
Outlier Detection with Hierarchical
VAEs and Hamiltonian Monte Carlo

Haoran Peng

Supervisor: Prof. José Miguel Hernández-Lobato

This thesis is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Gonville & Caius College August 2022

Declaration

I, Haoran Peng of Gonville & Caius College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report
does not contain material that has already been used to any substantial extent for a
comparable purpose.

The code used in this report is my own, written using standard Python packages.

The word count is 8618, excluding declarations, bibliography, photographs and diagrams,
but including tables, footnotes, figure captions and appendices.

Haoran Peng
August 2022

Acknowledgement

I would like to sincerely thank my supervisor Prof. José Miguel Hernández-Lobato for his
advice on both theoretical concepts and implementation details throughout this project.

Abstract

For humans to trust machine learning systems to make real-world high-stake decisions,
such systems need to know what they do not know. Unsupervised outlier detection is a
task which addresses this, where machine learning systems are trained to detect input
data which are dissimilar to the training set in an unsupervised setting. Variational
autoencoders (VAEs; Kingma & Welling, 2014) have been popular for unsupervised
learning and practitioners have used VAEs’ reconstruction accuracy as a metric for outlier
detection, where a lower reconstruction accuracy suggests the data is likely an outlier. A
well-known issue with this method is that VAEs can sometimes reconstruct outliers better
than inliers. In addition, Peis et al. (2022) found that VAEs with hierarchical latent
variables and VAEs that adopt Hamiltonian Monte Carlo (HMC) for posterior sampling
deteriorate outlier detection performance, despite the reconstruction improvements they
offer. In this work, we first reimplement VAEs with hierarchical latent variables and
HMC and we show that hierarchies bring latent disentanglement and HMC improves
reconstruction. We then present a mini survey on the outlier detection problem that
summarizes probable causes and solutions. We then apply various outlier detection
methods to VAEs, including VAEs with hierarchical latent variables and VAEs with
HMC. On the standard set of image-based benchmarks, we find that hierarchical latent
variables improve outlier detection while HMC does not seem to affect the performance.
We also find that while certain methods achieve better outlier detection results, there
are usually trade-offs to be made between performance and the computational resources
required.

Table of contents

1 Introduction 7

2 Theoretical Background on Variational Autoencoders 9
2.1 Variational Autoencoders . 9
2.2 Hierarchical VAEs . 11
2.3 Generative Modelling with Hamiltonian Monte Carlo 13
2.4 Hierarchical VAE with HMC . 14

3 VAE Implementation Details and Results 16
3.1 Datasets and Likelihood Function . 16
3.2 VAEs with Convolutional Neural Networks 17
3.3 Adding Hierarchical Latent Variables . 18
3.4 HMC Parameter Setting and Training Time 18
3.5 Model Optimization . 19
3.6 Results and Discussion . 19

4 Outlier Detection Problem Statement 22
4.1 Outlier Detection with Reconstruction Accuracy 22
4.2 VAE Outlier Detection Mini Survey . 24

4.2.1 Denouden et al. (2018) . 24
4.2.2 Xiao et al. (2020) . 25
4.2.3 Serrà et al. (2020) . 26
4.2.4 Choi et al. (2019); Daxberger & Hernández-Lobato (2019) 26
4.2.5 Additional Work and Discussions 27

5 Outlier Detection Experiments and Results 29
5.1 Datasets and Benchmarks . 29
5.2 Methods Based on Distance Measures . 30

Table of contents vi

5.3 Methods Based on Reconstruction Accuracy 31
5.3.1 Reconstruction Accuracy . 31
5.3.2 HMC Improvement . 32
5.3.3 Input Complexity . 33

5.4 Methods Based on Ensemble Uncertainty 34
5.5 Methods Comparison . 36

6 Conclusion and Future Work 39

References 41

Chapter 1

Introduction

Questions regarding reliability and robustness of machine learning systems have attracted
a lot of attention from practitioners in recent years. Machine learning systems based on
artificial neural networks can often predict the wrong answer with high confidence and
fail catastrophically when the input data differs from the training set. For example, a
neural network that is trained to recognize images of cats and dogs can predict an image
of a cat (inlier) to be a dog with high confidence; or worse, predict a random image
(outlier) to be a dog with high confidence.

Fig. 1.1 Neural network predicting an image of a cat to be a dog

In this work, we focus on the latter problem which is called outlier detection where we
want to detect data that is (broadly speaking) different from the training set. Outlier
detection can be used in banks to detect abnormal transactions, in autonomous vehicles
to alert the driver of unfamiliar driving situations, and to prevent general misuse of
machine learning systems.

There are many techniques for outlier detection which Yang et al. (2021) enumerated
in their survey paper. In this work, we will experiment with unsupervised outlier
detection using variational autoencoders (VAEs). VAEs are trained to encode input

8

data into low-dimensional latent representations, and then use the latent representations
to reconstruct the input data. The assumption is that if a trained VAE can reconstruct
an input data well, then the data is similar to the training data and is probably an inlier;
on the contrary, if the VAE cannot reconstruct an input data well, then the data is
probably an outlier. It has become widely known recently that this assumption does not
always hold and that outliers can sometimes be reconstructed better than inliers. A goal
of this work is to find and apply solutions that address this issue.

This work also investigates outlier detection using VAEs with hierarchical latent variables
and VAEs that leverage Hamiltonian Monte Carlo (HMC) for posterior sampling. Peis
et al. (2022) showed that while HMC improves reconstruction performance, it reduces
outlier detection performance. The main goal of this work is to find outlier detection
methods that perform well and can retain the gains in reconstruction accuracy offered
by hierarchical latent variables and HMC.

The main contributions are as follows:

• In Chapter 2, we provide the necessary theoretical background on VAEs (Kingma
& Welling, 2014), hierarchical VAEs (Zhao et al., 2017), and VAEs with HMC
(Hoffman, 2017). We unify the mathematical notation and the style of graphical
models, and we present the benefits of hierarchical latent variables and HMC for
posterior sampling.

• In Chapter 3, we detail our implementation of VAEs, hierarchical VAEs, and VAEs
with HMC. We report their reconstruction results and discuss the benefits and
drawbacks of the models. The source code is available at https://github.com/
GavinPHR/HMC-VAE.

• In Chapter 4, we introduce the problem of outlier detection using VAEs and present
a mini survey of papers which propose possible causes and solutions (Choi et al.,
2019; Daxberger & Hernández-Lobato, 2019; Denouden et al., 2018; Serrà et al.,
2020; Xiao et al., 2020).

• In Chapter 5, we adapt and apply outlier detection methods from the mini survey
and show their performance under different VAE models. We conclude that while
some methods achieve better results, there are usually trade-offs to be made between
performance and the computational resources required.

https://github.com/GavinPHR/HMC-VAE
https://github.com/GavinPHR/HMC-VAE

Chapter 2

Theoretical Background on
Variational Autoencoders

This chapter introduces the necessary background on variational autoencoders, variational
autoencoders with hierarchical latent variables, and variational autoencoders that leverage
Hamiltonian Monte Carlo for posterior sampling.

