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Abstract

Type Ia supernovae serve as “standard candles" whose observed light curves (time series of
brightness across wavelengths) allow for accurate calculation of their distances from Earth.
This provides rare insight into the rate of the expansion of the universe and other fundamental
cosmological quantities. As technology advances, vast quantities of data are generated from
astronomical observations, and principled, scalable modeling approaches are required for
effective analysis. BayeSN is a generative, hierarchical Bayesian model that fits the light
curves of Type Ia supernovae, allowing for inference of their distance and other parameters.
The current implementation of BayeSN is written in Stan and uses Hamiltonian Monte Carlo
to sample the posterior distribution, which is limited by computation time. We present an
implementation of BayeSN that uses Variational Inference (VI) to fit Type Ia supernova light
curves. This model is implemented in Pyro and utilizes Stochastic Variational Inference to
optimize a full-rank multivariate Gaussian approximation of the posterior distribution. We
present fit results on simulated and real supernova datasets and discuss the trade-off between
computational efficiency and model accuracy. We compare the performance of the VI model
to previous MCMC approximations and discuss the trends and biases of the VI model. We
also explore how the model can be reparameterized using different variable transformations
to improve performance. Overall, VI is a promising method for efficiently fitting Type Ia
supernova light curves, and machine learning techniques should continue to be utilized to
accelerate physically motivated models to advance the field of precision cosmology.
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Chapter 1

Introduction

Supernovae are stellar explosions so bright they can be detected from the Earth across great
cosmic distances. Type Ia supernovae are unique in that their absolute brightness can be
standardized; that is, their observed brightness profile correlates directly with their distance
from the Earth. Accurately modeling the time-series of brightness at different wavelengths
for a Type Ia supernova population enables astronomers to fit their distances, which can
be used to estimate various cosmological quantities, such as the rate of expansion of the
universe. Future astronomical surveys plan to observe millions of supernovae, creating a
distinct need for precise, scalable supernova light curve modeling techniques.

BayeSN is a forward generative, hierarchical Bayesian model for the time-dependent
spectral energy distribution of Type Ia SNe (Mandel et al., 2022; Thorp et al., 2021). It is
currently implemented in Stan, and uses Hamiltonian Monte Carlo to sample the posterior
distribution. While this approach provides an accurate estimate of latent variables, it is quite
computationally expensive and is thus limited in the scale of the analyses it can complete.

This work replaces the Monte Carlo sampling of the posterior with variational inference
(VI) to enable accelerated estimation of the posterior distribution while still retaining the
robustness of the hierarchical Bayesian model. We find generally good agreement with true
parameters in simulation-based and with MCMC fits for real supernova. We find slight
biases in the estimation of dust extinction and explore different modifications to the model
that help mitigate this effect. These contributions provide a building block towards scalable
hierarchical inference for faster, more accurate estimates of cosmological parameters.

This thesis provides a description of the VI model and an analysis of its performance
on various real and simulated Type Ia supernova datasets. Chapter 2 provides necessary
background information, including a primer on cosmology, an overview of the role of
computational techniques in astronomy, and an explanation of variational inference (VI) and
how it is implemented in Pyro. Chapter 3 provides a detailed walkthrough of the BayeSN



2 Introduction

generative hierarchical Bayesian model and how the VI model is implemented in practice.
Chapter 4 describes how supernova light curves are simulated, and compares the model
performance on these light curves to the known true parameter values. Chapter 5 describes
the model performance on the Foundation dataset, which consists of 157 real observed
supernova light curves, and compares the results of the VI model to previously determined
MCMC results. Chapter 6 provides a deeper look into potential biases in the inference
of the effects of cosmic dust and explores different modifications to the model and their
effectiveness in mitigating this bias. Finally, Chapter 7 presents overall conclusions as well
as a discussion of potential future work.



Chapter 2

Background

2.1 Primer on astronomical data and cosmology

2.1.1 Magnitudes and distances

The logarithmic scale along which the brightness of an astronomical object are measured is
known as magnitude. The apparent magnitude denotes the brightness of an object as seen
from Earth, while the absolute magnitude represents the brightness that would be measured
if the object was a distance of 10 pc away from Earth. In this way, the apparent magnitude
represents the observed brightness of an object, while the absolute magnitude represents the
intrinsic brightness (Hogg, 2022).

The absolute magnitude M is related to the distance modulus µ and apparent magnitude
m as follows:

µ = m−M (2.1)

where µ can be used to determine the distance d to the object:

µ = 5log10(
d

10pc
) (2.2)

An astronomical object’s Spectral Energy Distribution (SED) denotes the distribution of
its light (or energy) over different wavelengths. Brightness can measured within “bandpass
filters" denoted by single letters (u,b,g,r, etc) that span certain wavelength ranges. Figure 2.1
shows a Type Ia supernova SED and the transmission functions for the g,r, i, and z bands
(which are utilized later in this work). To calculate the magnitude of an object within a given
bandpass filter, the SED must be integrated with the corresponding transmission function in
wavelength space (Hogg, 2022).



4 Background

4000 5000 6000 7000 8000 9000

0.2

0.4

0.6

0.8

1.0

Fl
ux

 (a
rb

itr
ar

y 
un

its
)

1e 8

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut

g
r
i
z

Fig. 2.1 Type Ia supernova SED at t = 0 (blue), determined as an average of many supernovae
via the Hsiao template (Hsiao et al., 2007). The g,r, i, and z transmission functions are
overlaid on top. An object’s magnitude in each filter is determined by integrating the SED
under the transmission function (Hogg, 2022).

The magnitude is related to the observed flux f and flux density F from the object SED
as follows:

m =−2.5log10( f )+Z (2.3)

=−2.5log10

∫
F(λ )B(λ )λdλ (2.4)

where Z = 27.5 by convention and B(λ ) denotes the transmission function for particular
bandpass filter, as seen in Figure 2.1 (for more details see Mandel et al. (2022), Section 2.1).

2.1.2 Redshifts and cosmology

The idea that objects in the universe were actively moving away from us, and were receding
faster the further they were, was first proposed in the 1920s (Lemaître, 1927; Hubble, 1929).
Since then, the redshift z of an object, which denotes its recessional velocity (i.e. how fast
it is moving away from us) has been observed and recorded across virtually all kinds of
astronomical objects (Lemaître, 1927; Hubble, 1929). This movement is quantified with the
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Hubble constant H0 serves as the constant of proportionality between the redshift and the
distance to the object (Hubble, 1929):

cz ≈ H0d (2.5)

The object’s distance modulus µ can be determined from its observed redshift with the
following relation:

µ = 25+5log10

[
c

H0
d̃L(zs;ΩM,ΩΛ,w)

]
Mpc−1 (2.6)

≈ 25+5log10
cz

H0 ×Mpc
(2.7)

where c is the speed of light (3×105km/s) (see e.g. Avelino et al., 2019, eq. 2). Equation
2.7 is a linear approximation of Equation 2.6 at low redshifts (Hogg, 1999). A more detailed
explanation of Equation 2.6 is available in Appendix 2.

2.1.3 Dust

Interstellar dust consists of small grains of silicate materials, around 10−6 −10−10 meters
wide, floating throughout the universe (Draine, 2003). In any astronomical observation, one
must take into account the effects of dust, which can affect the measured brightness of the
object being observed in different wavelengths. The dust that most affects observations is
interstellar dust along the line of sight to the object our own Milky Way galaxy and the
object’s host galaxy (Draine, 2003). The dimming effect of dust is known as “dust extinction".

Dust extinction occurs everywhere, but is usually stronger in wavelength regions closer
to the blue end of the visual spectrum. This effect is also known as “reddening" due to this
differential dimming effect causing spectra to be biased towards red wavelengths.

The extinction coefficient AV denotes the dimming of the observed magnitude in the V
wavelength band, which corresponds to visible light (~551 nm). The ratio

RV =
AV

(AB −AV )
(2.8)

where B is another wavelength band (~445 nm), denotes the overall rate of extinction in
visible wavelengths (Draine, 2003).

We use dust extinction laws to describe the wavelength-dependent dimming effects of
dust (Cardelli et al., 1989). Figure 2.2 shows the dust extinction curves derived from the
Fitzpatrick (1999) law for different values of RV , as well as the different wavelength regions
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for bands g,r, i, and z. Note the different extinction behavior in the different bands- generally,
observations from as many bands as possible are used to constrain the value of RV . The
value of RV corresponds roughly to the slope of the curve, with low values having a much
higher difference in slope between bands (as expected, by maximizing the denominator of
Equation 2.8) and higher values having more consistent slope along all wavelengths. The
cyan line denotes RV = 2.61, a value inferred by Thorp et al. (2021) for the SN Ia sample
used in probabilistic models later in this work.
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Fig. 2.2 The Fitzpatrick (1999) dust extinction law, calculated for values of RV ranging from
1 to 5, with the wavelength band g,r, i, and z regions colored in blue, pink, yellow, and green
respectively. The cyan line indicates RV = 2.61, the best fitting value inferred by Thorp et al.
(2021) on the Foundation dataset, used later in this work.

