
Stochastic Memory for Sequence Models

Making Good Compressors Use Less Memory

David Michael Goldfarb

Supervisor: Dr. Christian Steinruecken

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Gonville and Caius College August 2022

To Eric and Gwen for their love and encouragement,
Adam and Rhianna for their hospitality and support,

and Gandalph “Randy” Goldfarb for his warmth and affection.

Declaration

I, David Michael Goldfarb of Gonville and Caius College, being a candidate
for the degree of Master of Philosophy in Machine Learning and Machine
Intelligence, hereby declare that this report and the work described in it are
my own work, unaided except as may be specified below, and that the report
does not contain material that has already been used to any substantial
extent for a comparable purpose.

This report makes use of the following software to aid in the production
of results:

1. A reference implementation of Arithmetic Coding in Java.

Availability: https://github.com/q4/ppm-dp/blob/master/java/Arith.java

Purpose: This implementation was ported from Java to C++.

2. A reference implementation of CTW in Java.

Availability: https://github.com/omerktz/VMMPredictor

Purpose: This implementation was used as a means of providing black-
box confirmation of correctness of a novel CTW implementation in
C++.

3. A reference implementation of PPM-DP in Java.

Availability: https://github.com/q4/ppm-dp

Purpose: This implementation was used as a means of providing black-
box confirmation of correctness of a novel PPM-DP implementation in
C++.

Excluding the aforementioned software used in the production of results,
all software used in this thesis was developed from scratch in both C++ and
Python.

This thesis contains 14,761 words including footnotes, figure captions, and
appendices: fewer than the 15,000 word limit prescribed by Degree Commit-
tee for the Faculty of Engineering.

David Michael Goldfarb
August 2022

Abstract

State of the art lossless compression techniques typically use memory in-
tensive data structures which grow on the order of O(N) in the input size.
Memory is an expensive resource, and many computing environments can-
not afford O(N) memory scaling for typical workloads. There are several
techniques that attempt to impose O(1) space restrictions on existing loss-
less compression techniques, which are similar in that they delete portions of
their backing data structures. A novel approach presented in this thesis is to
not delete the data structure, but instead allow contamination of statistics
where each occurrence counter tracks an arbitrary number of entities.

The behaviour of a contaminating compressor is explored sparsely in con-
temporary literature. This thesis serves to document the characteristics of an
implementation of a contaminating scheme when applied to several existing
suffix tree-based compressors.

Summary of Contents

This thesis begins with chapter 1, an introduction of lossless compression
suitable for a reader with a baseline knowledge of probability theory, with
emphasis on the composition of coding and sequence modelling.

Then chapter 2 explores several existing compression methods: Context
Tree Weighting (CTW), Deplump, and Prediction by Partial Matching with
Dynamic Parameter Updates (PPM-DP) as well as their corresponding se-
quence models.

After which, chapter 3 presents an analysis of application of contamina-
tion on these existing methods with an emphasis on memory vs. compression
effectiveness trade-offs.

Lastly, chapter 4 concludes this thesis with a discussion of areas of further
investigation of contaminating compressors.

Contents

List of Figures 3

Nomenclature 4

1 Introduction 5
1.1 Lossless Compression . 5
1.2 Probability Foundations and Context 7

1.2.1 How much can we compress? 7
1.2.2 Entropy and surprise 9

1.3 Coding . 11
1.3.1 Huffman Codes . 11
1.3.2 Arithmetic Coding . 12

1.4 Sequence Modelling and Compression 17
1.4.1 Histograms: properties and design 18

2 Existing Sequence Modelling Methods 23
2.1 Suffix Trees . 23

2.1.1 A formal description and demonstration 23
2.1.2 Compacted suffix trees 25

2.2 Context Tree Weighting . 26
2.2.1 CTW’s sequence model 26
2.2.2 Inference and learning in CTW 27

2.3 Deplump . 28
2.3.1 SM: Deplump’s sequence model 28
2.3.2 Inference and learning in Deplump 32

2.4 PPM-DP . 32
2.4.1 Classical PPM approaches 33
2.4.2 PPM-DP’s sequence model 33
2.4.3 Inference and learning in PPM-DP 34

1

CONTENTS

3 A Contaminating Compressor 35
3.1 Hash Tables . 35
3.2 Existing Work . 36

3.2.1 Constant-Size compressors 36
3.2.2 Hashing compressors 37

3.3 Random Hashing . 38
3.4 Comparison with Amnesia . 41
3.5 Maintaining Pure Histograms 44
3.6 The Influence of Full Updates 46
3.7 Concrete Trade-offs in Compression Effectiveness 46
3.8 Implementation Notes . 49

3.8.1 Implementation of Amnesia 49
3.8.2 Implementation notes for suffix tree compressors 50

4 Conclusion 53
4.1 Future Work . 54

A Computational Details 56
A.1 Efficiently Rescaling Narrow-Width Integers 56
A.2 Incremental Computation in CTW 56
A.3 boost::hash combine and the Choice of a Non-Cryptographic

Hash Function . 57

B Compression Results on Full Corpora 60

Bibliography 66

2

List of Figures

2.1 Dense suffix tree of a partial message 24
2.2 Incremental suffix tree construction of a partial message 25

3.1 contaminating compression effectiveness over selected Calgary
files . 39

3.2 contaminating compression effectiveness over selected Canter-
bury files. 42

3.3 Comparison of Amnesia and contaminating compression effec-
tiveness over selected Calgary files 43

3.4 Compression effectiveness of pure, low-order context histograms
variant over selected Calgary files 45

3.5 Compression effectiveness of various updating schemes over
selected Calgary files . 47

3.6 Relative Compression Proportion Against Memory Usage over
Shakespeare’s corpus . 48

3.7 Absolute Compression Proportion Against Memory Usage over
Shakespeare’s corpus . 49

A.1 Compression effectiveness of various hashing schemes over the
Calgary corpus . 59

B.1 contaminating compression effectiveness over the Calgary corpus 61
B.2 contaminating compression effectiveness over the Canterbury

Corpus . 62
B.3 Comparison of Amnesia and contaminating compression effec-

tiveness over the Calgary Corpus 63
B.4 Compression effectiveness of pure, low-order context histograms

variant over the Calgary corpus 64
B.5 Compression effectiveness of various updating schemes over

the Calgary corpus . 65

3

Nomenclature

A An alphabet, or a collection of symbols

P̃(x) The Exclusive Cumulative Distribution: P(X < x). The probability
a random variable taking any value strictly less than x

P(x) The probability mass of a discrete random variable taking value x

〈xn〉N1 A sequence of N symbols

{xn}N1 A set of N items, in no order.

Cc[s] The number of times a symbol s occurs in context c

|Cc| The total number of symbols seen in context c

‖Cc‖ The number of unique symbols observed in context c

[a, b) The half-open interval from a (inclusive) to b (exclusive)

1[x] The indicator function: equals 1 if the expression x is true, and 0
otherwise

4

Chapter 1

Introduction

1.1 Lossless Compression

A tremendous amount of data is being created every day from a variety
of sources including people, sensors, and processes. Efficient storage and
transmission of such data is an increasingly important concern in managing
such amounts of data. One way to reduce the storage and transmission costs
from data is through the use of compression: creating a (hopefully)1 smaller
representation of the data which can be stored or transmitted more cheaply,
and from which the original can be fully recovered.

A compression process consists of three entities: a message to be com-
municated, a compressor which transforms the message into some encoded
representation, and a decompressor which recovers the original message from
the encoded representation.

For some types of data, such as pictures and audio, it is popular to dis-
card perceptually-insignificant data and accept an approximate recovery of
the message at decompression. Such techniques are termed lossy compres-
sion methods. However with data such as text documents and executable
programs, lossy compression is not typically used. For example, in a picture,
discarding high-frequency spatial data of an out-of-focus sky in the back-
ground may be acceptable, while the removal of key words in a legal contract
is likely problematic.

Only techniques concerning lossless compression will be addressed in this
thesis.

1 A real compressor cannot reduce the size of all possible data and must necessarily
make some data larger due to the pigeonhole principle. Typically a compressor is created
to reduce the size of a particular set or kind of data, and it is deemed acceptable for such a
compressor to fail at making other data smaller. This phenomenon will be detailed further
in subsection 1.2.2.

5

CHAPTER 1. INTRODUCTION

Thus, refining the aforementioned definition of compression, lossless com-
pression is a family of techniques to create a smaller, perfectly recoverable,
representation of some data. Lossless compression techniques can be thought
of as methods that remove redundant structure in data. Most lossless com-
pression techniques can be deconstructed into two components: a probabilis-
tic model for the message data, and a coder , which creates a more compact
representation of the message using the model. The better the model predicts
the data, the smaller the coder can make the compressed output. A clear ad-
vantage of delineating between a compressor’s model and coder is the ability
to manage the complexity of both components more effectively.

Other applications of compression

To mention other topics of interest in lossless compression which will not be
investigated further in this thesis: Although the most common use of lossless
compression is to create small representations of the same data, there may be
further optimisation criteria placed on the encoded message. For example,
in a Morse Code-like transmission scheme, there is a temporal component
of data which consists of short dits and long dahs. Thus, it might be de-
sirable for the compressed form to consist of more dits than dahs. Though
this might seem contrived in the context of modern digital communication
schemes, there are similar emerging design concerns investigations of low-
power systems. For example, in the context certain memory systems which
use the Bus-Invert method (Stan and Burleson 1995) more efficiently send
bit streams with fewer transitions (a transition can be found in the bit strings
“01” and “10” but cannot be found in the bit strings “00” or “11”). Thus,
an effective compression scheme in such a domain might want to ensure a
minimal number of bit transitions. Such additional optimisations will be
considered as the domain of channel coding and be neglected for the rest of
this thesis. For further discussion of a brief overview of early channel coding
theory, consult Hancock and Holsinger (1962, Chapter 3).

For other applications of compressors beyond simply reducing the size of
data, one such use is document classification (Marton, Wu, and Hellerstein
2005). As will later be discussed, a good compressor implicitly models data
well. If there are several compressors which have been trained or designed to
effectively compress different kinds of text, then an ensemble of such com-
pressors may effectively classify a candidate document by identifying the
constituent compressor that produces the smallest output.

6

CHAPTER 1. INTRODUCTION

1.2 Probability Foundations and Context

Let us begin with some essential definitions.
Let data be a collection of messages . A message m is a sequence of N

symbols x1, . . . , xN from some source alphabet As and will be denoted as
m = 〈xn〉Nn=1.

A compressor utilises a model and coder 2 to transform a message with
symbols from As to message with symbols in some target alphabet At.

A model (or sequence model , used interchangeably in this thesis) is, im-
plicitly or otherwise, a probability distribution over symbols given a sequence
of previously seen symbols, of the form: P

(
xn
∣∣ 〈x〉n−11

)
.

A coder is a means of transforming a sequence of source symbols into a
sequence of target symbols given a model. There exist a variety of coders with
different properties and capabilities, which will be discussed in section 1.3.

1.2.1 How much can we compress?

The structure and properties of data, which is captured through a model,
dictate how much a message can be compressed.