2.1 Variational Autoencoders

A variational autoencoder (VAE; Kingma & Welling, 2014) is a deep latent generative
model that is specified by the distribution pθ(x, z) = pθ(x|z)p(z) where x is the observed
data from a dataset X containing N i.i.d. samples and z is the latent variable. It is
assumed that both the prior p(z) and the likelihood pθ(x|z) come from some parametric
families of distributions whose PDFs are differentiable almost everywhere w.r.t. θ and z.

Direct optimization of θ is intractable and a variational posterior qϕ(z|x) is introduced
to enable optimization of the evidence lower bound (ELBO):

L(θ, ϕ|x) = Ez∼qϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
≤ log p(x). (2.1)

The ELBO is a lower bound of the log marginal likelihood. Maximizing the ELBO
attempts to maximize the data marginal likelihood. The ELBO is usually rewritten in
the form:

L(θ, ϕ|x) = Ez∼qϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Negative Reconstruction Loss

− DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
Regularization

. (2.2)

2.1 Variational Autoencoders 10

The first term encourages the model to reconstruct the input as well as possible and the
second term regularizes the model by restricting the variational posterior to be close to
the prior.

Fig. 2.1 Graphical model of a VAE. The solid line denotes the generative model and the
dashed line denotes the inference model.

The graphical model of a VAE is shown in Figure 2.1. In practice, the parameters θ and
ϕ are neural networks, and they are jointly optimized via stochastic gradient descent
with the optimization objective being the ELBO across the dataset:

L(θ, ϕ|X) ≈ N

M
L(θ, ϕ|XM) = N

M

∑
x∈XM

L(θ, ϕ|x) (2.3)

where XM is a subset of X, containing M of the N data points.

There are some further implementation details from Kingma & Welling (2014) that are
widely adopted:

• With high enough batch size M , it is enough to take 1 sample to estimate the
expectation in Equation 2.2.

• The prior is chosen to be the standard Gaussian p(z) = N (z; 0, I) and the varia-
tional posterior is chosen to be the factorized Gaussian qϕ(z|x) = N (z; µ(x), σ2(x)I).
These choices make it possible to evaluate the KL-divergence term analytically.

• The reparameterization trick is used to turn a stochastic node (sampling of z) into
a deterministic one, which allow for gradient backpropagation.

With these implementation details, the ELBO can be further simplified to:

L(θ, ϕ|x) ≈ log pθ(x|z) − DKL(qϕ(z|x)∥p(z)) (2.4)

where z = µ(x) + σ(x) ⊙ ϵ and ϵ ∼ N (0, I). We will be working with the simplified
form of the ELBO in Equation 2.4 unless otherwise stated.

2.2 Hierarchical VAEs 11

2.2 Hierarchical VAEs

A basic VAE has only one latent variable. Akin to deep neural networks where shallow
layers learn more concrete features and deeper layers learn more abstract features, adding
a hierarchy of latent variables to VAEs could achieve a similar result where each latent
variable controls a different aspect of the generated data. This is desirable because the
latent representations are more disentangled and interpretable. A basic hierarchical
variational autoencoder has the following generative process:

p(x, z1, z2, . . . , zL) = p(x|z1)p(z1|z2) · · · p(zL−1|zL)p(zL)

= p(x|z1)
[

L−1∏
i=1

p(zi|zi+1)
]

p(zL). (2.5)

And the variational posterior has the form:

q(z1, z2, . . . , zL|x) = q(zL|zL−1) · · · q(z2|z1)q(z1|x)

=
[

L−1∏
i=1

q(zi+1|zi)
]

q(z1|x). (2.6)

Fig. 2.2 Graphical model of a basic hierarchical VAE. The solid lines denote the generative
model and the dashed lines denote the inference model.

The graphical model a basic hierarchical VAE is shown in Figure 2.2. This basic
hierarchical structure suffers from the posterior collapse problem (Bowman et al., 2016;
Burda et al., 2016; Sønderby et al., 2016). The model tends to ignore the high level
latent variables (i.e. zL, zL−1) and uses only the shallow ones (i.e. z1, z2), making the
model difficult to train. To overcome this, various hierarchical structures are proposed,
but they are mostly based on the ladder VAE proposed by Sønderby et al. (2016).

2.2 Hierarchical VAEs 12

Fig. 2.3 Graphical model of the LVAE. The solid lines denote the generative model and
the dashed lines denote the inference model. The diamond nodes are deterministic.

In a ladder VAE (LVAE; shown in Figure 2.3), the inference model and the generative
model share the same path and the new variational posterior has the form:

q(z1, z2, . . . , zL|x) = q(z1|z2, x) · · · q(zL−1|zL, x)q(zL|x)

=
[

L−1∏
i=1

q(zi|zi+1, x)
]

q(zL|x). (2.7)

Notice the similarity between Equation 2.7 and the generative process in Equation 2.5.
Path sharing enables the inference model to have information about the current state of
the generative model and thus enables better inference.

Fig. 2.4 Graphical model of a VLAE. The solid lines denote the generative model and
the dashed lines denote the inference model. The diamond nodes are deterministic.

In this work, we will be working with a variation of the LVAE called variational ladder
autoencoder (VLAE; Zhao et al., 2017). The graphical model of a VLAE is shown in
Figure 2.4. Although there is no hierarchical dependencies between the latent variables,

2.3 Generative Modelling with Hamiltonian Monte Carlo 13

the latent variables are able to learn hierarchical features because they are implicitly
embedded in the deterministic paths. This largely removes the posterior collapse problem
because there is effectively only one layer of latent variables. In addition, this particular
structure makes it possible to incorporate Hamiltonian Monte Carlo into the model in
subsequent sections. The generative process and the variational posterior are:

p(x, z1, z2, . . . , zL) = p(x|z1, z2, . . . , zL)
L∏

i=1
p(zi), (2.8)

q(z1, z2, . . . , zL|x) =
L∏

i=1
q(zi|x). (2.9)

And the ELBO has the form:

L(θ, ϕ|x) = Ez1,z2,...,zL∼qϕ(z1,z2,...,zL|x) [log pθ(x|z1, z2, . . . , zL)] −
L∑

i=1
DKL(qϕ(zi|x)∥p(zi)).

(2.10)

2.3 Generative Modelling with Hamiltonian Monte
Carlo

In the previous sections, we used variational inference (VI) to optimize the parameters
of VAEs. Markov chain Monte Carlo (MCMC) has long been a competitor to VI. VI
is usually faster but there is always a gap between the variational distribution and
the true distribution. MCMC on the other hand is slower but is asymptotically exact.
Hamiltonian Monte Carlo (HMC) is a MCMC method that is especially well-suited for
sampling from continuous distributions with differentiable PDFs1, given that the PDFs
can be evaluated relatively easily. The posterior distribution of the generative model fits
the criteria2 and we can trade computation for improved posterior inference by using
HMC instead of VI. We outline the basic HMC procedure in Algorithm 1, though it is
worth noting that one can use any HMC variants here (e.g. NUTS). Readers interested
in the inner workings of HMC are advised to consult Hoffman & Gelman (2011); Neal
(2001).

One problem remains before we can use HMC instead of VI to optimize the parameters
of the generative model using SGD. We can take samples from HMC but we cannot

1The PDFs can be unnormalized.
2The posterior p(z|x) ∝ p(x, z) is continuous and we can evaluate and differentiate p(x, z) w.r.t. z

relatively easily.

