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Abstract

The chief object of study in this thesis are linear time-invariant systems that are driven by
non-Gaussian noise; specifically,

f (t) =
∫
R

h(t− τ)dX(τ),

where {X(τ) : τ ≥ 0} is a generalized hyperbolic (GH) Lévy process and h is a Gaussian
process. These are modifications of the Gaussian Process Convolution Model which was
introduced in Tobar et al. (2015) where the Lévy process was assumed to be the Wiener
process. We explain the methods of Kındap and Godsill (2022a) and Godsill and Kındap
(2021) used to sample (GH) Lévy processes, from this we obtain a method for sampling
Lévy driven GPCMs and finally we develop an MCMC method for performing inference for
these models.
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Chapter 1

Introduction

The first example of a stochastic process that one usually encounters is Brownian motion.
Brownian motion may be thought of as a continuous-time limit of a random walk on the
real line as the step-size tends to zero, and it is used to model the random motion of a
particle suspended in a liquid or gas. One of its defining characteristics is that its increments
X(t)−X(s) are normally distributed. Specifically for the standard Brownian motion

X(t)−X(s)∼N (0, t− s).

Thus we see that there is an intimate connection between Brownian motion and the Gaussian
distribution.

While the Gaussian distribution fits many natural phenomena, there are numerous real-
world datasets which exhibit "heavy-tails" and assuming that such data is Gaussian is not
appropriate. Indeed, there are many examples of random processes whose increments should
be modelled by a non-Gaussian distribution. Examples arise in finance, Cont and Tankov
(2003), Mandelbrot (1963); signal processing, Nikias and Shao (1995); climate science, Katz
and Brown (1992) and elsewhere. The introduction of Godsill and Kındap (2021) gives
a thorough outline of applications of non-Gaussian processes. When working with non-
Gaussian processes or distributions, one often sacrifices the tractability of the Gaussian; in
particular, sampling from these distributions can be difficult, and only recently have methods
been developed to sample the paths of certain non-Gaussian stochastic processes, Godsill
and Kındap (2021); Kındap and Godsill (2022a).

In this thesis, we will be concerned with stochastic processes {X(t) : t ≥ 0} that are
stationary, so that for any t > s≥ 0 in the domain of the process, we have that the increment
X(t)−X(s) has the same distribution as X(t−s), and processes where the distributions of the
values at time t comes from a specified family of distributions. The family of non-Gaussian
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distributions that is most relevant for us are the generalized hyperbolic (GH) distributions.
Generalized hyperbolic distributions were introduced in Barndorff-Nielsen and Halgreen
(1977), where they were used to model the physics of wind-blown sand. More recently, they
have been applied in financial modelling, for example in Eberlein (2001). The family of GH
distributions contains several important subclasses e.g. the hyperbolic, the normal inverse
Gaussian and the Student’s t-distributions. We will discuss some of the properties of this
distribution that are relevant for us in Section 2.2.

In Barndorff-Nielsen and Halgreen (1977) it is shown that a GH distribution is infinitely
divisible, see page 12, which implies that any GH distribution arises as the distribution of
the values of a stochastic process at time one. We describe the recent methods of Godsill
and Kındap (2021) and Kındap and Godsill (2022a) used to simulate these processes in
Chapter 3. We will see that such processes are pure jump Lévy processes (see Section 2.3),
which can be represented by an infinite sum of jumps and can be approximated well by a
process determined by a finite sum of jumps at uniformly distributed jump times. Generalized
hyperbolic processes have almost surely infinitely many jumps in every time interval of
positive length, so in simulations, some approximation of them is always necessary. We will
see that there is a principled and effective method for choosing the finitely many jumps used
to approximate a GH process.

The feature of being able to approximate a GH process well by a finite number of jumps
makes them amenable to simulation and also to inference, as we will see. For example, using
this approximation of a GH process one can easily simulate Ornstein-Uhlenbeck systems
(and even more general CARMA systems) that are driven by generalized hyperbolic Lévy
noise.

The principle object that we study in this thesis are linear time-invariant systems driven
by such Lévy processes. Tobar et al. (2015) introduced the Gaussian Process Convolution
Model (GPCM). They modelled signals as the convolution of a Gaussian process h with
white noise x; this model may also be expressed as the stochastic integral of h with respect to
the Wiener process {W (τ) : τ ≥ 0}:

f (t) =
∫
R

h(t− τ)x(τ)dτ =
∫
R

h(t− τ)dW (τ).

We will consider models that are obtained by replacing the Wiener process with a GH Lévy
process. In this case we have that

f (t) =
∫
R

h(t− τ)dX(τ) =
∞

∑
j=1

h(t− τ j)dXτ j ,
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where the τ j are the jump times of the Lévy process and dXτ j is the size of the jump at
time τi. Since we approximate our processes by a finite number of jumps, the sum on
the right becomes a finite sum. Combining the methods of Godsill and Kındap (2021);
Kındap and Godsill (2022a) with sampling of Gaussian processes, we have an effective
method for sampling such objects. In Chapter 4, we will describe and evaluate the use of
Metropolis-Hastings based methods for performing inference using these models.

1.1 Stochastic processes

Let us now discuss stochastic processes a little more formally, and introduce the important
special case of Gaussian processes.

A stochastic process is a set of random variables indexed by a set. We will only consider
continuous time processes indexed by intervals I ⊂ R, the real-line, taking values in R.
For example, the one-dimensional Brownian motion, also known as the Wiener process,
{Xt : t ≥ 0}, is characterized by the following conditions (Bass, 2011):

• The intial value X0 = 0.

• Independence of increments: for any sequence of times 0≤ t0 < t1 < t2 < · · ·< tn−1 <

tn, the values of the increments Xti−Xti−1 , 1≤ i≤ n, are mutually independent.

• For any 0≤ s < t, the distribution Xt−Xs is normally distributed with mean zero and
variance t− s.

• Xt is continuous in t.

We show some sample paths of the Brownian motion in Figure 1.1.
We will discuss more general Lévy processes in more detail in Section 2.3, but let us

point out that they address some important considerations when modelling certain real-world
data. General Lévy processes are not required to be continuous. This makes them suitable for
real-world applications where one may observe jumps in the data. Also, observe that in the
definition of Brownian motion, we assume that the increments Xt−Xs for s < t are Gaussian.
We illustrate this in Figure 1.2. For general Lévy processes, this condition is relaxed, and
one only requires stationary increments, that the distribution of Xt −Xs is the same as the
distribution of Xt−s. More specifically, a generalized hyperbolic process has the property
that the distribution of its values at time one is a generalized hyperbolic distribution, see
Section 2.2.
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Fig. 1.1 Sample paths of Brownian motion on the real-line.

Fig. 1.2 Histogram of time-one values of the Brownian motion on R, the Wiener process, (in
blue) and a graph of the standard Gaussian pdf (in orange).
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1.1.1 Gaussian processes

Gaussian processes are stochastic processs, which generalize the Gaussian distribution, and
they provide us with a powerful tool for modelling unknown functions. Indeed they are a
standard tool in Bayesian signal processing. Often they are state of the art for continuous re-
gression problems, they provide estimates for the uncertainty of their predictive distributions,
and are they are interpretable. In this section, we provide some relevant background material
on Gaussian processes, and we refer to Rasmussen and Williams (2006) for the details and
further information.

A Gaussian process is a stochastic process that is specified by a mean function µ(·)
and a positive definite covariance function, also called a kernel, K (·, ·). This defines
a distribution over functions with the property that for any finite vector of points x =

(x1, . . . ,xn), we have that the joint distribution p( f (x)) = N ( f (x); µ(x),K (x,x)), where
f (x) = ( f (x1), . . . , f (xn)), µ(x) = (µ(x1), . . . ,µ(xn)), and the covariance matrix K (x,x)
has i, j entry K (xi,x j)] for 1≤ i, j ≤ n. We will write f (x)∼ GP(µ(x),K (x,x)).

An important feature of Gaussian processes, and one which motivated the development
of the GPCM is that Gaussian processes provide a non-parametric model for an unknown
function - a Gaussian process cannot be parameterized by finite set of parameters. This aspect
of Gaussian processes allows them to model complex functions when they are provided with
enough data, while being robust against over-fitting when little data is available.

An example of a covariance function is the exponential quadratic kernel

KEQ(x,x′) = e−
1
2∥x−x′∥2

.

This kernel is stationary. Also, it corresponds to a local smoothing operation and any
f (x)∼GP(µ(x),KEQ(x,x)) is smooth. So we see that simple choices of kernel, such as this
one, limit the ability of the Gaussian process to generalize.

The first step in Gaussian process regression is the specification of a prior distribution
over functions, which captures underlying assumptions about the target function, for example
its smoothness, periodicity or whether it is stationary. These assumptions about the function
guide the choice of the prior distribution, and hence the kernel. The chief modelling decision
that is made when using Gaussian processes is arguably the choice of kernel, Tobar et al.
(2015). Finding methods for constructing kernels as well as determining the best kernel for a
given task are both active research areas.
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1.2 The Gaussian Process Convolution Model

Finding principled methods for choosing which kernel to use when modelling with a Gaussian
process and constructing expressive kernels are important problems, Tobar et al. (2015),
and these are active areas of research. Three approaches to this problem have been pursued.
One approach is to start with a collection of basic kernels, and search through the space
of kernels for an effective one for a particular problem by composing the basic examples,
Grosse et al. (2012), Duvenaud et al. (2013) and Malkomes et al. (2016). A second, is to
obtain a parametrized family of kernels by parametrizing the power spectral density of the
kernel using Gaussians, Wilson and Adams (2013), Lévy processes, Jang et al. (2017), or
Dirichlet processes, Oliva et al. (2016). Other methods for parametrizing the kernel were
used in Calandra et al. (2016) and Sun et al. (2018). The third approach, and the one that
is motivates part of this work, is to treat the kernels non-parametrically (in the same way
that Gaussian processes themselves treat functions non-parametrically). This attempts to
resolve problems of tractability in the first approach and over-fitting in the second. This idea
was developed in Tobar et al. (2015) and Bruinsma et al. (2022). Let us briefly describe the
GPCM model of Tobar et al. (2015), and how it relates the problem of finding an appropriate
kernel. In Tobar et al. (2015), a signal is modelled as the a linear, time-invariant system
obtained as the stochastic integral of a Gaussian process with respect to the Wiener process.
Now, given a filter h∼ GP(µ,K ), the process

f (t) =
∫
R

h(t− τ)dW (τ),

is again a Gaussian process, since f (t) is a linear combination of Gaussian random variables,
and, since h is drawn from a non-parametric prior, we obtain a non-parametric prior over
kernels. For this purpose there is nothing special about the Wiener process, and replacing it
with a general Lévy process, provides us with a means to construct more general priors over
kernel functions.

In Tobar et al. (2015), the filter is chosen from a Gaussian process with the decaying
exponential quadratic kernel:

KDEQ(t1, t2) = σhe−α(t2
1+t2

2 )−γ(t1−t2)2
,

where σh w = 1/
√

α is the window parameter, s = 1/
√

γ is the length-scale parameter and σh

is the strength. As for the exponential quadratic kernel, the length-scale parameter determines
the time-scale over which filter varies and the window parameter determines the extent of the
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domain over which the filter is active, which in turn determines the length of time correlations
in the output signal Tobar et al. (2015).

These models are incredibly flexible, and there are numerous ways in which they can be
modified. In Bruinsma et al. (2022) two modification of this model were introduced. One
is the Causal Gaussian Process Convolution Model CGPCM. This model is a modification
of the GPCM, so that as is the case with physical systems, the values of the output f do not
depend on future values of the input. For the CGPCM given h ∼ GP(0,KDEQ), we have

f (t) =
∫ t

−∞

(h(t− τ))sW (τ).