For example, suppose we are interested in compressing messages that
consist of a single symbol. Furthermore, assume that our source alphabet
is uni-byte alphabet with(|As| = 256) and our target alphabet is binary
(|At| = 2). If there were no a priori knowledge of which symbols were more
likely to appear, one optimal coding scheme would be the same “usual” binary
encoding of the byte character. In this instance a compressed message would
be no shorter than the source message.

Given that digital data is often encoded in a byte representation and
compressors typically output binary at a bit-level granularity, output bits per
input Byte (b

B
) is the usual method for evaluating compression effectiveness.

For this metric, much like the objective in compression, “lower is better”.
Thus addressing the case above of transmitting a single, uniformly sam-

pled character, the resulting compression effectiveness is 8 b
B

.
Let us, however, assume that we have prior knowledge that only one

of two symbols, a (0x61) or b (0x62), to use standard ASCII encoding, is
to be compressed. If we are to assume that there is no bias towards one
observing one source symbol over another, one optimal coding scheme would

2 Occasionally, some compressors do not make an explicit delineation between their
model and coder and instead propose an algorithmic process. For an intuitive explanation
on how one can interpret the “model” of compressors which do not explicitly define one,
see McFadden (1992, Lesson 1)

7

CHAPTER 1. INTRODUCTION

be a binary encoding, for example assigning a binary 02 for a and a binary
12 for b. In this instance, we can observe a compression effectiveness of 1 b

B
.

Developing this two symbol case further: if messages containing a were
known to be twice as frequent as messages containing b, can we do better
than 1 b

B
? This question will be answered in section 1.3 in the context of

managing fractional bits of information.
If we were to alter this scenario and assuming that both we now used four

input symbols (a, b, c, and d which were believed to be independent and
have relative frequencies of 2

3
, 1
9
, 1
9
, 1
9
) and a message consisted of an arbitrary

number of symbols, what would the compression situation be? Firstly, it is
worthwhile to investigate how we would assign target encodings for each input
symbol. Notably, if we were to take an arbitrary mapping, such as assigning
the most frequent input symbol a one of the shortest encodings 02, and then
arbitrarily assign some remaining encodings to b (12), c (002), and d (012),
we would have difficulty decompressing most nontrivial target encodings.
For example, under the aforementioned scheme, how should we interpret
the encoding 0012? Such an encoding could be reasonably decompressed
into aab, ad, or cb: our encodings are not uniquely decodeable. An elegant
way to ensure unique decodability (without expanding At with delimiter
characters), is to ensure that any encoding scheme obeys the prefix code
property , no encoding can be a prefix of any other encoding.3

Revising our scheme, we could still assign a a short encoding 12, but assign
b → 012, c → 0002, and d → 0012, arbitrarily. Following through, how can
we interpret this scheme’s compression effectiveness? One such method is
to compute the expected target message length per input symbol, in other
words:

E

[
b

B

]
=

1

8
·
∑
x∈As

NumOfTargetBits(x) · freq(x)

=
1

8

(
1 · 2

3
+ 2 · 1

3
+ 3 · 1

3
+ 3 · 1

3

)
=

1

8
· 10

3

=
5

12

Notably, if we had no prior knowledge about the relative frequencies of
each symbol, but were to make the same symbol assignments, we would see

3 Prefix codes constructed from symbol frequencies are a well known method and have
been explored by Fano (1949), Huffman (1952), and Shannon (1948).

8

CHAPTER 1. INTRODUCTION

an expected b
B

of

E

[
b

B

]
=

1

8
· 1

4
(1 + 2 + 3 + 3) =

36

8
=

9

2
=

54

12

Thus, we see that effective symbol assignments that are based on symbol
frequencies can make a significant difference in compression effectiveness.
Looking at the case of four symbols with skewed frequencies, we can still
expect an output of slightly less than half

(
5
12

)
a bit for every incoming byte.

In order to understand how this pattern generalises for other data with
potentially varying knowledge of relative symbol frequencies, we must further
explore our notions of a model.

1.2.2 Entropy and surprise

Given the above definitions of a message and a symbol, let us assume we
also have a known symbol probability for each symbol in the message P(xn)
according to some model. When symbol occurrences are independent, the
probability of a message m can be factorised as follows:

P
(
〈xn〉N1

)
=

N∏
n=1

P(xn)

Shannon (1948) notes from Hartley that taking the logarithm of an event’s
reciprocal probability has convenient properties, namely the use of a loga-
rithm with a base of two causes values of such an expression to take the units
of binary digits or bits .

The quantity log2
1

P(xn)
= − log2 P(xn) is termed the information content

associated with a symbol xn under the model P. If a symbol has a high
information content, the model views it as rare and surprising, and if a symbol
has a low information content it is deemed common and unsurprising.

For example, seeing the number 1 on a fair, four-sided die is an event with
a probability of 1

4
and an information content of log2

1
1
4

= log2 4 = 2 bits. It

takes two binary digits to encode any one of the states of a fair, four-sided
die.

The probability of seeing an a from the biased set shown in subsec-
tion 1.2.1 was 2

3
. The associated information content is log2

1
2
3

= log2
3
2
≈

0.585 bits. Similarly, seeing any single rarer symbol: {b, c, d} has a corre-
sponding information content of log2

1
1
8

= log2 8 = 4 bits.

The information content roughly corresponds to the length of the prefix
codes assigned to each symbol.

9

CHAPTER 1. INTRODUCTION

To extend this result to a message, the information content metric has the
useful characteristic of being additive due to the product-to-sum property of
logarithms. For example, a message consisting of five independent occur-
rences of a (aaaaa) has an information content of: 5 · log2

1
2
3

= 5 · log2
3
2
≈

2.92 bits. However, if we were to attempt to form an encoding of that mes-
sage using the scheme described at the end of subsection 1.2.1, where each
symbol was allocated a fixed-size code word, we would use five bits (111112).

Note that because this prefix coding scheme uses an integer number of
bits for each symbol, coding long messages with many symbols that have
fractional information content quickly becomes expensive. Additionally, this
scheme is non-adaptive: we currently have no effective means to adjust our
prefix code if we know that P

(
xn
∣∣ 〈xi〉n−11

)
6= P(xn). Efficient design of

coding techniques which can both efficiently handle fractional information
content and adaptive symbol probabilities will be discussed in section 1.3.

In general, when given a probability distribution over messages, we can
compress a message to a sequence of bits whose length is the message’s in-
formation content (rounded up to the nearest integer).4

Information content is always relative to some model because the model
defines P(xn) and therefore the information content of a message. Thus, our
model determines how much a given message can be compressed: the better
the model matches the data, the better the data can be compressed.

Adversarial inputs and poor models

As a brief tangent, if a model consistently assigns high probability to symbols
in a sequence, it means the information content of the message’s constituent
symbols is low, thus implying the message is “unsurprising” to the model.
Moreover, given a model, it is possible to analyse what messages would be
surprising. For example, given the model described at the end of subsec-
tion 1.2.1, a message consisting entirely of the symbols {b, c, d} would be
very surprising, and have a high information content. Specifically, the mes-
sage “dddddddddd” of length 10 would have an information content of

10 · log2

1
1
9

= 10 · log2 9 ≈ 31.7 bits

Under a uniform model, this same message would have an information con-
tent of

10 · log2

1
1
4

= 10 · log2 4 = 20 bits

4 Though, usually slightly longer due to inefficiencies in the chosen coding scheme.

10

CHAPTER 1. INTRODUCTION

If one were using the encoding of this alphabet induced by a uniform model,
the compressed message would be smaller than the scheme described above.

Certain adversarial, or surprising inputs can result in a compressor pro-
ducing longer “compressed” messages relative to the input message length.
This adverse outcome highlights the importance of constructing appropriate
models that accurately reflect the distribution of messages to be compressed.

1.3 Coding

As we have seen from subsection 1.2.1 and subsection 1.2.2, two properties we
would like in codes are the ability to communicate efficiently symbols that
have a fractional amount of information content and to utilise effectively
adaptive symbol probabilities.

This section will first give a more general construction for prefix codes, in
order to provide a foundation from which to further analyse various coding
schemes. This section will then discuss arithmetic coding, which satisfies
both of the aforementioned properties.

1.3.1 Huffman Codes

As described in subsection 1.2.1, a reasonable means of assigning codes to
symbols with known probabilities is to give the most common symbol the
shortest possible encoding, then give the next most common symbol the
next shortest possible encoding while obeying the prefix property.

Huffman (1952) describes an one algorithm that uses this intuition and
takes the approach of working backwards from the most rare symbols.

Firstly, the least common two symbols are selected and “joined” to a
node. This node is considered as a new, virtual symbol whose probability is
the sum of its two children. The next two least common symbols (including
virtual symbols) are then joined, and this step is repeated until a single node
remains. The resulting structure is a binary tree, often called a “Huffman
Tree”. To encode a symbol using this tree, treat all left child and right child
traversals as 0 or 1 respectively, and each symbol’s encoded value corresponds
to the path needed to reach the corresponding symbol through a series of left
and right child traversals.

The use of single-symbol prefix codes is problematic when attempting to
encode messages of more than one symbol due to the compounding “over-
spending” of whole bits on symbols with fractional bits of information con-
tent. Notably, however, there will be no “overspending” in the special case
where all symbol probabilities are reciprocals of powers of two which owes to

11

CHAPTER 1. INTRODUCTION

the paired nature of node construction in this scheme. Under such circum-
stances, Huffman Coding is optimal.

1.3.2 Arithmetic Coding

Shakespeare on a ruler

“All of the works of Shakespeare can be encoded as a single point on a ruler”.
This phrase provides a reasonable spatial intuition for the operation of an
arithmetic coder and the following example describes the operation of such
a coder.

Assume that |As| = 30 (26 characters of the alphabet, three punctua-
tion characters, and a space). Take a 30 cm ruler, and partition it into 30
uniformly-sized units, with the first corresponding to a, the interval of [0, 1),
the second corresponding to b [1, 2), and so on, with the last corresponding
to a space [29, 30). Given this partitioning, select the unit that corresponds
to the first letter of the first work of Shakespeare. Assuming we’ve selected
Shakespeare’s first sonnet, this letter is “f” (of the word “from”) that cor-
responds to the unit [5, 6). Now, divide the interval [5, 6) further into 30
uniformly-sized units (each will be of size 1

30
), and select the subdivided

unit corresponding to the next letter. The letter “r” corresponds to the
unit

[
517
30
, 518

30

)
(
[
5.56, 5.6

)
). This process repeats until all letters have been

processed, culminating in a narrow interval.
Any sequence of characters can be encoded to a designated region of the

ruler. Choose a point inside this region (not on the boundary) that has the
shortest decimal expansion.

A recipient could recover the original message from the decimal number
by following the same process forward, but instead of selecting the interval
that corresponds to the letter, the recipient selects the letter corresponding
to the interval.