Note that while we have a good understanding of Milky Way dust (Schlafly & Finkbeiner,
2011; Schlafly et al., 2016; Schlegel et al., 1998), and dust laws in general, we do not have
detailed knowledge of the dust of distant galaxies, thus needing to model the dust extinction
probabilistically.
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2.2 Type Ia supernovae and precision cosmology

When stars reach the end of their lifetimes, they become supernovae and explode, creating
heavy elements and emitting bright light across many wavelengths (Jha et al., 2019). Using
ground- and space-based telescopes, their optical properties (i.e. magnitudes in different
wavelength bands) and spectral properties (i.e. signatures of different elements in their
chemical composition) can be observed. Supernovae are classified according to these
characteristics, with SNe Ia having a unique secondary peak in the infrared and spectral
signatures of calcium, magnesium, silicon, and sulfur (Jha et al., 2019).

Type Ia SNe have the intriguing characteristic that they are “standardizeable candles",
meaning that their absolute magnitudes are uniform. To determine the standardized absolute
magnitudes M, different corrections must be applied to these observed luminosities in each
filter, as well as overall corrections for host galaxy properties (Phillips, 1993; Jha et al.,
2019). Using standardized magnitudes, the distance to a supernova can be determined from
its apparent magnitudes m (as seen in Equations 1.1 and 1.2), with closer objects appearing
brighter and farther objects appearing dimmer.

While the precision of SNe Ia as distance indicators has many important implications,
one of the most prominent is for the expansion of the universe. Riess et al. (1998) and
Perlmutter et al. (1999) used SNe Ia to precisely show that this expansion rate itself evolved
over time and that the universe is expanding outwards at an accelerating rate. Freedman et al.
(2001), was able to estimate the Hubble constant H0, which denotes present-day the rate of
the universe’s expansion.

Since this landmark work, H0 has been estimated hundreds of times using data from many
different astronomical objects, including supernovae, gravitational waves, and the Cosmic
Microwave Background, with special attention being paid to the measurement errors. There
is still a lack of general consensus on a value and uncertainty range for H0, known as the
“Hubble tension" (Knox & Millea, 2020; Freedman, 2021). The SH0ES project uses Type Ia
supernovae to measure H0 = 73.04±1.04 km/s/Mpc, while the Planck Collaboration uses
the Cosmic Microwave Background and finds H0 = 67.4±0.5 (Riess et al., 2022; Planck
Collaboration et al., 2020). This tension is one of the most prominent unsolved problems in
modern cosmology.

Significant work has been done attempting to dissolve this tension. Since much of the
original analysis was done using optical wavelengths, Dhawan et al. (2018) and Burns et al.
(2018) use near-infrared wavelengths to calculate H0. Feeney et al. (2018) uses a hierarchical
Bayesian model to infer H0 using the same data from the Riess et al. (1998) and Perlmutter
et al. (1999). Still, there is no firm consensus on the Hubble constant; thus, improved methods
and continued analysis are necessary.
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2.3 Computational techniques in astronomy

As increasingly elaborate ground and space-based telescopes are developed and deployed, the
amount of astronomical data grows accordingly. Current and future surveys, such as the Vera
C. Rubin Observatory Legacy Survey of Space and Time (LSST) and Nancy Grace Roman
Space Telescope, will observe objects at further distances and higher redshifts than ever
before in hopes of characterizing dark energy, which is thought to be the driving force behind
the expansion of the universe. But, the methods used to analyze astronomical observations
must grow simultaneously with technological advancements, and the need for robust, scalable
modeling will only increase with the amount of data (Breivik et al., 2022; Ivezić et al., 2019;
Rose et al., 2021).

The LSST, which began surveying the sky in 2022, is expected to make over 32 trillion
observations in over 20 billion galaxies and stars, many over time (creating time-series data)
(The LSST Dark Energy Science Collaboration et al., 2018). Breivik et al. (2022) outline the
data analysis requirements for the LSST, including cross-matching new observed sources
with existing catalogued observations, creating selection functions to determine population
statistics, and analysis of time-series data and images. New computational techniques such as
machine learning can help astronomers explore this influx of data, especially when it comes
to analyzing population statistics of astronomical objects (Dvorkin et al., 2022).

There are several examples of applying machine learning and related techniques to
supernova data. Huber et al. (2022) use neural networks and random forests to measure the
time delay of strongly lensed type Ia supernovae. Kim et al. (2013) and Vincenzi et al. (2019)
apply Gaussian processes to observed supernova data over time.

Boone (2021) uses a variational autoencoder to fit Type Ia SNe light curves with training
solely on photometric observations. Their latent representation of each supernova can be
mapped back to physical characteristics, with the distance to each supernova being calculated
as a linear combination of the three latent variables (Boone, 2021). This model, implemented
in PyTorch, was able to replicate the results of more traditional supernova light curve
analyses while significantly reducing the computation time, which demonstrated the potential
of modern machine learning methods for performing scalable inference in this field (Boone,
2021).

In many cases, astronomers use Markov Chain Monte Carlo (MCMC) to sample a
complicated posterior. The Python package emcee in particular has become ubuquitous
among astronomical literature in recent years (Foreman-Mackey et al., 2013). MCMC
provides the advantage that the form of the posterior does not have to be known, and that
the posterior can be well approximated with sampling. However, MCMC can often be
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computationally inefficient and require large amounts of computation time and resources. Its
runtime is also directly correlated with the number of samples it has to produce.

Variational inference (VI) presents an alternate, more computationally efficient way to
approximate a posterior. Regier et al. (2018) find that VI is 1,000 times faster than MCMC for
cataloguing optical images from telescopes. A VI-based method for distinguishing individual
stars in blended images performed as much as 100,000 times faster than a competing method
using MCMC (Liu et al., 2021). In using VI for precision cosmology, Rizzato & Sellentin
(2022) find that it uses only 0.6% of the numerical cost compared with MCMC.

Using VI to increase scalability not only saves time and computational resources, but also
provides a valuable basis for comparison for existing methods. Additionally, using VI allows
for use of more elaborate models that are currently limited by computational time, providing
additional insight into astrophysical systems. For the specific problem of Type Ia supernovae,
VI will allow for faster analysis of more supernovae, and for the use of increasingly complex
population and dust models.

2.4 Overview of variational inference

Variational inference (VI) is a unique machine learning approach that approximates a complex,
often intractable posterior distribution with a simpler “surrogate" posterior. The method
aims to optimize a given form of posterior distribution such that it minimizes the difference
between the surrogate posterior and the true posterior (Jordan et al., 1999).

The similarity between two distributions can be evaluated with the Kullback-Leibler (KL)
divergence, which measures the flow of information between two distributions and is as
follows (Kullback & Leibler, 1951):

DKL(p(x) || q(x)) =
∫

∞

−∞

p(x) log
(

p(x)
q(x)

)
dx (2.9)

In Bayesian inference, for data x and model z, we use the likelihood p(x|z), the prior p(z)
and the marginal likelihood p(x) to determine the posterior distribution p(z|x):

p(z|x) = p(z,x)
p(x)

∝ p(x|z)p(z) (2.10)

The goal of Bayesian inference is usually to sample the posterior distribution of model
parameters conditional on observed data. In some cases, the posterior distribution p(z|x) is
too complicated or intractable for conventional inference methods. VI seeks to minimize
the KL divergence between the surrogate posterior q∗(z) and the original posterior p(z|x)
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(Jordan et al., 1999; Wainwright et al., 2008):

q∗(z) = argmin
q(z)∈Q

DKL(q(z) || p(z|x)) (2.11)

where Q denotes a chosen family of distributions (Blei et al., 2016). By seeking to minimize
the KL divergence, VI turns an inference problem into an optimization problem.

We can rewrite the KL divergence as:

DKL(q(z) || p(z|x)) = E[logq(z)]−E[log p(z|x)] (2.12)

= E[logq(z)]−E[log p(z,x)]+ log(p(x)) (2.13)

= log(p(x))−ELBO(q) (2.14)

where the Evidence-Based Lower Bound (ELBO) is characterized as:

ELBO(q(z)) = E[log p(z,x)]−E[logq(z)] (2.15)

= E[log p(x|z)]−DKL(q(z) || p(z)) (2.16)

The ELBO is equivalent to the KL divergence up to a constant. Instead of minimizing the
KL divergence, which can be difficult to calculate, VI maximizes the ELBO to find the
approximate posterior q∗(z) (Blei et al., 2016; Jordan et al., 1999; Wainwright et al., 2008).
The left term in Equation 2.16 maximizes the likelihood of the data, while the term on
the right minimizes the KL Divergence between the surrogate posterior and the prior on z,
encouraging similarity (Blei et al., 2016).