2.4 Hierarchical VAE with HMC 14

Algorithm 1 HMC for sampling from the posterior p(z|x)
Input: data x, initial latent state z, number of HMC iterations T , number of leapfrog
steps L, leapfrog step size ϵ.
for t = 1 to T do

Sample momentum r ∼ N (0, I)
r′ = r
z′ = z
for l = 1 to L do

r′ = r′ + ϵ
2 · ∇z′ log p(x, z′)

z′ = z′ + ϵ · r′

r′ = r′ + ϵ
2 · ∇z′ log p(x, z′)

end for
Accept with probability min(1, exp(−H(z′, r′)) + H(z, r))
where H(z, r) = − log p(x, z) + 1

2rT r
z = z′

Otherwise reject z′

z = z
end for
return z

evaluate the density which means we cannot evaluate the data marginal likelihood nor
the ELBO. Thus we use a different maximization objective shown below:

L(θ|x) = Ez∼p(z|x) [log pθ(x, z)] . (2.11)

The difference between this new objective and the ELBO is a differential entropy term
Ez∼p(z|x) [− log p(z|x)] which serves as a regularizer and specifies the posterior should not
be too concentrated. In spite of that, Hoffman (2017) and Peis et al. (2022) used this
objective and showed that it is effective.

2.4 Hierarchical VAE with HMC

In the previous section, we showed how to train the generative model with HMC. While
the procedure works, it is not very practical for a few reasons:

• For each data point, we need to run HMC from a random initial latent state and
it can take a long time for the chain to converge sufficiently close to the target
distribution.

2.4 Hierarchical VAE with HMC 15

• It can take many epochs of SGD for the parameters of the generative model to
converge and it exacerbates the problem with computation time.

• The ability to generate new data is lost because we cannot sample from HMC
without a target data x.

As Hoffman (2017) points out, the addition of the inference model can alleviate these
issues. Starting HMC from a sample from the variational posterior is much better than
starting from a random position and can make the chain converge much faster. Peis et al.
(2022) showed that if we train the model using only VI initially and then add in HMC,
only a few more epochs are needed for convergence. Also, the ability to generate new
data is regained because we can sample from the variational posterior.

To formalize this, let the variational distribution be q0
ϕ(z|x) and let the distribution of

the HMC chain after T steps be qT (z|x, z0)3. The VAE (inference model and generative
model) is trained to maximize the ELBO until convergence:

LVI(θ, ϕ|x) = Ez∼q0
ϕ

(z|x) [log pθ(x|z)] − DKL(q0
ϕ(z|x)∥p(z)). (2.12)

Then the inference model is continued to be optimized using the ELBO while the
generative model is optimized using the objective stated in Equation 2.11 and restated
below:

LHMC(θ|x) = Ez∼qT (z|x,z0) [log pθ(x, z)] where z0 ∼ q0
ϕ(z|x). (2.13)

It is straightforward to add HMC to a hierarchical VAE model like the one shown in
Figure 2.4. As we discussed before, despite that model having multiple latent variables
that can learn hierarchical features, there are no hierarchical dependencies between the
latent variables. We can thus treat the latent variables as one entity during the HMC
stage. For simplicity of notation in later chapters, we will overload z to denote both
a single latent variable and a collection of them, and we will use HMC-VAE when
referring to VAEs with HMC.

3qT (z|x, z0) instead of the true posterior p(z|x) because we cannot guarantee convergence after T
HMC iterations.

Chapter 3

VAE Implementation Details and
Results

In Chapter 2, we discussed the theoretical background on VAEs and HMC-VAEs. In this
chapter, we will establish the implementation details which underpin all the experiments
in later chapters. Code is available at https://github.com/GavinPHR/HMC-VAE.

3.1 Datasets and Likelihood Function

The datasets we will use are MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al.,
2017), CIFAR10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011). These are all image
datasets which are either coloured (3 channels) or in greyscale (1 channel). All the images
are rescaled to 32 × 32 pixels and each pixel takes on an integer value in the interval
[0 . . 255].

We will use the standard benchmarks for the VAE outlier detection task:

• FashionMNIST (inlier) vs MNIST (outlier)

• CIFAR10 (inlier) vs SVHN (outlier)

Furthermore, we will follow Nalisnick et al. (2019b) and Xiao et al. (2020) and use a
mixture of categorical distributions as the data likelihood:

p(x|z) =
∏

pixels x∈x
p(x|z) (3.1)

where x is categorically distributed with 256 categories.

https://github.com/GavinPHR/HMC-VAE

3.2 VAEs with Convolutional Neural Networks 17

3.2 VAEs with Convolutional Neural Networks

With image datasets, it is natural to use convolutional neural networks. The network
architecture we used is akin to that in Xiao et al. (2020)1. We chose this architecture
because of its simplicity and because it allows us to compare our subsequent outlier
detection results with Xiao et al. (2020), which is the state-of-the-art for these specific
datasets to our knowledge.

Table 3.1 VAE (1 latent layer) encoder and decoder specifications. C is the channel size,
F is the number of filters, and D is the latent dimension. BN is batch norm and ReLU
is rectified linear unit.

Encoder Decoder
Input C × 32 × 32 Input D × 1 × 1
4 × 4 Conv2dF Stride 2, BN, ReLU 4 × 4 ConvTranspose2d4 × F Stride 1
4 × 4 Conv2d2 × F Stride 2, BN, ReLU 4 × 4 ConvTranspose2d2 × F Stride 2, BN, ReLU
4 × 4 Conv2d4 × F Stride 2, BN, ReLU 4 × 4 ConvTranspose2dF Stride 2, BN, ReLU
4 × 4 Conv2d2 × D Stride 1 4 × 4 ConvTranspose2dC × 256 Stride 2

The encoder/decoder2 architecture used throughout this work is shown in Table 3.1.
The encoder and the decoder are symmetric and each contains 3 main convolutional
blocks. Visualizations of the encoder/decoder are shown in Figure 3.1 and 3.23. We set
C = 1, F = 32 for FashionMNIST and C = 3, F = 64 for CIFAR10.

Fig. 3.1 Encoder of a single latent layer convolutional VAE. C is the channel size, F is
the number of filters, and D is the latent dimension.

The encoder encodes the input into 2 D-dimensional vectors which serves as the mean
and the variance for the D-dimensional factorized Gaussian variational posterior. The
decoder takes in the D-dimensional sample and reconstructs the input data. We set
D = 90 for subsequent experiments.

1With minor modifications to fit hierarchical latent variables.
2We use encoder/decoder instead of inference/generative model to emphasize these are deterministic

neural networks.
3Figures are produced using tools developed by (LeNail, 2019)

3.3 Adding Hierarchical Latent Variables 18

Fig. 3.2 Decoder of a single latent layer convolutional VAE. C is the channel size, F is
the number of filters, and D is the latent dimension.

3.3 Adding Hierarchical Latent Variables

The VAE architecture has 3 main convolutional blocks each in its encoder and decoder.
Intuitively, each block captures features at different hierarchies. We can introduce a
hierarchy of latent variables by projecting each interim tensor into parameters of the
variational distribution.