To illustrate, suppose the recipient received the target number 5.567.
After constructing the initial set of 30 intervals, a recipient would see that
the target number resides in the interval [5, 6), and record that the first letter
was an “f”. The recipient would then construct a set of 1

30
cm large intervals

from [5, 6), see that the target number resides in the interval
[
5.56, 5.6

)
, and

record that the second letter was an “r”. The recipient would then note that
the number terminates, and stop decoding. Thus, through the above process,
the target number can be decoded into the original text.

12

CHAPTER 1. INTRODUCTION

An infinite precision Arithmetic Coder

Arithmetic coding, described in Pasco (1976), Rissanen and Langdon (1979),
and Rissanen and Langdon (1981), and a closely related variant called Range
coding, introduced in Martin (1979), rely on the same fundamental opera-
tions, but uses an original range of [0, 1). Furthermore, the lengths of sub-
intervals at each step are not required to be uniform, and the number of
intervals at each step is allowed to vary. The former confers the ability for
arithmetic coding to manage adaptive symbol probabilities, and the latter
property gives arithmetic coding the ability to manage dynamic alphabets.5

Adaptive symbol probabilities are handled formally by requiring a Cu-
mulative Distribution Function (CDF), and an associated symbol ordering,6

to be placed over the alphabet at a particular index in the message. In par-
ticular, an Exclusive Cumulative Distribution P(X < x) = P̃(x) (rather than
P(X ≤ x)), is valuable as its image corresponds exactly to the half-open se-
mantics used in the above “Shakespeare on a Ruler” example. In particular,
the P̃(xn) corresponds to the inclusive lower bound of a symbol’s interval
induced by a model. In order to acquire the half open range, one can use the

probability mass of the symbol P(xn), to form
[
P̃(xn) , P̃(xn) + P(xn)

)
An additional wrinkle that must be considered is the stopping criteria

or terminating conditions, in other words, communicating the length of the
message.

Modern coders have developed two possible responses to communicate
the length of the given encoded message. The first is directly communicating
the (possibly encoded) length at the start of the message and the second
is encoding an out-of-alphabet, end-of-file (EOF) symbol at the conclusion
of a given message. A decoder using the first method would stop decoding
after producing the number of tokens specified by the initial message length,

5 A system that manages a message with a dynamic As be implemented in terms of
a system that handles a single, large, statically-sized As, but assigns certain symbols
a probability mass of zero at different indices in a message. Thus in a sense, the second
property is a consequence of the first property. Dynamic alphabets will not be of significant
discussion for the remainder of this thesis.

6 Symbol ordering presents an interesting engineering design decision when implement-
ing any coding scheme that requires continuous construction or maintenance of symbol
probabilities. For decoder implementations that perform a linear search through a given
alphabet’s associated CDF (in order to assign a symbol given a point in some range), it is
often advantageous to order symbols in terms of decreasing probability mass (or increasing
if searching is done backwards). Such an ordering can potentially speed up searches for
common symbols (according to the given model), as the symbol with the greatest proba-
bility is found first. However, for the remainder of this thesis, the usual ordering imposed
by typical definitions of the specific As (typically lexicographically) will be used unless
otherwise stated.

13

CHAPTER 1. INTRODUCTION

while a decoder using the second method would stop decoding right before
attempting to emit the EOF symbol. A third, but non-universal, method
to communicate stopping criteria is to rely on the semantics of the mes-
sage itself. One example is that many digital file formats include a header
which contains file-length, which could theoretically be incorporated into the
decoding procedure. Additionally, many text files are terminated with an in-
alphabet NULL terminator, which can be used instead of an out-of-alphabet
end-of-file marker. Both solutions are amenable to ergonomic implementa-
tions, but the main difference between these two termination methods lies
in the implicit difference in modelling of message length. Specifically, the
EOF solution implies that the same model which analyses the message itself
is suitable for analysing message length. In contrast, the explicit message
length approach enables explicitly modelling the message length separately
from the model used for the message content. Both approaches have rea-
sonable theoretical and practical justifications and both methods are used
frequently in practical coders.

When analysing the “Shakespeare on a Ruler” example under this more
rigorous light, one may observe that the nth accumulated lower bound of the
interval, Ln takes the form of:

Ln =
n∏
i=0

P̃(xi)

and the nth accumulated upper bound of the interval, Un takes the re-
cursive form of:

Un = Un−1 · P̃(xn) + P(xn)

which was an observation made jointly by both Rissanen (1976) and Pasco
(1976).

The above description describes an infinite precision arithmetic coder,
which can be naively implemented in any programming language that sup-
ports infinite precision arithmetic (“bignums”). Analysing the computational
complexity of such a procedure, it appears to be O(N) in the length of the

message if P̃(x) and P(x) can be calculated in O(1). However, arithmetic for
interval narrowing is not O(1) in number of digits in {Ln, Un} for standard
bignum implementations. Instead arithmetic and is typically O(N) in the
number of digits in each operand. Thus, given that the number of digits in
{Ln, Un} grows linearly in the number of symbols seen thus far, an infinite
precision arithmetic coder has a complexity of O(N2) in the message length.
For even modestly-sized files on the order of megabytes, quadratic complexity
is highly impractical.

14

CHAPTER 1. INTRODUCTION

However, the complexity of arithmetic coding need not be quadratic if
arithmetic can be performed in constant time. In fact, a finite-precision
arithmetic coder, which utilises constant-time arithmetic and finite-precision
representations of {Ln, Un} can be constructed with a few modifications.

A finite-precision Arithmetic Coder

The key modification to make to an infinite-precision arithmetic coder is to
conduct all arithmetic in a scaled, integral domain such that the interval of
reals in [0, 1) maps to the interval of integers in [0, 2p) where p is typically a
machine word size (i.e. 32 or 64 for most modern, non-embedded hardware).

Scaling to integer arithmetic does have the immediate restriction that
no symbol probabilities smaller than 1

2p
(the minimum “resolution” of the

integral domain) can be represented, but this is typically well-tolerated by
most compressors.7 Given this finite scheme, rescaling must also be employed
to ensure that the minimum resolution of an interval does not grow too large.
In fact, rescaling is also coupled with “flushing” or outputting bits to a buffer,
which constitutes the compressed representation of the input message.

Elaborating on the rescaling and flushing procedures further, consider the
midpoint of [0, 2p): 2p

2
= 2p−1 = M . If a number in the interval [Ln, Un) is

completely contained in [0,M), the fractional binary expansion of a number
in that interval starts with a zero (as it must be strictly less than 0.12 = 1

2
).

Similarly any interval completely contained in the range [M, 2p) implies that
the fractional binary expansion of a number in that interval must start with
a one (as it must be at least as big as 0.12). If Un < M a zero is flushed,
and if Ln ≥ M a one is flushed. In both cases, the interval is rescaled
either by halving, or re-centering via subtraction by M followed by halving.8

Collectively, these two cases can be termed the “standard rescaling” cases.
Such a procedure is almost complete, but neglects the case where {Ln, Un}

increasingly approach M (and thus each other), but never meet one of the
two above conditions. In pathological cases where {Ln, UN} = {M − 1,M},
there is likely not enough mass to represent P̃(x) faithfully.9 To counteract

7 This tolerance often owes to the fact that many compression systems give all symbols
a minimum bin-size typically much greater than 1

2p .
8 Because {Ln, Un} are in the integral domain, halving can be efficiently conducted via

left-bit-shift-by-one.
9 Such a harmful case can be reached by relatively innocuous data which has a run of

symbols whose resulting intervals contain M . Although the pathological case cannot be
reached with a uniform model over |As| = 30, it could be reached in the case of |As| = 29
(no space) and repeated selection of the character o (corresponding to the range [14, 15),
which contains M = 14.5). Such a sequence may be unusual for human text, but would
be unsurprising for machine-data.

15

CHAPTER 1. INTRODUCTION

such pathologies, it is necessary to re-scale in this “centre-approaching” case
as well, which is slightly more involved than the “standard rescaling” cases.

Let the first/lower quarter be defined as LQ = 1
4
·2p, and the third/upper

quarter be defined as UQ = 3
4
· 2p. If Ln > LQ or Un < UQ, both {Ln, Un}

are re-centred via subtraction of LQ and then divided by two. This operation
corresponds to “zooming-in” to the centre of the interval. However, instead
of flushing, a pending/waiting counter is incremented. In either of the above
“standard rescaling” cases, the flushing operation corresponds to emitting
the specified bit, followed by the complement of that bit repeated N times,
where N is the pending/waiting counter, and concluded by clearing the pend-
ing/waiting counter. A rough intuition of this bit flipping behaviour can be
gleaned from the fact that if outputting a single 0 or 1 happens when Ln
is either 0.02 or 0.12 (corresponding to the intervals [0, 0.12) and [0.12, 1.0)
respectively), then Ln when picking points defined by quarter points are
0.012 or 0.102 (corresponding to the intervals [0.012, 0.102) and [0.102, 0.112)
respectively), or when “zooming-in” further, the points 0.0112 or 0.1002 (cor-
responding to the intervals [0.0112, 0.1002) and [0.1002, 0.1112) respectively).
Note how in all of the above cases, Ln can be described as a 1 or 0, followed
by some number of repetitions that digit’s complement.

A passing note from this analysis is that given the three conditions for
rescaling, {Ln, Un} can only become as close as M = UQ − LQ. This min-
imum difference demonstrates that the aforementioned minimum permitted
size of symbol probabilities of 1

2p
is an overestimate. When considering edge

cases, finite-precision arithmetic coding can only correctly handle probability
masses which are at least as big as 1

2p−1 .10

The aforementioned procedure describes a finite-precision arithmetic cod-
er whose complexity is O(N) in the length of the message to be compressed.

Comparing Huffman and Arithmetic Coding

Because Huffman Coding produces potentially sub-optimal compressed mes-
sages because each source symbol has a one-to-one correspondence with each
(bit-aligned) target codeword. This property, which is powerful for spatially
efficient random access,11 can yield very poor compression if the information

10 See footnote 7 which explains why this is likely a non-issue.
11 Although Huffman Codes are of variable length, random access can be enabled by

simply knowing the particular offset at key checkpoints in the message (say the index/offset
of every 1,000 characters) and decoding from there. Thus, random access can be naively
enabled via auxiliary information, though more sophisticated methods obviate the need
for such bookkeeping, see Yang, Lin, and Hu (2018). One may think that the serial and
recursive structure of arithmetic coding inhibits any attempt at random access, however
auxiliary information here too can enable random access: it simply requires a message

16

CHAPTER 1. INTRODUCTION

content of a common symbol is slightly more than a whole number of bits, as
the number of excess bits sent will grow linearly with the occurrence count
of that symbol. In arithmetic coding, where a single target symbol can rep-
resent multiple source symbols, the resulting compression is nearly optimal,
being typically no more than two bits greater than the message’s information
content.12

Thus, given an effective means to reduce a message to nearly the size of
its information content, the key path to good compression is good sequence
modelling.

1.4 Sequence Modelling and Compression

As stated earlier, a sequence model is a probability distribution over the
symbols in an alphabet given previously seen symbols:

P
(
xn
∣∣ 〈x〉n−11

)
Such a probability distribution can be used for prediction, or for estimating
future events given past data. As seen in section 1.3, if P(xn) is consistently
close to 1, then the message’s information content is small, and a coder is
able to encode such symbols in very few bits.