Kingma & Welling (2014) introduce the method of Stochastic Variational Inference (SVI),
which allows the surrogate posterior to be optimized using batched gradient descent. A naive
Monte Carlo gradient estimator for the ELBO (or any function of the latent variable f (z))
would be:

∇Eq(z)[ f (z)] = Eq(z)
[

f (z)∇q(z) log(q(z))
]
≈ 1

L

L

∑
l=1

f (z)∇q(zl) logq(zl) (2.17)

where zl ∼ q(z), the surrogate posterior. In practice, this estimator has been found to
be highly variable and leads to poor results (Paisley et al., 2012). To circumvent this, a
“reparametrization trick" is used to express the estimator in a different, less variable way.
Instead of sampling a value zi directly from the posterior q(z), a new variable z̃i is created
using the transformation g(ε) with ε drawn from some distribution p(ε) (Kingma & Welling,
2014).
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A classic example of this type of reparametrization is the univariate Normal case, where
q(x) = N(µ,σ2). Then:

z̃i = µ +σεi, for εi ∼ N(0,1) (2.18)

With this reparameterization, new estimators of the ELBO can be constructed:

˜ELBO(q(z)) =

(
1
L

L

∑
l=1

log p(x|z̃l)

)
−DKL(q(z) || p(z)) (2.19)

=
1
L

L

∑
l=1

log p(x, z̃l)− logq(z̃l) (2.20)

where the estimator in Equation 1.16 is used if the KL-Divergence can be evaluated analyti-
cally (Kingma & Welling, 2014). Generally, the gradient is computed using random batches
from the dataset to save time and memory, and parameters are fit using traditional gradient
descent (Kingma & Welling, 2014).

VI has been widely used for many machine learning applications. One of the most
notable is the variational auto-encoder (VAE), which uses variational inference to produce
latent representations of input data (Kingma & Welling, 2014). In this way, the model can
generate any amount of data based on the latent representation. A prominent application
of VI and VAEs is image generation in conjunction with generative adversarial networks
(GANs); Larsen et al. (2016) use a VAE-GAN to generate images of human faces that are
more realistic than images generated just using VAEs or GANs separately by using the
discriminator to train the auto-encoded images. VAEs have also been used to generate novel
function-specific molecular structures (Sanchez-Lengeling & Aspuru-Guzik, 2018), model
thermodynamic diffusion (Ho et al., 2020), and control agents in reinforcement learning
tasks (Hafner et al., 2019).

2.5 Introduction to Pyro

Probabilistic programming languages (PPLs) allow for specialized and concise articulation
of random variables drawn from probability distributions and their relationships to each other
and to observed data. Spiegelhalter et al. (1995) developed Bayesian inference Using Gibbs
Sampling, or BUGS, one of the first widely available PPLs. Today, there are a wide variety
of PPLs, some of which utilize existing programming languages, such as Turing.jl (Ge et al.,
2018), and Tensorflow Probability (Dillon et al., 2017), and some which implement their
own, such as Stan (Stan Development Team, 2018).
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Developed by researchers at UberAI, Pyro is a probabilistic programming language
built on top of PyTorch (Paszke et al., 2019). Pyro supports stochastic variational inference
(SVI) and uses PyTorch’s automatic differentiation infrastructure to quickly and effectively
optimize models. For SVI, a generative model has a secondary structural model, called a
“guide", that serves as the surrogate posterior (Bingham et al., 2018). Pyro has auto-generating
guides, that allow the user to specify the desired form of the approximate posterior, such as a
Gaussian or Delta, distribution, and auto-populate the necessary parameters and arguments
for the guide.

Pyro was chosen for use in this project over other PPLs due to its concise syntax and
strong infrastructure for implementing SVI. Its model structure allows users to easily and
specify conditional independence and express relationship between random variables. It
has built-in methods for maximizing the ELBO using gradient descent and autodiff, and
also for generating probabilistic graphical models (all PGMs in this work were made using
Pyro’s built-in model rendering method). Overall, Pyro’s distinct support for SVI and helpful
methods for development, debugging, and visualization made it the superior choice for this
work.



Chapter 3

Overview of model & VI implementation

3.1 What is BayeSN?

BayeSN is a state-of-the-art hierarchical Bayesian model for the time-dependent spectral
energy distributions (SEDs) of Type Ia supernovae (Mandel et al., 2022; Thorp et al., 2021).
The current BayeSN model builds on years of previous work developing hierarchical Bayesian
models for fitting Type Ia supernova light curves (Mandel et al., 2009, 2011), and can model
the SED in time and wavelength space.

A key aspect of the design is the separation of the supernova’s intrinsic properties (such
as its distance and redshift) and the circumstances of its observation (such as the effects of its
distance). Additionally, it leverages physical knowledge to express well-known properties of
supernovae (such as dust extinction) while also using empirical, data-driven approaches to
model more stochastic characteristics of the observed data (such as residual scatter).

It is known that a small number of characteristics, such as Nickel mass, can explain
most of the intrinsic variance in Type Ia supernovae SEDs (Kasen et al., 2009). But, several
smaller effects, such as metallicity or the explosion shape, cause additional variance in the
brightness profile (Kasen et al., 2009). BayeSN’s unique approach combines a functional
probabilistic principal component analysis with residual dust extinction laws and additional
stochastic residual terms to best model the intrinsic supernova SED (Bishop, 2016).

The observed light curve of a supernova is the result of a combination of several charac-
teristics from both the individual supernova and the general population of supernovae. The
hierarchical Bayesian structure of BayeSN allows for distinction between these individual
and population-level parameters. Each supernova has a distinct shape, distance, and dust
extinction coefficient, while the entire collection of supernovae share the principal compo-
nents that capture common modes of SED variation and population-level distributions of
supernova parameters.
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Figure 3.1 shows a probabilistic graphical model of BayeSN (Mandel et al., 2022). The
population-level parameters are along the outside of the graph, and include the assumed values
of cosmological parameters (ΩM,w, etc), the dust law describing extinction vs. wavelength,
the intrinsic mean W0 and first functional principal component W1, and a dust extinction
population distribution. Parameters inside the plate (s = 1, ...,NSN) are unique to each
supernova and are drawn from the given population-level distributions, These include include
the dust extinction coefficient As

V , the first principal component score θs, the distance to the
supernova µs, and a time-and wavelength-varying residual realization ηs. These parameters
are combined with the observed redshift zs to generate a latent SED, which is then integrated
through passbands to generated a light curve.
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Fig. 3.1 A probabilistic graphical model of the parameters in BayeSN (Mandel et al., 2022).
Arrows denote conditional dependency. Shaded boxes indicate observed parameters

3.2 The BayeSN generative model

The population and individual parameters combine as seen in Figure 3.2 to create the SED
for each supernova (Mandel et al., 2022). The mean intrinsic SED is combined with the
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first principal component, weighted by the θ parameter. The dust extinction law is applied
with the AV parameter as a coefficient, and then a residual surface is fit to describe intrinsic
SED perturbations beyond those captured by the functional principal components. The
SED surface is then combined with the distance, redshift, and observation time points and
integrated in different wavelength regions to create the light curves in different bandpass
filters (Mandel et al., 2009, 2011, 2022).

As illustrated in Figure 3.2, the SED of a single supernova Ss can be written as a linear
combination in log space (Mandel et al., 2022):

−2.5log10[Ss(t,λr)/S0(t,λr)] = M0 +W0(t,λr)+δMs +

[
K

∑
k=1

θ
s
kWk(t,λr)

]
+ εs(t,λr)+As

V ξ (λr;RV )

(3.1)

where S0 is the Hsiao spectral template, which averages many supernovae into one SED
(Hsiao et al., 2007; Hsiao, 2009), M0 = 19.5, Wk is the kth principal component of the SED
with coefficient θk, As

V ξ (λr;RV ) represents the effects of dust, δMs includes uncertainty in
µs, and εs(t,λr) denotes the residual SED function.

Equation 6 from Mandel et al. (2022) shows how the generated flux f in wavelength
band i is calculated from the SED:

fs,i =(1+ zs)10−0.4 µs ×100.4Zs,i ×
∫

λ max
r

λ min
r

Ss(t i
s,λr)

×10−0.4As
MW ξ (λR[1+zs];RMW)×Bs,i(λr[1+ zs])λrdλr

(3.2)

where B denotes the bandpass transmission functions, µs is the distance to the supernova,
Z = 27.5, and zs denotes the supernova redshift.