It is proved in Bruinsma et al. (2022) that if h(0) ̸= 0, then sample paths of the CGPCM are
almost surely nowhere differentiable.

A second variation of the GPCM that was introduced in Bruinsma et al. (2022) is the
Rough Gaussian Process Convolution Model, RGPCM. The RGPCM is defined by the
following generative model. Let h be white noise windowed by e−α|t|, that is, h∼ GP(0,kh),
where kh(t1, t2) = α̃2e−α|t|−α|t ′|δ (t1− t2), where δ is the Dirac-δ function, and we take
x∼ GP(0,K), where K(t1, t2) = e−λ |t1−t2| is the the Matèrn−1/2 kernel. Then

f (t) =
∫ t

−∞

h(t− τ)x(τ)dτ.

The RGPCM can model sample paths that are more irregular than the CGPCM Bruinsma
et al. (2022).

We investigate (acausal) GPCM with the DEQ-kernel, but which are driven by Lévy
noise. The sample of these models are smooth; however they are able to model jumps in
functions that may be difficult to model when the input to the system is Brownian motion.

1.3 Starting points for the project

This project built on code that was made available by the advisors for the project, Godsill
and Kindap, at https://github.com/yamankindap/GiG. I re-implemented this with some small
changes to incorporate some of the improvements to the sampling procedure that were
introduced in Kındap and Godsill (2022a). This code underlies the entire project, which
depends on sampling paths from generalized inverse Gaussian distributions.

To work with Gaussian processes, I made used of the stheno package https://github.com/
wesselb/stheno. This plays an important role in Chapter 4, where we need to sample from
Gaussian processes as part of the Gibbs sampler in our inference scheme. I also investigated

https://github.com/yamankindap/GiG
https://github.com/wesselb/stheno
https://github.com/wesselb/stheno
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the implementation of the its pseudopoints approximation of Gaussian processes; however,
this is not crucial for the project.

Otherwise, the code for this project was written using standard scientific computing
packages in python: numpy, scipy and jax.numpy to parallelize a few computations.

1.4 Outline

• In Chapter 2, we provide background material for the thesis. We start by presenting a
few key details from probability theory and go on to give a brief outline of the theory of
Lévy processes, which feature in Chapters 3 and 4. We also give a brief description the
Metropolis-Hastings Algorithm and Gibbs sampling, which we will need in Chapter 4.

• In Chapter 3, we describe the methods of Godsill and Kındap (2021); Kındap and
Godsill (2022a) for generating sample paths of GH processes and present simulations
of GH processes.

• Chapter 4 develops tools for inference for certain linear time invariant systems that are
driven by Gaussian noise. We make use of a Gibbs sampler. Fortunately, some of our
marginals we need to sample from are Gaussians, which are straight-forward to sample
from once we compute their means and covariances. However, we also need to sample
paths of a Lévy process which we do by implementing a Metropolis-Hastings within
Gibbs algorithm. We go on to evaluate the sampler, and discuss some improvements to
it.

• In Chapter 5, we evaluate the sampler and the Lévy driven GPCM on the price of crude
oil, and compare this model to the different GPCMs of Bruinsma et al. (2022); Tobar
et al. (2015).

• In Chapter 6, We present a discussion of our work and possible future directions.



Chapter 2

Background

In this chapter, we present some of the required background material we will need in
Chapters 3 and 4. We begin this section with a brief discussion of generalized hyperbolic
and generalized inverse Gaussian distributions and we go on to discuss Lévy processes and
the Gaussian process convolution model. We conclude with a description of the Metropolis-
Hastings algorithm.

2.1 Characteristic functions

Characteristic functions will serve as an indispensable tool later for understanding the
structure of Lévy processes. Characteristic functions are Fourier transforms of probability
measures: Let X be a real-valued random variable defined on a probability space with
distribution p. The characteristic function of X , φX : R→ C, from the real line to complex
plane, is defined by φX(u) =E(eiuX) =

∫
eiuy p(dy). We also call this object the characteristic

function of p, and write φp = φX , as the expected value does not depend on X .
Two important examples are

• the characteristic function of a Gaussian p(x) = N (x; µ,σ2) is given by

φp(u) = eiµu− 1
2 σ2u2

and

• the characteristic function of a Poisson distribution ψ(x) = Pois(x;λ ) is

φψ(u) = exp
[
λ (eiu−1)

]
.

There is a bijection between characteristic functions and probability distributions, so the
characteristic function of a distribution completely defines it.
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2.2 Generalized hyperbolic and generalized inverse Gaus-
sian distributions

The GH and GIG families of distributions are closely related and they both play an important
role in our study of GH processes.

Generalized hyperbolic distributions

The general form of the density function for a GH distribution is

pGH(x) = a(λ ,α,β ,δ ) · (δ 2 +(x−µ)2)(λ−1/2)/2 ·Kλ−1/2

(
α

√
δ 2 +(x−µ)2

)
eβ (x−µ),

where

a(λ ,α,β ,δ ) =
(α2−β 2)λ/2

√
2παλ−1/2δ λ Kλ (δ

√
α2−β 2)

,

and the function Kν(·) is the modified Bessel function of the second kind. It has an integral
representation as

Kν(z) =
1
2

∫
∞

0
yν−1e

− z
2

(
y+ 1

y

)
dy.

This family of distributions has five parameters:

• α > 0 determines the shape;

• β ∈ (0, |α|), the skewness;

• µ ∈ R, the location;

• δ > 0, the scale;

• and λ ∈ R, the heaviness of the tails.

Generalized inverse Gaussian distributions

A related family of distributions are the generalized inverse Gaussian (GIG) distributions.
The density function of a GIG distribution is given by

pGIG(x;δ ,γ,λ ) =
(

γ

δ

)λ 1
2Kλ (δγ)

xλ−1e−
1
2 (δ

2x−1+γ2x)
χx>0,

and the parameter space is given by Eberlein (2001):
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• δ ≥ 0,γ > 0, if λ > 0;

• δ > 0,γ > 0, if λ = 0;

• δ > 0,γ ≥ 0, if λ < 0.

Special cases of the GIG distribution include the gamma, the inverse gamma and the inverse
Gaussian distributions. A generalized hyperbolic distribution may represented as a mean-
variance mixture of Gaussians. Indeed,

pGH(x) =
∫
(0,∞)

N (x; µ +βu,u)pGIG(u;δ ,
√

α2−β 2,λ )du.

This establishes a first relationship between GIG and GH distributions, which plays an
important role in what follows.

2.3 Lévy processes

In this section, we collect relevant definitions and results concerning Lévy processes. Any of
the books, Applebaum (2009); Bertoin (1996); Sato (1999), would serve as a reference for
the material presented here. Much of the theory we discuss here holds for higher dimensional
Lévy processes; however, for simplicity, and because it is all that is relevant for the later
sections, we restrict our attention to the one-dimensional case.

A stochastic process {X(t) : t ≥ 0} is called a Lévy process if it satisfies the following:

• X(0) = 0 almost surely.

• Independence of increments: for any sequence of times 0≤ t0 < t1 < t2 < · · ·< tn−1 <

tn, the values of the increments X(ti)−X(ti−1), 1≤ i≤ n, are mutually independent.

• Stationary increments: For any 0 ≤ s < t, the distribution X(t)−X(s) is equal to
X(t− s).

• Continuity in probability. For any ε > 0 and t ≥ 0, we have that

lim
η→0

P(|X(t +η)−X(t)|> ε) = 0.

We recall that events Ai, i= 1, . . . ,n are said to be mutually independent if for every subset
{i1, . . . , ik} of {1,2, . . . ,n}, we have that p(Ai1 ∩Ai2 ∩·· ·∩Aik) = p(Ai1)p(Ai2) . . . p(Aik).

Any Lévy process X = {X(t) : t ≥ 0} has a modification which is continuous on the right
for each t ≥ 0 and has left limits for each t > 0. We call such a process cádlág. More precisely,
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for any Lévy process {X(t) : t ≥ 0}, there exists a Lévy process X ′ = {X ′(t) : t ≥ 0} so that
X ′ is cádlág, and P[Xt = X ′t ] = 1 for all t > 0. From now on, we will assume that all Lévy
processes are cádlág. This technical assumption about Lévy processes immediately implies
that for each ε > 0, a Lévy process can have at most finitely many jumps with size greater
than ε , which in turn gives us that a Lévy process can have at most countably many jumps.

2.3.1 Infinite divisibilty: existence of GH and GIG Lévy processes

Suppose that µ and η are real-valued probability measures. For any Borel set A ⊂ R, we
define the convolution of probability measures by the formula: µ ∗η(A) =

∫
R µ(A−x)η(dx),

where A− x denotes the set {y− x : y ∈ A}. It is useful to observe that the convolution of
two probability measures is a probability measure, and that convolution gives the probability
distribution for the sum of two independent random variables: Suppose that X1 and X2

are independent random variables defined on a probability space (Ω,F ,P), with joint
distribution p and marginals µ1 and µ2. Then

P(X1 +X2 ∈ A) = E(χA(X1 +X2)) = µ1 ∗µ2(A),

where χA denotes the indicator function of A.
We define µ∗

n
= µ ∗ · · · ∗µ, (n times), and if there exists a measure ν , so that ν∗

n
= µ ,

we call ν the nth root of µ. We say that a density µ is infinitely divisible, µ has an nth root
for every n ∈ N= {1,2, . . .}.

The following theorem relates infinitely divisible distribution with Lévy processes.

Theorem. If µ is an infinitely divisible probability measure on R, then there exists a Lévy
process {X(t) : t ≥ 0}, so that the distribution of X(1) is µ .

Employing results of Grosswald (1976), infinite divisibility of the GH and GIG distribu-
tions was established in Barndorff-Nielsen and Halgreen (1977).

It is straightforward to see that the distribution of the time t > 0 values of a Lévy process
is always infinitely divisible. For any n ∈ N, one may express

X(t) = X(t/n)+(X(2t/n)−X(t/n))+ · · ·+(X(t)−X((n−1)t/n)),

and the infinite divisibility follows from the fact that the distributions of the increments of a
Lévy process are stationary.
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2.3.2 The Lévy-Khintchine Formula

Lévy-Khintchine Formula and the Lévy-Itô Decomposition are two closely related founda-
tional results in the theory of Lévy processes, which serve to illuminate the basic structure
of Lévy processes. They provide us with a decomposition of a Lévy process into parts that
capture the distinct behaviours which are exhibited by Lévy processes, together with a means
of determining which types of behavior are present in a given Lévy process through the form
of its characteristic equation.

We define the characteristic function of a stochastic process {X(t) : t ≥ 0} to be
φ(X(t)) = φX(t), the characteristic function of the random variable X(t). If a distribution µ

is infinitely divisible, and ν is an nth root of µ , then their characteristic functions satisfy

φ
n
ν = φµ .

It follows from the fact that Lévy processes are stationary that the characteristic function of an
infinitely divisible distribution has no zeros and so can be expressed as φµ(u) = exp(−Z(u)),
u ∈ R. Moreover,

φX(t)(u) = exp(−tZ(u)) where φX(1)(u) = exp(−Z(u)).

This formula is immediate for rational t, and by taking limits it can be extended to general t.
The Lévy-Khintchine Formula provides an explicit expression for the characteristic function.

We call a measure ν with no atom on {0} satisfying
∫
R x2∧1ν(dx)< ∞ a Lévy measure.

Recall that if a,b ∈ R, then a∧b is defined to be the minimum of a and b.
For any set A, we let χA denote the indicator function ot A.

Theorem (Lévy-Khintchine). A probability measure µ on R is infinitely divisible if
there exists a,b ∈ R and a Lévy measure Q on R\{0}, so that for all u ∈ R,

φµ(u) = exp

{
ibu− 1

2
au2 +

∫
R\{0}

[
eiuy−1− iuyχ(−1,1)\{0}(y)

]
ν(dy)

}
. (2.1)

Conversely, any mapping of the form (2.1) is the characteristic function of an infinitely
divisible probability measure on R.

