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Abstract

Data has powered incredible advances in machine learning (ML). Yet, the kinds of data used
for training are often hard labels aggregated over humans’ annotations, which fail to capture
the richness of disagreements across humans, as well as the uncertainty of any individual
in their annotation. And while synthetically-generated data has played a key role in ML
development, it is not always clear whether the generated data aligns with human perception,
which may be important to ensure model trustworthiness. Can additional forms of human
knowledge be leveraged to inform the design of better supervisory signals for ML systems to
improve downstream generalization, calibration, and robustness?

Here, we review existing works aimed at eliciting and incorporating additional forms of
human knowledge and identify two key gaps: 1) the use of soft labels elicited from individual
humans, and 2) the alignment of synthetically-generated data with human perception. We
address these gaps by conducting several human crowdsourced studies and computationally
investigating whether labels constructed using the elicited information enables models trained
to enjoy performance gains. However, we find that eliciting rich information from humans is
expensive and suffers from scaling challenges. In light of these limitation, we also consider
using a small amount of elicited human knowledge to inform the design of automated training
procedures.

We therefore contribute to the empirical study of how ML systems could be improved
through additional human knowledge. We also release to the community with a new collection
of soft labels for CIFAR-10 – a dataset we release as CIFAR-10S, as well as (we believe) the
first set of human labelings over synthetically-generated mixup training examples.
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Chapter 1

Introduction

1.1 Motivation and Overview

Machine learning (ML) has the potential to profoundly impact many areas of society from
healthcare to criminal justice. However, as these systems increasingly permeate many aspects
of our life, we want to ensure that they can be trusted and are reliable (Avin et al., 2021;
Hendrycks and Dietterich, 2019; Tran et al., 2022; Zerilli et al., 2022). This means, in part,
that models should be able to handle unseen data (generalize), produce calibrated predictions
which faithfully capture ambiguity (Guo et al., 2017), and be robust to both adversarial and
natural perturbations (Hendrycks and Dietterich, 2019; Madry et al., 2017).

How can we achieve these desirable properties? While significant gains have come from
new algorithmic developments, for instance in probabilistic machine learning Ghahramani
(2015), we argue there is immense, complementary potential in collecting and leveraging
other forms of human knowledge to improve machine learning performance. Humans
possess knowledge which typically is not in ML systems (Lake et al., 2017; Marcus, 2018;
Shneiderman, 2022) and the idea of how human knowledge may differ from that of a machine
has a storied history (Turing, 1950).

Here, we focus on ways in which additional human knowledge can be incorporated into
the data used to train ML systems. As data has been a key driver of ML success, there
has been a rise in interest in the datasets used in ML, such as the push for data-centric ML
(Lawrence, 2019; Mazumder et al., 2022) and calls for more transparency over data use (Díaz
et al., 2022; Gebru et al., 2021; Paullada et al., 2020; Prabhakaran et al., 2021). Exploration
into the the kind of information we elicit from humans to form our training sets has potential
to substantially impact the development of better ML systems.

Many of the datasets today are formed from the elicitation of hard labels from humans.
While combining the annotations of many humans to form a label which represents annotator
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disagreement (Davani et al., 2022; Uma et al., 2022) has been found to be beneficial in
learning (Nguyen et al., 2013; Peterson et al., 2019; Uma et al., 2020), we argue that that
these labels are lossy. Constraining each annotator to only provide a single label does not
empower an individual to express their confidence in the annotation, nor their belief in any
alternative categories. In this work, we study whether ML systems can be improved by
training on soft labels elicited from every individual annotator, particularly in the realistic
setting when fewer humans annotators are available.

Moreover, the majority of works which do center around incorporating additional human
knowledge do so over naturally available examples (e.g., an image of cat), rather than
synthetically-generated data. Understanding human alignment of synthetic examples is
especially important as synthetic training data become even more commonplace in the ML
development cycle (de Melo et al., 2022; Jordon et al., 2022). Here, we make a step towards
investigating whether and how human perceptual knowledge over synthetically created
examples can be leveraged to impact model behavior – both directly and through simulated
mimicry of human knowledge. We focus on the data generated when using mixup (Zhang
et al., 2017).

Our case studies address the value of different kinds of human knowledge that can
be incorporated to improve model performance, as well as how to handle when we have
information from many humans. We provide an optimistic, albeit nuanced, view of the
prospects of human knowledge-based machine improvements – which contributes to a deeper
understanding of how training examples can be elicited and constructed to support the the
development of more trustworthy ML systems.

1.2 Contributions

In this dissertation, we contribute:

1. A taxonomy of the kinds of human knowledge which have been, and can further be
elicited, with a survey of methods for aggregating information from many humans.

2. Three human knowledge elicitation studies involving the elicitation of under-
addressed forms of human knowledge (soft labels from every human over classical
CIFAR-10(Krizhevsky, 2009) images; human inferences over the generative process
of synthetic examples, including human confidence; and human soft labels over said
synthetic examples). We release our CIFAR-10 soft labels in the form of a new dataset,
dubbed CIFAR-10S.
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3. A preliminary attempt at constructing of a “soft label simulator” using the statistics
of CIFAR-10S.

4. A thorough empirical investigation into the most effective way to leverage soft label
knowledge from humans to most improve performance.

5. The first, to our knowledge, exploration of the correspondence of human percepts
over the synthetic training examples used in mixup (Zhang et al., 2017).

6. An investigation into the impact of aligning mixup labels with human percepts on
model performance.

7. Three extensions of traditional mixup inspired by our human user studies to encour-
age softness in mixup: 1) utilizing a new clamped entropy-weighted loss, and 2)
mixing over endpoints which leverage human-elicited and simulated human soft
label knowledge. A third early-stage method of human-grounded sigmoid-based
mixing transformation is included in the Appendix.

1.3 Thesis Plan

The dissertation is structured as follows:

• Chapter 2: We define what we mean by “additional human knowledge” and lay
the mathematical groundwork for . We provide a taxonomy for some of the ways
human knowledge may be incorporated and review related work on the kinds of human
knowledge being elicited for use in ML. We overview literature around how to handle
information elicited from many humans.

• Chapter 3: We address a gap in the kinds of knowledge elicited from humans,
specifically, through the collection of soft labels from every human. We compare
the labels we elicit to those constructed by the more standard method of aggregating
many humans’ elicited hard labels, and study their impact on model performance as a
function of number of human annotators and total annotation time. We investigate how
best to utilize our elicited soft labels during training.

• Chapter 4: A second class of human knowledge is considered, now over synthetic
examples. We focus on the synthetically created examples used in mixup training
(Zhang et al., 2017). We study the alignment of human perceptual knowledge and
labels traditionally used in mixup through a novel human crowdsourcing paradigm. We
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then explore the impact on model performance of relabeling such examples at training
time with human elicited knowledge.

• Chapter 5: A follow-up human user study is conducted to address the question
of whether humans perceive different category structure in labels than is typically
assumed in the labels used in mixup to train ML systems. Inspired by our human data,
we propose two measures of encouraging “softnesss” in models’ predicted distributions.
We also introduce a novel simulator for human soft label creation, connecting back
with the work of Chapter 3.

• Chapter 6: We discuss several exciting directions which arise from this work and ad-
dress limitations and key challenges in the incorporation of elicited human knowledge
within the ML community.

• Chapter 7: We conclude with a summary of the dissertation with central takeaways.

1.4 Relation to Submitted Papers

The work in this dissertation encompasses and expands on two papers completed during the
timeline of the thesis (March 2022 onwards). Both papers were submitted to AAAI Human
Computation and Crowdsourcing (HCOMP) and received positive reception1.

1. Katherine M. Collins∗, Umang Bhatt∗, and Adrian Weller, “Eliciting and Learning
with Soft Labels from Every Annotator”; accepted as a full paper.

2. Katherine M. Collins, Umang Bhatt, Weiyang Liu, Bradley Love, and Adrian Weller,
“Human-Annotated mixup”; invited for fast-track publication as a Work-in-Progress
paper.

Contributions I implemented and ran all experiments (human and computational) and
made all figures and tables. I also wrote the first pass of both drafts, which were graciously
edited and expanded on by the listed co-authors (particularly co-first author and co-supervisor,
Umang Bhatt). Some figures, text, and results are included directly in this thesis (specifically
in Chapters 2-6); however, the vast majority of computational results have been re-run
and expanded for the dissertation report and significant de novo text has been written.

1Reviews were received on August 15. While these helped inform some of the writing of the dissertation,
all experiments included here were run before receiving the reviews.
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Computational extensions have included analyses around annotator aggregation, semantic-
based label smoothing, new baselines, additional model architectures trained, alternative
automatic labeling schemes (soft label generative model, class-pair mixing), and an additional
corruption robustness evaluation metric.



Chapter 2

Background

Chapter Roadmap We first introduce the problem setting considered, before addressing
what we mean by “additional human knowledge.” We provide an overview the ways in which
said human knowledge can be incorporated to improve ML model performance and identify
gaps where additional human knowledge could be collected. We discuss various kinds of
knowledge that could be collected from individuals and survey best practices in aggregating
information across humans. We connect these directions to the specific narrative of this
thesis.

2.1 Problem Setting

For the purposes of this thesis, we focus primarily on the incorporation of human knowledge
in the supervised learning setting and a K−way classification task. That is, there is an
observed dataset D composed of N datapoints with provided features xn ∈ X and K-class
target vectors yn ∈ Y .

For generality, we let Y represent a K−multiplex, which we can view as a discrete
probability distribution over the K-classes, i.e., ∑

K
k=1P(yn = k|xn) = 1 and P(yn = k|xn)≥ 0,

∀k ∈ {1, ...,K}.
When the label is the traditional one-hot vector yn ∈ {0,1}K ⊆ [0,1]K , we call this a hard

label. In our framework, the label distribution P(yn|xn) then has all mass placed on a single
class:

Phard(yn = k|xn) = 1[yn = k]

where 1[yn = k] is an indicator variable of whether class k has been assigned or not by the
annotation process.



7 Background

Traditionally, a model h is selected from some model class H, parameterized by θ ∈ Θ,
and optimized to predict P(y|x) according to some objective J . Though we could consider
functions which take side, or auxiliary, information z as input. Within this framework, we
consider the plethora of ways in which human knowledge has been, and could further be,
incorporated in the aim of improving the performance of hθ .

2.2 Defining “Human Knowledge”

First, we take a step back to define what we mean by human knowledge. We use the
term “human knowledge” quite loosely: encompassing humans’ commonsense, perceptual
judgments, as well as speciality expert factual and procedural information which could be
innate or gleaned, for instance, via experience or deliberate education (Turing, 1950). Of
course, any machine learning system is the result of multiple forms of human knowledge –
ML practitioners select the model class H, the objective function J , and make several other
design choices which represent their own knowledge of the task. Here, however, we focus on
non-traditional forms of human knowledge; primarily those which come not from the ML
practitioner themselves.

Why then would we care about incorporating additional human knowledge? Can we not
have ML systems trained on data which learn to approximate this information? First, we
argue in this thesis that the very manner in which data is collected for training ML systems
ought to be investigated — if human-like reasoning is to “fall out” of ML systems, this is due
at least partly to the data – necessitating the use of appropriate examples (Emam et al., 2021).
Moreover, even with adequate data, it is questionable whether machine learning systems will
reach human-like performance (Marcus, 2018), at what rate (Kaplan et al., 2020), and even if
feasible, whether that is a future we wish to reach (Bender et al., 2021; Shneiderman, 2022).
In any case, in the near – and potentially longer-term, it is worth considering how human
knowledge could be leveraged to design ML systems which better function with humans (see
Discussion in Chapter 6) (Wilder et al., 2020). This has triggered calls for the collection of
more human user studies (Shavit et al., 2022) and redressment of regulations around such
collection (Kaushik et al., 2022). Similarly, aligning machine learning models with human
perception has the potential to improve trustworthiness (Nanda et al., 2021). And beyond the
benefits to human alignment that may be derived from incorporating more forms of human
input into systems: simply improving the reliability of a machine learning model (e.g., via
better data or model priors) ought to confer such benefits as well.
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2.3 Incorporating Human Knowledge in ML Systems

As such, we believe it is worthwhile to consider: 1) what kinds of human knowledge to elicit
from a single humans, and 2) how best to leverage information across many humans to form
effective supervisory signal(s) for ML systems.