Using Equations 3.1 and 3.2 and the procedure outlined in Figure 3.2, a light curve is
generated based on the input parameters that can then be optimized.

3.3 Generative model implementation details

Our implementation of the BayeSN model includes four parameters to be fit for each
supernova s: the distance parameter µs, the shape parameter θ s

1, the dust parameter As
V and

the residual parameter νs, which goes into the calculation of the Es matrix.
We initially model the SED as a cubic spline. The integration of the SED is performed

by evaluating the surface at a given set of linearly spaced time and wavelength points, or
“knots". We implement Equations 3.1 and 3.2 using this cubic spline representation of the
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Fig. 3.2 A schematic of the BayeSN forward generative model for the light curve of a single
supernova (Mandel et al., 2022).

functional parameters, and approximate the passband integral (seen in Equation 3.2) using a
Riemann sum.

In this implementation, only the first principal component is used, and the intrinsic SED
from Equation 3.1 is represented as

W = W0 +θ
s
1W1 +Es (3.3)

where each term is a spline representation of a term in Equation 3.1. The matrix W describes
the log of the intrinsic SED Ss(t,λr), and is a grid of spline knots (of shape Nλ ×Nt) in
time-wavelength space. The W0 and W1 matrices used in this implementation represent the
functional principal components, and the Es matrix is a representation of the residual surface
ε(t,λ ). This aims to capture any residual variance that is not represented by the functional
principal components.

The precomputed, parameter independent matrix Jt performs a transformation from the
value of the SED at the time knot locations t to any arbitrary set of time points t∗ (Press et al.,
2007). Jt is of dimension Nt ×Nt∗ and is solely a function of the the existing time knots t
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and desired time points t∗:
SED|t∗ = JT

t SED|t (3.4)

The corresponding matrix Jλ is of shape Nλ ∗ ×Nλ performs a similar transformation in
wavelength:

SED|λ ∗ = Jλ SED|λ (3.5)

Once the matrix of spline knots defining the intrinsic SED W is created, the Jt and Jλ

evaluate it over a densely sampled grid of times and wavelengths:

W∗ = Jλ WJT
t (3.6)

This dense grid is of shape Nλ ∗ ×Nt∗ and will be used to evaluate the passband integrals over
time .

To create the apparent observed SED, we must include the effects of dust. We use the dust
extinction law from Fitzpatrick (1999), implemented in the extinction Python package, to
describe the modification to the intrinsic SED. The observed SED can be calculated as:

S̃ = S0 exp(−γ(W∗+AvΞ)) (3.7)

where S0 is the Hsiao template evaluated at t∗ and λ ∗, γ = log(10)
2.5 , Av is the dust extinction

parameter, and Ξ is a matrix containing the Fitzpatrick (1999) extinction law evaluated at
each wavelength point, tiled to form the shape Nλ ×Nt .

To generate a light curve, we use Equation 3.2 to calculate the flux profile f (evaluated at
times t∗) in each wavelength filter i:

log10(fi) = 0.4(ZPT−µs −M0 −δM)hS̃ (3.8)

where ZPT and M0 are constants, δM is set to zero, h applies the effects of observing through
our Milky Way galaxy and also performs the integration under the transmission function as
described in Equations 2.4 and 3.2, and S̃ is the observed SED calculated in Equation 3.7.

3.4 Description of single-supernova Pyro model

For a single supernova, there are 27 trainable parameters: µ , Av, θ , and 24 elements of the
Es matrix. Es aims to capture any residual variance in the SED and is drawn from a normal
prior N(0,Σ), where Σ is a predetermined residual covariance matrix estimated by Thorp
et al. (2021). This can be reparameterized with a vector ν drawn from a uniform Multivariate
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Normal distribution, which is then multiplied by the Cholesky decomposition of Σ. Each
parameter has a corresponding prior distribution1 :

µ ∼ N(µ̂,100) (3.9)

θ ∼ N(0,1) (3.10)

AV ∼ Exp(1/τ) (3.11)

νi ∼ N(0,1), i = 1, ...,24 (3.12)

where τ = 0.194, a population mean AV that is determined from inference of the population-
level parameters (Mandel et al., 2022; Thorp et al., 2021). µ̂ is a distance estimate ob-
tained independently of the light curve data, calculated from the observed redshift using
the cosmo.distmod() function from the astropy library to evaluate Equation 2.6, using
cosmological parameters from Riess et al. (2016) (Astropy Collaboration et al., 2013, 2018).
The standard deviation of 10 on the distribution of µ (where µ̂ is usually between 34 and 38)
approximates an essentially uninformative prior. The individual values of νi are reshaped
into a matrix of shape (6,4), which is then padded with zeros on the top and bottom to create
the E matrix. We also include a measurement error σ f that relates observed flux to model
flux (calculated using Equation 3.8) via:

fobs ∼ N(f,σ f ) (3.13)

The overall posterior for a single supernova is as follows:

p(µ,θ ,AV ,ν |fobs,Ĥ) = p(fobs|µ,θ ,AV ,ν ,σ f ,Ĥ) p(θ) p(AV |τ) p(µ) p(ν |LΣ) (3.14)

where Ĥ represents the model hyperparameters {RV ,τ,LΣ,W0, and W1}
In our VI implementation, we use a Multivariate Normal surrogate posterior and fit values

of the parameters µ,θ ,ν and AV such that the KL Divergence between the surrogate posterior
and the true posterior in Equation 3.14 is minimized.

Figure 3.3 shows a probabilistic graphical model of the BayeSN model for a single
supernova. The generated flux is conditional on µs, Av, θ , and ν , and is measured in each
wavelength band (g,r, i, and z) and at each observed time point, denoted by the plates labeled
“bands" and “observations".

The Pyro model initially samples values from the prior distribution and generates light
curves with those values, using the process described in Section 3.3. Pyro’s SVI infrastructure

1Here we use the notation N(µ,σ2) for normal distributions, where µ denotes mean and σ2 denotes variance,
and Exp(1/τ) for an exponential distribution with rate parameter τ
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Fig. 3.3 A probabilistic graphical model of the BayeSN-VI model, implemented in Pyro.

allows us to calculate the ELBO conditional on the observed data, and the posterior estimates
of the parameters are updated using a specified optimizer. The model continues updating the
parameter values to minimize the negative ELBO for a given number of iterations.

The Adam optimizer, which exponentially decreases the moments of gradients to adap-
tively fit different parameters, was used for this and all other Pyro models in this work
(Kingma & Ba, 2014). Additionally, gradient clipping provided additional smoothing in this
stochastic optimization.

We found that using a Multivariate Gaussian (with the AutoMultivariateNormal guide
object in Pyro) to approximate the posterior led to the best results because its full-rank
covariance matrix allowed it to model even weak correlations between parameters, which is
key to ensure the that uncertainties in the light curve shape and levels of dust extinction are
correctly propagated to the SED and distance.

The default initialization of parameter values is to the median of the prior distribu-
tions. We initialized using the Laplace approximation of the posterior (see Appendix 1
for a derivation of the Laplace Approximation) as this produced more reliable results than
Pyro’s default initialization (using the prior median with a standard deviation of 0.1 for
all parameters). In this case, we used 3,000 iterations to fit the Laplace Approximation.
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The AutoLaplaceApproximation guide in Pyro calculates the MAP estimate, and uses
the Hessian to calculate a covariance matrix for a Multivariate Gaussian distribution. This
distribution is then fine-tuned using 6,000-10,000 steps with the AutoMultivariateNormal
guide.



Chapter 4

VI model results on simulated type Ia
supernova light curves

4.1 Method to simulate light curves

Once the generative BayeSN model for a single supernova has been implemented in Python,
it can be used to generate any number of simulated supernova light curves with predetermined
input parameter values. Once this simulated population of supernovae is created, we can
examine the accuracy of the VI light curve fitting model by comparing the parameter values
determine by VI to the original values used to as input for the simulated light curve. This
method allows us to assess systematic uncertainties and biases of the VI model as well as
compare the performance of other methods, such as MCMC, against VI and the ground truth
values.

To create a simulated light curve, a synthetic redshift z was generated from U(0.015,0.08),
the range of redshifts targeted by the Foundation Supernova Survey, whose data we will be
analyzing later in this work (Foley et al., 2018; Jones et al., 2019). The true distance µmean

was calculated using the realtion in Equation 2.6 as described above. Synthetic observed time
points were generated using a maximum time of B-band brightness tmax randomly sampled
from a uniform distribution between 57100 and 57800 MJD, and the earliest observation
time sampled from between 5 and 10 days before the maximum time. Time points were
generated every six days after this randomly chosen first observation, and scaled to the rest
frame of the supernova as follows:

t =
T − tmax

1+ z
(4.1)
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where z is the redshift. The “true" value of µs was calculated from this z value, and “true"
values of θ ,Av and ν were randomly sampled from the distributions listed above, with
the exception of θ , which was sampled from U(-1.33, 2.78). Using these time points
and parameter values, synthetic light curves were generated using the process outlined in
Section 3.3.