Since the the distribution of values of a Lévy process at a given time is always infinitely
divisible, this theorem holds for all such distributions.

The particular form of the Lévy-Khintchine representation of the characteristic function
of an infinitely divisible density gives us important information about the associated Lévy
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process. This is beautifully explained in Applebaum (2009), and we recall his discussion
here.

Case 1. (Linear motion or drift) Assume that a = 0 and that the Lévy measure ν vanishes.
Then the characteristic formula reduces to φµ(u) = eibu. If X(t) is the value of the
process at time t, then from the definition of the characteristic function of X , we have
that E(eiuX(t)) = eibut , so that E(X(t)) = bt, is deterministic, and we have X(t) = bt is
motion in a straight line.

Case 2. (Brownian motion with drift) Assume that a ̸= 0, but still assume that ν vanishes. Then
we have that

φX(t)(u) = eibut− at
2 u2

.

This is the characteristic function of a Gaussian random variable X(t) with mean tb
and variance at. A processes with this characteristic function is known as Brownian
motion with drift. If b = 0 and a = 1, then {X(t) : t ≥ 0} it is standard Brownian
motion.

Case 3. (Brownian motion with drift, with discontinuities determined by a compound Poisson
process.) Let us first consider the simplest case where ν is does not vanish. Assume
that ν = λδh, where δh is a Dirac measure supported on h ̸= 0. Then

φµ(u) = exp

{
ibu− 1

2
au2 +

∫
R\{0}

[
eiuy−1− iuyχ(−1,1)\{0}(y)

]
λδh(dy)

}
,

and setting b′ = b−
∫
R\{0} yχ(−1,1)\{0}(y)λδh(dy), the characteristic function takes

the form:

φµ(u) = exp

{
ib′u− 1

2
au2 +

∫
R\{0}

[
eiuy−1

]
λδh(dy)

}
.

Hence,
X(t) = b′t +

√
aB(t)+N(t),

where B = {B(t) : t ≥ 0} is standard Brownian motion, and N = {N(t) : t ≥ 0} is an
independent process with characteristic function

φN(t)(u) = exp
[
λ t(eiuh−1)

]
.

Thus, we see that N is a Poisson process with probability distribution:

P(N(t) = nh) =
(λ t)n

n!
e−λ t ;
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it has intensity λ and takes values in the set {nz : n ∈ N}.

The paths of this process follow a Brownian motion with drift up until some random
time T1 coinciding with the first jump time of the Poisson process, where it has a
discontinuity of size |h|, and then it continues to follow a Brownian motion with drift
up until some random time T2, the second jump of the Poisson process, where again it
has a discontiuity of size |h|, and so on.

This discussion extends immediately to case where ν = ∑
M
i=1 λiδhi is a finite linear

combination of δ functions with each λi > 0. In this case we have that

X(t) = b′t +
√

aB(t)+N1(t)+ · · ·+NM(t),

where N1, . . . ,NM are independent Poisson processes (whose sum is known as a com-
pound Poisson process), and Ni takes value in the set {nhi : n ∈ N}, so that again we
have that X(t) consists of segments where it follows a Brownian motion with drift,
bounded by jump discontinuities, where the sizes of the jumps are from {h1, . . . ,hM}.

So far we have seen that when b ̸= 0, the Lévy process possess a drift part, when a ̸= 0
it possesses a part that evolves as a Brownian motion, and in simple cases, when ν does
not vanish, it has a part that consists of jumps. One can show that the discussion presented
above extends to finite measures, but in this case the sizes of the jumps may be chosen from
a continuum.

Generally, the measure ν determines the sizes of the jumps and the rate at which they
can occur. For any Lévy measure with infinite mass, from the definition, we have that the
Lévy measure of any such distribution has finite mass on any closed interval that does not
contain zero, and charges every neighbourhood of zero with infinite mass. This intuitively
suggests that the the jumps that occur with the greatest intensity are small, so that this part
of the process is dominated by arbitrarily small jumps. We have already seen that there are
at most finitely many jumps greater than any fixed size, and we have that the jumps of any
Lévy process with infinite Lévy measure are dense in [0,∞).

Theorem (Sato, 1999, Theorem 21.3). If ν(R) = ∞, then almost surely jumping times are
countable and dense in [0,∞). If 0 < ν(R) < ∞, then almost surely, jumping times are
infinitely many, and countable, in increasing order.

To obtain a somewhat better intuition for the jumps of Lévy processes when the Lévy
measure is infinite and for the Lévy-Itô Decomposition, following Kyprianou, we notice that
we can express an infinite Lévy measure as sum of finite ones:
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∫
0<|x|<1

(1− eiut + iut)ν(dy) =
∞

∑
n=0

{
λn

∫
2−(n+1)≤|x|<2−n

(1− eiut)Fn(dy)

+iuλn

∫
2−(n+1)≤|x|<2−n

xFn(dy)

}
,

where

λn = ν({x : 2−(n+1) ≤ |x|< 2−n|}) and Fn(dy) = λ
−1
n ν(dy)|x:2−(n+1)<|x|<2−n.

This interpretation leads one to to intuitively regard the part of a Lévy process that
is generated by a Lévy measure with infinite mass as a superposition of infinitely many
processes with finite Lévy measures; i.e. jump processes. The Lévy-Itô Decomposition
makes this intuition precise. This is a subtle point. It is not the case that a general Lévy
process with neither a drift nor a Brownian motion part is generated by the sum of its jumps
(Cont and Tankov, 2003, Remark 3.1). This is because the sum of the small jumps in a Lévy
process need not converge.

We will not formally state the general version of Lévy-Itô Decomposition here, as we do
not require it, and the mathematics needed to state the theorem will take us far what we need.
However, informally, the Lévy-Itô decomposition gives us that a Lévy process {X(t) : t ≥ 0}
can be expressed as the the sum of four independent terms:

X(t) = bt +Ba(t)+X1(t)+ lim
ε→0

X̃ε(t),

the first is linear drift, the second is Brownian motion with Ba(t)∼N (0,at) and the third is
a compound Poisson process. The fourth term is called the compensated sum of jumps. It
is a martingale, and it is centered (X̃ε(t) is an integral of the difference between a Poisson
random process and its intensity), so it can be thought of an infinite superposition of Poisson
processes which can be proved to converge.

In the next section, we state a restricted version of the Lévy-Itô Decomposition.

2.3.3 Subordinator processes

Subordinators are increasing Lévy processes. This immediately implies that they have no
Brownian part, and they have bounded variation. Indeed this gives us that the sum of small
jumps of subordinator processes converges. Consequently, the following version of the
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Lévy-Itô Decomposition holds for subordinators, and we see that subordinators without drift
can be regarded as the sum of their jumps.

Theorem: Lévy-Itô Decomposition for Subordinators (Cont and Tankov, 2003, Corol-
lary 3.1) Let {X(t) : t ≥ 0} be a subordinator. Then

X(t) = bt + ∑
τ j≤t

dXτ j ,

where τ j are the jump times of X and dXτ j is the size of the jump at time τ j

Moreover, since they have no negative jumps, the support of their Lévy measure is
contained in [0,∞). Consequently, the Lévy-Khintchine formula for the characteristic function
for a subordinator, W (t) : t ≥ 0, simplifies, Bertoin (1996):

E
(

eiuW (t)
)
= exp

(
ibu+ t

[∫
(0,∞)

(eiuw−1)ν(dw)
])

,

where the Lévy measure ν satisfies,∫
(0,∞)

(1∧ x)ν(dx)< ∞.

This result is an application of the Lévy-Khintchine Formula and the Lévy-Itô decomposition,
and it uses the fact that subordinators have finite variation.

2.3.4 Generalized Inverse Gaussian Lévy processes.

Generalized inverse Gaussian Lévy processes are Lévy processes whose values at time one
are distributed accored to a generalized inverse Gaussian distribution. They are pure jump
Lévy process whose jump sizes are always positive, and so they are subordinators.

The Lévy density for a GIG process is given by Eberlein and Hammerstein (2004):

QGIG(x) =
e−xγ2/2

x

[∫
(0,∞)

e−xy

π2y|H|λ |(δ
√

2y)|2
dy+max(0,λ )

]
, for x > 0.

The function Hν(z) is the Hankel function of the first kind: Hν(z) = Jν(z)+ iYν(z), where
J,Y are Bessel functions of the first and second kinds, respectively. We will only need to
consider these functions on the positive reals.

From the formula for the Lévy density, one sees that for every t > 0, the interval (0, t)
has infinite Lévy measure. We have seen that this implies that in every interval of positive
length, a GIG process almost surely has infinitely many jumps.
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To avoid confusion, it is worth pointing out that while GIG distributions are infinitely
divisible, and the restriction of a GIG process to each subinterval of its domain is a GIG
process as well, it is not the case that the distributions of the time t values of a GIG process
have the same parameters as its time one distribution.

In this work, our subordinators will always be generalized inverse Gaussian Lévy pro-
cesses.

2.3.5 Generalized hyperbolic processes

The Lévy-Khintchine representation of the characteristic function of a GH distribution is
given by Eberlein (2001)

φGH(x) = exp

[
iuE(GH)+

∫
∞

−∞

(
eiux−1− iux

)
g(x)dx

]
, where ζ = δ

√
α2−β 2,

and

E(GH) = µ +
βδ 2

ζ

Kλ+1(ζ )

Kλ (ζ )
,

is the first moment of the GH distribution, and g is the density of the Lévy measure, which
we include for completeness,

g(x) =
eβx

|x|

(∫ exp
(
−
√

2y+α2|x|

π2y
(
J2

λ
(δ
√

2y)+Y 2
λ
(δ
√

2y)
) dy+λe−α|x|

)
, if λ >= 0

and

g(x) =
eβx

|x|

(∫ exp
(
−
√

2y+α2|x|

π2y
(
J2
−λ

(δ
√

2y)+Y 2
−λ

(δ
√

2y)
) dy

)
, if λ < 0

Since a GH distribution X = {X(t) : t ≥ 0} is a normal mean-variance mixture with
mixing distribution a GIG W = {W (t) : t ≥ 0}, when µ = β = 0, we may express

dXτi = αi
√

dWτi, where αi ∼N (0,1),

where the jump times of X and W coincide and are {τi}∞
i=1 ⊂ [0,∞), for each τi, dXτi is the

size of the jump at time τi, and dWτi is the size of the jump of W .
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2.4 The Gaussian Process Convolution Model

We are now able to completely describe the Lévy driven GPCM which will be the topic of
Chapter 4.

We will assume that X = {X(τ) : τ ≥ 0} a GH process that is obtained as a normal
variance-mixture of W , of a GIG subordinator W = {W (τ) : τ ≥ 0}. For simplicity, we will
assume that the jump Xτi of at time τi can be expressed as

Xτi = αi
√

Wτi where α j ∼N (0,1).

We let h∼ GP(0,KDEQ(t1, t2)) be the filter for the model.
Now the formula for the Lévy driven GPCM is

f (t) =
∫

∞

−∞

h(t− τ)dX(τ) = ∑
j

h(t− τ j)dXτ j = ∑
j

h(t− τ j)α jdWτ j .

2.5 Markov Chain Monte Carlo (MCMC) Methods

Markov chain Monte Carlo methods are an essential tool for sampling from unknown, high-
dimensional distributions. In this situation, thoroughly exploring the domain by hand, using
for example fine grid of points, is computationally infeasible.

In this section, we will describe the Metropolis-Hastings Algorithm, and an important
special case, Gibbs sampling, which are the tools that we will use for inference for Lévy
driven GPCMs. We refer the reader to Murphy (2023) for further background on these
methods.

2.5.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm was first published in Metropolis et al. (1953), which
dealt with the case of symmetric proposal distributions and was extended to the general case
in Hastings (1970).