An “improvement” one may consider in designing a good sequence model
is to use the entire message m (rather than only the symbols 〈xi〉n−11) which
may be more effectively modelled. Practically speaking, additional content
on which to condition may indeed produce a better probability model, how-
ever the compression process would be violated by such a construction. The
decompressor only has access to symbols which have already been decoded,

and thus would not be able to replicate the same P
(
xn| 〈xi〉N1

)
given only

〈xi〉n−11 .13

offset as well as all internal state ({Ln, Un}) of the coder.
12 As described in Witten, Neal, and Cleary (1987), excess bits in arithmetic coding

come from a combination of extra bits needed to encode termination, rescaling, and the
use of finite-precision arithmetic. For reasonably-sized messages, this overhead is negligible
and well-tolerated.

13 Note that a compressor could technically skirt this wrinkle by encoding additional
information about future symbols in a header which encodes future model information.
Practically, “additional information” implies sending pre-trained model parameters along
with the encoded representation of the message, which must also contribute to the total
length of the encoded message. When accounting for this fact, it has been shown in
Steinruecken (2014, Section 4.4) that encoded representations with a header are no more
spatially efficient than plain encoded representations which are decoded with no prior
header.

17

CHAPTER 1. INTRODUCTION

Another important consideration is that all sequence models are imper-
fect. Typically, real data such as human text is too complex to be modelled
completely by most classical sequence models. As suggested in section 4, a
mismatch between the data and the model can result in poor compression.

Lastly, it is important to note what general implementation family the
below-mentioned models will follow. All models discussed in this thesis at
a high level take the following approach. Messages are read and “learned”
symbol-wise, and each symbol is used to update one or more histograms ,
the statistical bookkeeping structures of most models. Before updating his-
tograms for the nth symbol xn, a model is capable of generating a conditional
probability P

(
xn
∣∣ 〈xi〉n−11

)
which can be used by a compressor to make cod-

ing decisions. The importance of generating and coding a given symbol with
a probability density before that symbol is learned is to obey the compression
process. The decompressor needs to replicate the procedure of learning and
at any given time it only has access to the previously decoded symbols.

1.4.1 Histograms: properties and design

This section describes a histogam’s underlying semantics, internals, efficient
storage, efficient access, effective transformation into a conditional probabil-
ity, and mechanisms of update.

Histogram semantics

In the context of compression, a histogram counts the occurrences of symbols
in a specific context. In the case of all models described below, contexts are
the (finite-length) sub-sequences immediately preceding the current symbol.

Histogram internals and storage

Internally, a histogram typically consists of at least a set of counters of symbol
occurrences for its context. Sequence models commonly group histograms
that share the same prefix, or initial N − 1 gram. For example, given As =
{a, b, c}, a particular histogram may track the distinct counts for the prefix-
sharing 3-grams: {aba, abb, abc} which occur a given message.

Histograms may also contain additional information which can broadly
be described as cached or incremental results. Such incremental results may
include items such as the sum of all counts, the number of unique N-grams
tracked, or the transient results of more involved operations on other, related
histograms.

18

CHAPTER 1. INTRODUCTION

Because a given sequence model typically manages a huge number of his-
tograms (the order of 106 is typical), efficient storage of these histograms is
also a chief concern. To illustrate the immense size of such models, imagine
a model that utilises a |As| = 256 uni-byte alphabet. Assuming counts are
tracked by integers with a width of W Bytes, the size of such a model is
256N+1 ·W bytes. Taking W = 4 bytes and the typical RAM of a modern
computer to be roughly 32 GiB, N can be no larger than roughly 3. Thank-
fully, most real data does not induce a “full” or “dense” N-gram model, and
the sparsity of real data can be exploited to practically construct N-gram
models for N ≥ 3. One such exploitation is to allocate histograms lazily.14

Additionally, histograms may choose not to cache intermediate results, opt-
ing to do all calculations “from scratch”.

Furthermore, counts can be represented with narrow-width integer types,
such as W = 1 byte. As a side remark, it is not unreasonable to believe
that such narrow representations of counts may be unsuitable for effective se-
quence modelling, because, especially for low-order histograms (say, of order-
0), it is very likely to see more than 28−1 occurrences of a symbol in a given
message. There are three reasonable means of handling larger counts in
narrow-width arithmetic: wraparound, saturation, and rescaling.

Wraparound (255 + 1 = 0) is the default semantics of unsigned integer
overflow, but it presents poor compatibility for good sequence modelling,
because common symbols get “reset” and are then considered as uncommon
symbols. Saturation (255 + 1 = 255) is another natural choice for managing
large values in unsigned arithmetic, which presents less poor compatibility,
as in the limiting case prediction will degrade to a uniform distribution.
Lastly, rescaling (255 + 1 = 128, all counts divided by two, rounded up)15

presents the property that relative magnitudes between symbol frequencies
are preserved, and lends hysteresis prevention attributes to a given model,
as long runs of a single symbols can quickly be forgotten if needed. However,
this hysteresis prevention property can be harmful too, because long runs of
single symbols can cause a loss of model accuracy for other symbols.

Histogram access

Most sequence models that utilise histograms for managing symbol occur-
rence counts in N-gram contexts typically access histograms of increasing
prefix-length. For example, a model operating over As = {a, b, c} which has

14 Counts within histograms can be lazily allocated too.
15 Initially this scheme may be thought to oppose efficient hardware implementation as

generic integer division is typically a high-latency operation in common microarchitectures.
However such scheme can indeed be efficiently implemented, see section A.1.

19

CHAPTER 1. INTRODUCTION

seen the sequence a, b, c, c, and is being queried for the probability of seeing an
arbitrary character ∗, P(∗ | a, b, c, c), would typically consult the histograms
for the N-gram contexts: {{∗} , {c, ∗} , {c, c, ∗} , {b, c, c, ∗} , {a, b, c, c, ∗}}

The organisation of such histograms is implementation-dependent and
should not affect correctness of the resulting probability, but typically two
structures are employed.

The first is that of a hash table, where the key is some function of the
context. Hash tables, particularly the design trade-offs they present in se-
quence models, will be discussed in section 3.1. The second is that of a suffix
tree,16 where each histogram connects to all histograms of larger prefixes by
one symbol. For example, the histogram named c, ∗ has “child-pointers” to
the set of histograms {(a, c, ∗), (b, c, ∗), (c, c, ∗)}. Suffix trees, and the design
trade-offs they present in sequence models will be discussed in section 2.1.

A minor, but relevant implementation detail is that the means of his-
togram transformation will often influence the choice of data structure used
to organise histograms.

Histogram set transformation

The most differentiating factor in sequence models used for compression is
the means by which a set of histograms corresponding to a particular context
is transformed into a conditional probability.

A common scheme employed is small-to-large accumulation, where prob-
abilities of smaller contexts are weighted and combined with probabilities
from larger contexts. Similarly, large-to-small accumulation specifies the re-
verse of this process, where probabilities of larger contexts are weighted and
combined with probabilities from smaller contexts.

In the former construction, typically the “easiest-to-access/root” his-
togram is the First Order histogram ∗, which allows for a tail-recursive,
depth-first descent through the relevant histogram storage structure. In the
latter construction, typically the “easiest-to-access/root” histogram is the
most-recently-used, largest-order histogram (i.e. a, b, c, c, ∗ from the exam-
ple in section 15). Histograms are connected through both child-pointers and
also vine-pointers , which point to the histogram corresponding to the next
smaller context. Given vine-pointers, such a method permits a tail-recursive
ascent through the relevant histogram storage structure.

16 The naming convention of “suffix” can confusing when considering that histograms
track N-grams which share a common prefix to a symbol and a tree structure enables direct
access to histograms which contain the next larger prefix to a symbol, but compression
sequence modelling literature uses suffix framing which will be explained in section 2.1.

20

CHAPTER 1. INTRODUCTION

An additional scheme sometimes employed is a cocktail shaker accumu-
lation where probabilities for all contexts are weighted and combined in a
descending, then ascending traversal of the tree (or vice-versa). The descent
gathers weighted probabilities of increasingly larger contexts, and the ascent
accumulates and weights these probabilities, continually passing the result
upwards into a final probability.

Drawing a distinction between these schemes is not only important for de-
signing generic interfaces for efficient implementations of different sequence
models, but also gives insight into potential inefficiencies in the cocktail-
shaker method. Because the former two methods can be implemented in
terms of tail-recursion they do not require dynamic allocation (either ex-
plicitly on the heap in an iterative scheme, or implicitly on the stack in a
recursive scheme) for increasingly large N-gram contexts. Thus, it can be
seen how traversal influences histogram set transformation.

To elaborate on how individual probability estimates are combined: most
combination schemes are, implicitly or otherwise, depth-dependent and typ-
ically weight the probabilities produced from histograms of larger contexts
more heavily than probabilities produced from histograms of smaller con-
texts. Such a combination scheme can almost always be interpreted through
a Bayesian lens as adapting probabilities under various priors. Probabilities
produced by a single histogram can often be thought of as a transformation
of a uniform prior through a Bayesian update with the data contained in the
histogram.

Histogram updating

Histogram updating across most sequence models typically takes one of two
forms: so called “full-updates” or “shallow-updates”. Full updating is the
simplest choice of updating, where statistics are updated for all applicable
histograms for a given context. For example, using the example from sec-
tion 15 where an a has been observed, the corresponding histograms and
N-gram contexts would be updated as follows from biggest to smallest con-
text size:

1. a, b, c, c, ∗: Increment counter for N-gram a, b, c, c, a

2. b, c, c, ∗: Increment counter for N-gram b, c, c, a

3. c, c, ∗: Increment counter for N-gram c, c, a

4. c, ∗: Increment counter for N-gram c, a

5. ∗: Increment counter for N-gram a

21

CHAPTER 1. INTRODUCTION

Shallow updating (also called partial updating or update exclusion) is an al-
ternative means of updating counts where only first-time updates are prop-
agated further. Take the same example, but assume that the N-gram c, c, a
had been seen before.17 Under shallow updating, the following procedure
would take place:

1. a, b, c, c, ∗: Increment counter for N-gram a, b, c, c, a (first time seen)

2. b, c, c, ∗: Increment counter for N-gram b, c, c, a (first time seen)

3. c, c, ∗: Increment counter for N-gram c, c, a (seen before!)

4. Stop updating! Do not update c, a or a as prior N-gram has been seen
before.

This modification means that our statistics count the number of unique con-
texts in which a given symbol occurred rather than simply the number of
times a given symbol has occurred. As described by David J.C. MacKay
and Bauman Peto (1995), the former statistic is more powerful in language
modelling than the latter. For very (even infinitely!) large N-gram models,
shallow updating can improve computational complexity of compression to
O(N) in the message length, compared to O(N2) when using full updates.

17 Necessarily, the N-grams c, a and a would also have been seen before.

22

Chapter 2

Existing Sequence Modelling
Methods

This chapter explores several existing compressors and their associated se-
quence models. In particular, all of the following models use the same fun-
damental data structure, a suffix tree, to collect statistics on incoming data.