2.3.1 Information from a Single Human

Overview

Several forms of information can elicited from any given individual – from a likely category,
to confidence in said categorization, and even the selection concepts encompassed by an
example. The kinds of human knowledge sought after ought to be informed by their likely
use case (Chen et al., 2022). We offer a taxonomy for where we see elicited human knowl-
edge being most applicable: human knowledge can be incorporated in the selection of the
hypothesis class H, the space of parameters Θ, and/or the dataset D (which could comprise
information about classical observational or synthetic data; or side information the human
has priveledged access to).

While the former the former are exciting, for instance, elicited approximations to experts’
probability distributions could form better priors (Fortuin, 2022; Oakley and O’Hagan, 2010),
we focus on the former: human knowledge that can be incorporated into the data, e.g.,
(xn,yn) ∈ D. We consider each of the subareas of eliciting information in the dataspace in
turn. We recognize there are most definitely more ways in which human knowledge can
inform ML development, we hope this overview helps unify existing work and inspires
research into these and others.

Classical Observational Data

Incorporating human knowledge into the classically observed (x,y) pairs is standard practice.
Indeed, a powerful driver for ML progress, particularly in the image classification setting,
has been the annotation of large-scale datasets (Emam et al., 2021; Fei-Fei et al., 2009;
Krizhevsky, 2009). Often, these yn are the result of asking a human to select a single category
they think most represents xn from a set k ∈ {1...K}.

However, let us assume that to produce yn, humans run some form of inference that
samples from an internal probability distribution P(yn|xn). Another form of human knowl-
edge could be to aim to elicit a snapshot of the entirety of P(yn|xn), i.e., K −1 probability
judgments, or a subset therein from an individual human. In our framework then, we can
consider eliciting a soft label from an individual:
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Pm(yn = k|xn) = pm
k

where pm
k ∈ [0,1] that the label yn = k, assigned by annotator m. In the binary setting, this is

equivalent to eliciting an annotators’ confidence (discussed more below).
Although humans may not be able to perfectly report their internal probability distribution

for a given example (Murray et al., 2015) and such responses pm
k may not be consistently

calibrated (Lichtenstein et al., 1977; O’Hagan et al., 2006; Sharot, 2011; Tversky and
Kahneman, 1996), we do not think this is a sufficient reason to avoid eliciting probability
judgments from annotators. As noted by O’Hagan et al. (2006) and O’Hagan (2019),
human uncertainty can be elicited reliably as long as elicitation is rigorous. Moreover, if
an annotator is unsure of their decision, forcing an annotator to compress out all of this
uncertainty by specifying one hard label only exacerbates, rather than solves, the challenge
of capturing annotator ambiguity. While information about Pm has been studied in the
crowdsourcing literature (Chung et al., 2019; Méndez et al., 2022), the incorporation of such
human knowledge, specifically into ML systems and when K > 2, remains in early days and
is a central component of this thesis (see Chapters 3 and 5).

Alternatively, other forms of human knowledge beyond direct probabilities could be
elicited to provide more information over an example. For instance, a human select multiple
likely labels (Beyer et al., 2020; Chung et al., 2019) or a set of likely labels (Beyer et al.,
2020), rank labels (Chen et al., 2021), or provide iterative yes/no answers to hierarchical
questions (Branson et al., 2010). Massiceti et al. also demonstrate the benefits of leveraging
human annotators to provide speciality observations, e.g., recordings of personal objects by
people with visual challenges.

A given human can also express their knowledge through xn, given yn. For instance, we
view the formation of few-shot linguistic prompts fed to foundation models (Bommasani et al.,
2021) and similar large-scale architectures as another manner in which human knowledge
can be expressed in “training” data. As an example, Collins et al. (2022) leverage plans and
explanations generated by humans to achieve specific goals when constructing effective GTP-
3 Brown et al. (2020) prompts; Wong et al. (2021) similarly crowdsource human-generated
language data to guide scalable program search.

Synthetic Data

An individual could also be queried for information about synthetically-generated examples.
Synthesizing effective examples to augment model training has unlocked tremendous ML
advances that may not have been possible with limited standard data (de Melo et al., 2022;
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Emam et al., 2021; Jordon et al., 2022; Silver et al., 2016). Synthetic data could be generated
through a (somewhat) opaque process such as a learned model like a Generative Adversarial
Network (GAN) (Goodfellow et al., 2014a), or constructed from some explicit generative
process, such as cropping or blurring (Shorten and Khoshgoftaar, 2019), or linearly mixing
two examples as is done in mixup (Zhang et al., 2017). We refer to synthetically created
examples as (x̃, ỹ).

Human knowledge could be elicited and incorporated to improve the fidelity of synthetic
data construction. For instance, Zhang et al. consider inquiring for humans for annotations
over GAN-generated images to bootstrap the creation of more information. Here, humans
express their knowledge over ỹ. Alternatively, humans can be queried to provide better x̃.
Kaushik et al. incorporate human feedback by having humans create counterfactual samples,
and has been shown to be an efficient method to adjust model behavior (Kaushik et al.,
2020). Humans could also be queried to alter the generative process, for instance, inferring
the combination factor in the creation of synthetically mixed images in mixup – which we
address in Chapter 4 in this thesis.

Auxiliary Information

We have reviewed several kinds of rich human knowledge that can be elicited over classical
observational and synthetically-generated data. Next we consider human knowledge that lies
outside of X and Y , which could be leveraged to improve model performance.

For instance, we can assume a human annotator has access to side information (z), which
could take the form of a belief state or any or classification rule (Vapnik et al., 2015) or other
privledged information that only the human has access a priori (Mozannar and Sontag, 2020;
Sharmanska et al., 2016). This information could be elicited and fed into the model either by
augmenting x or modulating the targets y.

Additionally, human knowledge could be used to constrain an intermediate stage of the
predictive pipeline. Concept Bottleneck Models (CBMs) present a prime example of this form
of human knowledge incorporation (Koh et al., 2020; Margeloiu et al., 2021; Ramaswamy
et al., 2022). Here, humans can specify concepts c ∈ C which a model should use to represent
a given x, that can then be decoded to the target y. hθ (x) is then a composition of two
functions hc

θc
: X → C and hy

θy
: C → Y s.t. hθ (x) = hy

θy
(hc

θc
(x)) with θ = (θc,θy). Eliciting

human knowledge over c, which could be used to intervene and improve model performance,
then provides another compelling case for eliciting other forms of human knowledge in
the ML development cycle. Moreover, as pointed out by Ramaswamy et al., interplay with
human factors are important when considering deployment, e.g., humans can only process
few concepts.
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Humans could also report their confidence ω in whatever form of knowledge they provide,
whether that be in y or other forms of knowledge like in c. For instance, Nguyen et al. (2014)
leverage experts’ confidence to train a classifier to predict medical emergency risk, and
Steyvers et al. (2022) leverage human confidence in classification to design more effective
human-machine teams. Confidence could also be elicited in hierarchical labeling paradigms
Branson et al. (2010), wherein annotators are asked to select if their are {Guessing, Probably,
Definitely} confident when coming up with their annotation. Expansive work remains in
studying the value of incorporating human-elicited confidence in learning. We expand on
this research direction in Chapter 4 of this thesis.

2.3.2 Knowledge from Many Humans

We have surveyed various kinds of human knowledge that can be incorporated into ML
systems. However, what should we do if we have information about the same example from
M > 1 different humans? We can consider an aggregation algorithm Ψ which takes all M
annotations and returns a consolidated form of human knowledge. Let us focus on elicited
labels y as a case study. A common form of Ψ in a K−way classification setting is a majority
vote (Davani et al., 2022). However, consider the case where annotators disagree: perhaps
⌊M−1

2 ⌋ annotators deem an image to be a dog, and the rest consider the image a cat. Then
the image will be marked as a cat, and given the model is trained to map from said image to
cat completely, we lose all explicit information about its potential likeness to a dog. Ψ is
therefore lossy.

Is there a better way to preserve the richness of human knowledge when aggregating
across many humans? Several works have considered a Ψ which instead returns a soft label,
formed by maintaining the frequencies of many humans’ provided hard label (Gordon et al.,
2021, 2022; Koller et al., 2022; Peterson et al., 2019; Recht et al., 2019; Sharmanska et al.,
2016; Uma et al., 2020, 2022). This label distribution then takes the form:

Pmulti(yn = k|xn) =
1
M

M

∑
m=1

1[ym
n = k]

.
The result is a soft label where yn ∈ [0,1]K .
However, the aggregation method does not account for annotator quality. Indeed, crowd-

sourcing workers may provide inconsistent or low-quality annotations. As such, several
works have proposed methods to infer a better “gold” label by accounting for annotator
quality and inter-annotator disagreement (Dawid and Skene, 1979; Sharmanska et al., 2016;
Smyth et al., 1994; Whitehill et al., 2009; Zhang and Wu, 2018). Dawid and Skene pro-
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pose an Expectation-Maximization (EM)-based approach to disentangle variability amongst
clinicians; Augustin et al. (2017) leverage Bayesian methods to account for crowdsourcing
“spammers” when aggregating; and more recently, or Collier et al. consider training an
auxiliary neural aggregator, which also utilizing annotator time as a proxy for example
difficulty when informing aggregation. Wei et al. also demonstrate the utility of annotator
aggreement as a proxy for confidence in the annotation, which is used to smooth labels for
effective polyp classification; similar confidence-based aggregation have been developed in
Song et al.. Alternative aggregation approaches which involve interactions between humans
have also been proposed (Oakley and O’Hagan, 2010; O’Hagan et al., 2006; Thangaratinam
and Redman, 2005). While the latter are highly involved, interactive online experiments offer
grounds to scale such human-human knowledge acquisition (Miller and Steyvers, 2011).

However, recent literature has suggested that aggregating M humans’ knowledge into a
single compressed representation may not always be ideal. Wei et al. and Platanios et al.
highlight that when M is small, or annotators are very noisy, learning over the original,
de-aggregatedlabels is better. This raises the question of whether human knowledge should
be aggregated in the first place when leveraging as a supervisory signal for ML systems –
which we study in Chapters 3 and 4.

Considerations around aggregation also can inform considerations around how many
humans to query information for (Lin et al., 2014; Schmarje et al., 2022; Shimizu and
Wakabayashi, 2021) and is additional explored in Chapter 3.

2.4 Scope of Thesis

Therefore, in this thesis we focus on addressing some of the gaps noted in the kinds of human
knowledge elicited – namely, in eliciting richer probabilistic information from humans
(i.e., soft labels and confidence in annotations), as well as knowledge over synthetically
constructed examples. We begin to address the question of whether to aggregate human
knowledge.

Next We next address the first form of human knowledge that we consider in this work:
soft labels elicited from each and every annotator.



Chapter 3

Exploring the Value of Collecting Soft
Labels from Every Annotator

The last chapter surveyed the landscape of how additional human knowledge is being
incorporated into machine learning systems already, and highlighted the potential for where
new forms of human knowledge can be elicited and incorporated in an effort to improve
model performance. In this chapter, we address one of the gaps: namely, the utilization of
richer representations of humans’ uncertainty over targets in the form of soft labels from
each and every annotator.

Chapter Roadmap This chapter is structured as follows: first, we further motivate why
eliciting soft labels from every annotator serves to contribute new human knowledge that is
not currently being incorporated into the ML development pipeline; second, we introduce our
elicitation framework and analyze the soft labels we get back (a new dataset which we dub
CIFAR-10S), highlighting how they fundamentally differ from the kinds of labels typically
collected; third, we investigate the impact of training models on these labels and include
discussion of the limitations of our elicitation as it relates to use in ML systems.

3.1 Why Care?

As discussed in Chapter 2, label distributions are often constructed with a single hard ordinal
label may have been decided on by a single annotator (Passonneau and Carpenter, 2014),
or a majority vote of multiple annotators (Sheng et al., 2017); and if they are designed to
be soft, this is from aggregating many annotators’ hard labels. A prime example of the
latter is CIFAR-10H proposed in Peterson et al. (2019) and (Battleday et al., 2020). The
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authors collect M ∼ 51 annotators for each of the CIFAR-10 (Krizhevsky, 2009) test set
images. The constructed soft labels have been shown to improve model generalization
and robustness (Peterson et al., 2019) – and have since been used for several applications,
from benchmarking the reliability of foundation models (Tran et al., 2022), to informing
human-machine teaming (Babbar et al., 2022; Straitouri et al., 2022), and expanding the
empirical understanding of the impact of labels on performance (Schmarje et al., 2022; Wei
et al., 2022b). While the labels are incredibly valuable for the community, they are often
touted as representing human “label uncertainty;” (Tran et al., 2022). Although such labels
do capture some form of uncertainty, the picture is incomplete as it covers ambiguity across
humans, and does not capture an individuals’ uncertainty.