It is common to encounter probability distributions that one only knows up to a multi-
plicative factor. When this occurs, the Metropolis-Hastings Algorithm, provides us with a
method for generating samples which are (approximately) from the unknown distribution.

Suppose that Cq(x) = p(x), where p is an unknown, but q is known. To generate samples
from p one proceeds as follows: Starting at a random point in parameter space, one explores
the space by selecting a potential next point x′ from a proposal distribution Q(x′|x), and then
deciding whether to accept, i.e. move to, that point, or not, and remain in the current position.
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One accepts the proposal with probability

a = min

(
1,

q(x′)Q(x|x′)
q(x)Q(x′|x)

)
.

When the proposal distribution is symmetric, so that Q(x′|x) = Q(x|x′), this has a simple
interpretation: we move to the new location whenever p(x′) ≥ p(x), and with probability
p(x′)/p(x) = q(x′)/q(x), when p(x′) < p(x). When the proposal is asymmetric, we must
compensate for the fact that the proposal distribution may favour certain states.

This selection process generates a Markov chain x1,x2,x3, . . . whose stationary distribu-
tion is p. Provided that the transition matrix for the Markov chain is ergodic and irreducible,
for any starting point x1, the samples from the Markov chain eventually approximate samples
from p, and one says that the chain converges to the stationary distribution. The time that
it takes the chain to converge to the stationary distribution is known as the burn in time. In
practice, the burn in time is difficult to estimate; however examining the errors of the samples
can give an indication as to whether the chain has converged. To check whether the chain
has converged, one should also consider the Markov chain generated from different starting
points, and check whether the limiting distributions are the same. Taking N to be a suitable
burn in time, the samples xN ,xN+1, . . . , can be regarded as correlated samples from p. To
make estimates more robust it is sometimes helpful to thin this collection, taking every kth

sample for examine to obtain a collection that is less correlated.

2.5.2 Gibbs sampling

Gibbs sampling was introduced in Geman and Geman (1984). It is analogous to coor-
dinate ascent. Gibbs sampling useful when one is unable to sample from a joint distri-
bution p(x1,x2, . . . ,xn), but is able to sample from each of the conditional distributions,
p(xi|x1, . . . ,xi−1,xi+1, . . . ,xn), for i = 1,2, . . . ,n. Sampling successively in this way gener-
ates approximate samples from the joint distribution. It turns out that Gibbs sampling is a
special case of Metropolis-Hastings, and regarded as a Metropolis-Hastings algorithm the
acceptance probability 1. As with the Metropolis-Hastings algorithm, one should consider
the samples after some burn in time, and to reduce correlation between the samples in may
be helpful to thin them.
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Simulation of Lévy processes

Series representations of Lévy processes provide a powerful and principled tool for obtaining
approximations of these stochastic processes. For our computations, approximations are
inevitably required as the Lévy processes we consider almost surely have infinitely many
jumps in every interval. However, the only approximation to Lévy processes that we make is
a choice of the truncation of the series.

3.1 Shot-noise representations of Lévy processes

Let W = {W (t) : t ≥ 0} denote a subordinator Lévy process with no drift or Brownian motion
part. Then it follows from the Lévy-Itô decomposition and the Levy-Khintchine Theorem
that we can express the characteristic function of W as

E(eiuW (t)) = exp
[
t
∫
(0,∞)

(eiuw−1)Q(dw)
]
,

where Q is a Lévy measure on R\0 satisfying
∫

0,∞(1∧ x)Q(dx)< ∞, and 1∧ x denotes the
minimum of 1 and x. By the Lévy-Ito integral representation, almost surely, for each t ≥ 0,
we may express

W (t) =
∫
(0,∞)

wN([0, t],dw),

where N is the point process of jumps of W ; that is,

N =
∞

∑
i=1

δVi,Wi,
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where Vi ∈ [0,T ] are i.i.d. uniform random variables giving the arrival times of the jumps, Wi

are the sizes of the jumps, and δVi,Wi is a Dirac measure centered on (Vi,Wi). Thus we obtain

W (t) =
∞

∑
i=1

WiχVi≤t .

Theorem (Rosiński (2001)). The series ∑
∞
i=1WiχVi≤t converges almost surely.

3.1.1 Simulating Lévy processes

In practice, since there are almost surely infinitely many jumps in any time interval, it is not
possible to simulate a subordinator Lévy processes directly from N. Instead one uses the
following approach of Rosiński (2001); Wolpert and Ickstadt (1998) and Ferguson and Klass
(1972).

Recall that the sum of n independent exponential random variables with unit rate is
distributed according to Gamma(n,1). Hence it is straightforward to simulate the epochs of a
unit rate Poisson process {Γi}: generate standard exponential random variables and calculate
their cumulative sums.

We let Q+(x) = Q([x,∞]), denote the upper tail probability of the Lévy measure, and
define the inverse tail probability, h−1(γ) = (Q+)−1(γ). Then by Rosinski’s Theorem, the
the point process ∑

∞
i=1 δVi,h(Γi) converges almost surely to N. Where ∑

∞
i=1 δVi,h(Γi) is a Poisson

point process on [0,T ]× [0,∞). s before, the Vi are uniformly distributed jump times and
h(Γi) is the size of the jump at time Vi. Even more, the sizes of the jumps decreases with i,
so that truncating this series corresponds to discarding the smallest jumps.

Unfortunately, it is not possible to compute h explicitly, so a thinning (or rejection
sampling) approach is adopted, Lewis and Shedler (1979), Rosiński (2001): The strategy
is to find bounding process N0, which we know how to sample from, with Lévy measure
Q0 satisfying dQ0(x)/dQ(x) ≥ 1 for all x > 0. Then samples from N0 are thinned with
probability dQ(x)/dQ0(x) to obtain samples from the desired distribution N.

The bounding processes that are used in these simulations are the tempered stable
processes and the Gamma process.

Tempered stable point processes

The Lévy density for the tempered stable process is given by

Q(x) =Cx−1−αe−βx,
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observe that it factors into a positive α-stable process with Lévy density Q0(x) =Cx−1−α

and tempering function e−βx. Computing the integral, the tail mass of Q0 is given by
Q+

0 (x) =
C
α

x−α . So to generate a tempered stable process one proceeds as follows, Godsill
and Kındap (2021):

1. Set N = /0

2. Generate the epochs of a unit rate Poisson process {Γi : i ∈ N}.

3. For each i ∈ N :

(a) Compute xi =
(

αΓi
C

)−1/α

.

(b) With probability e−βxi , accept xi and set N = N∪{xi}.

4. For each xi ∈ N, generate a jump time vi uniformly in [0,T ].

5. Obtain a realization of the tempered stable Lévy process w(s) = ∑
∞
i=1 xiχvi≤s.

Gamma processes

The Lévy density of a Gamma process is given by

Q(x) =Cx−1e−βx.

As for tempered stable processes, we simulate Gamma processes using thinning. We take a
dominating point process with Lévy measure

Q0 =
C
x
(1+βx)−1,

and we can compute its tail probability Q+
0 (x)=C log(β−1x−1+1), and h(γ)= 1

β (exp(γ/C)−1) .

Points are thinned with probabilty Q(x)/Q0(x) = (1+βx)e−βx.

3.1.2 Simulation of generalized inverse Gaussian processes

In this section we briefly present the main results of Godsill and Kındap (2021) which provide
a thinning approach for obtaining realizations of generalized inverse Gaussian processes.

Recall that the Lévy density for a GIG process is given by Eberlein and Hammerstein
(2004)

QGIG(x) =
e−xγ2/2

x

[∫
(0,∞)

e−xy

π2y|H|λ |(δ
√

2y)|2
dy+max(0,λ )

]
, for x > 0.
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Notice that the GIG Lévy density is a superposition of two densities: The term max(0,λ )e−xγ2/2

x
is the Lévy density of a Gamma process, which we have already seen how to sample from,
so we will focus on the term

Q(x) =
e−xγ2/2

x

∫
(0,∞)

exy

π2y|H|λ |(δ (
√

2y))|
dy,

which we will find convenient to express as

2e−xγ2/2

π2x

∫
(0,∞)

exp
(
−z2x
2δ 2

)
x|H|λ (z)|2

dz.

We let

QGIG(z,x) =
2

π2x

exp
(
− xγ2

2 −
z2x
2δ 2

)
z|H|λ |(z)|2

,

denote a bivariate intensity function associated with a point process on (0,∞)× (0,∞). It is
important to observe that Q(x) =

∫
∞

0 Q(x,z)dz.
We will give the details of the method of Godsill and Kındap (2021) for sampling from a

GIG process when λ ≥ 0.5. Theorem 1 of that paper gives us that

QGIG(x,z)≤
e−xγ2/2

πx
e−

z2x
2δ2 ,

which may be expressed as (Godsill and Kındap, 2021, Corollary 1)

QGIG(x,z)≤
δΓ(1/2)e−xγ2/2
√

2πx3/2

√
Ga
(

z
∣∣∣1
2
,

x
2δ 2

)
=: Q0

GIG(x,z),

where We let Γ(x) denote the Γ-function:

Γ(x) =
∫

∞

0
tx−1e−t dt,

and the density
√

Ga denotes the square-root Gamma density. Its density function is given by

√
Ga(z|α,β ) =

2β α

Γ(α)
x2α−1e−βx2

,

and it is the the density of a random variable X1/2 when X ∼ Ga(x|α,β ).
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Notice that the first factor in the upper bound:

δΓ(1/2)e−xγ2/2
√

2πx3/2

is the intensity function of a tempered stable process, which is a process that we know how
to sample from. We also have that

QGIG(x,z)
Q0

GIG(x,z)
=

2
πz|H|λ |(z)|2

.

Thus we have the following algorithm for sampling from the GIG distribution when λ ≥ 1/2 :

1. Generate many samples from the tempered stable process with C = δΓ(1/2)/
√

2π,α =

1/2 and β = γ2/2.

2. For each sampled point x, sample

z∼
√

Ga
(

z
∣∣∣1
2
,

x
2δ 2

)
.

This gives us a sample (x,z) from the dominating process Q0
GIG(x,z).

3. For each pair (x,z), accept with probability

2
πz|H|λ |(z)|2

.

When λ < 0.5, we no longer have a dominating process Q0
GIG which factors so nicely,

and more sophisticated (piece-wise) bounds used are used to construct a dominating process
for these GIG processes. In Kındap and Godsill (2022a), these more sophisticated bounds
were extended to the λ ≥ 0.5 case. Moreover, Kındap and Godsill (2022a) develops an
adaptive truncation procedure to select the number of jumps to be used in the approximation.

3.2 Experiments

In this section we will demonstrate the sampling algorithms for sampling paths of generalized
hyperbolic Lévy processes. I partially implemented the sampling algorithms of Kındap and
Godsill (2022a) using the available code at https://github.com/yamankindap/GiG as a base.

As in Godsill and Kındap (2021); Kındap and Godsill (2022a) we use three tools for
evaluating how well we are generating samples of GH processes:

https://github.com/yamankindap/GiG
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Fig. 3.1 Plots of the generalized hyperbolic process with λ =−3,δ = 1 and γ = 0.1.

• We visually compare distributions of the time one values of the sample paths with the
expected densities.

• We analyze the Q-Q-plots of time one values of the sample paths with points sampled
from the expected GH distribution. Q-Q-plots are quantile-quantile plots; they are
obtained by plotting the quantiles of one distribution against the quantiles of a second.
A point (x,y) on the curve indicates that x,y are the q-th quantiles both the first and
second distribution, respectively. When two distributions are similar, the plot will be
close to the graph of the identity.