Concretely, let the interim tensor after the i-th convolutional block have dimension
C × H × W , we can project it using a H × W Conv2d block with 2 × Di output channels
and stride 1. The result is a 2 × Di vector which serves as the mean and the variance
for the variational distribution at latent layer i. The sample taken from the variational
distribution can be brought back to dimension C ×H ×W using a ConvTranspose2d block
with the same parameters, then be added to the interim tensor from the corresponding
decoding block. The graphical model in Figure 2.4 describes this architecture exactly,
where each solid line represents a ConvTranspose2d block, each dashed line represents a
Conv2d block, and each diamond node represents an interim tensor. Consult the code at
https://github.com/GavinPHR/HMC-VAE for more details.

In subsequent experiments, we will use 3 latent layers in the hierarchical VAEs, each
after a convolution block. For maximum comparability between the single layer and
the hierarchical VAEs, we match the total number of latent units by setting the latent
dimensions to be D1 = 30, D2 = 30, D3 = 30.

3.4 HMC Parameter Setting and Training Time

There are 3 parameters to be set for HMC. The number of iterations T , the number of
leapfrog steps per iteration L, and the step size ϵ. The values chosen for these parameter
are heavily dependent on the compute budget. If the compute budget is high, one should

https://github.com/GavinPHR/HMC-VAE

3.5 Model Optimization 19

choose higher T, L, and vice versa. We set T = 10, L = 5 in our experiments. For ϵ, we
follow previous work (Hoffman & Gelman, 2011; Neal, 2001) and tune it automatically
so the acceptance rate (averaged across batch) is 65%. We achieve this by increasing ϵ

by 5% if the acceptance rate is too high and decreasing by 5% otherwise.

For completeness, we observed a 50 times slowdown when training with HMC compared
to training with VI. This will depend on the batch size and the hardware used, but we
speculate the training times scale linearly with T × L which makes sense because a pass
through the decoder is required at each leapfrog step. One should consider whether the
benefits brought by HMC (Section 3.6) are worth the significant increase in training and
prediction time.

3.5 Model Optimization

The models are all optimized using Adam (Kingma & Ba, 2015) with 5e-4 learning rate.
The models are trained with the ELBO objective for the first 100 epochs. Then they are
trained for an additional 3 epochs using HMC for posterior sampling, with the ELBO
objective for the encoders and the HMC objective for the decoders.

3.6 Results and Discussion

A common metric for comparing VAEs is the log marginal likelihood log p(x). Approx-
imating the log likelihood is relatively straightforward with the variational posterior
(Burda et al., 2016) but poses a challenge with HMC because we cannot evaluate the
sample likelihood under the posterior distribution. Instead, we will simply compare the
models using reconstruction accuracy Ez [log p(x|z)].

Table 3.2 Reconstruction accuracy of VAEs trained with the ELBO objective.

Ez∼q0(z|x) [log p(x|z)]
1 layer 3 layers

FashionMNIST -2143 ± 8 -2189 ± 5
CIFAR10 -12572 ± 71 -12801 ± 33

Table 3.2 shows the reconstruction accuracy of models trained with the ELBO objective
only and Table 3.3 shows the reconstruction accuracy of models that are continued to be
trained with HMC. There are agreements and discrepancies between our results and Peis
et al. (2022).

3.6 Results and Discussion 20

Table 3.3 Reconstruction accuracy of VAEs trained with the ELBO objective for the
encoder and the HMC objective for the decoder. We show the reconstruction accuracy
both using samples from the variational posterior and from HMC.

Ez∼q0(z|x) [log p(x|z)] Ez∼qT (z|x) [log p(x|z)]
1 layer 3 layers 1 layer 3 layers

FashionMNIST -2188 ± 16 -2229 ± 15 −2060 ± 5 -2116 ± 5
CIFAR10 -12770 ± 45 -12926 ± 51 −12303 ± 12 -12476 ± 19

Firstly, HMC-VAEs achieve better reconstruction accuracy than VAEs, but the difference
is not significant qualitatively. See Figure 3.3 for some reconstruction examples. The
improvements observed in Peis et al. (2022) are more significant and we suspect the
difference comes from the neural network architecture. HMC-VAE will only be much
better if the latent distribution is very different from a Gaussian, but our convolutional
networks (Peis et al. (2022) used fully-connected networks) use batch normalization layers
that tend to keep layer outputs Gaussian-like.

Fig. 3.3 Top: Original Images; Middle: reconstructions using a VAE; Bottom: recon-
structions using an HMC-VAE

Secondly, adding more latent layers decreases reconstruction accuracy in our experiments
which contradicts Peis et al. (2022) which saw improved reconstruction. Although they
used more latent units in their hierarchical VAEs while we are keeping the same number of
latent units4. This discrepancy can also be due to the difference in network architectures.

With that said, hierarchical latent variables have their benefits. As Zhao et al. (2017)
pointed out, each latent layer learns somewhat disentangled features and we visualize
this in Figure 3.4. We observe that the first layer controls features like foreground colour,
the second layer controls features like shape and saturation, while the last layer seems to

4It is unclear how hierarchical and single-layer models can be fairly compared because a hierarchical
neural network model almost necessarily has more capacity than a single-layer one and that we would
normally expect to use more latent units too.

3.6 Results and Discussion 21

control the identity (class/label of the image). The features go from concrete to abstract
as the layer gets deeper which is what we would expect. Depending on the downstream
task, hierarchical latent variables and disentangled latent states can be quite beneficial -
we will show that they do indeed improve outlier detection performance in Chapter 5.

Original

z1, z2, z3 ∼ q(z|x)

z1 ∼ p(z) z2, z3 ∼ q(z|x)

z2 ∼ p(z) z1, z3 ∼ q(z|x)

z3 ∼ p(z) z1, z2 ∼ q(z|x)

Fig. 3.4 Example reconstructions from a hierarchical VAE. Top row are the original
images and the second row are normal reconstructions. For each row after that, one
of the latent variables is sampled from the prior. It shows each latent variable learns
different features that control different aspects of the reconstructions.

Chapter 4

Outlier Detection Problem
Statement

There are three broad categories of outlier detection techniques (Chandola et al., 2009).
Supervised techniques where the data are labelled as inliers or outliers; semi-supervised
techniques where the data are partially labelled; and unsupervised techniques where the
data are unlabelled. Unsupervised techniques are more commonly used either because it
is impossible to define what an outlier is, or because it is infeasible to collect enough
labelled data. VAEs being some of the most popular models for unsupervised learning, it
is natural to apply them to unsupervised outlier detection.

4.1 Outlier Detection with Reconstruction Accuracy

The most straightforward way to apply VAEs in outlier detection is through the recon-
struction accuracy:

Ez∼q(z|x) [log p(x|z)] . (4.1)

The assumption is that if a trained VAE can reconstruct an input data x well, then
x is similar to the training data and is probably an inlier, otherwise x is likely an
outlier. While this works in some cases, it has been established that VAEs sometimes
reconstruct outliers better than inliers. In Figure 4.1 (Left), we show that a VAE
trained on FashionMNIST can reconstruct MNIST test data much better overall than
FashionMNIST test data. Figure 4.1 (Right) shows a similar story for CIFAR10 vs
SVHN.