These generated light curves were used as the “observations" passed into the Pyro model.
None of the “truth" values were used in the Pyro model, which was initialized as usual from
random draws from the prior distributions. Simulated observational errors of 2% were used
for the generated light curves, in line with typical photometric uncertainties in the Foundation
dataset. The model was then trained as usual, calculating the log probability of the parameters
conditioned on the generated “observed" light curves, and optimizing the model parameters
of the approximate model of the posterior accordingly.

Figure 4.1 shows a simulated supernova light curve and its fit using the VI model. The
points in each wavelength band represent the “observed" values, while the lines represent the
fit from the model. To create and visualize a credible interval on the surface, the predictive
posterior was used to generate 100 potential curves, the standard deviation of which is seen
in the shaded areas in Figure 4.1.

Using this scheme, a simulated population of 150 supernovae were generated to analyze
the performance of the VI model.

4.2 Performance on simulated data

4.2.1 Single simulated supernova

Figure 4.2 shows the estimated posterior distributions of the three single-value parameters
(µ,θ , and Av) for a simulated light curve. The simulated supernovae were fit using using VI
initialized from the prior median, VI initialized from the Laplace approximation, and MCMC.
Generally, MCMC results are seen as the gold standard estimate of the posterior distribution
to compare against, but in this simulated case, the real “true" values of the parameters can be
compared with the output distributions of approximate methods.

Overall, the VI, VI + Laplace, and MCMC parameter distributions agree quite well with
the true values, with the mode of the posterior, as estimated by MCMC, agreeing closely with
the true values. Note that the 1σ contours for the VI and VI + Laplace distributions are much
smoother than MCMC because they are modeled as Multivariate Gaussians, while no such
constraint is placed on the MCMC results. This also gives the added benefit that VI returns
an approximate posterior distribution with a tractable form that can be arbitrarily sampled,
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Fig. 4.1 A simulated supernova light curve. Points denote the synthetic “observed" flux values,
while the lines denote the fit generated using VI. Shaded regions denote 1σ uncertainties.

while MCMC returns only a certain specified number of samples. Both VI distributions also
approximate the spread of the MCMC distribution reasonably well, indicating that the Pyro
model is not over- or under-estimating uncertainties on parameters relative to the MCMC
distribution.

4.2.2 Simulated supernova population

To further assess the VI model implemented in Pyro, we simulate a population of 150
supernovae with random “true" parameter values drawn as described previously. Each
simulated supernova was then fit with the Pyro model using VI initialized with the Laplace
Approximation with a Multivariate Gaussian surrogate posterior, which returned a mean and
variance for each parameter. This analysis allowed us to explore systematic biases and the
accuracy of the estimation of the parameter values and their uncertainties.

Figure 4.3 shows a comparison between the “true" values for µ,θ , and AV , and the
values determined from the VI fit, as well as the residuals (fit value - true value) for each
parameter. Generally, good agreement is seen between the true values and those from the



24 VI model results on simulated type Ia supernova light curves

0.5

1.0

1.5

2.0

33
.92

34
.00

34
.08

34
.16

s

0.4

0.5

0.6

0.7

0.8

A v

0.5 1.0 1.5 2.0 0.4 0.5 0.6 0.7 0.8

Av

VI
VI init with Laplace Approx
MCMC
True Values

Fig. 4.2 Corner plot comparing the distributions of µ,θ , and AV fit with VI, VI initialized on
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simulation in green. Distributions of each combination of two parameters are plotted, and
1D histograms of each parameter are shown along the diagonal.

VI across all parameters. There is no obvious bias in µ , and the VI model appears to
fit the distance extremely well, with a maximum residual value of 0.175 and a standard
deviation of 0.05. In θ and AV there appears to be a slight bias as a function of the parameter
value, with the residual decreasing as the value of the parameter increases, which could
lead to subtle biases in estimation of cosmological parameters based on these values. The
dust extinction parameter AV is based on an exponential prior, so Pyro fits the multivariate
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Gaussian surrogate posterior to logAV , since it is constrained to be positive. This distribution
cannot approximate a distribution that peaks at zero, thus systematically overestimating
the value of AV for supernovae with intrinsically low AV . Different true values of AV can
require differently shaped approximate distributions. For AV close to zero, a good posterior
approximation would be asymmetric and peak close to zero while staying positive, while for
a larger value of AV , the posterior approximation would more closely resemble a Gaussian.
In general, approximating AV well is a difficult task, as is discussed in further detail in
Chapter 6.

In addition to comparing the true and mean fit values of the distance parameter µ , we
also assessed the variances returned from the VI fit. 82% of the simulated population had the
true value within 1σ of the fit value, while 97.5% had the true value within 2σ . Since these
values would be expected to be closer to 68% and 95%, this suggests that the VI model may
be slightly underestimating the uncertainties of the fit parameters. That being said, MCMC
is also not guaranteed to accurately estimate parameter uncertainties, and in Figure 4.2 the
width of the MCMC and VI distributions appear to be similar. Overall, these biases could
merit additional analysis and further consideration when using the VI model for precision
cosmology, but the current performance is overall quite promising.
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Fig. 4.3 Comparison of true vs. fit values of µ,θ , and AV for 150 simulated supernovae. Top
row plots true vs. fit values with a line at y = x for comparison, bottom row plots residuals
(fit - true) as a function of the true parameter values.
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Figure 4.4 shows the residuals (fit - true) for µ,θ , and AV for this simulated population
plotted against each other. A negative correlation can be seen between the residuals in µ vs.
AV and µ vs. θ , which suggests a tradeoff between these values in estimating the overall
SED. There is no significant correlation between the residuals in θ vs. AV , which makes
sense because the shape of intrinsic SED and the effects of dust are not directly related, but
both impact the observed flux.
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Fig. 4.4 “Triangle" plot of each combination of µ,θ , and AV residuals (fit - true) for 150
simulated supernovae. These are essentially the lower row of Figure 4.3 plotted against each
other.



Chapter 5

Results on Foundation Dataset &
Comparison with MCMC

5.1 Overview of dataset

The Foundation dataset is a set of 157 Type Ia supernovae with well-sampled light curves
observed with the Pan-STARRS telescope located in Maui, Hawaii (Foley et al., 2018; Jones
et al., 2019). Observations were made in the g,r, i, and z bands, and specifically targeted
supernovae with low redshifts (Foley et al., 2018).

5.2 Methods

Real observed supernova data created two additional complications that were not present in
previously described simulations: irregular sampling and Milky Way dust extinction. The
dataset contained sampling times and sampled fluxes at each time for each wavelength band,
but a supernova could be sampled at different times for each wavelength band, and some
bands could have more observations than others for the same supernova. For each supernova,
we were also given the observed redshift z as well as the CMB redshift zCMB (which are
corrected for peculiar velocity) and Milky Way reddening E(B−V )MW.

The same single-supernova Pyro model described in Section 3.4 was used to fit each
supernova’s light curve individually, with ν ,θ ,µ , and AV being fit parameters. µ̂ was
calculated using the CMB redshift function as previously described. Each supernova was fit
for 3000 steps to fit the Laplace Approximation and, was fit for a further 6000 steps using a
Multivariate Normal guide. As before, a Multivariate Normal surrogate posterior yields a
mean and variance for each fitted parameter.
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Each supernova was fitted in less than a minute, approximately one tenth of the time
used to fit the same supernova using MCMC. However, runtimes using MCMC vary widely
depending on the number of chains used and the desired number of samples, and could be
significantly longer.