• We evaluate the KS-statistic of values from the sample paths and samples from the
expected distribution. The KS-statistic is named for Kolmogorov-Smirnov. It is an
estimate of the distance between two empirical distributions, which measures the
probability that the two sets of samples were drawn from the same distribution. The
KS-test reports a statistic together with a p-values, the statistic is the supremum of the
distances between the CDFs of the distributions. The null hypothesis for the KS-test
is that the samples are drawn from the expected distribution, so that large p-values
indicate that the null hypothesis cannot be rejected, and it may be that the samples are
from the same distribution. In our experiments we considers samples of size 10000.
At this level it is sufficient to have a p-value of at least 0.1.

Let us fix parameters δ = 1, γ = 0.1 and evaluate the perfomance of the sampling
algorithm as λ varies. We can see this very nicely in the plots of the sample paths. For
example Figure 3.1, 3.2 and 3.3 the value of λ increasing as we see in the pictures that the
effect of small jumps diminishes as λ increases and large jumps dominate.
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Fig. 3.2 Plot of the generalized hyperbolic process with λ =−1,δ = 1 and γ = 0.1.

Fig. 3.3 Process plots for a GH process with parameters λ = 2,δ = 1 and γ = 0.1
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λ # Samples KS-statistic p-value
3 10000 0.01 0.63
2 10000 0.01 0.21
1 10000 0.007 0.8

0.3 10000 0.006 0.91
-0.3 10000 0.11 0.26
-1 10000 0.012 0.14
-2 10000 0.009 0.45
-3 10000 0.01 0.29

Table 3.1 Using the KS-statistic to compare the time one values of Lévy process simulations
with samples from GH distributions for different values of λ .

Fig. 3.4 Histogram for the time one values of a GH process with parameters λ =−3,δ = 1
and γ = 0.1 against samples from the corresponding GH-density.

Now, let us consider the question of how well the time one values of processes ap-
proximate the expected distribution. In Table 3.1, we see that that in each example, the
KS-statistic is fairly small, and the p-value is always great enough that we cannot reject the
null hypothesis that the distribution of the time one samples is drawn from the expected GH
distribution. The worst performing parameter value is λ =−0.3. It is perhaps surprising that
there is no obvious patten behind which parameter values lead to poor or good performance.

If we examine the Q-Q plots and the histograms we see that they the distributions match
quite well, see Figure 3.4 and 3.5. For the Q-Q plots, we plot the 0.005 quantile to the 0.995
quantile. For smaller or larger values we do have enough data to obtain an accurate picture;
however, we did not notice any systematic bias in our plots that contained quantiles out to
the boundaries.
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Fig. 3.5 Q-Q plot for the time one values of a GH process with parameters λ =−3,δ = 1
and γ = 0.1 against samples from the corresponding GH-density.

We refer the reader to Godsill and Kındap (2021); Kındap and Godsill (2022a) for further
information about these processes and demonstrations that seem to producing values from
the expected distributions.





Chapter 4

Inference for GPCMs driven by
Generalized Hyperbolic Lévy Processes

In this chapter, we develop tools for inference for Gaussian Process Convolution Models.
Let us recall that our model assumes that our data points {(ti,yi)}Nd

i=1 are generated by noisy
observations from a process

f (t) =
∫
R

h(t− τ)dX(τ) = ∑
j

h(t− τ j)dXτ j ,

where h ∼ GP(0,KDEQ(t1, t2)) and X = {X(τ) : τ ≥ 0} is a GH Lévy process with jumps
dXτ j at times τ j, and the sum is taken over all jumps of X . We assume that

yi = f (ti)+ εi where εi ∼N (0,σ2
err).

Since X is a GH Lévy process, there exist constants µ,β ∈ R, and a subordinator GIG Lévy
process W = {W (τ) : τ ≥ 0}, so that the jumps of X can be expressed as

dXτi = µ +βWτi +αi
√

Wτi where αi ∼N (0,1). (4.1)

We will perform inference using Gibbs sampling. Our objective is to generate samples of
the joint distribution p(W,α,h|yyy), by sampling from the marginal distributions p(h|W,α,yyy),
p(α|W,h,yyy) and p(W |h,yyy), where we let α denote the set of jump coefficients from equa-
tion (4.1). Observe that in the last step we perform collapsed Gibbs sampling (see, for
example, Murphy (2023)) and integrate out α . The flexibility of our model makes it possible
for the choices of α and h to compensate for deficiencies in the sampled subordinator, which
leads to poor exploration of the space of subordinators. To reduce the effect of this problem,
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when we sample the subordinator distribution, instead of sampling from p(W |h,α,yyy), we
sample from p(W |h,yyy) =

∫
p(W |h,ααα,yyy)p(α)dα . We will see that the result is a Gibbs

sampler which seems to explore the space of subordinator processes well.
Observe that the distributions p(h|W,α,yyy) and p(α|W,h,yyy) are Gaussian and straight-

forward to sample from; however, sampling entire realizations of W from p(W |h,yyy) produces
a Gibbs sampler that is slow to converge and we will make use of a Metropolis-Hastings
within Gibbs algorithm to sample the jumps in small intervals from a partition of the domain
of W . This algorithm was used before in a similar context in Kındap and Godsill (2022b)).

We will often consider the density p(yyy|W,α,h), which we will sometimes denote as
p(yyy| f ), where f (t)=∑ j h(t−τ j)α j

√
Wtau j , since together W,α,h determine the convolution

f .

4.1 Preliminaries

4.1.1 Parametrizing the filter

In Bruinsma et al. (2022); Tobar et al. (2015), the pseudo-points approximation of Titsias
(2009) is used to parametrize the filters of GPCMs. We experimented with using them to
parametrize the filters of our GPCMs, and with parametrizing the filters using their values
at a specifed set of points, inducing times, and inferring a filter from the posterior Gaussian
process using noiseless Gaussian process regression. We found that the second method
worked well, so that is how we decided to parametrize Gaussian processes. However there
are likely performance benefits to be gained from using the pseudo-points approximation.

4.1.2 Integrating out the jump coeffcients α

The calculations in this section are standard, see for example Cemgil (2001). The techniques
used here will be used to integrate out α to obtain p(W |h,yyy), to find the Gaussian form of
p(h|W,α,yyy) and to optimize hyper-parameters of the Gaussian process, from which h is
drawn.

Using the truncated shot-noise representation of the subordinator process, we approximate
the convolution by a finite sum f (t) ≈ ∑

M
j=1 α jh(t− τ j)

√
Wτ j . Since for a data point yi =

f (ti)+ εi, where εi ∼N (0,σ2
err), we have yi ∼N ( f (ti),σ2

err), so that

p(yi| f )≈
1√

2πσerr
exp

[
− 1

2σ2
err

(
yi−

M

∑
j=1

α jh(ti− τ j)
√

Wτ j

)2
]
.
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Let ω j = h(ti−τ j)
√

Wτ j . Setting α = (α1, . . . ,αM), m = ( yi
ω1M , . . . , yi

ωMM ), and Σ−1 to be the
M×M matrix with ( j,k)-th entry ω jωk/σ2

err, we have that

(α−m)T
Σ
−1(α−m) =

1
σ2

err

(
yi−

M

∑
j=1

α jh(ti− τ j)
√

Wτ j

)2
.

We consider the vector m purely formally, since it may happen that some ω j is zero; however,
we can always arrange our computations so that there are cancellations and dividing by zero
never happens.

Now, since each α j ∼N (0,1), we can approximate

p(yi| f )p(α)≈ 1
(2π)(M+1)/2σerr

exp

[
− 1

2

(
(α−m)T

Σ
−1(α−m)

)
− 1

2
α

T
α

]
.

In what follows we will need to have a formula for det(IM +Σ−1). Notice that Σ−1 =

ω0ωT
0 , where ω0 = ω/σerr. Now,

(IM +Σ
−1)ω0 = ω0 +ω0ω

T
0 ω0 = (1+ω

T
0 ω0)ω0,

so we have that ω0 is an eigenvector of IM +Σ−1 with eigenvalue 1+ωT
0 ω0. Since IM +

ω0ωT
0 is real-symmetric, it has a basis of mutually orthogonal eigenvectors. If u is another

eigenvector, it is orthogonal to ω0, so that (ω0ωT
0 + IM)u = u, and hence u has eigenvalue 1.

Since the determinant of a matrix is the product of its eigenvalues, we have that

det(Σ−1 + IM) = 1+ω
T
0 ω0 = 1+ω

T
ω/σ

2
err.

Moreover, since ωT
0 ω0 = ∥ω0∥2 ≥ 0, the determinant of IM +ωωT does not vanish, and so

IM +Σ−1 is invertible.
Now, taking

m̂ = (IM +Σ
−1)−1

Σ
−1m

we have that

(α− m̂)T (IM +Σ
−1)(α− m̂)+mT

Σ
−1m−mT

Σ
−1(IM +Σ

−1)−1
Σ
−1m

= (α−m)T
Σ
−1(α−m)

)
−α

T
α.

Note that
mT

Σ
−1m = y2

i /σ
2
err.
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Setting
C = y2

i /σ
2
err−mT

Σ
−1(IM +Σ

−1)−1
Σ
−1m,

we can express

1
2πσerr

exp

[
− 1

2

(
(α−m)T

Σ
−1(α−m)

)
− 1

2
α

T
α

]

=
1

(2π)(M+1)/2σerr
exp

[
− 1

2

(
(α− m̂)T (Σ−1 + IM)(α− m̂)+C

)]
.

Since it is a probability density, we have that

∫
RM

1√
det(2π(Σ−1 + IM)−1)

exp

[
− 1

2

(
(α− m̂)T (Σ−1 + IM)(α− m̂)

)]
dα = 1.

Thus we can estimate

∫
p(yi| f )p(α)dα ≈

√
det(2π(Σ−1 + IM)−1)

(2π)(M+1)/2σerr
exp

[
− 1

2
C

]
.

Thus we see that we can integrate out α analytically.
For calculation purposes the following observations are very useful.
We have that √

det(2π(Σ−1 + IM)−1) =
(2π)M/2√

det(Σ−1 + IM)
.

To compute C, we use the following two identities. First, multiplying, one finds that

Σ
−1

ω =
yiω

σ2
err

.

Second, to compute (IM +Σ−1)−1,

(IM +Σ
−1)−1 = (IM +ω0ω

T
0 )
−1 = IM +

1
1+ωT

0 ω0
ω0ω

T
0 = Im +

1
ωT

0 ω0
Σ
−1,

where the second equality follows from the Sherman-Morrison Formula.
Hence, we have that∫

p(yi| f )p(α)dα =
1√

2πσerr

1√
1+ωT ω/σ2

err
·



4.2 Gibbs sampling 35

exp

[
− 1

2

(
yσ

2
err−

y2
i

σ4
err

ω
T
(
IM−

1
1+ωT ω/σ2

err
Σ
−1
)

ω

)]

Algorithm for computing log p(y|W,h)

Assume that W is approximated by a Lévy process with M jumps.

1. For each data point (ti,yi) do the following:

a. Compute the vector ωi = (h(ti− τ1)
√

Wτ1, . . . ,h(ti− τM)
√

WτM)

b. Let Σi = (1/σ2
err)ωiω

T
i and Σ̂i = IM− 1

1+ωT
i ωi/σ2

err
Σi.

c. Compute

Ai =
y2

i
σ4

err
ω

T
i Σ̂iωi

and set

Ci =
y2

i
σ2

err
−Ai

d. Let
pi =−

1
2

log(2πσ
2
err)−

1
2

log(1+ω
T

ω/σ
2
err)−

1
2

Ci.

2. Compute log p(yyy|W,h) = ∑i pi.

It is useful to observe that step 1 of this algorithm can be computed in parallel for all the
data points at once.

4.2 Gibbs sampling

In this section we describe each the steps in our Gibbs sampling procedure.