4.1 Outlier Detection with Reconstruction Accuracy 23

Fig. 4.1 Reconstruction accuracy of (Left) FashionMNIST and MNIST test data on VAEs
trained on FashionMNIST (Right) CIFAR10 and SVHN test data on VAEs trained on
CIFAR10. The outliers are reconstructed better in both cases. HMC-VAE improves
reconstruction accuracy but does not really improve outlier detection performance.

Fig. 4.2 ROC curve of the (Left) FashionMNIST vs MNIST task (Right) CIFAR10 vs
SVHN task. We can see that using HMC for posterior sampling does not really improve
outlier detection, it actually decreases the performance of a task.

It is worth noting that using HMC for posterior sampling does not improve outlier
detection, despite the gain achieved in reconstruction accuracy. This is because using HMC
improves reconstruction for both inliers and outliers. It can be especially troublesome
when the improvement of outliers are greater than that of inliers (i.e. outlier detection
performance becomes worse with HMC).

4.2 VAE Outlier Detection Mini Survey 24

A standard metric for comparing outlier detection performance is the receiver operating
characteristics (ROC) curve. The curve illustrates a model’s ability to detect outliers (i.e.
true positive and false positive rates) as the decision threshold is varied. We want the
models to have high true positive rates and low false positive rates. Area under curve
(AUROC) is used as a metric to quantify this, an AUROC value of 1 means the inliers
and the outliers are fully separable and an AUROC value of 0.5 is equivalent to guessing
randomly. Figure 4.2 shows the ROC curves and AUROC values for FashionMNIST
vs MNIST and CIFAR10 vs SVHN. The models’ performance under the reconstruction
accuracy assumption is much worse than just guessing randomly.

4.2 VAE Outlier Detection Mini Survey

We have stated the problem of outlier detection using reconstruction accuracy, this
section presents a mini survey on approaches that circumvent this problem. The papers
in this survey approach the problem from different perspectives and propose different
solutions. These solutions will be applied on our models in Chapter 5.

4.2.1 Denouden et al. (2018)

This paper suggested that the problem arises from the latent manifold learnt by the
VAEs. As Figure 4.3 shows, the inliers’ latent representations lie close to this manifold
which means they can be reconstructed well. For the outliers’ latent representations,
while some are far away from the inlier representations, others can still lie close to the
manifold which means they can be reconstructed well too.

Their solution is to use a metric that is a hybrid between the reconstruction error and
the Mahalanobis distance1 between the latent representation z of the input x and the
training empirical latent distribution Qtrain:

α · log p(x|z) + β · Mahalanobis(z, Qtrain) (4.2)

where α, β are hyper-parameters. The smaller this metric is, the more likely the input is
an outlier.

The paper demonstrated good results but their benchmarks were too simple with inliers
and outliers already well separated using reconstruction accuracy. For more challenging

1Mahalanobis distance measures the distance between a (test) point and a (empirical training)
distribution that takes correlation into account.

4.2 VAE Outlier Detection Mini Survey 25

Fig. 4.3 Inlier representations lie near the manifold and can be reconstructed well.
Some outlier representations also lie close to the manifold (which means they can be
reconstructed well) but their distance from the inlier representations are very far.

benchmarks, where outliers are reconstructed much better than inliers on average, we
can anticipate that including the reconstruction accuracy log p(x|z) in the metric can
only contribute negatively.

4.2.2 Xiao et al. (2020)

This paper makes very few assumption regarding why the outliers can be reconstructed
better than inliers. The paper instead proposed a solution based on continued optimization
of the model. A VAE optimizes the ELBO amortized across the whole dataset. This
means for any one specific data point, the VAE can be optimized further to improve
that data point’s likelihood. For an inlier data point, the improvement after additional
optimization should not be substantial because the model is already trained on inlier
training data. While for an outlier data point, the improvement should be much larger.
The authors named the difference between likelihoods before and after additional training
likelihood regret. The algorithm for computing likelihood regret is shown in Algorithm
2.

This algorithm achieves state-of-the-art results on standard benchmarks. Though its
drawbacks are also evident: it is computationally expensive as the model needs to be
optimized further for every single test data.

4.2 VAE Outlier Detection Mini Survey 26

Algorithm 2 Computing likelihood regret
Input: test data x, trained VAE with parameters ϕ∗, θ∗, number of additional
optimization steps S
PVAE = log p(x) under ϕ∗, θ∗
ϕ = ϕ∗
for t = 1 to S do

ϕ = optimize ϕ to improve log p(x)
end for
POPT = log p(x) under ϕ, θ∗
return POPT − PVAE

4.2.3 Serrà et al. (2020)

This paper suggested that the issue is not with the model but rather with the input data.
The proposition is that outlier inputs of lower complexity tend to have higher likelihoods
under the model. For example, in the FashionMNIST vs MNIST task, MNIST data
are of much lower complexity than FashionMNIST and thus MNIST data have higher
likelihoods and can be reconstructed better. The paper proposed a new metric that
penalizes the negative marginal likelihood with a complexity measure L:

− log p(x) − L(x). (4.3)

The higher this metric is, the more likely the input is an outlier. The authors acknowledged
that it is tricky to find a good complexity measure L that works consistently - the paper
set L to be the size of the image data after compression. When the input is random
noise, Xiao et al. (2020) pointed out that the complexity penalty can become so big and
makes the metric unreliable.

4.2.4 Choi et al. (2019); Daxberger & Hernández-Lobato (2019)

These two papers both proposed an ensemble-based approach where N sets of decoder
parameters θi are required. The assumption is that under different sets of parameters
θi, the likelihoods of an inlier should have low variance and the likelihoods of an outlier
should have high variance (despite the possibility that it can have a higher likelihoods).

To put this idea into concrete metrics, Choi et al. (2019) proposed to use the Watanabe
Akaike Information Criterion (WAIC) that combines the mean and the variance of log

4.2 VAE Outlier Detection Mini Survey 27

likelihoods under different parameters:

Eθ [log pθ(x)] − Varθ [log pθ(x)] . (4.4)

And Daxberger & Hernández-Lobato (2019) proposed to use a metric that is similar to
the inverse of variance:

1∑N
i=1 w2

θi

where wθi
= pθi

(x)∑N
j=1 pθj

(x)
. (4.5)

For both of the metrics, the lower the value the more likely the input is an outlier.

To get the ensemble, Choi et al. (2019) trained N distinct models from scratch using SGD
which is very expensive; Daxberger & Hernández-Lobato (2019) sampled the parameters
using stochastic-gradient Hamiltonian Monte Carlo (SGHMC) which only requires one
training pass but the performance of the individual models are significantly worse.

4.2.5 Additional Work and Discussions

Additional work that are well-cited include:

• Ren et al. (2019) noticed that the background of the outlier image contributes
significantly to the likelihood. For example, in the FashionMNIST vs MNIST case,
it is easy for the model to reconstruct the backgrounds which are mostly black
pixels. To combat this, they proposed the method called likelihood ratios where
an additional background model is trained to reduce the background’s influence
on likelihood. As the authors pointed out, this method does not work well if the
foreground and the background do not separate easily.