5.3 Comparison of results to expected Hubble relation

Figure 5.1 shows a “Hubble diagram" of the fit distance modulus µ vs. observed redshift
z for the Foundation dataset. The black line denotes the expected Hubble relation using
an assumed H0 = 73.24 and Ω0 = 0.28, with these values derived from Riess et al. (2016).
The fit distance values agree well with the black Hubble relation line, indicating a good fit
from the VI model. The root mean squared error (RMSE) for these fit distance values was
calculated to be 0.123, consistent with the value from Thorp et al. (2021) for the same dataset
using HMC in Stan.
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Fig. 5.1 “Hubble diagram" of distance modulus µ vs. redshift z for 157 supernovae the
Foundation dataset. Black line in indicates expected Hubble relation with H0 = 73.24 and
Ω0 = 0.28 (Riess et al., 2016). Error bars indicate 1σ for each supernova. The RMSE for
this dataset is 0.12.
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Figure 5.2 shows the “Hubble residuals" for the Foundation dataset, essentially the differ-
ence between the points and the black Hubble relation line in Figure 5.1. The dotted lines
represent the peculiar velocity error “envelope", which comes from an assumed uncertainty
on the peculiar velocity correction of 150 km/s. At lower redshifts, this is a larger fractional
uncertainty, leading to the shrinking effect over redshift. The Hubble residuals show a slight
negative bias, likely due to bias in AV that is explored further in the residual plot for the µ

and AV parameter (Figures 5.4 and 5.3).
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Fig. 5.2 “Hubble residuals" (difference between fitted µ values and expected Hubble relation
shown in Figure 5.1) for 157 supernovae in Foundation dataset. Black horizontal line at
zero is for reference, while dotted black curves represent the peculiar velocity uncertainty
envelope. Error bars represent 1σ .

5.4 Residuals analysis

In Section 4, we evaluated the performance of the VI model on simulated supernova light
curves by comparing the posterior means for each fit parameter to the “true" values used in the
simulations. Here, we used VI to fit the light curves of real supernovae from the Foundation
dataset, and thus do not have ground truth values to compare our variational posterior to.
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However, Thorp et al. (2021) fit the Foundation dataset using MCMC in Stan, and we can
use these results (which are the current “gold standard") as a basis for comparison.

Figures 5.3, 5.4, and 5.5 show the residuals for AV ,µ , and θ , respectively, for the
Foundation dataset. Residuals were calculated as VI - MCMC and are shown as a function
of the MCMC parameter value.

Figure 5.3 shows a tendency to overestimate AV for lower values, similar to what was
seen in Figure 4.3 for the simulated supernova population. This is likely for the same reason
previously described, that approximating an exponential distribution with a log-Normal
overestimates low values of AV . But, unlike in the simulation-based results, there is a more
significant underestimation of AV relative to MCMC for higher AV values. This could be due
to biases in the VI model, or indication that the MCMC fit may be overestimating certain
value of AV .
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Fig. 5.3 Residual plot of MCMC AV value vs. AV residual (VI - MCMC) for 157 supernovae
in the Foundation dataset. A solid horizontal line at zero is provided for reference, and the
dashed horizontal line denotes the median residual value for the dataset.

There is also a slight negative bias in µ . Figure 5.4 shows the residuals in µ as a function
of the MCMC values of µ , but colored by the values of AV for each supernova. A clear trend
is visible; higher values of AV are overestimated by the VI model while lower values of AV

are underestimated.
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This trend could be caused by certain selection effects. Supernovae with higher values
of µ are less likely to be observed with high values of AV , a trend which is reflected in
the Foundation dataset. This is expected, because higher µ means that an object is farther
away, which means that it is less likely to be observed if it has high levels of dust extinction
(AV ) dimming its brightness. The resulting effect on the data is that the VI model will
underestimate µ for a given value of AV , leading to the trend seen in Figure 5.4.
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Fig. 5.4 Residual plot of MCMC µ value vs. µ residual (VI - MCMC) for 157 supernovae
in the Foundation dataset. Points are colored by the corresponding value of AV . A solid
horizontal line at zero is provided for reference, and the dashed horizontal line denotes the
median residual value for the dataset.

Figure 5.6 explores the correlations between the residuals in µ,θ , and AV . Many of the
same relationships seen in the simulated dataset (Figure 4.4) are reflected in the real data,
such as negative correlations between the residuals in θ vs. µ and AV vs. µ . The correlation
between AV vs. µ is the strongest, which can be explained by the trends in the color in
Figure 5.4 and the previously discussed potential selection effects. Supernovae with higher
µ residuals tend to have higher values of AV , and AV is shown to be negatively biased (see
Figure 5.3). Thus, there would be a negative correlation between the µ and AV residuals, as
seen in Figure 4.4.
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Fig. 5.5 Residual plot of MCMC θ value vs. θ residual (VI - MCMC) for 157 supernovae
in the Foundation dataset. A solid horizontal line at zero is provided for reference, and the
dashed horizontal line denotes the median residual value for the dataset.
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Fig. 5.6 “Triangle" plot of each combination of µ,θ , and AV residuals (VI - MCMC) for
Type Ia SNe in the Foundation dataset. This is essentially Figures 5.3, 5.4, and 5.5 plotted
against each other.



Chapter 6

Investigating & mitigating bias in dust
extinction

6.1 Motivation

In Chapters 4 and 5, we fitted the light curves of simulated and real Type Ia supernova
datasets using a VI model implemented in Pyro. We then compared the results from the
VI fit to the input parameters for the simulated population, and to the MCMC fit for the
Foundation dataset. In both cases, we calculated and analyzed the residuals (fit − true) of
µ,θ , and AV . Here, we found a trend of AV residual being systematically overestimated for
values of AV close to zero (see Figures 4.3 and 5.3). While it is true that the posterior mean
will overestimate the true value of AV at these values (since AV is constrained to be positive),
it seemed that our current method was not modeling the posterior distribution of AV as well
as it could be. As such, we investigate alternate ways to model AV that may address this bias.
We specifically aim to improve performance as AV → 0, while maintaining the physically
informed exponential prior for the rest of the dataset with larger values of AV .

6.2 Softplus transformation

6.2.1 Theoretical overview

To model a constrained variable, Pyro models an unconstrained variable and applies a
constraining transformation to the unconstrained variable’s posterior distribution. Previously,
we have drawn AV from an exponential prior distribution:

AV ∼ Exp(1/τ) (6.1)
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where τ is a population level parameter which Thorp et al. (2021) determined to be 0.194.
Pyro models the posterior as a log-normal distribution, where

log(AV )|fobs ∼ N(µ,σ2) (6.2)

for some mean µ and variance σ2. As discussed in previous chapters, a log-normal variational
distribution cannot model a distribution that peaks at or near zero, and thus leads to the
VI model overestimating AV for supernovae with intrinsic AV close to zero. For these low
AV values, a variational distribution more like a truncated Gaussian would provide a better
posterior approximation.

There are various transformations and parameterizations that could be applied to circum-
vent this log-normal modeling. A common solution in machine learning is using the Recified
Linear Unit (ReLU) function to transform an unbounded input into a positive output (Agarap,
2018). The softplus function is a differentiable version of ReLU that performs the following
transformation:

Softplus(x) = log(1+ exp(kx))/k (6.3)

where k is a sharpness parameter. By defining a new variable x such that AV = Softplus(x),
we can enforce a positive constraint on AV while also having a distribution that peaks at
zero. This more sophisticated transformation maps a Gaussian-distributed unconstrained
variable to a distribution closely resembling a truncated Gaussian, in theory allowing for
more accurate fitting of low AV values.

Using this transformation, the prior distribution on x is:

P(x) =
1
τ

exp
(
−AV (x)

τ

)
× 1

1+ exp(−kx)
(6.4)

=
1

τ(1+ exp(−kx))
exp
(
− log(exp(kx)+1)

kτ

)
(6.5)

which can be seen in Figure 6.1. When transformed via a softplus function, this leads to
an exponential prior on AV .

6.2.2 Implementation

The single-supernova Pyro model discussed in Chapters 4 and 5 was modified to sample a
new parameter x from the prior distribution outlined in Equation 6.5 with a value of k = 25.
To sample from this prior, a custom distribution object was created in Pyro by extending the
PyTorch TorchDistribution base class and overriding the sampling and log probability
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Fig. 6.1 PDF of transformed parameter x, where AV = Softplus(x)

methods. This custom distribution could then be incorporated into the Pyro model in the
place of sampling AV from an exponential prior, and the model was fit as usual.

After sampling a value of x, the value of AV is determined from x using the softplus
function, and then the BayeSN model generates a light cure using this value of AV and other
fit parameters as usual. Instead of returning a posterior distribution in AV , the model will
return a Gaussian posterior of x, from which samples can be transformed to AV using the
softplus function. A point estimate of AV was determined by taking 1,000 samples of x from
the posterior distribution, applying the softplus transformation, and then taking the mean
value of AV from these transformed samples.

To evaluate the effect of this new transformation, light curves for a supernova with a low
value of AV = 0.022 were generated. This light curve was fitted with three methods; MCMC
with an exponential prior, the original VI model with the log transform, and VI with the
softplus transform.

