improved performance.
Clustering patients using these similarity metrics is particularly intriguing. Similarity metrics
harnessing data relating to risk factors, symptoms, and genetic data could help to identify
clinically meaningful and interpretable subgroups of patients that help inform our clinical
understanding of complex disease phenotypes. This methodological framework for clustering
could be especially powerful for applications within psychiatry given the variability and
heterogeneity of psychiatric diagnoses.

Further, this project contains initial investigations into GNN model interpretability with a
focus on GAT models. My initial results suggest that attentional weights increase the clinical
utility of GATs and more in-depth assessments of the interpretability of Graph Attention
Network methods could prove helpful. Specifically, more nuanced analyses of the impact of
different input variables on model prediction could improve the interpretability and clinical
utility of these approaches. Finally, future work could account for a more nuanced view of
mental health diagnoses that looks specifically at subtypes like major depression or splits
prediction into other meaningful categories. For instance, one meaningful clinical distinction
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that could by explored is delineating between internalizing problems, which are defined by
depressive and anxious symptoms as well as somatic symptoms and social withdrawal versus
externalizing problems, which are characterized by aggressive or oppositional behavior [58].

7.4 Final Remarks

Reflecting upon this work as a whole, one unifying theme is the interdependent and symbiotic
connection between Machine Learning and medicine. In practice, clinical knowledge and ML
expertise are often siloed with poor communication between physicians and ML scientists.
As we attempt to move towards the implementation of precision medicine and applying
ML models effectively and equitably to address systemic biases, this dual clinical and
ML perspective will prove invaluable. Through constructive conversations with my two
supervisors, I am incredibly thankful to have been privy to these fruitful discussions between
ML and clinical experts. In the future, I look forward to continuing to straddle the line
between ML and medicine by fostering collaborations with individuals across the two
disciplines.
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Appendix A

A.1 Best-Performing GNN Models

Details regarding the hyperparameters of the best-performing GNN models are listed below.

1. For the SAGE model using the baseline similarity metric, the learning rate was .01,
weight decay was .0005, number of neighbors was 4, size of hidden layer was 128, and
the model was run for 275 iterations.

2. For the SAGE model using the dual-loss autoencoder similarity metric, the learning
rate was .01, weight decay was .0005, number of neighbors was 2, size of hidden layer
was 16, and the model was run for 50 iterations.

3. For the GAT model using the baseline similarity metric, the learning rate was .005,
weight decay was .0005, number of neighbors was 2, size of hidden layer was 16,
number of heads was 4, and the model was run for 100 iterations.

4. For the GAT model using the dual-loss autoencoder similarity metric, the learning rate
was .0005, weight decay was .0005, number of neighbors was 2, size of hidden layer
was 16, number of heads was 4, and the model was run for 125 iterations.

5. For the MPNN model using the baseline similarity metric, the learning rate was .01,
weight decay was .00005, number of neighbors was 2, size of hidden layer was 32,
number of steps was 2, and the model was run for 50 iterations.

6. For the MPNN model using the dual-loss autoencoder similarity metric, the learning
rate was .01, weight decay was .00005, number of neighbors was 2, size of hidden
layer was 32, number of steps was 3, and the model was run for 75 iterations.
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