Discussion will begin with an overview of a suffix tree structure, followed
by a description of each compressor and its associated sequence model. A
high-level description of how to do inference, computation of a probability
given symbol observations, and training , learning a new symbol, through
manipulation of the sequence model’s suffix tree will be given as well.

2.1 Suffix Trees

A suffix tree is a data structure for efficiently storing and accessing properties
related to different suffixes of a string.

Suffix trees are valuable when one views increasing context prefixes of a
current symbol as incremental suffixes of the “string” induced by the stream
of input symbols seen thus far.1

2.1.1 A formal description and demonstration

Suppose a message of length N is being traversed by a compressor, and
only L symbols have been seen thus far (thus xL+1 is the current symbol

1 A prefix trie, as introduced by De La Briandais (1959) and Fredkin (1960), refers to
a similar data structure for storing increasing sized prefixes of a string (for example, in
the word “string”, the following prefixes are contained {s, st, str, stri, strin, string}). To
conform to the literature’s terminology, the term suffix tree will be used.

23

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

0 1

00 10 01 11

000 100 010 110 001 101 011 111

Figure 2.1: A suffix tree of depth D = 3 forAs = {0, 1}. Nodes are annotated
with the string to which they correspond. Nodes traversed in the search for
the partial message 010 are highlighted in red. The root node represents the
empty string.

considered by the compressor). The symbols 〈xn〉L1 form a partial message.
Many compressors and their associated models need the statistics associ-
ated with various suffixes of the current partial message. A data structure
which permits efficient access to symbol occurrence statistics of the strings
{〈xl〉 , 〈xl−1, xl〉 , . . . , 〈xD, . . . , xl−1, xl〉} (for some finite depth D), is of im-
mense value, particularly if this access can be provided in an incremental
and online manner.

A suffix tree is a k-ary tree (k = |As|), whose root represents the empty
string, and whose nodes contain strings of the same length as their depth.
Take As = {0, 1}. The root node has children corresponding to all length-
one strings, and the node corresponding to the string 0 will have children
corresponding to all length-two strings ending with 0, namely {00, 10}. An
illustration of a dense suffix tree is given in Figure 2.1.

Suffix trees can be constructed incrementally, which is demonstrated in
Figure 2.2 for the same sequence shown in Figure 2.1. In particular, it can be
seen that only partial sequences that have been observed are created, rather
than a full, dense representation of all possible N-grams, which would be
prohibitively expensive for any large |As| or modestly sized D.2

2 The construction shown here is exactly the lazy histogram allocation scheme intro-
duced in section 1.4.1

24

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

0 1

10 01

0 110 001 101

(a) Observed: 0

0 1

10 01

0 110 001 101

(b) Observed: 01

0 1

10 01

010 110 001 1

(c) Observed: 010

Figure 2.2: Incremental construction of a suffix tree for the sequence 010. Red
nodes denote nodes that were accessed or created as a result of observing the
most recent symbol.

2.1.2 Compacted suffix trees

The aforementioned construction is not optimal in terms of space efficiency.
For example, in Figure 2.2b two nodes are created: one for the string 1 and
another for the string 01. Similarly, in Figure 2.2c two nodes created: one
for the string 10 and another for the string 010. In both of these cases, both
created nodes will contain the same information (whatever implementation-
dependent details exist for an N-gram with a single occurrence). This dupli-
cation can be pathological in a case where every new symbol could create D
new nodes (if a novel context is seen in every new symbol).3

In both instances, a more spatially efficient implementation might create
a single node that represents all nodes between the parent node and the
new node (inclusive of the new node). For instance, in Figure 2.2b, a single
node named “1/01” could be created instead, and similarly in Figure 2.2c, a
single node 10/010 could be created. Compressed nodes, described in Fredkin
(1960) as “Compact Indicators”, still contain all required information, as
all nodes compacted in the single renamed node share the same occurrence
statistics.

If new node which contains an ancestor in a compacted node needs to be
created, the compacted node must be split in order to maintain correctness.
For example, if in Figure 2.2b a 1 were to be observed (thus accessing or
creating nodes 1, 11, and 011), the compacted node 1/01 would need to be
split into 1 and 01, while a new compacted node 11/011 could be formed.

Due to the extra implementation complexity associated with compressed

3 Such pathological cases are very unusual in human text, but are not uncommon in
machine-data.

25

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

suffix trees, they were not used in this thesis.

2.2 Context Tree Weighting

Context Tree Weighting (CTW) was introduced in Willems, Shtarkov, and
Tjalkens (1995) and described an elegant way of weighting various conditional
symbol probabilities of different N-grams through the use of a suffix tree.

2.2.1 CTW’s sequence model

The proposed method models a so-called Bounded-Memory Tree Source, a
generalisation of FSMX sources described in Rissanen (1986).

FSMX sources are a subclass of Finite-State-Machine (FSM) sources
which model Markov processes.4

An Order-N Markov Process models the next symbol in a sequence by
conditioning only on the previous N symbols. In other words:

P
(
xn
∣∣ 〈x〉n−11

)
= P

(
xn
∣∣ 〈x〉n−1n−N

)
CTW uses a suffix tree to access and compute efficiently these N condi-

tional symbol probabilities. In each node, a count is maintained that records
the number of times each symbol has been seen with a given context de-
scribed by that node. Let Cc be the set of all symbol counts for a particular
node corresponding to a context c, let Cc[s] be the number of times some
symbol s has been seen in a context c, and let |Cc| be the total number of
symbols seen in a context c.

4 The distinction between Bounded-Memory Tree sources, FSMX sources, and FSM
sources is subtle. In general, the set of FSM sources is the largest: consisting of any
probabilistic model that can be defined in terms of a finite-state-machine. The set of
FSMX sources is the smallest: consisting of a probabilistic model that is modelled by a
closed suffix tree of parameters. Bounded-Memory Tree sources lie in between the two:
consisting of any probabilistic model that can be represented by an arbitrary suffix tree
of parameters.

Drilling-down on the definition of closed : A tree that contains the suffixes {0, 00} is
closed (all nodes can be reached from other nodes: namely, 00 can be reached from 0, and
0 can be reached by the empty set). However, a tree that contains the suffixes {0, 01} is
not closed (01 cannot be reached from 0, it would require a node 1, which does not exist).

CTW formally applies to Bounded-Memory Tree sources, but is practically only applied
to closed suffix trees. As a result, the remainder of this thesis will refer to CTW as an
FSMX model.

26

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

For one of the largest tracked contexts (found at a leaf of the suffix tree),
the corresponding conditional symbol probability density P

(
xn
∣∣ 〈x〉n−1n−N

)
is

modelled via a KT-estimator parameterised by α5 with the expression:

Pleaf(s | c) =
Cc[s] + 1

α

|Cc|+ |As|
α

For interior nodes of some context c, the probabilities of child nodes
(which have context denoted by sc, the concatenation of a single symbol
s and the parent’s context c) are combined and weighted with the interior
node’s KT-estimator equally:

Pw(s | c) =
1

2
· Pleaf(s | c) +

1

2
·
∏
l∈As

Pw(s | lc) (2.1)

Note that this definition is a recursive: a child’s Pw(s | lc) is also the
weighted sum of its own leaf probability and its children’s Pw(s | l1l2c). For
the base case of a leaf node, Pw(s | c) = Pleaf(s | c).

As an effective implementation detail, because Pw(s | c) can be calculated
incrementally for |As| = 2 (see section A.2), a given node can cache partial
calculations. Although it would seem that all nodes are used for every cal-
culation of a conditional symbol probability, because only a single path of a
tree is updated after learning any symbol, only a linear number of updates
in D must be performed to arrive at a probability.

Thus, computing any conditional symbol probability can be performed in
O(1) (simply consulting the cached Pw(s | ∅) in the root node), and updating
associated incremental probabilities requires a linear pass from the largest
context leaf to the zero-context root.

2.2.2 Inference and learning in CTW

Given the above description of CTW, how does one actually create and in-
crementally update the given tree?

For some symbol s with an associated context c, begin at the root of
the suffix tree, and descend (creating new nodes as needed) down branches
according to the symbols of c read backwards. So for example, given c =
{a, b, d}, one should travel down the nodes, in order {ROOT, d, bd, abd}.

5 Note that in Willems, Shtarkov, and Tjalkens (1995), α = |As| = 2 is used, however,
in larger As, it was empirically observed in Volf (2002, Section 4.5) that setting α = |As|
yields poor performance, and for |As| = 256, an α ∈ [10, 20) yields superior performance
over text data.

27

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

At the leaf node, increment Cc[s] and update Pw(s | c). If the parent’s
context is taken to be π(c), then traverse to the leaf node’s parent, increment
the parent’s Cπ(c)[s] and update the parent’s Pw(s | π(c)) given the child’s
updated Pw(s | c). Repeat this operation until all traversed nodes have been
updated.

2.3 Deplump

Deplump was introduced in Gasthaus, F. Wood, and Teh (2010), which
utilises the Sequence Memoizer (SM) model described by F. D. Wood et al.
(2009). Deplump presents as an explicitly Bayesian approach to compression.

As opposed to CTW, which presents a recursive, autoregressive means of
learning the parameters of a tree source used to structure conditional proba-
bilities of upcoming symbols, Deplump is built on marginalising a posterior
distribution formed from a non-parametric hierarchical prior.

2.3.1 SM: Deplump’s sequence model

The Sequence Memoizer utilises a modified Hierarchical Pitman-Yor Process
(HPYP). To describe a HPYP, first a Dirichlet Process (DP) will be de-
scribed in terms of the classic Chinese Restaurant Process construction with
a connection to bag-of-words language modelling.

Hierarchical Pitman-Yor Processes

Models that contain the word “process” in their name are typically non-
parametric models (which still have hyper-parameters). Furthermore, sam-
pling from a process yields a distribution.

To give a traditional construction describing a DP, which takes a concen-
tration parameter α, consider the Chinese Restaurant Process (CRP) whose
description is as follows:

Suppose there exists a restaurant with an infinite number of tables with
each table having an infinite number of seats, all of which are empty to begin.
A customer walks in and sits at the first available table. The next customer
that walks in has a probability of 1

α+1
of sitting at the same table as the first

customer, and a probability of α
α+1

of sitting at a new table. For any new
customer entering a restaurant with each table s having C [s] customers (for

28

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

a total of |C| customers already present):

P(sitting at existing table s) =
C [s]

α + |C|
P(sitting at a new table) =

α

α + |C|

(2.2)

Advancing this process, suppose that there are now three tables with cus-
tomers. Suppose that the first table has 5 customers, the second table has 4
customers, and the third table has 1 customer. A new customer who walks in
will have the respective probabilities 5

10+α
, 4
10+α

, 1
10+α

of sitting at an existing
table, or a probability of α

10+α
of sitting at a new table.

Two key properties can be seen from this construction. Firstly, populated
tables will become more populated (sometimes termed “the rich get richer”).
Secondly, after a large number of customers have entered, it is increasingly
unlikely for a new customer to sit at a new table (instead, the customer will
likely sit at an existing one).