Figure 6.2 shows the resulting posterior distributions of AV using each of the three
methods, compared with the true values from the simulation. The original VI model with the
log transformation has virtually no probability density less than the true value of AV , while



37 Investigating & mitigating bias in dust extinction

using the softplus transformation leads to an approximate posterior distribution much more
similar to that generated with MCMC.
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Fig. 6.2 Histogram of 1,000 AV samples for a simulated supernova fitted with MCMC with
an exponential prior, VI with a log transformation, and VI with a softplus transformation.
The simulated supernova had a true value of AV = 0.022, denoted with the dashed black line.
Dashed colored lines refer to the mean value from each corresponding distribution.

To further assess the effect of the softplus tranform, we simulate 100 supernovae and fit
them with a modified VI model incorporating this transform. Figure 6.3 shows a comparison
between the “true" value of x and the mean value of x determined from the VI model using
the softplus transformation. While the values seem to largely agree, there is a noticeable
trend of the fit values being slightly larger than the true values of x, and there are three
noticeable points with larger deviations from the true values.

This effect is then propagated to the estimates of AV , which can be seen in the rightmost
column of Figure 6.4. Many of the same biases in AV as well as the negative bias in θ are seen
in Figure 4.3 are reflected in these results, suggesting that, given the way we are currently
calculating point estimates, the softplus transform may not provide the best mitigation for
AV bias.
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Fig. 6.3 Fit vs. true values of x, which is transformed via the softplus function to AV for 100
simulated supernovae. Orange line denotes y = x for comparison.

While comparing the model fit to the true value from simulations is a valuable analysis, in
reality we can only hope to match the estimates from MCMC for real supernovae. Figures 6.5
and 6.6 compare the AV determined from the VI with the softplus transformation to the AV

estimates determined via MCMC for the Foundation dataset. There is a slight negative bias
among the entire dataset; however, low values of AV seem to be more equally over- and
underestimated, suggesting general improvement in biases associated with the exponential
prior on AV .

6.3 Asymmetric Laplace Distribution

6.3.1 Theoretical overview

The Laplace distribution is known as the "double exponential" distribution, essentially putting
two exponential functions back-to-back along the vertical axis. Its PDF takes the form:

p(AV ) =
1

2τ
exp(−|AV |/τ) (6.6)
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Fig. 6.4 Comparison of true vs. fit values of µ,θ , and AV for 100 simulated supernovae using
VI with a softplus transformation on AV . Top row plots true vs. fit values with a line at y = x
for comparison, bottom row plots residuals (fit - true) as a function of the true parameter
values.
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Fig. 6.5 Comparison of MCMC AV and AV
determined from the VI Softplus model for
the Foundation dataset (Foley et al., 2018).
y = x is plotted for comparison.

0.0 0.2 0.4 0.6 0.8 1.0
MCMC AV

0.2

0.1

0.0

0.1

0.2

A V
 re

sid
ua

l (
VI

 S
of

tp
lu

s -
 M

CM
C)

Fig. 6.6 AV Residuals (VI Softplus - MCMC)
vs MCMC AV for the VI Softplus model on
the Foundataion dataset. Dotted line denotes
the median residual value.

where τ is the exponential scale parameter.
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An asymmetric Laplace distribution simply puts two different exponential distributions
back-to-back, each with its own scale parameter as described above. Thus, the PDF becomes:

p(AV ) =
1

τ ′(κ +1/κ)

−exp(AV/κτ ′) AV < 0

exp(κAV/τ ′) AV > 0
(6.7)

where the new scale τ ′ is the geometric mean of the left and right scales and the asym-
metry parameter κ denotes the square of the ratio of the two scales. The two exponential
distributions meet exactly at zero to ensure that the distribution is continuous.

As previously mentioned, the tendency to overestimate of AV values close to zero comes
from approximating the posterior with a Gaussian distribution and taking the mean as a point
estimate. Here, we use the asymmetric Laplace distribution to create a “tail" that includes
some probability at x < 0 in to circumvent the transform usually required to maintain AV > 0.
By doing this, and having AV defined over both positive and negative values, we avoid doing
a transform to impose a positive constraint as we have in the past. Note that the true values
of AV are always positive; the inclusion of the additional distribution on the negative side is
inherently unphysical, but serves to reduce bias in estimates for small true AV values.

Figure 6.7 shows the PDF for an exponential distribution with scale τ = 0.194 (as in
Thorp et al. (2021)) and for an asymmetric Laplace distribution with a mean scale value
of τ/4 = 0.0485 and an asymmetry parameter of 1/4. The values of the parameters in the
asymmetric Laplace distribution were chosen to replicate the exponential PDF closely for
x > 0, while including a small amount of probability for x < 0. As seen in Figure 6.7, the
asymmetric Laplace distribution does not go directly to zero at x = 0 like the exponential
distribution, but instead has a much steeper negative exponential distribution that provides
slightly a more gradual decline of the PDF.

6.3.2 Implementation

The existing Pyro model to fit a single supernova with VI discussed in Chapters 4 and 5 was
modified to sample AV from an Asymmetric Laplace prior with τ ′ = τ/4 and κ = 1/4 instead
of the previously used exponential prior.

As in the previous section, a low-AV supernova was generated to investigate the effect of
the asymmetric Laplace prior compared to previous models. Figure 6.8 shows the posterior
AV distributions for the same simulated supernova as described in Section 6.2.2 fit with
the original VI model (with an exponential prior), the new VI model (with an asymmetric
Laplace prior), and with MCMC with the Exponential prior for comparison. While all three
approaches overestimate the value of AV in their point estimates (denoted by colored dashed
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Fig. 6.7 PDF of Exponential distribution with scale τ = 0.194 (as in Thorp et al. (2021)) and
Asymmetric Laplace distribution with mean scale τ/4 = 0.0485 and asymmetric parameter
(ratio of left to right sales) of 1/4.

lines), the model using the asymmetric Laplace prior provides the desired truncated Gaussian
shape when AV > 0 while the model with the exponential prior has virtually no probability
density lower than the true AV value. This suggests that the inclusion of probability when
AV < 0 could produce more accurate estimates of for low true values of AV , at the cost of the
distribution having an unphysical “tail".

To further assess the effect of the asymmetric Laplace prior on AV , a simulated popu-
lation of 100 supernovae was created using the same procedure as described in Chapter 4.
This simulated sample was then fitted one at a time using the modified VI model with an
asymmetric Laplace prior, as described above. The resulting fits for these simulations can
be seen in Figure 6.9, and generally show a slightly improved bias in AV , with a relatively
equal distribution of positive and negative residuals. The sloping effect in the negative
residuals comes from the fact that AV is constrained to be positive and thus is less likely to
be underestimated for true values closer to zero. The distributions of θ and µ seem to be
mainly unaffected compared to Figure 4.3, suggesting that use of the asymmetric Laplace



42 Investigating & mitigating bias in dust extinction

0.1 0.0 0.1 0.2 0.3 0.4
AV

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y
True value
VI Exp
MCMC
VI AsymLaplace

Fig. 6.8 Histogram of 1,000 AV samples for a simulated supernova fitted with MCMC with
an exponential prior, VI with an exponential prior, and VI with an asymmetric Laplace prior.
The simulated supernova had a true value of AV = 0.022, denoted with the dashed black line.
Dashed colored lines refer to the mean value from each corresponding distribution.

distribution to model AV could improve overall model performance. To impose the physical
constraint that AV > 0 after inference, a rejection sampling approach could be used to only
take the positive samples from the resulting approximate posterior.

As before, we also compare the Asymmetric Laplace VI model with the MCMC fit for
the Foundation dataset. Figures 6.10 and 6.11 show comparisons and residuals for the AV

estimates for MCMC with an exponential prior and VI with an Asymmetric Laplace prior.
There is a more significant negative bias than in Figure 6.6, suggesting that the addition of
probability when AV < 0 could be causing the point estimates to be lower than they would
be otherwise.
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Fig. 6.9 Comparison of true vs. fit values of µ,θ , and AV for 100 simulated supernovae
using VI with an asymmetric Laplace prior on AV . Top row plots true vs. fit values with a
line at y = x for comparison, bottom row plots residuals (fit - true) as a function of the true
parameter values.

0.0 0.2 0.4 0.6 0.8 1.0
MCMC AV

0.0

0.2

0.4

0.6

0.8

1.0

VI
 A

sy
m

La
pl

ac
e 

A V

Fig. 6.10 Comparison of MCMC AV and
AV determined from the VI Asymmetric
Laplace model for the Foundation dataset
(Foley et al., 2018). y = x is plotted for com-
parison.
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Chapter 7

Conclusion

In this work, we develop a VI model to fit probabilistic spectrotemporal models to Type
Ia supernova time-series data and determining posterior distributions over the distance
parameter µ , the shape parameter θ , and the dust extinction parameter AV . We implement
the BayeSN model outlined in Mandel et al. (2022) and Thorp et al. (2021) to create
a probabilistic generative model of the light curves. Using Pyro’s Stochastic Variational
Inference functionality, we find the approximate posterior of the model parameters conditional
on the observed data. We apply and validate our VI implementation on both simulated and
real Type Ia supernova datasets, and explore in detail the trends and biases of the model
results compared to ground truth values and MCMC sampled posteriors.