Eliciting instead individual humans’ personal probability distribution Pm over the labels1

could therefore yield different converged labels. Consider the following thought experiment:
if every annotator is 51% sure an image is class k and 49% sure it is class ℓ, they will provide
class k in the elicitation of Peterson et al. (2019). For our setting, annotators can express their
label probabilities directly. This could yield cases where label distributions appear to have all
mass on a single class, whereas a possibly more human-aligned and information-rich label
distribution can be procured through Pm per human.

A study is then warranted in to whether soft label elicitation converges to more repre-
sentative label distributions and thereby serve as better supervisory signals for ML systems.
We believe we are the first to train using rich soft labels elicited directly from annotators by
requesting probabilistic judgments per annotator for multi-class problems. Moreover, we
posit that fewer annotators may be needed to support model performance with our approach.

3.2 Introducing and Exploring CIFAR-10S

We now discuss how we collect our dataset, CIFAR-10S. To elicit soft labels from each
annotator, we request:

1. The most probable label, with an associated probability

2. Optionally the second most probable label, with an associated probability

3. Any labels which the image is definitely not

The most probable and second most probable labels are selected via a radio button,
whereas the selection of “definitely not” possible labels is marked through a checkbox to

1We acnkowledge this is necessarily an approximation, as discussed in Chapter 2; an individual may never
be able to report their exact internal distribution. Future work could consider distributions over humans’
self-reported label distributions.
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Fig. 3.1 Comparison of kinds of information elicited from M annotators with CIFAR-10H vs.
our scheme, which enables faster convergence.

allow annotators to select multiple labels. Probabilities are entered in a text box and asked to
be between 0 and 100. We do not require that probabilities sum to 100 across the task, as we
normalize after by using one of the elicitation practices of O’Hagan et al. (2006). We explore
spreading any remaining mass over the labels not marked as impossible.

We additionally request annotators consider how other annotators, specifically “100
crowdsourced workers,” may respond. Encouraging annotators to consider a third-person
perspective has been shown to encourage more representative responses (Chung et al., 2019;
Oakley and O’Hagan, 2010), and is partly inspired by Bayesian Truth Serum (Prelec, 2004).
Our interface is depicted in Appendix Fig. A.1.

3.2.1 Elicitation Setup

We recruit N = 248 participants on Prolific (Palan and Schitter, 2018). We collect labels over
a total of 1,000 images from CIFAR-10H (Battleday et al., 2020; Peterson et al., 2019) (i.e.,
10% of the dataset). Battleday et al. (2020) found that majority of CIFAR-10H labels (70%)
have very low levels of annotator disagreement, operationalized by label entropy (H):

H(y) =−
K

∑
k=1

p(y = k) log p(y = k)

However, to best validate our approach over a limited subset of labels, we elect to enrich
the set we show our annotators with the highest entropy examples (H > 0.25). However, we
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Fig. 3.2 Depiction of constructed label varieties from the information elicited from a single
annotator: A) Top 1, Uniform, B) Top 1, Clamp, C) Top 2, Uniform, D) Top 2, Clamp. Note,
possible labels are inferred by exclusions.

included three images with low entropy (H ≤ 0.1) under CIFAR-10H within each batch2 to
ensure a sufficient diversity of ambiguity was shown to each participant.

We follow (Battleday et al., 2020) in up-sampling each image to a resolution of 160x160
using Lanczos-upsampling. While this reduces the amount of ambiguity in the traditionally
low-resolution CIFAR-10 images, we aim to benchmark our method against (Peterson et al.,
2019) as closely as possible and hence follow their transformation. As we observe that an
overwhelming proportion of CIFAR-10H images have mass on only two labels (approximately
77.2%), we ask participants to specify only the top two most probable labels and any that are
definitely not possible.

2With the exception of two of the batches of the 40 batches that contain all higher entropy images due to
randomization.
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Each participant sees a batch of 27 images, where two such images are repeated as checks
for attention and consistency. The order of labels and images was shuffled across participants.
We encourage annotators to provide responses they think others would provide, inducing
third-person thinking (Chung et al., 2019; Oakley and O’Hagan, 2010). All remaining
elicitation use third-person perspective framing.

3.2.2 Constructing Soft Labels

Our elicitation yields multiple pieces of information (first and second most probable labels
with specified probabilities, and labels which are deemed to have zero probability) which we
can use – or ignore – when forming a soft label. We explore several varieties of soft label
constructions.

How to Redistribute Extra Mass? A central question in our elicitation scheme is how to
distribute any mass which is left unspecified; for instance, if an annotator marks “truck” as
the most probable class with probability 70% and “automobile” as the second most probable
class at 20% likely, there is 10% of mass remaining that conceivably could be spread onto
other classes.

To handle redistribution, we define a function r which takes as input any elicited proba-
bilities from the annotator, and outputs a length K vector p̂m, representing the “completed”
set of K probabilities over the label space (where ∑

K
k=1 p̂m

k = 1). We then let:

Pm(yn = k|xn) = r({pm
j }K′

j=1)k = p̂k
m

We consider two forms of r in this work: 1) uniform redistribution whereby the remaining
mass is spread equally over the remaining classes, or 2) clamp which uses the “definitely not”
elicitation to spread the remaining mass equally over only those classes which the annotator
did not specify as zero probability. Alternative forms of redistribution which better capture
inter-class relationships are warranted (see preliminary exploration in Appendix B.4).

If an annotator specifies 100% of the mass over the top one or two labels but only selects
a subset of the remaining labels as definitely not possible, then we posit that the annotator
views the unselected classes not having zero probability. Thus, we maintain a small portion
of mass γ to be spread over the remaining classes. γ is selected via a held-out set, as discussed
in Section 5.1. We do not apply this procedure in the uniform redistribution setting, as there
we assume no access to the “definitely not” information.
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Label Varieties We have 2 x 2 possible soft label construction methods: {most probable
only, most probable and second most probable} x {redistribute uniformly, redistribute via
clamp}. We use the notation T1 to specify if only the most probable class and its associated
probability is used, and T2 if we include information about both the most probable and
second most probable categories. We also refer to the redistribution approaches as “clamp”
or “unif” following the definitions above. The label that uses all elicited information is T2
Clamp, which is the label set we refer to as CIFAR-10S. All soft labels, regardless of variety,
are normalized to sum to one. Examples of constructed labels from a single annotators’
response are shown in Fig. 3.2.

3.2.3 What New Information Do CIFAR-10S Labels Provide?

We compare how the structure of our elicited labels in CIFAR-10S compares to those in
CIFAR-10H (Battleday et al., 2020; Peterson et al., 2019). As discussed in Section 3.1, the
elicitation of CIFAR-10H, and any classical hard label set-up, is lossy.

While CIFAR-10H labels may nearly have all mass on a single class, our elicitation yields
labels which have mass spread across more classes. This not only captures some of the
inherent ambiguity in the image, but has the potential to provide information into inter-class
similarity structure. For example, our annotators place mass jointly over “automobiles”
and the similar “truck” category, whereas a CIFAR-10H label may have all mass on the
“automobile” category; see Fig. 3.3. We highlight additional examples of label differences
in Appendix Fig. B.1 and Appendix Fig. B.2. While we do not study inter-class similarity
structure in this work, this direction is ripe for further inquiry.

Takeaways Our elicitation approach enables annotators to express their distribution over
image labels, approximating and expanding on the richness of CIFAR-10H from far fewer
annotators. Even in cases where annotators may agree on the most likely image label, our
approach – which enables annotators to express their instantaneous probability judgments
over possible other categories – yields labels which potentially better represent the distribution
over labels.

3.3 On Learning with Soft Labels from Every Annotator

We now explore performance of models trained with the new kinds of soft labels that we
construct against those formed from many annotators’ hard labels (CIFAR-10H). We conduct
an extensive investigation into the impact of aggregation, the number of humans whose
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Fig. 3.3 Our soft variant of a CIFAR-10H hard label captures inter-class similarities (i.e.,
trucks and automobiles).

information we supervise with, total annotation time, the kind of information collected, and
the number of examples for which soft labels are provided on conferred performance.

Setup Our model and training procedures follow Uma et al. (2020), as they explore learning
with CIFAR-10H labels and explicate a clear, standardized learning procedure. We employ
the same ResNet-34A (He et al., 2016) with the same weight decay (1e-4) and learning rate
scheduling: we start with a learning rate of 0.1 and drop by a factor of 1e-4 after epoch 50
and again at 55. We also two additional architectures not included in Uma et al. (2020):
VGG-11(Simonyan and Zisserman, 2014) and ResNet-50 (He et al., 2015). Starting learning
rates are selected using a validation set of CIFAR-10 (0.1 for VGG-11 and 0.4 for ResNet-50
from {0.001,0.01,0.1,0.2,0.3,0.4,0.5}. All models are trained from scratch for a total of
65 epochs and optimize a cross-entropy objective. Experiments are run over 5 seeds, unless
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Fig. 3.4 Comparison of our elicited labels against CIFAR-10H. From left to right: two
examples with high Wasserstein distance between labels; one example where we recover
similarly rich, high entropy labels from 8.5x fewer annotators. The CIFAR-10 labels for
these images are frog, airplane, and frog, respectively.

otherwise noted. A redistribution factor of γ = 0.1 is used to spread extra mass, selected via
the same validation procedure from {0.0,0.01,0.05,0.1,0.2,0.3,0.4}.

We follow the same 70/30 split used in (Uma et al., 2020). However, as we have fewer
CIFAR-10S labels than CIFAR-10H, to ensure a fair comparison, we consider just training
on the CIFAR-10H labels that we have our soft label versions of. Note, we always hold out
100 of our labels to ensure we can evaluate against some variant of our soft labels. As such,
we are considering the variation in performance conferred by changing 900 labels. For the
remaining examples in the 6,100 – we use a hard version, i.e., the original CIFAR-10 label.

3.3.1 Evaluation Framework

Data

Selection of data used to evaluate models is important to faithfully benchmarking perfor-
mance; however, evaluation datasets typically used like the CIFAR-10 test set are rife with
annotation errors permeat (Northcutt et al., 2021) and as discussed throughout this work, if
hard labeled, do not adequately capture human uncertainty. We instead use heldout aggregate
soft labels from CIFAR-10H and our CIFAR-10S as test sets. While humans are of course
not always correct in their annotations themselves, nor calibrated in their confidence (see
2.3.1), these labels serve to better measure whether models handle example ambiguity. When
interpreting results, we note that while elicitation approach CIFAR-10H may converge to
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different label distributions than ours, we acknowledge that at present, CIFAR-10H is a more
stable dataset given annotator quality is more tightly controlled (Battleday et al., 2020). We
believe when scaled, our labels however could serve as a valuable benchmark; here, as we
have few labels collected, we only maintain 100 held-out (which are re-sampled per seed).
We note that as the labels we collect are enriched to be more ambiguous, CIFAR-10S is a
naturally challenging evaluation set.

Metrics

No single metric captures all the qualities we wish to obtain in a trustworthy model Thomas
and Uminsky (2022). We therefore consider a suite of metrics, focused on generalization,
calibration, and robustness.

1. Generalization: we measure generalization using Cross Entropy (CE) over the soft label,
which allows us to capture whether the models’ full distribution over the K categories
is sensible: 1

N ∑
N
1 ∑

K
1 Peval(yn = k|xn) log(mθ (xn)k), where Peval is the discrete label

distribution derived from the human soft labels.

2. Calibration: model calibration is scored using the RMSE adaptive-binning method used
by Hendrycks et al. (2022) to measure whether models’ predictive distributions match
their “correctness”. Here, “correct” is based on: argmaxk∈{1,...,K}Peval(yn = k|xn).

3. Robustness: loss after a Fast Gradient Sign Method (FGSM) attack is used to measure
models’ robustness to an adversarial attack (Goodfellow et al., 2014b)3 Attack strength
is run at an ℓ∞ = 4 bound following Peterson et al. (2019).