• Nalisnick et al. (2019a) conjectured that high outlier likelihoods are a result
of typicality. The inlier representations reside in the typical set of the latent
distribution, which may not intersect with the region with the highest density.
Instead of likelihoods, the paper proposed to use a hypothesis test for typicality -
an input is an outlier if it resides far from the typical set.

• Nalisnick et al. (2019b) presented some theoretical analysis and showed that
likelihood alone is not enough to distinguish inliers and outliers. They also showed
that this issue does not only concern VAEs but deep generative models in general.

• Hendrycks et al. (2019) utilized an auxiliary dataset that is disjoint from both the
inlier and outlier datasets. They used the auxiliary data as outliers during training

4.2 VAE Outlier Detection Mini Survey 28

and penalized the model if they are reconstructed well. It was shown that if the
auxiliary dataset is well-chosen (which is not trivial), the model can generalize to
the true outlier dataset.

To summarize this mini survey, there is no consensus on why outliers have higher
likelihoods and there is no solution that is significantly better in both performance and
computation cost. The solutions either do not depend on likelihoods at all, choose to
apply some form of penalties to the likelihoods, or avoid direct comparison of likelihoods.
The best solution certainly depends on the task at hand and the amount of computational
resource available.

Chapter 5

Outlier Detection Experiments and
Results

In Chapter 4, we stated the issue with outlier detection using VAEs and presented
solutions in a mini survey. In this chapter, we will apply the solutions and investigate
their effectiveness when used in combination with hierarchical latent variables and HMC.

5.1 Datasets and Benchmarks

In addition to the datasets mentioned in Chapter 3 (FashionMNIST, MNIST, CIFAR10,
SVHN), we create two synthetic outlier datasets - a noise dataset where each pixel is
uniformly sampled and a constant dataset where every pixel takes on the same uniformly
sampled value.

With the synthetic datasets, we extend the standard benchmarks to contain the following
6 tasks:

• FashionMNIST (inlier) vs MNIST, Noise, Constant (outliers)

• CIFAR10 (inlier) vs SVHN, Noise, Constant (outliers)

These additions should make experimental results more generalizable and convincing.

5.2 Methods Based on Distance Measures 30

5.2 Methods Based on Distance Measures

Distance based methods are intuitive and straightforward to implement. Given the latent
states of the training set {z1, . . . , zN} and the latent state of a test input ztest, we will
try two different metrics for determining whether ztest is an outlier:

1. Mean k-NN: Mean L2 distance from ztest to its k-nearest neighbours in {z1, . . . , zN}.

2. Mahalanobis: Mahalanobis distance between ztest and the empirical distribution
of the training latent states {z1, . . . , zN}.1

For each metric, the higher the value, the more likely ztest is an outlier. Additionally, we
choose k = 20 for the experiments.

Note that these methods can be applied in the input space as well as in the latent
space. We choose to apply the methods in the latent space because it is less dependent
on the input distributions which makes the conclusion more generalizable and it is
computationally much faster at lower dimension.

Table 5.1 AUROC values using distance based methods (FashionMNIST vs others)

FashionMNIST vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
Mean k-NN

MNIST 0.993 0.993 0.921 0.973
Noise 0.674 0.994 0.382 0.359

Constant 0.975 0.874 0.944 0.845
Mahalanobis

MNIST 0.988 0.992 0.914 0.972
Noise 0.434 0.997 0.164 0.375

Constant 0.980 0.896 0.973 0.887

Table 5.1 and 5.2 show AUROC values for FashionMNIST vs others and CIFAR10 vs
others, respectively. We can observe that:

• FashionMNIST vs others are easier than CIFAR10 vs others. If we only care about
the two main tasks (FashionMNIST vs MNIST and CIFAR10 vs SVHN), either of
the methods paired with HMC-VAEs basically achieves state-of-the-art results.

• Noise and Constant outliers are more difficult to detect. It is especially confounding
when the AUROC value is close to 0 for some tasks. This means almost all outlier

1Denouden et al. (2018) combined Mahalanobis distance with data likelihood. We are not doing that
because the outliers have overall much higher likelihoods and adding them only decreases performance.

5.3 Methods Based on Reconstruction Accuracy 31

Table 5.2 AUROC values using distance based methods (CIFAR10 vs others)

CIFAR10 vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
Mean k-NN

SVHN 0.726 0.769 0.908 0.898
Noise 0.000 0.009 0.001 0.001

Constant 0.101 0.211 0.917 0.848
Mahalanobis

SVHN 0.730 0.728 0.930 0.914
Noise 0.000 0.007 0.000 0.005

Constant 0.008 0.023 0.630 0.678

test data are closer to training data than inlier test data. This phenomenon should
be studied further in future work.

• It is inconclusive whether it helps to use more layers and/or HMC as the results
are contradictory.

The weakness of these methods is certainly their consistency - they can perform incredibly
well with some datasets and fail terribly with others.

5.3 Methods Based on Reconstruction Accuracy

Many of the methods introduced in the mini survey in Chapter 4 are based on log
marginal likelihood. Since it is difficult to evaluate marginal likelihood with HMC models,
we will adapt and apply those methods to use reconstruction accuracy instead in this
section.

5.3.1 Reconstruction Accuracy

For reference, we list outlier detection performance using reconstruction accuracy only2,
with the assumption that outliers should have lower reconstruction accuracy.

Table 5.3 and 5.4 show the AUROC values of the benchmarks. As expected, FashionM-
NIST vs MNIST and CIFAR10 vs SVHN both have terrible performance. Unsurprisingly,
Noise outliers can be detected very well because they are much more difficult to recon-
struct. For Constant outliers, the results indicate that VAEs trained on CIFAR10 are

2We are not using data marginal likelihoods because they are not straightforward to estimate for
models with HMC. Though a popular method for estimating them is shown in Neal (2001).

5.3 Methods Based on Reconstruction Accuracy 32

much better at reconstructing Constant than VAEs trained on FashionMNIST. We sus-
pect this is because VAEs trained on FashionMNIST have learnt to bias the background
pixels to 0 (black), while VAEs trained on CIFAR10 have learnt to handle different colour
values.

Table 5.3 AUROC values using only reconstruction accuracy (FashionMNIST vs others)

FashionMNIST vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
MNIST 0.133 0.179 0.113 0.149
Noise 1.000 1.000 1.000 1.000

Constant 0.976 0.984 0.871 0.892

Table 5.4 AUROC values using only reconstruction accuracy (CIFAR10 vs others)

CIFAR10 vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
SVHN 0.133 0.141 0.141 0.133
Noise 1.000 1.000 1.000 1.000

Constant 0.002 0.003 0.004 0.006

5.3.2 HMC Improvement

HMC Improvement is an adaptation of Xiao et al. (2020) (Likelihood Regret) for HMC-
VAEs. Xiao et al. (2020) stipulated that if x is an outlier, then we should expect a
bigger improvement in its likelihood if the VAE is trained further on x only. A similar
improvement can be extracted under HMC-VAEs without further training:

HMC Improvement(x) = Ez∼qT (z|x) [log pθ(x|z)] − Ez∼q0
ϕ

(z|x) [log pθ(x|z)] . (5.1)

HMC Improvement is the difference between reconstruction accuracy from an HMC
sample and reconstruction accuracy from a variational sample. The intuition behind this
metric is almost identical to that of likelihood regret. While HMC improves reconstruction
of inliers, it improves reconstruction of outliers even more. This is because for an outlier,
we expect a bigger gap between the variational posterior and the true posterior which
HMC samples from.