We use the VI model to fit the Foundation dataset consisting of 157 low-redshift su-
pernovae (Foley et al., 2018; Jones et al., 2019). Fitting this dataset alone showed that the
VI model had generally good agreement with MCMC results across all parameters, with a
Hubble diagram scatter identical to that of previous MCMC analyses (Thorp et al., 2021).
This indicates that VI is a promising approach for fitting supernova light curves and can be
used for precision cosmology. Future surveys, such as the Young Supernova Experiment,
will collect even more data of the same telescope and observing strategy as the Foundation
dataset, with hopes of advancing understanding of dark energy and estimating its associated
quantities (Jones et al., 2021). Thus, the model’s performance on the Foundation dataset is
promising for its future application to novel datasets for precise estimates of cosmological
quantities.

In analyses on both simulated data (Chapter 4) and real supernova data (Chapter 5), the
model generally fit the data well, with a multivariate Gaussian surrogate posterior providing
a reasonable approximation of the true posterior. In both cases, there is a slight tendency
to overestimate low AV values that likely propagates to biases in the other fit parameters,
including the distance µ . Much of the bias is likely caused by approximating the posterior of
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a positive variable as a Gaussian and then using the posterior mean as the point estimate. To
constrain AV to be positive, a log transform is applied to an unconstrained variable, leading
to overestimation in cases where the true value of AV is close to zero. In the observed data,
selection effects propagate this bias from AV to µ , as supernovae that are farther away are
less likely to be detected if they also have high levels of dust extinction.

In Chapter 6 we discuss in detail potential modifications to the VI model that could
mitigate this bias in the AV parameter. We explore the trade-off between using a physically
informed prior and one that incorporates non-physical probability in hopes of reducing
bias. We first use an inverse-softplus transform to reparameterize AV in terms of a normally-
distributed variable, which yields a slightly improved bias but did not show a significant
improvement in accuracy on either simulated on real datasets. We then replace the exponential
prior on AV with an Asymmetric Laplace prior that introduces some probability with AV < 0.
This new prior decreased overestimation at low AV , but also included a negative bias when
tested on the Foundation dataset. Overall, more analysis should be done on the source of this
AV bias and what would improve the performance of the VI model.

There are several interesting avenues for future work. In simulation-based analysis,
we compare the VI fit results to the true value used in the simulation initialization, while
in analyzing real supernova datasets, we compare to MCMC chains from Thorp et al.
(2021). These analyses could likely be strengthened by generating MCMC fits for simulated
supernovae and comparing the MCMC posterior samples to the true values to understand the
biases and limitations of MCMC. These additional calibration tests would allow for a more
robust understanding of the performance of the VI models across different datasets.

Generally, in this work, we have compared point estimates of the fit parameters between
different models, taking the mean of each distribution. In reality, these estimators may be
biased, and it would be better to compare the entire VI posterior distribution against the
MCMC distribution for each parameter. This could be done by calculating the KL Divergence
between the VI posterior and MCMC distributions to evaluate the similarity between the two
distributions. Since MCMC just returns a number of samples, this would require using a
Kernel Density Estimator to extrapolate a continuous PDF over the samples. This comparison
of the entire distributions could yield even better insights about the performance of the VI
model.

In Chapters 4 and 5, we outline work done on both simulated and real datasets of Type Ia
supernovae using a VI model to fit individual supernova-level parameters, using previously
trained values of hyperparameters such as RV and τA. In reality, these population-level
parameters also need to be optimized by fitting the joint distribution over all population- and
individual-level parameters.
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Figure 7.1 shows a probabilistic graphical model of the hierarchical model to infer the
population-level parameters. Instead of assuming a single RV value for all supernovae,
individual values of RV are drawn from a distribution with a population-level mean and
standard deviation. Additionally, we are fitting the population value for τ , the scale of the
exponential distribution of AV , where we have previously just assumed the value from Thorp
et al. (2021).

Fig. 7.1 PGM of the population-level VI model for BayeSN

This hyperparameter training would be a significant step forward from the single-
supernova model used in this work; to fit the entire Foundation dataset would require
training of 4,399 parameters. Yet, it can likely be achieved using the same building blocks
that the smaller model is made of, utilizing Pyro’s model building and VI functionality.
Larger-scale problems like this are where VI could demonstrate an even more significant
improvement in runtime compared to conventional approaches.

Following the work of Boone (2021), parts of the generative model from Thorp et al.
(2021) used in this work could be replaced with a variational autoencoder. Instead of using
the pre-determined hierarchical Bayesian model to express a supernova light curves in terms
of a few latent latent variables, a decoder neural network could be used to determine the best
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latent representation for a light curve. This latent representation would likely would a have
physical interpretation, although it may require reparameterization to be expressed in terms
of commonly known physical parameters (see Boone (2021), Section 4). An encoder network
could then be used to reconstruct a fitted light curve based on its latent representation. While
the hyperparameters of the VAE would need to be optimized much like those in our VI
model, choosing an appropriate network architecture would be an additional challenge in
this approach.

Overall, this work demonstrates the potential for VI to improve model efficiency and
performance for fitting type Ia supernova light curves. In the future, it can continue to be
optimized and applied to other open questions in precision cosmology.
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Appendix A

Derivation of Laplace Approximation

The Laplace Approximation approximates a likelihood function as Gaussian centered around
the maximum likelihood estimate. For some log-likelihood function ℓ, with parameters θ ,
we can perform a second-order Taylor expansion about the MLE estimate θ̂ :

ℓ(θ)≈ ℓ(θ̂)+
∂ℓ

∂θ

∣∣∣∣
θ=θ̂

(θ − θ̂)+
1
2

∂ 2ℓ

∂θ 2

∣∣∣∣
θ=θ̂

(θ − θ̂)2 + ... (A.1)

By the definition of MLE, we know that

∂ℓ

∂θ

∣∣∣∣
θ=θ̂

= 0 (A.2)

Thus, the Laplace Approximation of the log-likelihood function is:

ℓ(θ)≈ ℓ(θ̂)+
1
2

∂ 2ℓ

∂θ 2

∣∣∣∣
θ=θ̂

(θ − θ̂)2 (A.3)

The likelihood function is thus transformed to a Gaussian distribution as follows:

L (θ)≈ L (θ̂)exp
(

1
2
(θ − θ̂)2

(
∂ 2ℓ

∂θ 2

))
≈ N(θ̂ , σ̂2) (A.4)

which can be expressed with the MLE as mean and an arbitrary variance that can be solved
for (Gelman et al., 2014).



Appendix B

Distance modulus relation

The total makeup of the universe can be expressed as a sum of different densities:

ΩM +ΩΛ +Ωk = 1 (B.1)

Where ΩM is the density of matter, ΩΛ is the density of dark energy, and Ωk is the
curvature of the universe. The sign of Ωk in particular has important implications for the
shape and concavity of the universe, and how other cosmological quantities interact with
each other (Hogg, 1999).

The dimensionless comoving distance denotes the distance to an astronomical object
relative to the expansion of the universe. It is determined from the object’s redshift z as
follows:

d̃(z; ,ΩM,ΩΛ,w) =
∫ z

0

dz′√
ΩM(1+ z′)3 +Ωk(1+ z′)2 +ΩΛ(1+ z′)3(w+1)

(B.2)

where w is the dark energy equation-of-state parameter (Hogg, 1999).
The luminosity distance dL denotes the distance to an object based on its measured

luminosity, or brightness. It is derived from the comoving distance as follows:

d̃L(zs;ΩM,ΩΛ,w) =


|Ωk|−

1
2 sinh

[√
|Ωk|d̃(z; ,ΩM,ΩΛ,w)

]
Ωk < 0

d̃(z; ,ΩM,ΩΛ,w) Ωk = 0

|Ωk|−
1
2 sin

[√
|Ωk|d̃(z; ,ΩM,ΩΛ,w)

]
Ωk > 0

(B.3)

The distance modulus µ can then be obtained using Equation 2.6 as described previously:

µ = 25+5log10

[
c

H0
d̃L(zs;ΩM,ΩΛ,w)

]
Mpc−1 (B.4)



Appendix C

Code

All original code written for this project is available in the following GitHub repository:

https://github.com/asmuzsoy/variational_bayesn

Note that the file spline_hsiao_fns.py contains functions written by Stephen Thorp.

https://github.com/asmuzsoy/variational_bayesn
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