3.3.2 How Best to Learning with Labels from Many Humans?

We first compare our aggregate per-annotator soft labels using all information elicited from
annotators (i.e., T2, Clamp) against the complete aggregate labels from CIFAR-10H, i.e.,
labels formed from all of their approximately M = 51 labelers. Aggregating our soft labels
involves:

Ψ({p̂k
m}M

m=1) = Pagg(yn = k|xn) =
1
M

M

∑
m=1

p̂k
m

3We also considered the multi-step Projected Gradient Descent, PGD Kurakin et al. (2016) attack; however,
the metric was unstable and warrant further investigation.
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We benchmark performance against training on conventional CIFAR-10 hard labels. We
also compare against using hard, random, and uniform labels instead. Label smoothing (LS)
(Szegedy et al., 2015) as a baseline is discussed in Appendix Section B.1.

As shown in Table 3.1, we recover the findings of (Peterson et al., 2019) that training
with soft labels is markedly more advantageous4. While better than baselines, training on our
soft labels does not outperform labels constructed from many annotators’ hard labels.

However, as discussed in Chapter 2, perhaps we are not leveraging the information across
many humans well. A naive Ψ is used which does not account for differences in individual
humans’ calibration nor skill. We hypothesize that learning on de-aggregated labels (i.e.,
just individual labels Pm) may realize the fuller benefits of our collected soft labels. Table
3.2 reveals this is the case: from 8.5x fewer human annotators than CIFAR-10H, our labels
endow trained classifiers with better generalization, calibration, and robustness in nearly all
checks.

Not only are these results compelling for highlighting the benefits of eliciting soft labels
from every human to support model performance, but they contribute further empirical
support that sometimes it is better not to aggregate labels (Wei et al., 2022b). Peterson
et al. (2019) found similarly in some settings, which they hypothesize is due to more varied
gradient information being available. Alternatively, it could be that our annotators are simply
noisier, and keeping annotations separate could enable the model to uncover which labels to
“trust” in order to achieve all-around good performance. Indeed, the naive Ψ used in Table
3.1 does not account for differences in individual humans’ calibration nor skill. Future work
could investigate alternative designs of Ψ, of the kinds discussed in Chapter 2, to construct
better training labels; for the remainder of this section, we run all models with de-aggregated
labels.

3.3.3 Learning with Labels from Fewer Humans

Thus far, we suggest that eliciting a less common kind of human knowledge from annotators
– in the form of soft labels – is more conceptually sound and can advance performance,
at least when de-aggregated, and do so from fewer humans queried. We next dig deeper
into the hypothesis that richer human-derived soft labels offers a more annotator-efficient
path to model performance boosts than the typical many annotator hard label approach of
CIFAR-10H.

4The good calibration of uniform labels when evaluated on our held-out labels could be due to: 1) the
possibility of being calibrated, but “bad” (i.e., nearly always wrong, but representing your confidence in said
wrongness), and/or 2) the soft evaluation labels naturally being closer to uniform – given the higher entropy as
discussed.
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Label Type CE Calibration FGSM Loss

CI
FA

R-
10

H Hard Labels 2.026±0.18 0.277±0.01 15.455±7.5
Random Labels 1.77±0.16 0.226±0.02 13.476±1.39
Uniform Labels 1.599±0.13 0.203±0.02 10.199±3.82

CIFAR-10H 1.325±0.07 0.201±0.01 8.750±1.8
Ours (T2, Clamp) 1.369±0.07 0.203±0.01 8.872±1.63

CI
FA

R-
10

S Hard Labels 4.46±0.49 0.425±0.09 15.782±4.67
Random Labels 3.093±0.53 0.353±0.05 10.697±4.14
Uniform Labels 2.923±0.26 0.311±0.06 11.768±5.18

CIFAR-10H 2.558±0.16 0.313±0.03 8.416±1.64
Ours (T2, Clamp) 2.591±0.19 0.324±0.02 9.116±1.63

Table 3.1 Comparing performance when training on labels aggregated from humans’ an-
notations (M = 51 CIFAR-10H annotators, M = 6 of ours). Our soft labels here utilize all
elicited information from annotators (i.e., T2 Clamp). Different labels are considered over
900 examples. Performance is evaluated over 3000 heldout CIFAR-10H labels (top) and 100
heldout labels from our collection (the T2 Clamp variant of CIFAR-10S, bottom). 95% confi-
dence intervals are included. 5 seeds are run each for three models (ResNet-34A, ResNet-50,
VGG-11) and averaged. Bold indicates best performance (lower is better for all metrics).

Label Type CE Calibration FGSM Loss

10
H CIFAR-10H 1.293±0.08 0.194±0.01 8.577±1.91

Ours (T2, Clamp) 1.281±0.06 0.184±0.01 8.406±1.75

10
S CIFAR-10H 2.459±0.21 0.311±0.02 8.334±1.75

Ours (T2, Clamp) 2.355±0.14 0.297±0.03 8.405±1.59

Table 3.2 Training with de-aggregated labels; on each batch, a single humans’ label is used
as supervisory signal from a pool of M humans (M = 51 CIFAR-10H; M = 6 ours).

To test this idea, we construct labels using the same total number of annotators across
both labeling approaches. Note, for compute-resource considerations, the remainder of the
experiments in this Chapter, we run 5 seeds of the ResNet 34-A model used in (Uma et al.,
2020). In Table 3.3, we subsample M = 2 of the annotators in CIFAR-10H from which to
construct a label per batch, and compare the utility of learning with said labels against a
similarly sub-sampled version over two of our per-annotators’ soft labels per image. We find
that our labels provide a substantial boost along nearly all metrics – and the gains of our
method in the few annotator setting become even more apparent when considering access
to only M = 1 human. While this is expected, as a single CIFAR-10H labeler is simply a
hard label, we demonstrate that if one has access to only a single annotator, our label
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method provides the best training signal. We depict a full comparison of performance
when varying the number of humans employed to construct training labels in Appendix Fig.
??, which suggests the benefits of our approach.

M=2 M=1
Labels CE Calib FGSM CE Calib FGSM

10
H 10H 1.71±0.15 0.25±0.02 14.16±0.67 2.17±0.11 0.29±0.01 19.20±0.86

Ours 1.49±0.08 0.22±0.01 11.57±0.44 1.58±0.08 0.23±0.01 12.57±1.29

10
S 10H 3.37±0.42 0.34±0.08 13.13±0.7 4.49±0.31 0.45±0.05 17.85±0.68

Ours 2.88±0.17 0.36±0.04 11.39±0.59 2.90±0.31 0.38±0.06 12.13±1.31
Table 3.3 Investigating model performance when fewer M annotators are assumed to provide
labels. Training labels are sampled per batch instead from a pool of M = 2 or M = 1
annotators.

3.3.4 Accounting for Total Annotation Time

In practice, however, the amount of time taken by annotators ought to be considered. Here,
our method struggles. We follow the same annotator subsampling introduced above and
compute the estimated annotation time M ∗ tper to construct such labels, where tper is the
estimated amount of time taken by an individual annotator on a given image. CIFAR-10H
annotations for the same examples that we query take approximately 2.5 seconds each to
annotator, compared against 32 seconds for ours. Performance accounting for annotation time
is visualized in Fig. 3.5. Our labels are somewhat comparable with respect to generalization
and calibration in terms of cost efficiency, but struggle with adversarial robustness. Poor time
efficiency may in part be due to a cumbersome interface design, given that we collect several
bits of information per human, there will always be a trade-off in terms of the richness of the
forms of human knowledge elicited and the number of humans one can query.

3.3.5 What Forms of Human Knowledge are Most Beneficial?

We therefore consider what aspects of our elicited labels are most essential. Can we get by
with eliciting less information from annotators? We consider a “human knowledge ablation”
in the labels used for learning. We train in the M = 6 setting over the label varieties introduced
in Section 3.2.2. We estimate that each of the “bits” of human knowledge elicited each take
6.4 of the 32 seconds, as we do not have access to time information per bit. We recognize
this is likely not accurate and could be considered in future studies. Table 3.4 reveals that the
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Fig. 3.5 Comparison of learner performance as a factor of estimated total cost of elicitation
(M ∗ tper). Red dots depict performance when aggregating M CIFAR-10H annotators for M ∈
{1,2,4,8,16,32,51}. Blue dots indicate CIFAR-10S T2 Clamp soft labels, constructed from
varying M ∈ {1,2,3,4,5,6}. Dots represent performance averaged over 5 seeds. Evaluation
is conducted over CIFAR-10H (top) and CIFAR-10S (bottom). Bars indicate 95% confidence
intervals over the 5 seeds. Lower is better for all metrics.

best performance is enjoyed by models trained on our full set of human knowledge; however,
we likely could get by with just eliciting the most probable label with our clamp if annotation
time is a factor in budgeting. This supports the elicitation and incorporation of less common
forms of human knowledge like the “impossible label” set-up we introduce. We acknowledge
that further investigation is needed into alternative elicitation set-ups – across a range of
domains and task difficulty, before drawing broad conclusions.

3.3.6 Impact of Number of Training Examples

All studies have always compared performance with varying the form of subsamplings of 900
of the 1000 labeled examples, and labeling examples not in CIFAR-10S with hard labels. We
now compare model performance when training just on CIFAR-10H vs. our soft labels. We
vary the number of examples we train on N′ run for 10 seeds each, and evaluate performance
on CIFAR-10H. We do not include evaluation on CIFAR-10S here as the labels are closer to
uniform (by virtue of their softness) which results in challenges in disambiguating models
which predict uniform from slightly not in this few label setting. We recognize this setting
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Label Type Time CE FGSM Loss Calibration

10
H

T1, Unif 12.8s 1.423±0.08 10.891±0.32 0.198±0.01
T1, Clamp 19.2s 1.368±0.12 10.386±0.8 0.198±0.02
T2, Unif 25.6s t 1.448±0.14 10.474±0.44 0.203±0.02

T2, Clamp 32s 1.306±0.19 8.482±3.95 0.183±0.03

10
S

T1, Unif 12.8s 2.531±0.15 11.25±0.4 0.312±0.03
T1, Clamp 19.2s 2.637±0.31 10.423±1.17 0.328±0.06
T2, Unif 25.6s 2.63±0.29 10.667±1.15 0.339±0.1

T2, Clamp 32s 2.466±0.32 10.382±1.0 0.321±0.07

Table 3.4 Training models over labels constructed from subsets of the human knowledge we
elicit. M = 6 humans’ labels are used to form the pool sampled.

is not ideal given how few labels we have; indeed, adversarial robustness trend here is
peculiar: performance gets worse when training on more labels; we reason this may be due
to some poorly performing models also being robust (Tsipras et al., 2018). However, even
in this regime, we note that training on few of our labels seems to offer benefits over few
CIFAR-10H.
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Fig. 3.6 Impact of varying the number of soft-labeled examples (N′ = 250,500,750,900)
during training. Evaluation is run over heldout CIFAR-10H labels. Lower is better for all
metrics.

Future work could consider how many examples are worth querying. For instance, Paul
et al. (2021) find that substantially fewer CIFAR-10 examples can be used in training to
achieve comparable performance. Alternatively, we could also consider simulating more
of our labels by leveraging the statistics of the human knowledge we have collected. We
explore this direction in Chapter 5 and Appendix Section B.4.
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3.4 Takeaways

In this chapter, we have addressed a gap in the kinds of information elicited from humans:
typically, annotators are only asked to indicate what they believe to be the most probable
class of an example. We take a step towards filling this gap by collecting a new dataset,
CIFAR-10S consisting of soft labels elicited from every annotator. We demonstrate the value
of leveraging this form of human knowledge towards improving model generalization and
calibration. We empirically find that our labels offer a path towards more annotator-efficient
labeling. Such results could be incredibly important in situations where few annotators are
available, e.g., in domains requiring specialty expertise like medicine or criminal justice, or
in interactive personalization where there may only be a single annotator providing examples.

Next In the next chapter, we continue our quest of exploring the benefits of eliciting new
forms of human knowledge to improve model reliability and general trustworthiness – turning
now to the question of human perceptual judgments over synthetic examples.



Chapter 4

Inquiring for and Incorporating Human
Knowledge over Synthetic Examples

We have just seen how the information we collect from humans to form our training dataset
impacts a model’s performance. However, thus far we have focused on eliciting and incor-
porating information from humans over the standard examples in datasets, i.e., the “typical”
CIFAR-10 images. A sensible next question is whether we there is value in extracting human
knowledge over synthetic examples for use in training? We address this question in this
chapter. While there are many kinds of synthetic data that we could inquire for human
judgments about; here, we focus on convex combinations of images – the same kind of data
used in mixup (Zhang et al., 2017).