Table 5.5 and 5.6 show AUROC values using this metric under different models. While
the AUROC values suggest that using this metric is better than random guessing, the
results are not good. FashionMNIST vs MNIST is the only task that shows reasonable
performance.

5.3 Methods Based on Reconstruction Accuracy 33

Table 5.5 AUROC values using HMC Improvement (FashionMNIST vs others)

FashionMNIST vs HMC-VAE (1-layer) HMC-VAE (3-layer)
MNIST 0.863 0.898
Noise 0.866 0.674

Constant 0.536 0.812

Table 5.6 AUROC values using HMC Improvement (CIFAR10 vs others)

CIFAR10 vs HMC-VAE (1-layer) HMC-VAE (3-layer)
SVHN 0.659 0.688
Noise 0.853 0.648

Constant 0.535 0.636

The issue lies in HMC sampling as we observed that for outliers, HMC mostly only
rejects or only accepts new samples which means the step size is either too big or too
small for outliers. This makes sense because the step size is tuned for inliers but this also
means HMC provides no reconstruction improvement for outliers which invalidates the
assumption of this method. A way to fix this is to adaptively tune the step size for each
sample and run the chain for longer, which is left for future work as doing it directly is
prohibitively expensive.

5.3.3 Input Complexity

Input Complexity is a direct application of Serrà et al. (2020). The metric is as follows3:

Input Complexity(x) = −Ez∼q(z|x) [log pθ(x|z)] − L(x) (5.2)

where L(x) is the size (in bits) of x after PNG compression.

Table 5.7 and 5.8 show AUROC values using this metric under different models. The
results are mostly as expected, this method works well on most tasks except when
the outlier is Noise. As mentioned before, Noise outliers have disproportionally high
complexity which make the metric unreliable. Notably, 3-layer VAEs are able to handle
Noise significantly better than other models. After inspection, this is because 3-layer
VAEs are the worst at reconstructing Noise and the complexity term is not high enough
to skew the metric.

3Adapted to use reconstruction accuracy instead of data likelihood.

5.4 Methods Based on Ensemble Uncertainty 34

Table 5.7 AUROC values using Input Complexity (FashionMNIST vs others)

FashionMNIST vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
MNIST 0.934 0.967 0.870 0.901
Noise 0.244 1.000 0.175 0.689

Constant 1.000 1.000 1.000 1.000

Table 5.8 AUROC values using Input Complexity (CIFAR10 vs others)

CIFAR10 vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
SVHN 0.933 0.935 0.934 0.931
Noise 0.069 0.704 0.023 0.325

Constant 1.000 1.000 1.000 1.000

Another problem with this metric is the compatibility between likelihood function and
the complexity term. It just so happens that the likelihood function used in this work
and the complexity term are similar in magnitude. This method probably does not work
as well if we chose to use other likelihood functions (e.g. Gaussian, Continuous Bernoulli).
For future work, it would be useful to find complexity measures that are more coupled
to the likelihood functions.

5.4 Methods Based on Ensemble Uncertainty

The last class of methods we will explore in this work are based on ensemble uncertainty.
We will experiment with the metrics from Choi et al. (2019):

WAIC(x) = Eθ [log pθ(x|z)] − Varθ [log pθ(x|z)] (5.3)

and from Daxberger & Hernández-Lobato (2019):

Agreement(x) = 1∑N
i=1 w2

θi

where wθi
= pθi

(x|z)∑N
j=1 pθj

(x|z)
. (5.4)

We also throw in precision as a metric for comparison:

Precision(x) = 1
Varθ [log pθ(x|z)] . (5.5)

For all 3 metrics, the lower the value, the more likely the input is an outlier. We apply
the metrics on deep ensembles of 10 models (Lakshminarayanan et al., 2017).

5.4 Methods Based on Ensemble Uncertainty 35

Table 5.9 AUROC values using ensemble metrics (FashionMNIST vs others)

FashionMNIST vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
Precision

MNIST 0.554 0.967 0.737 0.841
Noise 0.776 1.000 0.645 0.999

Constant 0.993 0.995 0.993 0.993
WAIC

MNIST 0.459 0.891 0.539 0.712
Noise 0.939 1.000 0.919 0.999

Constant 0.993 0.994 0.993 0.993
Agreement

MNIST 0.637 0.655 0.637 0.607
Noise 0.710 0.755 0.518 0.770

Constant 0.761 0.743 0.748 0.764

Table 5.10 AUROC values using ensemble metrics (CIFAR10 vs others)

CIFAR10 vs VAE (1-layer) VAE (3-layer) HMC-VAE (1-layer) HMC-VAE (3-layer)
Precision

SVHN 0.729 0.664 0.794 0.720
Noise 0.843 0.987 0.961 0.998

Constant 0.976 0.989 0.979 0.985
WAIC

SVHN 0.688 0.593 0.757 0.651
Noise 0.867 0.988 0.965 0.998

Constant 0.975 0.989 0.978 0.984
Agreement

SVHN 0.530 0.520 0.540 0.527
Noise 0.563 0.564 0.406 0.584

Constant 0.572 0.564 0.570 0.583

Table 5.9 and 5.10 show the AUROC values for the benchmarks under these metrics.
Precision and WAIC perform similarly well in most tasks under every model, while
agreement performs a lot worse than expected. After inspection of the reconstruction
accuracy of the ensembles, we noticed that the absolute difference between the highest
and the lowest reconstruction accuracy (maxθ pθ(x|z) − minθ pθ(x|z)) are similar for
inliers and outliers. Agreement is sensitive to the absolute difference in reconstruction
accuracy because of the normalization step. So despite inlier reconstructions have smaller
variance, the absolute difference push the Agreement metric to 1 (the minimum value of
the metric).

5.5 Methods Comparison 36

5.5 Methods Comparison

This section serves to summarize the results in a visual format. We are comparing our
results to (Likelihood Regret; Xiao et al., 2020). The AUROC values of Likelihood Regret
are shown in Figure 5.11, which to our knowledge is the state-of-the-art for VAE outlier
detection on this set of benchmarks.

Table 5.11 AUROC values using Likelihood Regret (Xiao et al., 2020)

FashionMNIST vs VAE (1-layer)
MNIST 0.988
Noise 1.000

Constant 1.000

CIFAR10 vs VAE (1-layer)
SVHN 0.875
Noise 0.994

Constant 0.974

Fig. 5.1 Average AUROC values (averaged across FashionMNIST vs MNIST and CIFAR10
vs SVHN) against different method + model combination.

Throughout this chapter, we experimented with 8 outlier detection methods on 6 tasks
under 4 different VAE models. We are primarily interested in knowing whether a

5.5 Methods Comparison 37

Fig. 5.2 Average AUROC values (averaged across FashionMNIST vs MNIST, Noise,
Constant and CIFAR10 vs SVHN, Noise, Constant) against different method + model
combination.

particular method or model is better. For each method + model combination, we average
its AUROC values across tasks. In Figure 5.1, we average the AUROC values of 2 the
two main tasks - FashionMNIST vs MNIST and CIFAR10 vs SVHN. And in Figure 5.2,
we average the AUROC across all 6 tasks (FashionMNIST vs MNIST, Noise, Constant
and CIFAR10 vs SVHN, Noise, Constant). We make the following observations:

• Averaged across the 2 main tasks, distance based methods already work very well
and the results under 3-layer HMC-VAEs surpass Xiao et al. (2020). But for all 6
tasks, these methods clearly do not work as well as others.