Connecting CRP with that of a language model, namely sampling from
a bag-of-words (or symbols in the case of a compressor’s sequence model). A
new customer sitting at an existing table corresponds to picking a symbol that
has been seen before, and a new customer sitting at a new table corresponds
to picking a symbol that has never been seen before. The DP-based bag-of-
words model respects the naive intuition that both a common symbol should
be seen more often when sampling, and that after many observations, it
should be increasingly unlikely to see a new symbol.

However, something that may sit uneasy with those familiar with the
power-law properties of natural language is that there are many words which
are uncommon as seen in Zipf (1945). Applying this empirically-observed
result to our CRP-based-language model, we would like to impose the fact
that the likelihood of seeing a new symbol should not decay as steeply as we
see more symbols. One way to do so is by incorporating a discount parameter
d which takes some probability mass from populated tables and assigns it to
the probability of forming a new table.

In particular, for a discount parameter d ∈ [0, 1), concentration parameter
α ∈ (−d,∞], and the aforementioned three table arrangement, a new cus-
tomer walking in would have the respective probabilities of 5−d

10+α
, 4−d
10+α

, 1−d
10+α

or a probability of α+3·d
10+α

for sitting at a new table. The probability of forming
a new table decays less quickly (for d > 0) as more tables have been formed.
Such behaviour reflects the power-law nature of natural language by nudg-
ing our model to create more unique symbols. The addition of this discount
parameter to a DP creates a Pitman-Yor Process (PYP).

29

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

Extending equation (2.2) for a PYP we have the following probabilities
for a new customer entering the restaurant:

P(sitting at existing table s) =
C [s]− d
|C|+ α

P(sitting at a new table) =
α + ‖C‖ · d
|C|+ α

where ‖C‖ is the number of tables that have been created
When applied to sequence modelling, these two constructs can be used

to answer the questions: “Will the next symbol I see be novel? If not, which
symbol is it likely to be?” Note however that this construction does not
utilise any context information, which would be useful to include. We can
incorporate context information into the model by introducing a hierarchy
to a PYP.

Abandoning the CRP analogy to work with N-grams:6 suppose that the
probability of seeing a particular N-gram composed of context c and a final
character s is defined in terms of its context suffix π(c), for example the 3-
gram {x, y, z} has c = 〈x, y〉 and s = z the context suffix is π(c) = 〈y〉, as
follows: (Note that Cc is now specific to a given context c)

P(s | c) =
Cc[s]− d
|Cc|+ α

+
α + ‖Cc‖ · d
|Cc|+ α

· P(s | π(c)) (2.3)

The probability associated with an empty context, c = ∅, is uniform over
As:

P(s | ∅) =
1

|As|

This conditional probability construction of a Hierarchical Pitman-Yor
Process is recursive and utilises context information. The above recursive
definition also fits neatly into the access patterns imposed by a suffix tree.

6 Note that there do exist similar explanations of hierarchical CRPs, so called Nested
Chinese Restaurant Processes whose description can be found in Griffiths et al. (2003).
However, the description is omitted as the analogy does not intuitively map to the gen-
eration of N-grams. To provide a brief extension however, the main intuition which is
exploited in the hierarchical extension is that a given customer can sit at one table per
restaurant across multiple, distinct, restaurants.

30

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

From Hierarchical Pitman-Yor to Deplump

Deplump makes several modifications to the HPYP model described above,
which are as follows.

Deplump uses an infinite-depth suffix tree using the suffix tree compaction
scheme described in subsection 2.1.2, which corresponds to using N-grams of
N →∞. Additionally, Deplump opts to use depth-specific discount param-
eters, rather than the global discount parameter implied by equation (2.3).
Specifically, if |c| is the size of some context c, Deplump uses unique discount
parameters d|c| for |c| ∈ [0, 11) with |c| ∈ [11,∞) all using d10.

7

Lastly, Deplump makes two modifications to the expression of P(s | c)
presented by the HPYP.

First, the next smaller order context’s probability should be used if a
given symbol has never been seen in the current context. In other words, if
Cc[s] = 0, then P(s | c) = P(s | π(c)). Analytically, this piece-wise property
can be expressed through an indicator function of Cc[s] such that

P(s | c)UKN =
Cc[s]− d|c|
|Cc|+ α

· 1[Cc[s] ≥ 1] +
α + ‖Cc‖ · d|c|
|Cc|+ α

· P(s | π(c)) (2.4)

Secondly, Deplump presents two variants, the above method which is
termed DeplumpUKN (also called SMUKN), and another, termed Deplump1PF
(also called SM1PF). DeplumpUKN corresponds to exactly the same predic-
tive distribution used in Kneser-Ney Smoothing.8 Because infinitely large N-
grams are employed, this technique is called Unbounded Kneser-Ney (hence,
DeplumpUKN).

Deplump1PF tracks a second set of per-symbol counts T which are non-
deterministically9 updated alongside the usual counts C, which are used in
the modified predictive:

P(s | c)1PF =
Cc[s]− d|c| · T c[s]
|Cc|+ α

· 1[Cc[s] ≥ 1] +
α + |T c| · d|c|
|Cc|+ α

· P(s | π(c))

(2.5)

7 Originally, the SM used only six (|c| ∈ [0, 6)) unique depth parameters.
8 Kneser-Ney Smoothing is a classic language modelling technique introduced in Kneser

and Ney (1995) and summarised alongside other smoothing techniques in Chen and Good-
man (1998).

9 The nondeterminism of T arises from the fact that Deplump1PF is an efficient imple-
mentation of a particle filter of a single particle (hence the abbreviation, 1PF from “One
(particle) Particle Filtering”) sampling the underlying CRP for each context. Further
details can be found in Gasthaus, F. Wood, and Teh (2010, Section 4).

31

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

2.3.2 Inference and learning in Deplump

Given these descriptions of different variants of Deplump, how does one con-
struct and build the corresponding suffix tree?

Similar to subsection 2.2.2, for some symbol s with an associated context
c, one traverses down suffix tree’s branches according to the symbols of c read
backwards. Under DeplumpUKN, node counts in C [s] are updated according
to shallow updates described in section 16. Thus, in the “usual” case, some
Cc[s] will not be updated. Under Deplump1PF, the same logic is employed as
in DeplumpUKN except shallow updating logic can be overridden if a biased
coin lands heads (biased with probability):10

d|c| · |T c| · P(s|π(c))

(Cc[s]− d|c| · T c[s]) + (d|c| · |T c| · P(s | π(c)))
(2.6)

If this coin lands heads, T c[s] is incremented, and the parent node is
updated regardless of the shallow update policy. In such an instance, a new
biased coin is flipped in the parent node and the same procedure is followed.
If the coin lands tails, T c[s] is not changed, and the parent node is updated
according to the shallow update policy.

Lastly, a worthwhile observation is that the behaviour of Depump1PF
decays to DeplumpUKN if the coin in always lands on tails.

Generating a conditional symbol probability in for Deplump is more
complicated than the method described in subsection 2.2.2. In both De-
plumpUKN and Deplump1PF, for a symbol s with an associated context c,
one traverses the tree downwards according to the symbols of c read back-
wards, and accumulates results according to either equation (2.4) or equa-
tion (2.5) respectively.

2.4 PPM-DP

A common family of algorithms for compression which has produced many
practical compressors for a few decades is the Prediction by Partial Matching
(PPM) family of compressors first introduced by Cleary and Witten (1984).

The following section will consist of a brief explanation of an escape mech-
anism and blending in the context of PPM, and conclude with a description
of PPM-DP.

10 Note that the expression in equation (2.6) is the proportion of the numerator of the
second/“made a new table” term to the sum of the numerators from equation (2.5) (with-
out the concentration parameter α).

Additionally, the P(s | π(c)) term is calculated before updates are applied, meaning that
probabilities must be calculated during downwards traversal.

32

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

2.4.1 Classical PPM approaches

Though there is some variety and diversity of PPM implementations and
techniques, the key concepts are mostly the same. A brief description of
these key concepts will be provided below.

Firstly, the general approach of PPM is similar to both CTW and De-
plump, where a suffix tree is built incrementally as new symbols from a mes-
sage are observed. Diverging from the previously mentioned compressors, is
how this suffix tree is used to generate conditional symbol probabilities.

PPM generally aims to use only the histogram which exactly matches
the longest observed N-gram, but will “back-off” to lower order N-grams if
instances of higher order N-grams have not yet been observed (or observed
enough times). When this “back-off” is performed, the probability associated
with the unobserved, high-order N-gram is attributed to an escape symbol ,
which can have higher mass because it represents all hitherto unobserved
symbols in a given context. This trait has the computationally beneficial
effect of minimising the number node lookups in the suffix tree for the com-
putation of a conditional symbol probability.

Alternatively, some PPM methods use blending , which takes a weighted
sum of conditional probabilities from relevant histograms for a given symbol’s
context, similar to CTW and Deplump.

2.4.2 PPM-DP’s sequence model

PPM-DP can be thought of as an extension to Deplump and SM, adding addi-
tional parameters. In particular, where Deplump only had depth-dependent
discount parameters d|c|, PPM-DP not only has depth-dependent concentra-
tion α|c|, but also adds an additional parameter dimension of fanout , another
term for ‖Cc‖, the number of unique symbols seen in some context c. Thus,
PPM-DP’s concentration and discount parameters are dependent on both
depth and fanout:

{
α|c|,‖Cc‖, d|c|,‖Cc‖

}
which transform equation (2.4) to

P(s | c) =
Cc[s]− d|c|,‖Cc‖
|Cc|+ α|c|,‖Cc‖

· 1[Cc[s] ≥ 1] +
α|c|,‖Cc‖ + ‖Cc‖ · d|c|,‖Cc‖

|Cc|+ α|c|,‖Cc‖
· P(s | π(c))

(2.7)

Note that both {α,d} are now matrices of parameters, which are used
globally across calculations in the suffix tree. Steinruecken, Ghahramani,
and David MacKay (2015) find that a good configuration for human text
uses {α,d} of sizes |c| ∈ [0, 8) and ‖Cc‖ ∈ [0, 13) in a configuration dubbed

33

CHAPTER 2. EXISTING SEQUENCE MODELLING METHODS

“N8”, with larger values of either depth or fanout “clamping” to the largest
available parameter configuration. For example, d10,100 = d7,12.

The motivation for adding an additional dimension of parameters is to
attempt to provide different weightings for different classes of contexts. The
authors find that fanout and depth are sufficient to define and distinguish
different classes of contexts for the purposes of improving compression per-
formance on human-readable text.