Chapter Roadmap We first introduce mixup and appeal to why the method is worth
comparing against human knowledge. We then formalize the kind of information that we
aim to collect from humans and introduce the crowdsourced study designed to obtain such
information. We address our hypothesis that human perceptual judgments over synthetic
examples holds value by 1) showing that human percepts of mixed examples indeed differs
from the kinds of labels mixup assumes, and 2) computationally verify that leveraging the
information we elicit can improve model performance along a suite of metrics.

4.1 Background: mixup

4.1.1 Why Care?

As we reviewed in Chapter 2, there is a paucity of work addressing whether synthetically-
generated data align with human perceptual knowledge, and if not, how human knowledge
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could be used to construct better synthetic examples. mixup (Zhang et al., 2017) is a training
procedure wherein a neural network is trained on synthetic examples which are formed
through a linear combination of pairs of training points. Given the simplicity of the mixup
generative process (see Section 4.1.2), we consider it a reasonable case study for the value of
eliciting and incorporating human knowledge over the generative process (i.e. here, in the
mixing coefficient λ and the resulting synthetic label ỹ).

Despite this simplicity, mixup is a powerful and popular training-time method which has
been leveraged to ensure models have improved fairness (Chuang and Mroueh, 2020) and
better gradient-based explanations (Kim et al., 2020b), and been proven to increase model
robustness via implicitly regularizing the form of category boundaries learned (Zhang et al.,
2020) and to improve calibration (Thulasidasan et al., 2019). Therefore, studying whether
the form of labels align with human percepts is a worthy contribution in its own right, which
has yet to be studied.

Prior work in human categorical perception demonstrating that humans show non-linear
“warping” effects along category boundaries (Folstein et al., 2013; Goldstone and Hendrick-
son, 2010; Harnad, 2003) leads us to believe that humans will differ in their percepts from the
linear category boundaries encouraged by mixup. And if humans do differ, it could inform
the design of more effective mixing policies. Already, many alternative mixup input and
target mixing functions have been proposed (Hendrycks et al., 2022; Kim et al., 2020a, 2021;
Verma et al., 2018; Yun et al., 2019). Closest to our work, Sohn et al. highlight particular
issues with the linear interpolation in label space on the learned topology of the model’s
category boundaries and instead utilize a Gaussian Mixture Model (GMM)-based relabeling
scheme to construct “better” labels than those used in baseline mixup. Additional work on
learning better pseudo-labels over mixup samples have been proposed (Arazo et al., 2019;
Cascante-Bonilla et al., 2020; Sohn et al., 2020). Similarly, Between-class (BC) learning
(Tokozume et al., 2017a,b) proposes hand-crafted adjustments to the creation of augmented
examples to better align with human perception; however, no human studies are actually
conducted to verify alignment. To our knowledge, no previous works have directly considered
incorporating humans in-the-loop for either the construction of mixup samples, or associated
relabeling.

To that end, we consider whether mixup labels match human perception, and if
not, how the labeling scheme can be improved to better align with human intuition, along
with impact on model performance. Moreover, seeing as synthetic examples are sometimes
“odd” and abnormal, we postulate this domain is a prime candidate for utilizing human
confidence to inform downstream use of elicited human knowledge.
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4.1.2 Constructing Synthetic Training Examples

mixup entails only training on synthetic examples (x̃, ỹ), which are formed via convex
combinations of pairs of the training observations (xi,yi),(x j,y j for i, j ∈ {1, ...,N}.

x̃ can be viewed as the output of a mixup policy 1. f , defined over the inputs ( f (xi,x j,λ f )=

x̃), and ỹ is similarly the output of a policy g defined over the targets (g(yi,y j,λg) = ỹ). Zhang
et al. parameterize these policies via a mixing coefficient λ , sampled from a Beta distribution
controlled by parameter α (e.g., λ ∼ Beta(α,α)), and let λ f = λg = λ . In the original
mixup, f and g are pre-defined to be equivalent linear combinations of the corresponding
observations:

f (xi,x j,λ f ) = λ f xi +(1−λ f )x j = x̃

g(xi,x j,λg) = λgyi +(1−λg)y j = ỹ

In this work, we refer to λ f as the generating mixing coefficient and the labels yi,y j of
the mixed examples as the endpoints.

4.2 Human Percepts vs. Synthetic Labels

While Zhang et al. (2017) employ linear mixup policies f ,g over both the input and targets
of the original training examples, manual inspection of mixup samples in the image domain
suggests that these synthetic points may not be consistent with human perception. Practition-
ers could optionally customize the mixup policy over the observations ( f ) or the targets (g).
Here, we focus on the latter: utilizing human input to design a perceptually-aligned target
mixup policy gh. A schematic of our approach is depicted in Fig. 4.1.

We assume f is mixed to be the linear mixing policy over inputs employed in (Zhang et al.,
2017). To form our human-aligned target policy, we want to find a function gh(yi,y j,λ ) = ỹ
such that ỹ perceptually corresponds to the associated mixed input f (xi,x j,λ ) = λxi +(1−
λ )x j = x̃. How do we get ỹ from people efficiently?

We notice that while we assume x̃,yi,y j are fixed, nothing requires us to have λ used
in g be the same as in f . We therefore introduce the notation that there are two separate
mixing coefficients: one for the input policy λ f and one for the target policy λg. We therefore
consider matching λg to what humans infer λ f to be. In this setup, we assume humans
are aware of the generative processes f and gh, and are shown the mixed image x̃ and

1We employ the nomenclature and notation around “mixup policies” from (Liu et al., 2021b).
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Fig. 4.1 Illustration of our elicitation paradigm. Images drawn from two different categories
are mixed. The human is shown the mixed image and the category labels, and asked to
provide an inference (red) for the generating mixing coefficient λ f (blue).

underlying labels yi,y j. Individuals are tasked with forming a probabilistic judgment as to
what the underlying mixing coefficient is that generated the observed image x̃ when given
the underlying yi,y j – e.g., judging P(λ f |x̃,yi,y j).

If human perception is aligned to the underlying linear mixup policies, then the human
predicted mixing coefficient λh should be equivalent to λ f , rendering λ f = λg = λ a sensible
mixing scheme. However, if human estimates are not aligned, we may consider setting
λg = λh to make g yield a ỹ which best corresponds to humans’ percepts of x̃.

4.2.1 Elicitation Paradigm

To elicit such information from humans, we design an interface wherein subjects infer the
mixing coefficient between two given labels. We show each worker a mixed image x̃ and
tell them the categories that were mixed to generate the image. Additionally, participants
provide us with their confidence in their inference. As some image combinations appear
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quite convoluted, we reason that subjects’ confidence in their inference – or lack therefore –
may provide interesting signals as to the perceptual sensibility of the mixed images.

Stimuli selection We sample a random subset from the same 7,000 set of CIFAR-10
examples discussed in Section 3.3. We sample 6 pairs of images per unique class combination
(e.g., dog-cat, dog-truck, ship-airplane, etc). The CIFAR-10 hard labels as the label endpoints.
For each of these pairs of images, we generate an interpolated version from 3 mixing
coefficients – 0.5, and one chosen randomly from each of the sets {0.1, 0.25} and {0.75, 0.9},
respectively. As there are 45 such class combinations, we result in N = 810 total stimuli.
Combined images are mixed in pixel space, and retain the 32x32 image resolution of the
original CIFAR-10 set.

Crowdsourcing We run our relabeling experiment on a total of 33 participants. Each
participant sees 59−60 images, where two images are repeated to measure raters’ internal
consistency. Repeats are placed at the end, and correspond to the images presented on trials
15 and 20, respectively. Images and endpoint label orderings are shuffled across participants.
An example survey screen can be seen in Fig. A.2. At least two participants saw each image.

4.2.2 (Mis)-Alignment to Human-Inferred Mixing Coefficient

We compare the elicited λh against λ f , and analyze participants’ confidence ω in such infer-
ences. We also conduct a preliminary exploration into the relationship between participants’
predicted confidence and the label entropy.

Relationship between Generating Mixing Coefficient and Alignment Averaging over all
images reveals a remarkable alignment with the underlying mixing coefficient. As depicted
in Fig. 4.2, on aggregate, participants recover close to the generating coefficient when
considering the median. This may suggest that the mixing coefficient is aligned with human
perception. However, wide error bars and a closer look at how individual images would be
relabeled (see Fig. 4.3) uncovers significant deviations; human perception is not consistently
aligned with the mixing coefficient lead us to believe that such calibration is likely due to
averaging effects which may cancel out differences in participants’ percepts. Practically,
this raises questions as to whether we should train on de-aggregated data to reflect the
disagreement across individuals like we found beneficial in Chapter 3. We explore this idea
in Section 3.3.2.

Moreover, inspecting the inferred mixing coefficient at a category level in Fig. 4.4 reveals
that when broken down into class pairings, there are significant deviations from the expected
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Fig. 4.2 All human-inferred mixing coefficients compared against the mixing coefficient
used to generate the image (blue). Red line indicates what perfect alignment with the
generating coefficient would look like. Although when mixed, these data look remarkably
well-calibrated, we reason this is due to significant averaging effects.

Fig. 4.3 Example actual average human relabelings of the generating mixing coefficient.
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linearity. These findings corroborate non-linearities found in human categorical perception
(Destler et al., 2019; Folstein et al., 2013; Goldstone and Hendrickson, 2010; Harnad, 2003).
We also uncover that participants’ confidence in the “correctness” of their inferred mixing
coefficient is lowest at λ f = 0.5.

Fig. 4.4 An example “category boundary” extracted from elicited from people diverge from
linearity in the generating coefficient. λ f is depicted against h (where the mixing coefficient
is varied between all deer and all airplane). The red line indicates what an exact parallel
between inferred and generating mixing coefficient would look like (highlighting perceived
human deviation).

Decomposing Human Confidence by Endpoint Entropy We investigate whether there
are specific predictors of when and why a mixed image may be hard to label – e.g., perhaps
images which are naturally ambiguous become even more muddled when combined.

We compare our annotator confidence in their mixing coefficient, and the amount of
relabeling (|λh − λ f |) against the entropy of the CIFAR-10H labels of the images being
combined2. We find in Fig. 4.5 that this is the case when considering confidence – if

2While we ought to use CIFAR-10S for reasons discussed in Chapter 3, we use CIFAR-10H given there is
complete coverage of the labels we have relabeled.
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Fig. 4.5 Confidence reported by annotators in their inference of λ , as a factor of whether
the combined labels yi,y j are high or low entropy. Entropy is measured over the CIFAR-10H
human-derived labels.

both endpoints are very high entropy under CIFAR-10H (i.e., H ≥ 0.5), participants report
markedly lower confidence in their inference than if both endpoints have low entropy (H ≤
0.1). However, we do not find a significant effect of endpoint entropy and amount of
relabeling. This suggests that the ambiguity of the underlying images being mixed plays
some role in determining when the resulting synthetic image may be hard to label, but there
remains a question as to what can predict high amounts of relabeling from participants. We
leave these questions for future investigation.

4.3 Learning with Human Perceptual Knowledge over Mixed
Examples

Our crowdsourced study indicates that indeed, human perceptual judgment does not consis-
tently correspond to the classical mixup target policy. The fact that there is a discrepancy
suggests that eliciting human knowledge over this kind of synthetic example indeed has
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value, at least in helping verify the alignment of human perception which is important for
model trustworthiness (Nanda et al., 2021).

We now consider whether human knowledge over these kinds of examples also holds
value in improving the supervisory signal used to train models, compared against those
typically used in mixup. We hypothesize that constructing target label distributions from said
human-elicited labelings could yield more perceptually consistent classifiers – which could
enjoy better generalization, calibration, and robustness.

To test this idea, we compare the performance of classifiers trained on different labelings
over the synthetic mixed examples. Ideally, we would compare using human relabelings for
every synthetic image that would be generated when employing mixup, in light of our finite
dataset, we investigate the impact of using our labels versus the traditional mixup labels over
a finite, augmenting set of the combined images.

Despite the artificiality of this setting, which we acknowledge renders it challenging to
draw concrete conclusions, we can still ask interesting questions, which are reminiscent of
Chapter 3, namely: 1) do average human relabelings already improve performance in the
augmenting set paradigm, 2) how best should we manage information from multiple different
humans (is it actually best to keep labels separate?), and 3) what form of human knowledge
(λh, ω) is most beneficial in this inference? We address each in turn after first discussing the
training and evaluation set-up used.