4.2.1 Sampling α given h and W

To sample from p(α|h,W,y). We observe that

p(α|h,W,y) =
p(y|W,h,α)p(α)

p(y)
∝ p(yyy|W,h,α)p(α),

and, since it is a product is a Gaussian pdfs, we have from Section 4.1.2 that

p(α|yyy,W,h)∼N (α|m̂mm,(I+Σ
−1)−1).

Let us give the algorithm for computing this distribution.
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Algorithm for computing N (m̂,(I+Σ)−1)

Suppose that the subordinator W is approximated by one with M jumps.

1. Initialize the prior of α: Kα = IM and m̂mm = 0 ∈ RM.

For each data point (ti,yi), do steps 2 and 3:

2. Let ωi = (h(ti− τ1)
√

Wτ1, . . . ,h(ti− τM)
√

WτM)

3. Let ω̂ = ωi/σerr Update

Kα ← Kα −
1

1+ ω̂T
i Kα ω̂i

Kα ω̂ω̂
T Kα

m̂mm← m̂mm+
yi

σ2
err

ω.

4. p(α|W,h,yyy) = N (α;Kαm̂mm,Kα).

4.2.2 Sampling h given α and W

To sample the values of filter at the inducing times, we need to obtain a formula for

p(hhh|W,α,yyy) ∝ p(y|W,α,hhh)p(hhh).

Once again, this is a product of Gaussians pdfs, and so the result is a Gaussian pdf as well.
The prior for hhh is straight-forward, since h is a draw from a Gaussian process:

p(hhh) = N (hhh;0,Kh),

where Kh is the Nh×Nh matrix with entries KDEQ(ti, t j), 1≤ i, j ≤ Nh.
To find the distribution of p(y|W,α,hhh) we need to be careful, since hhh are the values of h

at a discrete set of points, and these values need to be estimated, using linear interpolation,
from the values of the jumps.

It is motivating to consider the following approach to finding the mean of p(yyy|W,α,hhh). If
we have a matrix A, so that yyy = Ahhh, then the least-squares solution of this system of equations
coincides with the maximum likelihood estimate of for p(yyy|W,α,hhh), which is the mean of
this Gaussian distribution. Thus we have

hhh = A†yyy,
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where A† is the Moore-Penrose pseudo-inverse of A, A† = (AT A)−1AT .

To find the ith row matrix A, we observe that yi = ∑ j h(ti− τ j)dXτ j . For each time point

ti− τ j, we find interval t(i, j)l , t(i, j)r in the complement of the inducing points with the property
that ti− τ j ∈ (t(i, j)l , t(i, j)r ). Taking

ai, j =
(ti− τ j)− t(i, j)l

t(i, j)r − t(i, j)l

,

we obtain the linear interpolation of the value h(ti− τ j) from its values at the inducing points
h(ti− τ j) = (1−ai, j)h(t

(i, j)
l )+ai, jh(t

(i, j)
r ), and so

yi = ∑
j

(
(1−ai, j)h(t

(i, j)
l )+ai, jh(t

(i, j)
r )

)
Xτ j (4.2)

Thus we obtain an algorithm for finding the coefficients of A: initialize A to an Nh×Nh

matrix of zeros, for each data point (ti,yi) and each jump Xτ j and time τ j, we add Xτ j(1−ai, j)

to the (i,k) entry of A and and Xτ jai, j to the (i,k+1) entry of A, where k is the index of in

the ordered list of inducing times of t(i, j)l .
Returning to finding the Gaussian distribution for p(yyy|W,α,hhh). From the analysis above,

we have that given a data point (ti,yi):

p(yi|hhh,W,α) =
1√

2πσerr
exp

[
− 1

2σ2
err

(
yi−

∞

∑
j=1

h(t− τ j)dXτ j

)2
]

=
1√

2πσerr
exp

[
− 1

2σ2
err

(
yi−

∞

∑
j=1

(
(1−αi, j)h(t

(i, j)
l )+αi, jh(t i, j

r )
)
dXτ j

)2
]

=
1√

2πσerr
exp

[
− 1

2σ2
err

(
yi−ω

T
i hhh
)2
]
,

where ωi is the ith row of A.
Thus we are in a position where our previous calculations apply, and we have that

p(yi|W,α,hhh) = N (hhh;mmmi,Σ
−1
i ),

where Σ
−1
i = 1

σ2
err

ωiω
T
i , and mmm′i = Σiyiωi.



38 Inference for GPCMs driven by Generalized Hyperbolic Lévy Processes

We obtain the likelihood for the data set as

p(yyy|W,α,hhh) = ∏
i

p(yi|W,α,h),

is a product Gaussian pdfs, and we have that

p(yyy|W,α,hhh) = N (hhh;mmmh,Σ
−1
h ),

where
Σ
−1
h = (∑

i
Σi)
−1 and mmmh = Σ

−1
h (∑

i
mmm′i).

Putting this together with our prior p(hhh|α,W,yyy) ∝ p(yyy|hhh,W,α)p(hhh), and hhh∼N (hhh;0,Kh),

we see that
p(hhh|yyy,W,α)∼N (hhh;mmm,K),

where
K = (Σh +K−1

h )−1 and mmmh = K(Σhmmmh)

To sample the filter h, we sample its values at inducing points hhh, and then infer the filter
from its values at these points.

Algorithm for sampling h given W , α , y

Assume that we are given inducing times u1 < u2 < · · · < uNh , and parameters s,w and
σh, for the length-scale, window and strength, respectively, of the kernel KDEQ(t, t ′). Set
uuu = (u1,u2, . . . ,uNh). Suppose that W is approximated by a jump process with M jumps. For
each jump dWτ j of W , let Xτ j = α j

√
Wτ j .

A. Obtain the distribution for the inducing values hhh = (h1, . . . ,hNh), at the inducing times
(u1, . . . ,uNh):

1. Compute the prior covariance matrix Kh whose (i, j) entry is KDEQ(ui,u j), and
let Σ = K−1

h . Initialize mmmh = 0 ∈ RNh .

For each data point (ti,yi), initialize ω i = 0 ∈ RNh , and do the following:

2. For each j = 1,2, . . . ,M, if u0 < ti−ν j < tNh, do the following:

a. Let (ui, j
1 ,ui, j

2 ) be the interval in the complement of the inducing times that
contains ti−ν j, and let k1 be the index of uuu corresponding to ui, j

1 .

b. Let Di, j = Xτ j(ti− τ j−ui, j
1 )/(ui, j

2 −ui, j
1 )
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c. Update the entries of ω i:

ω
i
k1
← ω

i
k1
+Xτ j −Di, j

ω
i
k1+1← ω

i
k2
+Di, j

3. Let ω̂ = ωi/σerr, and update the covariance matrix and mmmh:

Kh← Kh−
1

1+ ω̂T Khω̂
Khω̂ω̂

T Kh

mmmh← mmmh +
yi

σ2
err

ω̂.

We have a distribution for hhh: p(hhh|W,α,yyy) = N (hhh;Khmmmh,Kh).

B. Sample hhh from the distribution we have just found, and sample h from the posterior
Gaussian process using GP regession given data points (u1,h1), . . . ,(uNh,hNh).

4.2.3 Sampling from p(W |h,y) using Metropolis-Hastings in Gibbs Sam-
pling

In this section, we describe how we sample paths of the subordinator process from p(W |h,y).
We make use of a Metropolis-Hastings in Gibbs method employed in Kındap and Godsill

(2022b), in which we successively sample the subordinator process in small intervals, taken
from a partition of the domain of the subordinator process.

Suppose that I = [0,T ] is the domain of the subordinator process. Let I = {I0, I1, . . . Ik−1}
be a partition of the interval I into subintervals Ii for i ∈ {0, . . . ,k−1}}. We let J j denote the
set of all jumps of the subordinator that occur in the interval I j and J− j denote the collection
of jumps that occur outside of the interval I j. We sample approximately from the poste-
rior p(W |h,y,α), by sampling successively from p(W |J− j,h,y,α), where j = n mod(k) for
n = 0,1,2, . . . . While this improves the convergence of the sampler, it necessitates sampling
from distribution of sample path s of the subordinator given J− j,h,α and yyy, which we do by
using a Metropolis-Hastings step.

Assume that we sample the jumps of the subordinator in the interval Ii during the n+1
iterate of the Gibbs sampler. We let W (n) denote the previously accepted subordinator, and
we let W ′ denote the new, proposed, subordinator, which has the same jumps as W (n) outside
of Ii, but with jumps J′i in the interval Ii. Our proposal distribution for the MH step is the
distribution of the new choice of the subordinator given the previous choice. This has density
p(W ′|W (n)). Recall that by Bayes’ Theorem, we have that p(W ′|J−i,h,yyy) ∝ p(yyy|W ′,h)p(W ′).
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Notice that since W ′ agrees with J−i outside of Ii, the subordinator with the jumps of W ′ and
J−i is the same as W ′.

Now, we have that the acceptance probability is given by

a(J′i ,W
(n)) = min

(
1,

p(W ′|J−i,yyy,h)p(W (n)|W ′)
p(W (n)|J−(i−1),yyy,h)p(W ′|W (n))

)
(4.3)

= min

(
1,

p(yyy|W ′,h)
p(yyy|W (n),h)

)
.

Notice that the quotient:

p(W ′|J−i,yyy,h)p(W (n)|W ′)
p(W (n)|J−(i−1),yyy,h)p(W ′|W (n))

=
p(yyy|W ′,h)p(W ′)p(W (n)|W ′)

p(yyy|W (n),h)p(W (n))p(W ′|W (n))

=
p(yyy|W ′,h)p(W ′,W (n))

p(yyy|W (n),h)p(W ′,W (n))
=

p(yyy|W ′,h)
p(yyy|W (n),h)

.

In summary, to approximate samples of p(W |h,yyy), we can successively sample from
p(W |J−i,h,yyy) by sampling from p(W |J−i), and accepting these samples with probability
min(1, p(yyy|W ′,h)/p(yyy|W (n),h)).

Algorithm for sampling the subordinator

Assume that we are given an initial subordinator W , a filter h, data points yyy and a partition
I = {Ii}k−1

i=0 of the interval.

• For i = 0,1, . . . ,k−1 do the following:

1. Let J−i denote the jumps of W in the complement of Ii

2. Sample the jumps J′i of a subordinator process with intensity the length of Ii in
the interval Ii.

3. Let W ′ be the subordinator process with jumps J′i in Ii and jumps J−i outside i.

4. compute the acceptance probability a(J′i |W ) using (4.3). See page 35 for the
algorithm.

5. Sample u uniformly in [0,1], and accept W ′ if u < a(J′,W ) (that is, set W =W ′)
otherwise reject W ′.
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4.2.4 The Gibbs Sampling Algorithm

Assume that we are given a collection of data points yyy = {ti,yi} that we wish to model. Fix a
number of times n0 that we wish to sample from each marginal distribution.

1. Initialization.

a. Initlialize parameters δ ,γ,λ for the subordinator GIG process, and the window,
scale parameters of the covariance function of the filter.

b. Choose a partition I = {Ii}k−1
i=0 of the interval into k subintervals Ii.

c. Initialize an approximate subordinator process {W (τ) : τ ≥ 0}, for each jump of
W . For each jump dWτ j of the subordinator, sample α j ∼N (0,1), and sample a
filter from GP(0,KDEQ(t1, t2)).

Repeat steps 2, 3 and 4 n0 times:

2. Use the algorithm on page 4.2.3 for sampling a subordinator process W from p(W |h,yyy)
using the partition I .

3. Sample α from p(α|W,h,yyy), see page 36.

4. Sample h using algorithm given on page 4.2.2.

4.3 Extensions to the sampler

For modelling real-world data, the Gibbs sampler as presented has some serious deficiencies.
In this section, we present some improvements to the sampler, which address some of these
problems.