This quadratic growth in parameters presents potential difficulties in find-
ing their appropriate values. As its name suggests, PPM-DP approaches this
challenge through the use of dynamic parameter updates. PPM-DP takes a
gradient-based approach to determine appropriate values for {α,d}. In par-
ticular, the objective to be minimised is compressed sequence length, which
(as described in subsection 1.2.2) is a function of the information content of
a sequence: − log2 P(〈x〉n1). Due to properties of logarithms and the factori-
sation of conditional probabilities:

∇− log2 P
(
〈x〉N1

)
= ∇

N∑
n=1

− log2 P
(
xn
∣∣ 〈x〉n−11

)
Given that our model identifies P

(
xn
∣∣ 〈x〉n−11

)
= P(s | c) given in equa-

tion (2.7), incremental gradients of δP(s | c)
δα|c|,‖Cc‖

, δP(s | c)
δd|c|,‖Cc‖

can be calculated and

used to update parameters appropriately either in an online or offline man-
ner.

2.4.3 Inference and learning in PPM-DP

Tree construction is identical to DeplumpUKN found in subsection 2.3.2,
and either shallow or full updates can be employed. If online parameter
updates are used, the respective gradient updates are applied before counts
are updated and can be incorporated in the same upwards traversal that is
used when learning a symbol.

34

Chapter 3

A Contaminating Compressor

This chapter will explore the use of contamination in compression as a pro-
posed modification to the existing compressors described in chapter 2. A con-
taminating compressor utilises a fixed-size hash table as the backing storage
of a sequence model’s suffix tree, which permits (and embraces) hash colli-
sions for memory and time efficiency. This chapter will begin with a brief
overview of hash tables, followed by a brief overview of the sparse litera-
ture concerning constant-runtime-memory compressors, and then a smaller
overview of attempts in the literature to apply contamination. Finally, we
will analyse results of applying contamination to existing compressors, with
a focus on comparing compression effectiveness against run-time memory
usage.

3.1 Hash Tables

A hash table is a family of data structures for efficiently storing associative
information, where a key is associated with some value. Specifically, some
hash function hmaps a key to an index into a table, or series of buckets, where
an associated value can be found. Hash collisions are when multiple distinct
keys map to the same index. In the event of a collision, some form of collision
resolution is typically employed. Additionally rehashing , or changing the
number of buckets, typically according to the occupancy or load factor of
the hash table, can help to minimise the number of collisions. In general,
for a good rehashing criterion and a good hash function, hash tables can be
advantageous over trees in terms of retrieving associative data because a hash
is typically computed in O(1) whereas tree traversal is typically O(logN) in
the number of keys stored thus far.

Though there are a diverse number of techniques for collision resolution

35

CHAPTER 3. A CONTAMINATING COMPRESSOR

and rehashing , none are of particular interest to this thesis because contam-
ination embraces collisions.

Hash tables, as used in a contaminating compressor, have the following
weakened conditions which greatly simplifies their implementation. Firstly,
the hash table is of a fixed-size, meaning that managing rehashing for table
expansion is no longer required. Secondly, the hash table permits collisions.
As a result, complex collision resolution schemes need not be considered
(though having an understanding of the dynamic load factor, and the gen-
eral distribution of keys throughout the hash table will still be valuable).
Lastly, the hash table does not need to accommodate individual deletions,
just successful destruction. Consequently, node deletion, a complicating im-
plementation detail in many hash tables, can be ignored.

3.2 Existing Work

3.2.1 Constant-Size compressors

All practical implementations of compressors have an implicit, constant mem-
ory limit, which is the total available memory available to the compression
system. Though many workstation systems can silently increase this limit
via paging and memory compression (as shown in Iyigun and Juarez (2015)),
many embedded systems do not have this luxury.

Unbounded, dynamic growth of data structures for compression is prob-
lematic in many applications. As a result, there is usual a desire for some
method of imposing constant runtime memory constraints on compressors.
One popular approach is Amnesia, which deletes a compressor’s entire back-
ing data structure once a pre-defined memory cap is reached. Another popu-
lar approach is Random Deletion, which deletes random nodes in the backing
data structure either once a memory cap is reached, or during insertion.1

Additionally, techniques which interface with a compressor’s underlying se-
quence model can be employed, and generally follow the strategy of heuris-
tically deleting portions of the backing data structure that are deemed less
useful in making good compression decisions. For example, Bartlett, Pfau,
and F. Wood (2010) use a heuristic termed greedy deletion to remove nodes
which cause minimal disturbance to the likelihood of the observed sequence.
The authors found, however, that this heuristic-guided deletion scheme only
offered marginal improvement over a uniform deletion scheme imposed by

1 See McFadden (1992, Lesson 5, Lesson 9), which discusses the implications of Random
Deletion and Amensia respectively in early adaptive compressors.

36

CHAPTER 3. A CONTAMINATING COMPRESSOR

Random Deletion. However both schemes were demonstrably more effective
than Amnesia.

3.2.2 Hashing compressors

Hash tables have often been used as a backing data structure for efficient
implementations in tree-based sequence models, see Volf (2002, Section 4.4)
as well as Cleary and Darragh (1984), Franken and Peeters (2003), and C.
Bloom (2010). However, there is little documented work on the use of hash
table-based compressors which are explicitly designed to permit collisions.
To the best of our knowledge, the only instances of such cases are as follows.

Lelewer and Hirschberg (1991) discuss several performance-motivated
modifications to PPMC, among which is having all third order context his-
tograms use a double hashing scheme for partial collision resolution. Specif-
ically, a context string will be hashed and looked up in a table, if the cor-
responding entry is occupied but not by the same context string (as de-
termined by a separately generated parity byte), a second hashing scheme
is used, which when looked up will have an unconditionally updated entry
potentially “trampling” the existing contents.

Howard and Vitter (1992) mention that “Hashed high-order Markov mod-
els”, (single hashing and no collision resolution) do not significantly degrade
compression performance as one might expect. Although no compression ef-
fectiveness metrics are given, the authors do make a valuable passing remark
that in the “worst-case” of a large-number of contexts sharing a single bucket,
the heavily collided bucket’s histogram will approach the characteristics of a
0-order histogram over the same data seen thus far.

Rein, Guhmann, and Fitzek (2006) discuss the design of an ultra-low
memory (128 kilobyte) compressor which also takes the form of PPMC and
utilises single hashing with so-called collision avoidance. Collision avoidance
in this work means that if a context’s hash maps to an existing, non-matching
entry, the statistics from a lower-order context are used instead. The authors
note that disabling collision avoidance (i.e. contamination) results in poor
compression.

Lastly, Mahoney (2005)’s PAQ family of compressors implicitly permit a
modest number of collisions through the use of a relatively lax means collision
detection,2 as a means of achieving low-latency hash-table element accesses

2 See paq1.cpp::HashElement, which uses an 8-bit checksum for context uniqueness.
Over |As| = 256 and a context depth of 3, this yields a reasonable amount of collisions.
Furthermore, in PAQ7 (see paq7.cpp’s “IMPLEMENTATION” comment), this checksum
was removed entirely for high-order contexts, using a weaker form of collision detection
instead.

37

CHAPTER 3. A CONTAMINATING COMPRESSOR

by reducing cache misses.
We can see in the existing literature, that all preliminary work in this area

exclusively uses hashing as a means of dealing with histograms of high-order
contexts, and use alternative structures for managing histograms of low-
order contexts. Furthermore, we find conflicting reports about the benefit
of contamination, with some authors reporting negligible loss in compression
effectiveness and others reporting catastrophic degradation.

3.3 Random Hashing

The first attempt to examine the characteristics of a contaminating compres-
sor was using a hash table with no collision resolution, and variably-sized
tables, applied directly to the existing methods described in chapter 2.

All aforementioned methods were implemented with a fixed context depth
D = 8, and allowed to execute with an unbounded amount of memory for
each file in the corpus. Separately, a hash-variant of each technique was
deployed to compress the same files corpus files with varying amounts of
memory. Note that the unit of memory used is a Histogram, which have been
represented by an 8-bit counter for every symbol in the alphabet (rescaling
follows the procedure described in section A.1), with two extra numbers
representing the total number of symbols seen in the context, |Cc| (32-bit
counter) and the number of unique symbols seen in the context ‖Cc‖ (8-bit
counter). As a result, a Histogram’s size is

8 bits · |As|+ 32 bits + 8 bits

For |As| = 256 + 1 (An 8-bit alphabet with an out-of-alphabet EOF symbol)
a Histogram is 262 bytes big. Figure 3.1 shows the results of an initial
experiment that uses a uniform random hash table as the backing store for
the suffix tree methods presented in chapter 2 over the Calgary corpus. In
particular, the hashing algorithm used is boost’s hash combine, which is
described further in section A.3.

To construct the hashes of increasing-sized contexts, first the zero-order
context’s hash is taken. This hash is then combined with the most-recent
symbol to form the first-order context hash. The first-order context hash
is combined with the second-most-recent symbol to form the second-order
context hash. This process is repeated until the maximum context depth
is reached. The hashes are then converted to table indices by taking the
modulus of the hash with the allocated table size.

To provide a better intuition for these early results, firstly, one can note
that the baseline compression methods CTW, SMUKN, and PPMDP follow

38

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.1: Comparison of standard compression schemes all using a finite
context depth of D = 8 with associated contaminating variants over select
files in the Calgary corpus. Dotted vertical line indicate memory usage and
compression ratio of unbounded scheme. Grey figures denote that the test file
is not human-readable text. Data points are sampled for every 2p for integer
p ∈ [7, 21). SM1PF is omitted as it exhibits extremely similar compression
effectiveness to SMUKN.

39

CHAPTER 3. A CONTAMINATING COMPRESSOR

known results on human-readable text files: power-law-based compressors
such as PPMDP and SM variants tend offer superior compression effective-
ness over FSMX-based compressors such as CTW. Secondly, for human-
readable text, compression effectiveness improves for hash systems which
have more memory, ultimately approaching the performance of their respec-
tive unbounded variants.

One point of practical interest in these plots is the compression effec-
tiveness where the hash-based compressors have less memory than the un-
bounded compressors. Though, it can be of passing interest, especially in
the case of power-law-based compressors, to see under what memory restric-
tions a Hash-based scheme approaches the compression effectiveness of the
corresponding unbounded scheme. Note that for the FSMX-based compres-
sors, compression effectiveness of the hash variant appears to be identical to
the unbounded variant once equivalent number of histograms are provided.
However, for power-law-based compressors, it appears that more memory
must be given than the unbounded variant to attain identical compression
effectiveness.

Additionally across all human-readable text files, there is consistent sim-
ilar compression effectiveness between both power-law compressors SMUKN
and PPMDP, which tend to have a quasi-convex characteristic, which is dis-
tinct from the quasi-concave characteristic presented by the FSMX-based
compressor CTW. A consequence of these concavity characteristics is that
although unbounded CTW has poorer compression effectiveness than un-
bounded SMUKN and PPMDP, HashCTW has better compression effective-
ness than Hash-Power-Law compressors for stronger memory constraints.

One potential explanation for these different characteristics is the fragility
of power-law compressors to corrupted histograms. Specifically, from equa-
tion (2.5) and equation (2.7), such compressors rely on correct distinction
between zero and non-zero counts of observed symbols in distinct contexts
(note how the activation of 1[Cc[s] ≥ 1] drastically changes the expression of
P(s | c)).

This explanation is substantiated when analysing the behaviour of such
systems with Amnesia constraints applied, which can be found in section 3.4.