4.3.1 Setup

Model and Data

We rely on the original mixup code provided by Zhang et al. (2017) and use the same PreAct
ResNet-18 model (He et al., 2016) and training procedures, i.e., train for 200 epochs with a
learning rate of 0.1, which is reduced by a factor of 0.1 after epochs 100 and 150, respectively.
We train over the 7,000 images of the CIFAR-10 test set split that was detailed above, with
the optional inclusion of the 810 augmenting mixed images. While we could have trained
on the entire CIFAR-10 train set, we chose this design as it is small enough to let us more
concretely elucidate the impact of various labelings over the finite augmenting set, and allows
us to readily swap in CIFAR-10H or CIFAR-10S labels later (which, as noted in Chapter 3,
are over the CIFAR-10 test set). Note, we similarly do not apply any data augmentation,
such as rotation or cropping during training that was used by (Zhang et al., 2017), as to best
disentangle the impact of using human-derived labels over the raw mixed images participants
had seen. We train each model over 5 random seeds.
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Evaluation Suite

We consider the same suite of evaluation metrics discussed in Section 3.3.1. We evaluate
performance on the held-out set of 3,000 images of CIFAR-10H. While as noted in Chapter 3,
CIFAR-10S may be a more suitable test set, given insufficient amount of labels, to ensure
stability we focus on CIFAR-10H. Extending these analyses to CIFAR-10S is grounds for
future study.

Baselines

We compare our human-derived labels against the traditional mixup labels (those that use
the generating mixing coefficient) on the augmenting set, as well as labeling the augmenting
set with uniform labels over the 10 CIFAR-10 classes and random labels. We also provide
performance trained for a model without using the augmenting set (e.g., just over the
CIFAR-10 images and their associated hard labels without any mixing).

4.3.2 Comparing Averaged Human Perceptual Judgments Against mixup
Labels

We first consider whether replacing λ f with the average mixing coefficient λ̄h improves
performance:

Ψ({λ
m
h }M

m=1) =
1
M

M

∑
m=1

λ
m
h = λ̄h

Seeing as in Fig. 4.2, the amount of relabeling is somewhat comparable when considered
in aggregate, we expect that there may be minimal difference in performance. We find in
Table 4.1 that this is the case: calibration and FGSM are comparable, though surprisingly
held-out cross entropy is worse – though within error bars. We see though that, as expected,
using either synthetic mixing policy is better than “meaningless” alternatives (i.e., uniform or
random labels); we acknowledge that the high performance of the baseline model, however,
points to the insufficient size of our augmenting set and broader experimental paradigm. We
therefore emphasize that insights drawn are then with respect to various ways incorporating
human knowledge impacts performance in this limited setting.

4.3.3 Learning with Knowledge From Many Humans

Given the somewhat poor performance of using naive-average human relabelings for the
synthetically mixed examples, we next investigate one of the central themes of this work:
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Labeling Scheme CE Calibration FGSM Loss

Regular (No Aug) 2.25±0.04 0.29±0.01 14.53±0.22
+ Uniform Labels 2.56±0.05 0.29±0.01 18.54±0.31
+ Random Labels 2.66±0.05 0.3±0.01 19.75±0.31
+ mixup Labels 2.19±0.04 0.28±0.01 14.35±0.21
Ours (Agg, λ̄h) 2.27±0.04 0.28±0.01 15.07±0.22

Table 4.1 Comparing performance of models trained on different labels for the N=810
augmented synthetic images (x̃n). A baseline of training without augmentation (“No Aug”)
is considered. Evaluation is run over CIFAR-10H.

when we have information from many humans, is it worthwhile to aggregate for learning?
Here, we reason that averaging annotator feedback in this case may be cancelling out
important signal, or could be due to having too few annotations – in which case aggregation
may be ill-advised according to Wei et al. (2022b). Alternatively, this could be due to people
focusing on different aspects of the image, such that the average is not representative of
how the human visual system overall processes the image. In Table ??, we see that when
de-aggreated, like the explorations we were conducting in Section 4.3.2, human percepts
differ from linear mixing in ways that are advantageous for model performance.

Labeling Scheme CE Calibration FGSM Loss

mixup Labels 2.19±0.04 0.28±0.01 14.35±0.21
Ours (Agg, λ̄h) 2.27±0.04 0.28±0.01 15.07±0.22
Ours (Sep, λ m

h ) 2.01±0.0‘3 0.27±0.01 13.33±0.19
Table 4.2 Training separately individual annotator (m) vs. average-aggregate human relabel-
ings, vs. mixup labels vs. average human relabelings.

4.3.4 Leveraging Human Confidence

We have only focused on leveraging λh; we also elicited self-reported confidence ω in said
inference. We hypothesize that modulating labels with human confidence could provide a
more effective supervisory signal. We smooth the label based on an exponentially decaying
transformation (i.e., smoothing = γω ) of the predicted confidence (ω). This is done over
aggregate labels using the mean human confidence for any example ω̄ , or separately applied
per-annotator confidence (ωm). Smoothing is designed such that if an annotator has zero
confidence in their inference, a uniform label over all 10 CIFAR-10 classes is used and the
traditional two-class mass policy, with human-inferred mixing coefficient, is used if the
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annotator is 100% confident. In this case, we only apply significant smoothing if an annotator
is very uncertain in their inference (achieved by setting γ = 0.005) 3.

Training instead using labels formed from both types of human knowledge leads to
substantial boosts in generalization, calibration, and robustness over using the traditional
linear mixing coefficient-based labels (see Table 4.3). Human confidence provides a powerful
indicator as to whether the example is “confusing” and hence ought to have a more uniform
label. This not only highlights the promise of eliciting human confidence in the construction
of machine learning datasets to be used to craft training labels, but further underscores
potential flaws in the traditional linear target mixup policy.

Labeling Scheme CE Calibration FGSM Loss

mixup Labels 2.19±0.04 0.28±0.01 14.35±0.21
Ours (Agg, λ̄ h) 2.27±0.04 0.28±0.01 15.07±0.22
Ours (Sep, λ m

h ) 2.01±0.03 0.27±0.01 13.33±0.19
Ours (Agg, λ̄ h with ω̄) 2.09±0.04 0.27±0.01 14.01±0.22
Ours (Sep, λ m

h with ωm) 1.83±0.03 0.24±0.01 11.81±0.19
Table 4.3 Leveraging individual (sep) and averaged confidence ω with inferred mixing
coefficients.

4.4 Takeaways

In this chapter, we demonstrate that eliciting human knowledge over the synthetically
constructed examples, namely those used in mixup, has value. This value comes from 1)
providing human-grounded support for the development of alternative label mixing policies
to mixup as human perceptual knowledge appears to systematically differ from what is
typically assumed when synthesizing ỹ, and, 2) empirically – at least within our constrained
augmenting set paradigm – leveraging human perceptual knowledge to construct more
suitable ỹ seems to hold promise towards improving model performance compared against
a model trained with the traditional mixing coefficients. We find that not aggregating
over humans’ provided inferences is preferable, and uncover that human confidence ω is a
particularly potent signal for designing effective training labels. These data illustrate that
collecting additional human knowledge over synthetic examples has value, though in light of
the limited amount of data collected thus far, scaling is needed before conclusive insights can
be drawn.

3Alternative confidence-based smoothing measures could be considered in future work.
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Next Given human participants are highly uncertain about the underlying mixing coeffi-
cient in a number of cases, we next consider whether the category composition typically used
in mixup – e.g., placing mass only on the labels of the images used to form the synthetic com-
bined sample – are reasonable according to humans. We begin to address the challenges of
scaling, considering alternative ways to encourage human-like softness in model predictions
and demonstrating the potential value of simulating additional human knowledge.



Chapter 5

Synthesizing Human-Like Soft Target
Distributions

We next bridge the forms of human knowledge that we have collected thus far: soft labels
from every annotator (Chapter 3) and human perceptual judgments with associated confidence
over synthetic examples (Chapter 4), to address more comprhensively whether the structure
of the synthetic mixed examples is sensible. We then consider how to encourage a model to
produce human-like labels, even in the absence of sufficient annotations.

Chapter Roadmap We first conduct a preliminary follow-up crowdsourced study to verify
that indeed, humans perceive mixed examples to cover a broader spectrum of image categories
than are traditionally used in mixup. We discuss how the human-derived soft labels we collect
over x̃ validate various of extensions of mixup which are already being developed by the
machine learning community. We then introduce our two proposed extensions of mixup: 1)
a new entropy-weighted loss, inspired by the human knowledge we have collected, and 2)
the use of soft label endpoints for mixing. We discuss how simulating human knowledge,
grounded in the data we have collected thus far, can enable us to scale the benefits of
incorporating more human-aligned information.

5.1 Humans Perceive “Softer” Category Compositions for
Synthetic Mixed Images

We saw in Chapter 4 that not only do human perceptual judgments do not consistently align
with the mixing coefficient used to form the typical mixing label λ f ∗ yi +(1−λ f )∗ y j, but
humans are also not particularly confident in their inferences. We hypothesize that such
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discrepancies and confusion may indicate arise when humans perceive different categories
than are used to form the synthetic image. Recall, we have thus far only told annotators the
labels of the combined images; it could be the case that the result of combining a cat and a
ship now looks like something else entirely. If so, it would be sensible to express the richness
of these percepts in the supervisory targets.

To investigate, we consider whether human knowledge deviates from the traditional
“two-hot” label formation approach1. We saw in Chapter 3 that soft labels can be effectively
elicited from every annotator and offer ML performance boosts; here then, we explore the
collection of soft ỹ directly from humans.

5.1.1 Elicitation Paradigm

We rely on a modified version of the soft label elicitation interface proposed in Chapter 3 (see
Fig. A.3). We recruit 8 participants, yielding soft labels over a total of 100 mixed images.
The images are drawn from the same set of stimuli created in Section 4.2.1; however, here,
we only show images with a mixing coefficient ∈ {0.25,0.5,0.75}, as these yield the most
interesting relabeling effects. Participants are told that images are formed by combining other
images, and are asked to provide what they think others would see in the image and asked to
specify what others would view as the most probable category with an associated percentage
(on a scale of 0-100), an optional second most probable category with a probability, and any
categories that would be perceived as definitely not in the image.

5.1.2 Human-Inferred Category Composition

We explore the correspondence between the elicited category compositions of the mixed
images with the labels that would be used to generate the mixed image (as would be used in
traditional mixup). We are encouraged that the task is reasonable as humans did tend to place
probability mass on the generating endpoints that correlated with the mixing coefficient used
(Pearson r = 0.52). However, we interestingly find that the humans’ provided soft labels
place 38.3% (±0.6%) of the probability mass of a label on different classes from those which
are used to create the image. This is remarkable and suggests that mixed images do not
consistently look like the labels used to create them; and hence, alternative labelings may be
preferred which are more aligned with human percepts. Examples of such labeled mixed
images are shown in Fig. 5.1.

1We refer to labels which place all mass on only two labels as “two-hot” to parallel traditional “one-hot”.
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Fig. 5.1 Example combined image (λ = 0.5; horse/ship) which has been relabeled by humans
(red) using our soft label elicitation. The label which would be used by mixup is shown in
blue.

Takeaways The typical two-class labels used in mixup do not consistently match human
perception. We find that human annotators often assign probabilities to alternate classes
when asked to label a mixed image.

5.2 Softening Synthetic Targets

We next consider how best to leverage the insights of our human study, i.e., human perceptual
knowledge as soft labels indicate the traditional two-hot category composition for synthetic ỹ
lacks human-like richness. It is therefore natural to investigate alternative training paradigms
to those used in classical mixup that ascribe probabilities across a wider range of categories
to those mixed.

In the face of limited data (N = 100 examples), rather than training directly on the elicited
soft labels, we consider ways to automate the introduction of softness into the mixing policy.
First, we connect the results of our user study to existing automated mixup approaches that
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leverage softness. We then introduce a new entropy-weighted loss inspired by the human
knowledge elicited and empirically verify its utility towards improving generalization. We
also consider a second way to incorporate softness in ỹ by mixing naturally soft endpoints,
for instance, by mixing over (and simulating additional) CIFAR-10S examples.