4.3.1 Sampling the position of the inducing times.

Let us describe a simple method to allow the sampler to attempt to find better inducing times.
Instead of sampling immediately from p(hhh|W,α,y) with the times of hhh fixed. We add an
additional step where we sample a new sequence of inducing times. More precisely, we wish
to draw a sample from the joint distribution p(hhht ,hhh|W,α,yyy), which again we can accomplish
by introducing a Metropolis-Hastings step into the Gibbs sampler.

We assume that the positions of the inducing times are uniformly distributed in a subin-
terval of R outside of which the filter nearly vanishes. In practice, we can determine suitable
values for these end points from the covariance matrix of the filter. We fix inducing times
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t1 < tNh at the end points of the interval, and initialize the inducing times at evenly spaced
points in [t1, tNh]. In each iteration of the Gibbs sampler, we sample ti uniformly in the interval
(ti−1, ti+1) for i = 1,2, . . . ,Nn−1.

We sample the inducing times hhh′t and values hhh′ from p(hhh′t ,hhh
′|hhht ,hhh), and accept with

probability

a = min

(
1,

p(yyy|hhh′,hhh′t ,W,α)

p(yyy|hhh,hhht ,W,α)

)
.

Notice that this is the correct acceptance probabilty since

p(yyy|hhh′,hhh′t ,W,α)

p(yyy|hhh,hhht ,W,α)
=

p(yyy|hhh′,hhh′t ,W,α)p(hhht ,hhh|hhh′t ,hhh′)p(hhh′t ,hhh
′)

p(yyy|hhh,hhht ,W,α)p(hhh′t ,hhh
′|hhht ,hhh)p(hhht ,hhh)

.

p(hhh′t ,hhh
′|W,α,yyy)p(hhht ,hhh|hhh′t ,hhht)

p(hhht ,hhh|W,α,yyy)p(hhh′t ,hhh
′|hhht ,hhh)

.

4.3.2 Learning the noise and the parameters of the filter

Similar ideas to those used to optimize the hyper-parameters, e.g. the length scale, of
Gaussian processes can be used in these models to estimate the hyper-parameters for the
underlying filter in the GPCM.

Let θ be either the length-scale, window or strength of the covariance function KDEQ of
the filter. We will optimize our model with respect to θ by increasing the marginal likelihood
p(y|W,α,ht ,hhh,θ) using gradient ascent.

We have that p(y|W,α,ht ,hhh,θ) is a Gaussian, and we have

yyy =Chhh+ εi, where ε ∼N (0,σ2
errI),

where the ith row of C is given by (4.2).
Now, we have that hhh is sampled from an Gaussian process, we have that

p(yyy|W,α,hhh) = N (hhh;mmmh,Σ
−1
h ).

Thus we have
yyy∼N (yyy;Cmmmh,CΣ

−1
h CT +σ

2
errI).

We have that

∂

∂θ
log p(yyy|W,α,hhh,ht)=−

∂

∂θ

[
log(|CΣ

−1
h CT |)− 1

2
(yyy−Cmmmh)

T (CΣ
−1
h C+σ

2
errI)(yyy−Cmmmh)

]
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=−trace

(
(CΣ

−1
h C)−1 ∂

∂θ
CΣ
−1CT

)
+

1
2
(yyy−Cmmmh)

TC
∂Σ−1

∂θ
C(yyy−Cmmmh)

=
1
2

trace

((
vvvvvvT − (CΣ

−1CT )−1
)

C
∂Σ−1

∂θ
CT

)
where vvv = (CΣ

−1CT )−1(yyy−Cmmmh),

and ∂Σ−1

∂θ
denotes the matrix whose i, j entry is the derivatives with respect to θ of the i, j

entry of Σ−1.
We have seen that we can compute each of the terms in this formula. Hence, after fixing

a learning rate η > 0, we can update θ to θ ′ according to

θ
′ = θ +η

∂

∂θ
log p(yyy|W,α,hhh,ht).

Similarly, using the fact that each yi ∼N ( f (ti),σ2
err), we can optimize our model with

respect ot σ2
err using gradient ascent along the level set of the likelihood p(yyy|W,h).

4.4 Evaluating the sampler

In this section we will consider data yyy = {(ti,yi)} that is generated from a given Gaussian
process convolution model obtained from a given filter h0, subordinator W0 and GH process
X0, and evaluate the ability of the Gibbs sampler to reconstruct the constituent parts of the
GPCM from the data. Throughout this section we will assume that the strength of the filter
σh = 1.

4.4.1 Recovering the components of a GPCM

Let us demonstrate to what extent our Gibbs sampler can recover the subordinator process,
the generalized hyperbolic process and the filter of a GPCM, and how well the resulting
GPCM formed using these components models data from the original process.

Constructing the example

We generated a sample path W = {W (τ) : τ ≥−3} from a GIG distribution with parameters
δ = 1,γ = 0.1 and λ = −0.6, Figure 4.1. Then for each jump dWτi in the shot-noise
approximation of W , we drew αi ∼N (0,1), and formed an approximation of a GH process
X = {X(τ) : τ ≥ −3}, with jumps dXτi, with subordinator W by setting dXτi = αi

√
Wτi ,

see Figure 4.2. Next we drew a sample of a Gaussian process h ∼ GP(0,KDEQ(t1, t2)),
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Fig. 4.1 Subordinate GIG process with δ = 1,γ = 0.1 and λ =−0.6

Fig. 4.2 GH Process with jumps dXτi = αi
√

Wτi , where αi ∼N (0,1) with subordinator
from Figure 4.1.

with window and scale set to 0.4 and 0.15, respectively, Figure 4.3, and finally formed the
convolution

f (t) =
∫

∞

−∞

h(t− τ)dX(τ) = ∑
j

h(t− τ j)dXτ j ,

see Figure 4.4
We sampled 250 points {ti}250

i=1 from the interval [−3,3], and formed a data set yyy =

{(ti, f (ti)}250
i=1. For this first experiment we analyzed how well the sampler recovers the

subordinator, the GH process and the filter from the data. We held the parameters of the Lévy
processes and the filter fixed to be the same as those used to generate the data. We will also
fix the inducing times to be located on an evenly spaced set of of points.
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Fig. 4.3 A Gaussian process h∼ GP(0,KDEQ(t1, t2)) with window=0.4 and scale=0.1.

Fig. 4.4 Convolution of the Gaussian process h from Figure 4.3 with the GH process X from
Figure 4.2.
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Fig. 4.5 RMSEs for the Gibbs sampler.

One feature of these models, is that it is possible to multiply the filter by some constant,
while dividing the subordinator by the same constant an obtain the same convolution, as a
result we don’t don’t necessarily expect the filter from Gibbs sampler to be have the same
“height" as the target filter h0. To compare them, we fix the width of the range of the inducing
values (the length of the smallest interval containing all of the inducing values). Later we
will investigate how this effects the efficacy of the model.

The root mean squared errors suggest that the sampler may converge quickly, Figure 4.5.
We took a burn in time of 700 iterations of the sampler, and did not observe substantial
differences in the results when I varied the gap between selected samples.

Recovering the GH process

We find that the sample paths of the GH process X obtained by the Gibbs sampler seem to be
exploring the space of paths quite well, Figure 4.6. Moreover, comparing the sampled paths
with the target path, the picture shows that the sampler is drawing processes with large jumps
in reasonable places with reasonable sizes. On average, we see that the shape of the sample
paths drawn by the sampler is similar to the shape of the target process, Figure 4.7.

Recovering the subordinator

The multiplication of each jump of the subordinator by some αi makes it possible for the
scale of the sizes jumps of the samples to be different from that of jumps of the the target
subordinator. Indeed we observed that in this example; however, viewing the paths of samples
of the subordinator process, we see that the Gibbs sampler is behaving well, Figure 4.8.
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Fig. 4.6 Sample paths of the GH process obtained by the Gibbs sampler.

Fig. 4.7 The mean and error bars for the average values of the GH processes found by the
sampler. Error bars are one and two standard deviations.

Fig. 4.8 Paths of samples of the subordinator process.
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Fig. 4.9 Samples of the filter

Recovering the filter

In addition to the scaling ambiguity that we mentioned above, there is also a flip ambiguity
caused by multiplying both the filter and the GH process, or more precisely the αi by -1.
This can cause the average values of the filter to be close to zero. We avoided this problem in
this example by normalizing our filters to satisfy h(0)< 0. We display some of the sampled
filters in Figure 4.9, and the average value of the sampled filters in Figure 4.10. We observe
that there distribution of the filters is quite broad.

We can also gain insight into how well the sampler is learning the filter from the power
spectral densities of the sampled filters. We see in Figure 4.11 that the sample mean of the
filters recovers the first two peaks of the spectrum, but that it does not recover the higher
frequency peak, which is perhaps too much like noise.

Recovering the convolution

Combining samples of the subordinator, the coefficients αi and the filter, we obtain samples
of the GPCM. We see that the result models the data well, Figure 4.12. However it does not
capture high frequency information from the spectrum, Figure 4.13, and so the result is a
somewhat too smooth. It also does not capture all of the peaks present in the original model.

Discussion

Let us briefly summarize some of the issues that we observed in this first example, and some
questions that need to be addressed.
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Fig. 4.10 Average values of the sampled filters. Error bars are at one and two standard
deviations.

Fig. 4.11 Average power spectral density of the sampled filters. Error bars at one and two
standard deviations.
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Fig. 4.12 Mean of the sampled convolutions f (t) = ∑ j α jh(t− τ j)dWτ j . Error bars at one
and two standard deviations.

Fig. 4.13 Power spectral desity of the resulting Gaussian process convolution model. Error
bars at one and two standard deviations.
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Fig. 4.14 Average value of the sampled filter when we allow the model to sample the inducing
times. Error bars at one and two standard deviations.

• The variance of the samples of the filter is large enough that it is probably not reasonable
to suggest that the model learned the filter. One obvious way to improve the sampling
of the filter is to allow the model to infer the best inducing times. We will investigate
this.

• We decided to scale the inducing points of the filter to fix the width of its range. What
happens if we do not do this and what are the effects of this on the final model?

• How well does the model learn the filter, processes and convolution when the data is
noisy?

• How does the model cope with missing data?

4.4.2 Sampling the inducing times

To evaluate the effect of allowing the model to sample the inducing times, we leave all other
aspects of the previous example alone, but introduce the additional inducing times sampling
step into our algorithm.

When we sampled to the inducing times as well as the values at the inducing points, we
found that the sampler was able to learn a filter much more precisely than when we fixed
the inducing times Figure 4.14. Sampling the inducing times also resulted in a slightly more
accurate final model: the RMSE of the sample mean improved from 0.0499 to 0.0474.

We note that the average of the samples does not capture the finer structure that is present
in the original filter, and indeed this is still the case if we look at examples of the sampled
filters, Figure 4.15.
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Fig. 4.15 Samples of the filter when we allow the model to sample the inducing times.

In all of the remaining examples, unless otherwise stated, we will use the model which
additionally samples the inducing times.

4.4.3 Normalizing the filter

We find that while normalizing the filter (e.g. so that its range has has a definite size) makes
it possible to visually inspect for whether the sampler is learning the filter and GH process,
and it may appear to lead to faster convergence of the sampler, it does not seem to produce
better results overall, and in further experiments we will not normalize the filter. We do not
claim that this is a deep observation, but it we will take advantage it to present a second in
depth example of a GPCM.

We consider a GPCM with subordinator, Figure 4.16, GH process, Figure 4.17, filter,
Figure 4.18, which produces the convolution in Figure 4.19.

Comparing the RMSEs for the two models, we see that the errors when we do not
normalize the size of the filter are typically smaller, Figure 4.20.

We also observe an improvement in the ability of the filter to learn the spectrum of the
GPCM when we do not normalize the filter. The statistics for the samples of the normalized
filter are shown in Figure 4.21, and those for the unnormalized filter in Figure 4.22.