• Input Complexity also works very well with the 2 main tasks. Though across all 6
tasks, only the 3-layer VAE worked well. In fact, its performance is very close to
(Xiao et al., 2020). It is a shame that Input Complexity paired with other models
does not perform nearly as well across all 6 tasks.

5.5 Methods Comparison 38

• For the ensemble based methods, Precision and WAIC both perform well and the
performance are relatively consistent across models.

• The trend suggests that hierarchical latent structure does help outlier detection
performance, despite it decreasing reconstruction performance. On the other hand,
although HMC increases reconstruction performance, it does not seem to affect
outlier detection much.

Regrettably, none of the method + model we have tried surpassed Likelihood Regret
(Xiao et al., 2020) across all 6 tasks. Though one has to keep in mind that Likelihood
Regret requires a significant amount of computation at prediction time, and methods like
Input Complexity and WAIC only require a fraction of the computation while having
performance close to Likelihood Regret.

Chapter 6

Conclusion and Future Work

The original objective was to determine whether we can improve outlier detection
performance while retaining the gain offered by hierarchical latent variables and HMC.
The objective was perhaps slightly misguided because the assumption was that VAE
reconstruction accuracy is a good metric for detecting outliers. We showed in Chapter 4
that reconstruction accuracy is an unreliable metric for outlier detection, whether with
or without hierarchical latent variables and HMC. The real objective has been to find
methods that work well under all these VAE models.

An additional caveat was that, as shown in Chapter 3, hierarchical latent structure
does not necessarily bring improvements to data reconstruction as previously shown.
The improvement depends on the neural network architecture and the number of la-
tent units used. Though we did confirm that hierarchical latent structures offer some
disentangled/interpretable latent states and HMC does indeed improve reconstruction.

In the mini survey in Chapter 4, we listed some solutions from well-cited papers and
subsequently applied them to our VAE models in 5. Our results suggest that some methods
work much better on specific tasks than others. We would pick Input Complexity (Serrà
et al., 2020) to be the best method overall (compared with the other methods used in
this work) because it worked well across benchmarks, models, and required next to no
additional computational resources, even though it did not achieve the best AUROC
scores. We can also be fairly confident that hierarchical latent variables do help outlier
detection, although the reason is unknown and left for future work. As for HMC, there
does not seem to be a clear correlation between it and outlier detection performance.
This means one can enjoy the reconstruction improvement HMC brings without worrying
about it hurting outlier detection.

40

Most published work in VAE outlier detection theorized as to why the problem exists and
proposed relevant solutions to patch it. While practically useful, these approaches are
deeply unsatisfying because reconstruction accuracy (or data marginal likelihood) should
be enough to detect outliers, contingent on the VAE actually being capable of learning the
data distribution. While VAEs have proven to be very good at data reconstruction and
data generation, they do not seem to be able to learn the true underlying data distribution.
To achieve this, we likely need substantially more understanding of amortized variational
inference and distributions parameterized by neural networks, we hope to investigate
these in future work.

References

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, pp. 10–21, Berlin,
Germany, Aug 2016.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv:1509.00519 [cs, stat], Nov 2016.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3), jul 2009.

Hyunsun Choi, Eric Jang, and Alexander A. Alemi. Waic, but why? generative ensembles
for robust anomaly detection. (arXiv:1810.01392), May 2019.

Erik Daxberger and José Miguel Hernández-Lobato. Bayesian variational autoencoders
for unsupervised out-of-distribution detection. NeurIPS Workshop on Bayesian Deep
Learning, 2019.

Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and
Sachin Vernekar. Improving reconstruction autoencoder out-of-distribution detection
with mahalanobis distance. (arXiv:1812.02765), Dec 2018.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. In International Conference on Learning Representations, 2019.

Matthew D. Hoffman. Learning deep latent gaussian models with markov chain monte
carlo. In Proceedings of the 34th International Conference on Machine Learning, pp.
1510–1519. Jul 2017.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting
path lengths in hamiltonian monte carlo. (arXiv:1111.4246), Nov 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR (Poster), 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

References 42

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems, volume 30. 2017.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Alexander LeNail. Nn-svg: Publication-ready neural network architecture schematics.
Journal of Open Source Software, 4(33):747, 2019.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do deep generative models know what they don’t know? In International
Conference on Learning Representations, 2019a.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan.
Detecting out-of-distribution inputs to deep generative models using typicality.
(arXiv:1906.02994), Oct 2019b.

Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):
125–139, Apr 2001.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputa-
tion and acquisition with deep hierarchical models and hamiltonian monte carlo.
arXiv:2202.04599 [cs, stat], Feb 2022.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua
Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection.
In Advances in Neural Information Processing Systems, volume 32. 2019.

Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F. Núñez, and Jordi
Luque. Input complexity and out-of-distribution detection with likelihood-based
generative models. In International Conference on Learning Representations, 2020.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, SørenKaae Sønderby, and Ole
Winther. Ladder variational autoencoders. In Advances in Neural Information Pro-
cessing Systems, volume 29. 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution
detection score for variational auto-encoder. In Advances in Neural Information
Processing Systems, volume 33, pp. 20685–20696. 2020.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. arXiv:2110.11334 [cs], Oct 2021.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from
deep generative models. In Proceedings of the 34th International Conference on Machine
Learning, pp. 4091–4099. Jul 2017.

	Table of contents
	1 Introduction
	2 Theoretical Background on Variational Autoencoders
	2.1 Variational Autoencoders
	2.2 Hierarchical VAEs
	2.3 Generative Modelling with Hamiltonian Monte Carlo
	2.4 Hierarchical VAE with HMC

	3 VAE Implementation Details and Results
	3.1 Datasets and Likelihood Function
	3.2 VAEs with Convolutional Neural Networks
	3.3 Adding Hierarchical Latent Variables
	3.4 HMC Parameter Setting and Training Time
	3.5 Model Optimization
	3.6 Results and Discussion

	4 Outlier Detection Problem Statement
	4.1 Outlier Detection with Reconstruction Accuracy
	4.2 VAE Outlier Detection Mini Survey
	4.2.1 DenoudenSalayCzarneckiAbdelzadPhanVernekar2018
	4.2.2 XiaoYanAmit2020
	4.2.3 Serra2020Input
	4.2.4 ChoiJangAlemi2019, daxberger2019bayesian
	4.2.5 Additional Work and Discussions

	5 Outlier Detection Experiments and Results
	5.1 Datasets and Benchmarks
	5.2 Methods Based on Distance Measures
	5.3 Methods Based on Reconstruction Accuracy
	5.3.1 Reconstruction Accuracy
	5.3.2 HMC Improvement
	5.3.3 Input Complexity

	5.4 Methods Based on Ensemble Uncertainty
	5.5 Methods Comparison

	6 Conclusion and Future Work
	References