5.2.1 Soft mixup Policies

Our preliminary elicited human knowledge suggests that encouraging the network to produce
softer predictions when mixing inputs may be more sensible. Several works have already
begun to address the softening of mixup labels, KD methods (Wang et al., 2020; Xu et al.,
2020), GMM-based soft relabelers (Sohn et al., 2022), and entropy-based loss functions
such as that proposed in Mix-MaxEnt (Pinto et al., 2021). Our elicited data in the Section
above excitingly provides the first human perceptual verification of such approaches
being (loosely) more aligned with human perceptual knowledge than classical the mixup
label policy.

Here, we add to this family of soft mixup-based methods with two variants: a new
clamped entropy-weighted loss (Ent-WC), and mixing over softer endpoints. As we do
not employ an auxiliary relabeler like the KD methods, our work then most closely relates
to Mix-MaxEnt. We next delve deeper into Mix-MaxEnt and its relation to our proposed
method.

Overview of Mix-MaxEnt in Relation to Our Method

To address improve model uncertainty calibration, Pinto et al. (2021) propose training a model
over both classical in-distribution x and synthetic examples x̃, where the model is optimized
with a traditional cross-entropy loss over the in-distribution examples and encouraged to
drive up the entropy over the synthetic examples. In their work, synthetic examples – like
ours – are constructed via mixup (Zhang et al., 2017); however, the constructed examples
hem close to the 50/50 point (i.e., λ f ∼ 0.5).

This setup is compelling as it captures the intuition that we have begun to confirm with
human experiments: at least in the image domain we have considered, humans tend not
to have confident muddied perceptual judgments over synthetically mixed examples. It is
therefore reasonable to encourage spreading probability mass over a range of classes for
these examples.

However, we argue there are several assumptions in the design of the set-up which could
be address. First, such softening takes place primarily over the midpoints of the mixes. As
we saw in Sections 4.2 and 5.1, not just the 50/50 point is “confusing” for humans. Second,
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in Mix-MaxEnt, the model is encouraged to drive the entropy to a fully uniform distribution –
provided performance remains high on in-distribution examples. Yet, as we have also seen
through our human experiments, there are several cases where humans are not confused.
Therefore, it seems sensible to encourage softer, but not meaningless, targets over synthetic
examples. Third, training with cross-entropy over the in-distribution examples assumes that
they are “flawless.” The authors consider experiments using only hard labels, and as we
demonstrated in Chapter 3, individual human percepts are also more uncertain than can be
captured with hard labels alone. It seems sensible then that entropy could be increased over
the in-distribution examples as well.

5.2.2 Our Method: Clamped Entropy-Weighted Loss

As such, in this work, we clamp2 the entropy adjustment to ensure the model is not incen-
tivized to unrestrictedly predict uniform labels. We also consider this loss in a set-up which
mimics mixup in that we never train directly on the in-distribution examples. We also consider
this loss in a set-up which mimics mixup in that we never train directly on the in-distribution
examples. We believe this allows us to better take advantage of the regularization benefits
conferred from mixup (Zhang et al., 2017) that Mix-MaxEnt may miss. Our training setup
is therefore constructed as follows: We weight the standard CE loss of each data point by
log(2)/Hθ (x̃), where Hθ is the predictive entropy of the model trained on mixed datapoint
x̃. The weight is capped at 1, and lower bounded by a threshold, κ ≥ 0. We also sample λ f

from a broader space of mixing coefficients.

Setup

We employ a similar training and evaluation paradigm to that used in Chapter 4, e.g., training
a PreAct ResNet-34 model. However, in the experiments in this Chapter, we run full input
mixing over all N = 7,000 examples, rather than just over an augmenting set. That is, at
each batch, we sample a new mixing coefficient λ f , drawn from Beta(α,α). Here, we let
λ f = λg, a simplification that does violate our findings of Chapter 4 (preliminarily addressed
in Appendix C). To further disentagle model performance, we also consider an additional
robustness check – to natural data shifts. We therefore also measure CE on corrupted images
(corruption strength 3) from CIFAR-10-C Hendrycks and Dietterich (2019).

We compare our clamped, entropy-weighted loss against three baselines: 1) hard label,
without any mixup, 2) Mix-MaxEnt, and 3) mixup with our new clamped entropy-weighted

2This is a different “clamp” than Chapter 3; this is not human-derived and pertains to constraining the loss
adjustment.
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loss. The Mix-MaxEnt authors (Pinto et al., 2021) found that a higher α was advantageous.
To give the fairest comparison to the approach, we re-tuned for our specific problem, using
the same validation method in Chapter 3. We select α = 10 from {5,10,20,50}, and
run a similar process for our entropy-weighted loss finding best performance at 0.2 ∈
{0.1,0.2,0.4,1,5,10}.

For our method, we select clamp κ from {0.0, 0.2, 0.5, 0.7, 0.9 } using a held-out valida-
tion set of CIFAR-10. We find the best performance is conferred with κ = 0.7, indicating
that a moderate amount of entropy is ideal. Too strong of an incentive to lower entropy (e.g.,
κ = 0) leads the model to predict uniform labels, which is not consistent with the human
knowledge we have collected as discussed above.

Results

We find that our entropy-weighted loss significantly improves model generalization and
robustness compared to traditional mixup label policy (Zhang et al., 2017); however, the
approach yields somewhat poorer calibrated predictions, particularly with regard to Mix-
MaxEnt (Pinto et al., 2021). This is not entirely unexpected as Mix-MaxEnt is designed
for good calibration (Pinto et al., 2021), and as discussed throughout this work, we care
about performance over a range of metrics. We do note that Mix-MaxEnt yields the best
natural robustness, painting a nuanced picture of the advantages of our method. However,
the success of both Mix-MaxEnt and our new entropy-weighted loss demonstrate the power
of encouraging moderate levels of softness over mixed examples, across the full space of
mixing coefficients. While we do not directly verify this model with human knowledge, we
believe the approach holds promise as a potentially more perceptually-consistent training
approach when using synthetic, mixup inputs.

5.2.3 Our Method: Mixing Over Human-Derived and Simulated Soft
Labels

We can go further though and address another assumption common in mixup work: the
endpoints being mixed are hard. That is, instead of construction ỹ = λ f ∗ y1 +(1−λ f )∗ y2

(Zhang et al., 2017) from hard y1,y2, we assume y1,y2 are soft. Where do we get these
soft labels from? Our human experiments in Chapter 3 provide an “answer,” at least for
CIFAR-10. Here then, we consider running mixup and our entropy-weighted loss to explore
more directly incorporating huamn knowledge to form softer synthetic labels.

To the best of our knowledge, we are the first to explore the use of soft variants of
CIFAR-10 labels as the endpoints for mixing. While Battleday et al. (2019) begin to investi-
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gate the use of their dataset CIFAR-10 and mixup in their prior submission, here we extend
these analyses across a wider range of metrics and consider how softness in the endpoints
interacts with encouraging softness in the model predictions through an entropy-weighted
loss.

Algorithm CE FGSM Loss Calibration Corruption CE

mixup 1.252±0.02 10.547±0.26 0.087±0.01 1.606±0.03
Mix-MaxEnt 1.070±0.04 6.436±0.59 0.065±0.01 1.340±0.03
Ours (Ent-WC) 1.054±0.01 3.314±0.05 0.102±0.0 1.346±0.03

Table 5.1 Comparing variants of the mixup algorithm.

Extending CIFAR-10S

A challenge arises though in exploring the use of CIFAR-10S in our set-up. To parallel the
experiments of Chapters 4 and 5 thus far, we want to train over the set of 7,000 examples –
however, we only have soft labels for 1,000. We now consider another utility of the human
knowledge we have collected: we can simulate more of our labels over the 6,000 which we
do not have per-human soft labels elicited for. We do this by softening the annotations from
CIFAR-10H using the statistics of our collected data. We construct a generative model to
mimic the human elicitation process. We detail said model in Appendix B.5. We hypothesize
that the use of human-grounded simulated soft labels, can improve model generalization and
calibration. We empirically explore this hypothesis next.

Setup

We compare training a model with the above algorithms when the endpoints are hard
(traditional) versus soft (using our simulated expanded CIFAR-10S) in the same training
paradigm.

Results and Discussion

Table 5.2 reveals that mixing over soft labels confers sizable improvements for traditional
mixup and Mix-MaxEnt; particularly in calibration and corruption robustness. However, the
soft endpoints yield inconclusive performance change when using our entropy-weighted loss.
This is interesting, as it suggests that possibly the entropy-weighted loss is able to capture
much of human softness already. Though the top-tier performance of Mix-MaxEnt when
combined with our soft labels supports that this extension to classical mixup (incorporating



48 Synthesizing Human-Like Soft Target Distributions

human knowledge – and specifically human-grounded simulated soft labels) holds promise.
Though as discussed in Sections 6.2 and B.5, the use of simulated soft labels is preliminary
and further investigation is essential to ensure the fidelty of the resulting labels.

Algorithm Endpoints CE FGSM Loss Calibration Corruption CE

mixup Hard 1.252±0.02 10.547±0.26 0.087±0.01 1.606±0.03
mixup Ours (Soft) 1.18±0.02 8.893±0.24 0.131±0.01 1.48±0.03
Mix-MaxEnt Hard 1.07±0.04 6.436±0.59 0.065±0.01 1.34±0.03
Mix-MaxEnt Ours (Soft) 1.019±0.02 6.013±0.59 0.054±0.01 1.252±0.02
Ours (Ent-WC) Hard 1.054±0.01 3.314±0.05 0.102±0.0 1.346±0.03
Ours (Ent-WC) Ours (Soft) 1.027±0.02 3.399±0.06 0.107±0.01 1.30±0.02

Table 5.2 Evaluating performance when algorithms are run instead over soft labels endpoints.
Hard labels are regular CIFAR-10 examples; soft labels are derived from a simulated set of
CIFAR-10S labels. Bold indicates best within an algorithm and varying label base. Italices
indicate best over all variants.

5.3 Takeaways

Overall, our crowdsourced study demonstrates that indeed, the structure of the synthetic
labeling policy used in mixup does not match human perceptual knowledge, and that ap-
proaches aimed at increasing the entropy of synthetic labels implicitly push models towards
this more human-aligned label space. One such method is Mix-MaxEnt (Pinto et al., 2021).
We also introduce and verify two new methods of introducing softness to mixup: 1) training
with a clamped entropy-weighted loss, and 2) mixing over soft label endpoints. While the
first approach is inspired by human percepts, and has room to be grounded directly in human
judgments, the latter is rooted in the statistics of human knowledge, thereby demonstrating
the potential of leveraging a small collection of human knowledge to construct scalable
simulators. However, as discussed, this work is in an early stage and ought to be explored
more; for instance, here, we are always taking λ f = λg. As uncovered in Chapter 4, this
assumption is not human-aligned. A preliminary investigation into an additional alternative
human-based mixup labeling is included in Appendix C.

Next We now will take a step back and consider the broader picture of the promises of
eliciting and incorporating additional human knowledge: both to further improve machine
learning models and consider improve human-machine teams. We also discuss some of the
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key challenges towards scaling the kinds of studies we have collected here, as well additional
limitations of the work included in this thesis.



Chapter 6

Discussion

We demonstrated that eliciting and learning with additional forms of human knowledge
holds great potential to improve model performance; however, our findings are nuanced –
eliciting richer information from individuals may come at a cost of more annotation time,
and scalability is a challenge.

Chapter Roadmap We highlight several aspects of our experimental paradigms that ought
to be considered before extrapolating from our results. We discuss paths to address the thorn
of scaling human knowledge elicitation. We conclude with exciting directions hinted at from
this work around the utility of human uncertainty in ML systems.

6.1 Considerations

We acknowledge that the work of this dissertation has focused on a single domain – image
classification – and a particular dataset in said domain, CIFAR-10 (Krizhevsky, 2009). We
have always trained models from scratch, explored only a handful of popular architectures,
and relied primarily on a standard cross entropy loss (with the exception of Chapter 5).
Alternative learning setups such as fine-tuning on a small amount of richly human-labeled
examples, the exploration of a broader range of models like in (Peterson et al., 2019), and
the consideration of other loss functions particularly those designed for noisy labels like peer
loss (Peer et al., 2017) are sensible next steps to validate from trends suggested from this
work (i.e., human knowledge is valuable towards improving model performance) generalize.

Additionally, the human data collected was itself of a moderate size and all participants
were recruited from United States crowdsourced workers who speak English as their first
language. Expanding dataset collection to other subpopulations, and exploring elicitation
beyond crowdsourced workers (e.g., to domain experts such as doctors and lawyers) are



51 Discussion

prime targets for future work. Elicitation from specialist annotators offers a fertile testbed to
explore whether our annotator-efficiency findings hold in practice.