As before, we observe that when we do not normalize the filter, the algorithm explores
the spaces of filters, Figure 4.23, GIG processes, Figure 4.24, and GH processes, Figure 4.25,
well and seems to be generating samples that are close to the target objects., Finally, the
result of the samples produces a reasonable model of the data, Figure 4.26.
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Fig. 4.16 Subordinator process, parameters δ = 1.5,γ = 0.5 and λ =−1.

Fig. 4.17 GH process with subordinator from Figure 4.16

Fig. 4.18 h∼ GP(0,KDEQ(t1, t2))
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Fig. 4.19 Convolution of the filter from Figure 4.18 and the GH process from Figure ??.

Fig. 4.20 RMSEs for the sampled GPCMs with normalized filters (blue) and unnormalized
filters (orange).
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Fig. 4.21 Spectrum of the gpcm when normalized samples of the filter are used. Error bars
are at one and two standard deviations.

Fig. 4.22 Spectrum of the gpcm when we do not normalize the samples of the filter. Error
bars are at one and two standard deviations.
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Fig. 4.23 Mean of samples of the unnormalized filter. Error bars are at one and two standard
deviations.

Fig. 4.24 Samples of the GIG process when the filter is not normalized.

Fig. 4.25 Samples of the GH process when the filter is not normalized.
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Fig. 4.26 Mean of the resulting Gaussian process convolution model when the samples of the
filter are not normalized. Error bars at one and two standard deviations.

Fig. 4.27 GIG subordinator with parameters δ = 1,γ = 0.2 and λ = 0.3.

4.4.4 Noisy data missing data points

Let us consider a GPCM where we introduce noise into the data, and exclude a subset of
the data consisting of half the data points from the training. To this end, we consider a GIG
subordinator with parameters δ = 1,γ = 0.2 and λ = 0.3, Figure 4.27 and we consider a filter
h∼ GP(0,KDEQ(t1, t2) with scale = 0.2 and window = 0.5, Figure 4.28. We show the GH
process X = {Xτ : τ ≥ 0} used in this example in Figure 4.29, and the resulting convolution
f (t) = ∑ j h(t− τ j)dXτ j , in Figure 4.30.

We sample 334 data points yi = f (ti)+ εi, εi ∼N (0,1). We randomly select half of
them for the training set yyy and withhold the remaining half to test the efficacy of the sampler.
Let us note that in the previous examples always used 250 points for training. We show the
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Fig. 4.28 h∼ GP(0,KDEQ(t1, t2) with scale = 0.2 and window = 0.5.

Fig. 4.29 GH process with subordinator from Figure 4.27

Fig. 4.30 Convolution of the filter in Figure 4.28 and the GH process in Figure4.29.
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Fig. 4.31 Predictive mean of the GPCM. Error bars are at one and two standard deviations.
Training points are in black and test points in red.

predictions for the GPCM in Figure 4.31. Visually, the resulting model’s performance is
satisfactory. It does not seem to capture the peaks in the data. Comparing the RMSEs of the
resulting convolution on the training and test sets we see that on the training set, the RMSE
was 0.3067, and on the test set it was 0.2523. In particular, the model does not seem to be
overfitting to the training data.

We note that in the presence ot noisy data, the model did not seem to recover the filter
or the Lévy processes well. We show the distribution of the predictions for the the filter,
Figure 4.32, and paths of the samples for the subordinator process, Figure 4.33, and for
the GH process, Figure 4.34. We also show predictions for the spectrum of the gpcm in
Figure 4.35 and for the filter 4.36. It is not necessary for the model to recover the filter and
GH process in order to perform well, since one is able to make up for deficiencies in the
other. As expected, because of the DEQ kernel, our model only contains spectral information
at low frequencies. We see that we model the low frequency part of the spectrum quite well
for both the GPCM and the filter, but again our mode does not capture higher frequency
information. It is possible that in this example the modelling of the spectrum is particularly
poor since the filter is not sharply peaked; compare this example with Figure 4.22, where the
filter was sharply peaked.
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Fig. 4.32 The target filter is shown in black, while the mean of the sampled filters is in blue.
Error bars are one and two standard deviations.

Fig. 4.33 Samples of the GIG process when there is missing and noisy data.

Fig. 4.34 Samples of the GH process.
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Fig. 4.35 Specturm of the target GPCM in black and the mean of the spectrums of the samples
in blue. Error bars are one and two standard deviations.

Fig. 4.36 Mean of PSDs of the sampled filters. Error bars at one and two standard deviations.





Chapter 5

Experiments with Real-World Data

5.1 Crude oil prices

In this section we evaluate the ability for the Lévy driven GPCM to predict crude oil prices.
The experiment we conduct is similar to one done in Bruinsma et al. (2022); however, we do
not train our model on as much data. For a given year (2013), we train a Lv́ey driven GPCM
on the oil prices for last half of 2012, the first half of the 2014, and every odd week of the
2013. We withhold the oil prices for the even weeks in 2013 for testing.

Preliminary tests showed that the model learned the data reasonably well, but it gave poor
error estimates. This is what motivated attempting to “learn" the parameters by increasing
the marginal likelihood. All the result that we show here use this idea. A clear deficiency in
our model is that we do not learn the parameters of the Lévy process, and so they need to be
set by hand.

We show the result of the experiment with λ = 6 in Figure 5.1. Judging purely visually,
it seems that the curve of the sample mean is fluctuates more at small scales than the standard
GPCM which is driven by white noise, but not as much as either the CGPCM or the RGPCM.
Examining the average of the spectrum of the samples, we observe that it becomes quite
smooth after the low frequencies, partially confirming this observation, Figure 5.2.

To determine whether this behaviour is the same at when λ is greater, and the when the
underlying subordinator has heavier tails, we show the GPCM and and some samples of the
spectrum for the model when λ = 18, Figures 5.3 and 5.4. See Table 5.1 for the errors for
different values of λ . The heavier tailed model seems to model peaks in the data better than
the lighter tailed model with λ = 6. However, it does not seem to model small flucuations
in the data any better. Examining samples of the spectrum in Figure 5.4 we observe that
typically the samples become quite smooth very quickly.
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Fig. 5.1 GPCM. Trained assuming that the parameters of the underlying GIG process are
λ=6, δ = 1 and γ = 0.1. Error bars at one and two standard deviations.

Fig. 5.2 Statistics of the spectrum of the samples for the Lévy driven GPCM with λ = 6,δ = 1
and γ = 0.1 Error bars at one and two standard deviations.

Fig. 5.3 The GPCM of the crude oil data with λ = 18,δ = 1 and γ = 0.1. Error bars at one
and two standard deviations.
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Fig. 5.4 Samples of the spectrum of the GPCM for the crude oil data when λ = 18,δ = 1
and γ = 0.1.

λ -0.6 6 9 18
RMSE (Test data ) 2.24 1.90 1.70 1.70

RMSE (Training data 1.46 1.20 1.13 1.04
Table 5.1 RMSE for 2013 for the Lévy driven GPCMs with λ varying while the other
parameters are held fixed at δ = 1 and γ = 0.1

We see that the samples of the subordinator are not exploring the possible subordinators
as well as when we used synthetic data, Figure 5.5. At least the large jumps are fixed. This is
somewhat compenstated for by the αi, Figure 5.6. We show the sample mean with error bars
of for the filter in Figure 5.7. The sampler seems to be exploring the space of possible filters
well.

We found that as we increased λ that the performance of our model improved somewhat;
however, our models did not perform as well as the GPCMs of Tobar et al. (2015) or Bruinsma
et al. (2022). This may be because they trained their models on several years of data.
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Fig. 5.5 Samples of the subordinator process for the GPCM for the crude oil data when
λ = 18,δ = 1 and γ = 0.1.

Fig. 5.6 Samples of the GH process for the GPCM for the crude oil data when λ = 18,δ = 1
and γ = 0.1.
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Fig. 5.7 The mean and error bars at one and two standard deviations for the samples of the
filter for the GPCM trained on the oil data with λ = 18, δ = 1 and γ = 0.1.





Chapter 6

Discussion and Conclusion

In this thesis, we have developed a Gibbs sampling algorthim for Lévy driven GPCMs. These
are linear time-invariant systems, whose filter h is a draw from a Gaussian process, and
whose input is Lévy noise. We have focussed on inputs which are generalized hyperbolic
processes. Essential to this work are the methods of Godsill and Kındap (2021); Kındap and
Godsill (2022a) which provide algorithms for sampling paths from GIG processes, and hence
from GH processes as well. For simplicity, we focussed on GH processes {X(t) : t ≥ 0},
which are obtained from a normal mean-variance mixture with GIG mixing distribution of a
simple form, so that the jumps of X may be expressed as dXτ j = α j

√
dWτ j), where dWτ j is

the size of the jump of the subordinator at time τ j and α j ∼N (0,1). We will let α denote
the collection of all the αi, i = 1,2,3, . . . .

This formulation makes it makes it possible for us to develop a Gibbs sampler where we
sample W , α and h, successively, from the appropriate marginal distributions. One important
aspect of these models is that two of the distributions we need to sample from are Gaussian.
We sample α directly from a Gaussian distribution, and sample the values of h at a set of
inducting times, and then use GP regression to obtain a sample of h. To generate samples
of W we make use of a MH within Gibbs algorithm to sample the jumps of W successively
from a partition of the its domain.

In preliminary experiments we found that in the absence of noise on synthetic data
generated by a known GPCM, our Gibbs sampler seems to explore the GIG processes, the
GH processes and filters well, and it produce varied examples, which seem sensible when
compared to the target objects. We also observed that in the absense of noise and when the
filter is sharply peaked, that the model does a decent job of recovering the filter. However,
when the filter is not sharply peaked, e.g. Figure 4.13 where there is no noise, the GPCM
does not recover the spectral information in the data beyond the low frequencies.
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There are important questions about these models which still need to be addressed and
the algorithm we have developed is quite flexible, which opens up pathways to to future work
in this direction.

Applications. To what datasets are these models best applied, and what are the limitations
of these models? At the current stage of development, this is a difficult question to address as
to apply these models effectively, one needs to fine tune parameters by hand. However, it may
be that as they stand these models are not particularly effective compared to other available
models as they are unable to capture spectral information beyond rather low frequencies.

Inferring the parameters. While we experimented with improving the parameters of
the filter by performing gradient ascent on the marginal likelihood with each sweep of the
Gibbs sampler, there are methods for inferring parameters using an MCMC approach which
would fit in better with our inference scheme, and may perform better. Moreover, we only
experimented with learning the parameters of the filter, and since we saw that performance
improvements can be gained by considering different parameters of the Lévy process, to be
able to exploit these models it will be be necessary to incorporate inference for the parameters
of the L’evy processes.

Variants of the model. The GPCM was introduced in Tobar et al. (2015), as the convo-
lution between a Gaussian process, and white noise. We chose to investigate this model,
replacing the white noise with a GH Lévy process. However, this model has several compo-
nents which can be adjusted. In Bruinsma et al. (2022) two new GPCMs were introduced,
the Causal GPCM and the Rough GPCM. In the causal version, the output only depends
on inputs from the past, naturally, we could also consider a Lévy driven CGPCM. The
RGPCM on the other hand is quite a different model. It is the convolution of a sample from a
Gaussian process with covariance function defined by windowed white noise, and a sample
from a Gaussian process with Matèrn-1/2 kernel. Naturally on could consider replacing the
windowed white noise with a windowed Lévy process. But there are other possibilites, a
Gaussian processes with Matérn-1/2 kernel is a Ornstein-Uhlenbeck process driven by the
Weiner process, and one could instead take it to be an OU process driven by, for example, a
GH Lévy process.

Variational methods. Variational methods were used for inference in Tobar et al. (2015)
and Bruinsma et al. (2022). It would be advantageous to develop this approach in the context
of Lévy driven GPCMs as it may improve performance and provide us with an effective
means of learning parameters.
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