6.2 Scaling

A related challenge that has permeated this work is the question of scaling human knowledge
extraction. This is a particular hurdle when annotation is time-intensive (Chapter 3) or
involves human judgments over synthetic examples, of which there are an infinite or near-
infinite set which cannot all possible be annotated manually (Chapters 4 and 5). One approach
to address scaling we consider is simulating additional human knowledge – directly from
the statistics of collected annotations, and inspired by the user studies. A complementary
and exciting direction to address scaling is the identification of which examples are most
likely to benefit from human labeling for efficient querying (Charusaie et al., 2022; Liu
et al., 2021a). We encourage more work in these directions, as well as in the design of more
efficient elicitation schemes, with an eye on utility for downstream models.

6.3 Leveraging Human Uncertainty Information

While rigid conclusions cannot be drawn given the above considerations, all core chapters
(2-5) of this work highlight that eliciting information about human uncertainty – which is
not often collected – has tremendous potential. Individual annotators’ reported personal
label distribution can be used to form soft labels (Pm) which we have found provide rich,
effective supervisory signals. Additionally, humans’ confidence ω in their annotations (e.g.,
confidence in whether an inferred mixing coefficient is “correct”) can also be used to shape
training labels. Despite reasoning under uncertainty being a linchpin of human cognition
(Lake et al., 2017) and has been shown to be a central component of “good” decision-making
(Bhatt et al., 2021; Cox et al., 2021; Hall, 2002; Laidlaw and Russell, 2021; Platts-Mills
et al., 2020), its elicitation and incorporation in ML datasets D has been underappreciated.
We are excited by the prospects of this work illuminating the value such information can
provide ML systems.

Additionally, as discussed in Chapter 3, richer label distributions elicited from every
annotator could converge to different aggregate label distributions – which ought to be con-
sidered when forming “ground truth” labels (to which there may be done, e.g., in subjective
toxicity classification).

Future directions could also explore the implications of leveraging human uncertainty
information not just to improve a single model, but to boost the performance of a human-
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machine team (Steyvers et al., 2022; Wilder et al., 2020). For instance, in the selective
prediction setting (Mozannar and Sontag, 2020), a model could be trained not just to defer to
a human when the model is uncertain, but particularly allot capacity to learn to complement
when the human is uncertain (Bondi et al., 2022).



Chapter 7

Conclusions

We therefore have identified gaps in the current space of information elicited from humans
to be provided to ML models: namely, soft labels are rarely collected from individual
annotators, and human judgments are infrequently collected over synthetically-generated
data. We address these gaps with several crowdsourced studies, resulting in the creation
of datasets which we release for the machine learning community. We highlight how each
of these forms of human knowledge, particularly representing annotator uncertainty,
provides new information that is not often contained in the labels used to train models.
Through computational experiments, we validate the utility of leveraging these additional
forms of human knowledge – from each and every annotator, and across a set of annotators
– to improve performance across a suite of metrics, such as generalization, robustness, and
calibration. We demonstrate that collecting and training on richer forms of human knowledge
can be especially beneficial when there are fewer human annotators available. We then
exhibit how one can simulate the generation of human judgments over more examples,
thereby enabling us to form automated labeling schemes ground in and inspired by the
additional kinds of human knowledge we collect to further enhance model performance.

The corresponding improvements enjoyed by models trained on our elicited human
knowledge emphasize the power and promise of expanding the kinds of information
we collect from humans and incorporate into our training pipelines. We hope this
work inspires the ML community to consider what forms of human knowledge could be
leveraged to design more effective supervisory signals and broadly bolster model performance.
We acknowledge that there remain significant hurdles, such as annotation time, towards
the broader applicability of the richer kinds of human knowledge considered here: we
encourage the design of better, more efficient annotation interfaces and the exploration of
alternative kinds of human information that we could collect to improve the trustworthiness
and reliability of today’s ML systems.
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Appendix A

Human Subject Experiment Interfaces

Fig. A.1 Depiction of our soft label elicitation interface for classical observational examples.
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Fig. A.2 Example relabeling elicitation task shown to each crowdsourced worker.
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Fig. A.3 Example synthetic soft label elicitation interface.



Appendix B

Additional CIFAR-10S Investigation

We include additional experiments, analyses, and investigations into the value of collecting
soft labels from individual humans.

B.1 Additional Examples

Further comparison between CIFAR-10H and our CIFAR-10S are shown in Figs. B.1 and
B.2.

Fig. B.1 Top three highest Wasserstein distance examples between our CIFAR-10S labels
(blue) and CIFAR-10H (red). The hard labels in CIFAR-10 are: dog, frog, and bird.
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Fig. B.2 Additional examples demonstrating the “softening” of CIFAR-10H labels with our
elicitation. The hard labels in CIFAR-10 are: truck, dog, and airplane.

B.2 Comparison to Classical Label Smoothing

When considering the value of eliciting and incorporating additional human knowledge in
ML systems, one may ask why not just use traditional label smoothing (LS)?

yLS
n = yhard

n ∗ (1−β )+β ∗ ysmoother

ysmoother is a uniform of length K (each “probability” = 1
K (applied to all N examples),

yhard
n is the conventional one-hot label, and α is the smoothing factor ∈ [0,1].

We train the three models considered in Section 3.3 over labels on which LS (β = 0.05)
was applied. We tune β (∈ {0,0.0001,0.001,0.01,0.05,0.1,0.2,0.3,0.4} with the same
validation method discussed (Section 3.3.1). We find in Table B.1 that LS does outperform
both CIFAR-10H and CIFAR-10S in terms of calibration and roubstness over CIFAR-10H;
however, this does not hold when evaluated on CIFAR-10S. While these results do shed
light on a nuance of human knowledge elicitation (alternative, automated ML approaches
are powerful already); we argue that human knowledge still contributes valuable insights.
Importantly, LS does not capture meaningful softness, i.e., an image most likely to be a deer
has equal probability of alternatively being a dog as a ship. This lack of human-sensible
alternatives may prohibit effective generalization to our richer, harder CIFAR-10S evaluation
set; a result of which has been shown on other datasets Zhang et al. (2021a). Furthermore, the
blanket mass spread over all K −1 alternatives also has been found to lead to oversimplified
clusters Müller et al. (2019). It is worth investigating the kinds of latent spaces that result
from training over our human-derived soft labels instead.
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Label Type CE Calibration FGSM Loss

10
H Label Smoothing 1.368±0.19 0.175±0.05 6.965±1.7

CIFAR-10H 1.293±0.08 0.194±0.01 8.577±1.91
Ours (T2, Clamp) 1.281±0.06 0.184±0.01 8.406±1.75

10
S Label Smoothing 2.674±0.33 0.299±0.05 9.375±3.4

CIFAR-10H 2.459±0.21 0.311±0.02 8.334±1.75
Ours (T2, Clamp) 2.355±0.14 0.297±0.03 8.405±1.59

Table B.1 Comparing de-aggregated human-derived soft labels against label smoothing.

B.3 Full Annotator Efficiency

We study the performance of training with each M, run for 5 seeds.
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Fig. B.3 Comparison of learner performance based on number of annotators used to create
the training labels. Same depiction as Fig 3.5 with only M.

B.4 Alternative Semantic-Based Redistribution

In Section 3., we introduced redistribution of probability mass when we have partial proba-
bility distributions from humans. As discussed in Section ??, uniform redistribution does not
capture meaningful alternative categories which humans do seem to perceive (see 3.2.3 and
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B.1). As such, we consider redistributing mass based on the semantic distance of alternative
classes to that selected in Top 1. We approximate semantic distance with cosine similarity of
GloVe embeddings (Pennington et al., 2014) converted to Word2Vec formatMikolov et al.
(2013). We find mixed results for whether the redistribution, in this setting, improves over
Uniform. It appears that semantic redistribution is more effective when we use it in concert
with our T2 setting (shown in Table B.3) compared to just using the T1 information (Table
B.2). Study into why this may be, and whether other experimental paradigms reveal the
benefits of semantic-based smoothing are warranted.

Redist CE Calibration FGSM Loss

10
H Uniform 1.423 +/- 0.08 0.198 +/- 0.01 10.891 +/- 0.32

Semantic 1.439 +/- 0.05 0.198 +/- 0.02 10.369 +/- 1.23

10
S Uniform 2.531 +/- 0.15 0.312 +/- 0.03 11.25 +/- 0.4

Semantic 2.568 +/- 0.97 0.32 +/- 0.17 10.284 +/- 1.35
Table B.2 Uniform vs. semantic redistribution methods to construct labels from the T1 variety.
The redistribution method used to spread leftover mass. 5 seeds are run for ResNet-34A.

Redist CE Calibration FGSM Loss

10
H Uniform 1.448 +/- 0.14 0.203 +/- 0.02 10.474 +/- 0.44

Semantic 1.382 +/- 0.19 0.195 +/- 0.04 10.378 +/- 1.11

10
S Uniform 2.63 +/- 0.29 0.339 +/- 0.1 10.667 +/- 1.15

Semantic 2.64 +/- 0.73 0.335 +/- 0.18 10.326 +/- 1.72
Table B.3 Uniform vs. semantic redistribution methods to construct labels using both Top 1
and Top 2 elicited information (T2). Setup follows B.2.

B.5 Simulating Label Construction

We hand-craft a generative model based on our Top-2 Clamp label formulation to convert
hard labels into soft labels which approximate those we elicit from individual humans. The
model is as follows:

1. We are provided a hard label. We let this be the selected Top 1.

2. Sample from a Beta distribution the probability an annotator may have assigned to that
hard label. Where Beta is fit to the Top-1 probabilities assigned by our humans.
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3. Sort all alternative classes based on their semantic distance (using the definition in
Section B.3).

4. Sample a number of alternative labels Kp which would have been deemed possible
based on a histogram of the number of labels not selected as “impossible.” Keep only
Kp of the ranked list.

5. Sample from another Beta distribution fit to human-provided Top-2 probabilities.
Spread this amount of mass on the closest alternative class, if Kp ≥ 1.

6. Spread any remaining mass uniformly over any other possible categories, mimicking
our Clamp.

Note, we fit a different Beta and use a separate “possible-class” histogram based on
whether the example was high or low entropy (defined against CIFAR-10H as discussed
in Section 3.2.1). We route to the proper distribution based on CIFAR-10H entropy of the
example being converted, and sample the hard label from the CIFAR-10H label. This means
that our approach is somewhat constrained by the data collected by CIFAR-10H. As such, we
emphasize this is a first pass at leveraging grounding more (but not fully) scalable human
knowledge simulators. Future work could explore alternative ways to estimate image entropy,
such as predicted model entropy, when deciding which distribution to use in generating a
label, as well as full learned generative models of such soft labels.



Appendix C

Scaling with Human-Aligned Logistic
Functions

We explore the value of leveraging the human knowledge that we have collected to define
automated, scalable mixup policies. We choose a logistic function to parameterize λg based
on Fig. 4.4 and cognitive neuroscience literature (Destler et al., 2019; Folstein et al., 2013;
Goldstone and Hendrickson, 2010; Harnad, 2003).

We fit a logistic function τi, j ∈ [0,1], using the scipy.curve_fit function, based on
the human data we have collected for every class pair (yi,y j) in CIFAR-10. At each batch,
and for each pair, then we let λg = τi, j(λ f ,yi,y j). However, the utility of this approach is
not yet clear as: 1) though combining with the entropy-weighted loss of Chapter 5 achieves
the best CE, without said loss, the method is worse than linear mixup alone, 2) comparison
against a baseline against non-human-fitted logistic is necessary, and 3) this set-up assumes
the endpoints are hard so that we can index to the right logistic; as seen in Section 5.2.3,
mixing softer endpoints may be beneficial. Investigative work into these points is ongoing.

Algorithm Ent-WC CE FGSM Loss Calibration

mixup No 1.252±0.02 10.547±0.26 0.087±0.01
τ mixing No 1.28 +/- 0.04 6.502 +/- 1.61 0.172 +/- 0.11
mixup Yes 1.054±0.01 3.314±0.05 0.102±0.0
τ mixing Yes 1.039 +/- 0.02 4.171 +/- 0.06 0.109 +/- 0.01

Table C.1 Mixing with transformed λg using functions fit to human data (Ours, Class-Pair
Transform; i.e. τ). Varying whether entropy-weighting (Ent-WC) is applied to loss. Same
setting as 5.1.
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