As a curiosity, it is worth commenting on the behaviour of these compres-
sion schemes on binary data files. For geo, obj1, and obj2, the rough pattern
seen in human readable text appears to be followed, where the HashFSMX-
compressor appears to have a better compression ratio than Hash-Power-Law
for most of the domain of interest. Note however, that pic demonstrates pe-
culiar properties of our compressors. For the HashFSMX compressor, the
characteristic curve appears similar to human-text files. However, for the
power-law compressors, compression effectiveness appears to worsen initially

40

CHAPTER 3. A CONTAMINATING COMPRESSOR

given more memory, and then improve only after some threshold.
This behaviour too, will be clarified when analysing the behaviour of

Amnesia variants of these systems.
Figure 3.2 shows the compression results of these compressors on the

Canterbury corpus, which consists of larger files than the Calgary corpus.
We can see the same broad behaviour as for the Calgary corpus with a
few nuanced differences. Over most text files, the HashFSMX variant no
longer achieves nearly identical effectiveness to its unbounded counterpart
once equivalent memory is allocated. Notably, this is not due to a poor choice
of hash function (and using alternative, non-cryptographic hash function,
such as FNV,3 does not change this behaviour).

As with the Calgary corpus, binary data files exhibit some peculiar char-
acteristics of our compressors. For example, both sum and kennedy.xls am-
plify the HashFSMX compressor’s behaviour of worsening compression effec-
tiveness given more permitted memory after a certain threshold.

3.4 Comparison with Amnesia

Amnesia is the concept of destroying all accumulated statistics once a mem-
ory threshold has been reached. This differs from contamination because Am-
nesia maintains purity of occurrence statistics up to a memory cap, whereas
contamination opts to capture and preserve more unique context statistics
at the cost of losing purity. An interesting question of this work is whether
purity the most efficient use of memory. From Figure 3.3, several properties
are immediately apparent which might help answer this question.

For human-readable text, it can be seen that all HashCTW models out-
perform AmnesiaCTW models. This result suggests that for FSMX-based
compressors, maintaining histogram purity is not a good use of memory.
Contrarily, it can be seen that for many files AmnesiaPPM-DP outperforms
HashPPM-DP. This demonstrates that maintaining histogram purity per-
mits PPM-DP to have better compression effectiveness than maintaining
more histograms that may be corrupted.

As an aside, the curious results of HashPPM-DP on pic are heightened
given the comparison to AmnesiaPPM-DP. The most effective compression
appears to be presented by AmnesiaPPM-DP with mid-range allocation of
memory as demonstrated by a minimum around 213 histograms. Likely, this
owes to the nature of pic itself, a fax image with much blank space (seen in
Bell et al. (2000)), having drastic changes in distributional statistics after a

3 The impact of hash function choice on compression effectiveness is further investigated
in section A.3.

41

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.2: Comparison of standard compression schemes with contaminating
variants over select files Canterbury corpus.

42

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.3: Comparison of PPM-DP and CTW with contamination and Am-
nesia variants over select files in the Calgary corpus. For Amnesia, the Num-
ber of Histograms represents the maximum number of Histograms the com-
pressor is allowed to create, beyond which the backing Suffix Tree will be
destroyed. SMUKN is omitted due to exhibiting similar behaviour as PPM-
DP.

43

CHAPTER 3. A CONTAMINATING COMPRESSOR

fairly long runs of consistent data. The rapid adaptability bestowed by the
imposition of tight memory constraints may also explain the degradation in
compression effectiveness when Hash-Power-Law compressors are given more
memory in Figure 3.1.

3.5 Maintaining Pure Histograms

The existing work on contaminating compressors discussed in subsection 3.2.2
have predominantly used hashing for histograms of high-order contexts. This
decision likely stems from a confluence of factors, among them intuition
(histograms of low-order contexts are more influential in weighting, so they
should be kept pure; histograms of high-order contexts are already less infor-
mative due to sparsity, thus there should be little harm in their contamina-
tion) and ease-of-implementation (many implementations in the PPM family
of compressors explicitly use back-off, which may lend itself more easily to
using different computational structures to represent different context orders
of histograms). It is thus worthwhile to see the effects of maintaining pure
low-order contexts on compression effectiveness.

The strategy used to ensure that certain context depth’s histograms re-
mained pure was to divide the flat storage used for hashing into two portions.
One portion follows the usual implementation of a dense k-ary tree in a linear
array, while the second portion follows the uniform hashing scheme described
in section 3.3. Histograms context depths up to and including Dp are tracked
in the first portion, while histograms for larger context depths are tracked in
the second portion. Only systems that are large enough to contain enough el-
ements such that the first portion is full and the second portion is non-empty
were examined in experiments.

As demonstrated in Figure 3.4, maintaining purity of histograms cor-
responding to lower-order contexts appears to have a negligible impact on
compression effectiveness. For histogram allocations which are “just barely”
large enough (the integer power of two greater than |As|Dp), compression
effectiveness appears to be worse. This effect can be clearly seen in the
protrusion at 217 in book1 and book2. Relating to the discussion about ef-
fective use of memory in section 3.4, it appears that maintaining low-order
histogram purity is not an efficient utilisation of memory.

One potential rationale for such behaviour is that the occurrence counts
of low-order N-grams are sufficiently dense and large that they are robust
to small perturbations induced by corruption with sparser and smaller high-
order N-gram counts. Furthermore, allocating less overall capacity to capture
high-order N-gram statistics yields a less effective compressor.

44

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.4: Demonstration of HashPPM-DP with various amounts of re-
served “pure” histograms. CTW and SMUKN are omitted due to exhibiting
similar behaviour as PPM-DP in all cases. Decreasing line widths have been
used to demonstrate how similarly all systems behave.

45

CHAPTER 3. A CONTAMINATING COMPRESSOR

3.6 The Influence of Full Updates

As presented in section 16, full updating is the choice of updating the statis-
tics of all relevant histograms for a given context observed. Full updates
contrast with the more widely used scheme of shallow updating, which only
updates histograms for which a given context is newly observed. In a sim-
ilar sense of attempting various techniques found in the literature, perhaps
examining full updating is a worthwhile avenue?

As seen in Figure 3.5, using full updates appears to consistently provide
worse compression effectiveness in contaminating variants (with the excep-
tion of pic). The difference in effectiveness for a single file appears to be
consistent for most of the memory allocation domain, and is roughly equal
to the effectiveness difference between the unbounded variants.

Likely, this constant offset owes to the PPM-DPFull variant using the
same depth and fanout-dependent parameters as the PPM-DP-shallow vari-
ant, which were tuned specifically for shallow updates. This margin could
likely be narrowed by re-tuning the parameters for a system with full updates.

3.7 Concrete Trade-offs in Compression Ef-

fectiveness

Throughout this section have been numerous plots of compression effective-
ness against memory usage in a logarithmic scale. Presenting these results in
a linear scale provides a more intuitive scheme to reason about the trade-off
between memory usage and compression effectiveness.

A novel metric to analyse this trade-off in a linear scale is Compression
Proportion or CP , which is defined in terms of a baseline B and candidate C
such that:

CPB(C) = 2− C

B
= 1− C− B

B

In the event of comparing quantities where lower is better and C ≥ B,4

Compression Proportion is a visually appealing metric because higher values
are better and the best score is one.

From Figure 3.6, the contaminating variant of CTW outperforms all
other constant-space variants for low memory usage, while Amnesia vari-
ants achieve better compression effectiveness for memory usage around 45%
of the baseline unbounded case. A key takeaway is that HashCTW achieves

4 Both compression ratio and information content under a given model (when using an
unbounded compressor as a baseline and a constant-memory variant of that compressor
as a candidate) obey these conditions.

46

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.5: Demonstration of HashPPM-DP and HashPPM-DPFull variants
over the Calgary corpus. CTW omitted because it inherently uses full up-
dates. SM variants omitted because they present near identical behaviour to
PPM-DP.

47

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.6: Compression proportion of variants relative to their un-
bounded baseline models. For example, the HashCTW curve describes
CPCTW(HashCTW).
Higher values (similar compression effectiveness to the baseline) that are to
the left (using less memory) are better.
The test file used is the entire works of Shakespeare concatenated (5,736,236
bytes). All unbounded baseline models required 4,200,496 histograms.

48

CHAPTER 3. A CONTAMINATING COMPRESSOR

Figure 3.7: Compression proportion of variants relative to the best perform-
ing model, unbounded SM1PF with a compression ratio of 1.899 b

B
. For

example, the HashCTW curve describes CPSM1PF(HashCTW)

only a 2.5% worse compression effectiveness using only 30% of the memory
as its unbounded variant.

Though, Figure 3.6 is misleading, as the baseline is variable and is thus
not against the best model. Figure 3.7 paints a different picture of the com-
pression effectiveness landscape more in line with results shown in Figure 3.3.
Explicitly, it appears that Amnesia-Power-Law variants present better com-
pression effectiveness than all contaminating variants for any memory allo-
cations greater than around 20% of unbounded memory usage.

3.8 Implementation Notes

3.8.1 Implementation of Amnesia

For Amnesia, a relatively straightforward approach was taken where after a
symbol has been learned, evaluation of the model’s memory footprint takes

49

CHAPTER 3. A CONTAMINATING COMPRESSOR

place. If the memory footprint is found to exceed the given threshold, the
backing data structure is destroyed and the symbol is re-learned in the given
context. A subtle hitch is that if the context depth is sufficiently large, and
the memory cap is sufficiently small, this can result in an infinite loop.5 In
reality, this “check-after learning” approach is unrealistic, as running out of
memory would typically happen during the course of a symbol being learned.
Real implementations on embedded devices would not be overwhelmingly
more complicated, as one could have the out-of-memory handler trigger the
destruction of the context tree and re-learn the current symbol.

3.8.2 Implementation notes for suffix tree compressors

There were a number of important design considerations when implementing
the compressors for this thesis. The priorities in implementation were the
maintenance of correctness, reasonable performance, and rapid development
to facilitate searching through a wide number of different techniques. Below
are some relevant design aspects of this thesis’s supporting implementation
which were helpful to address these priorities.

Distinguishing between integer-encoded entities

Most compressors need to deal with integer-encoded data for several distinct
entities. These entities include input symbols, output symbols, input alpha-
bet size, output alphabet size, symbol counts, and histogram bookkeeping
(such as pointers or references to histograms in a backing data structure).
Because many C-like programming languages support generally lax integer
conversion,6 improper differentiation between these entities can lead to ex-
traordinarily subtle bugs. Although proper programming discipline (i.e. not
making mistakes) and a plethora of runtime checks are approaches that work
for many compressor implementations in either a practical or research con-
text, the following insight was valuable in this thesis’s supporting implemen-
tation.

A sequence model need only be responsible for understanding characteris-
tics of the input symbol alphabet. Because the input symbol alphabet can be
described statically (i.e. in terms of permitted values and a total size), and

5 For precisely this reason Figure 3.3 has a lower bound of permitted histograms much
larger than the employed context depth.

6 In C and C++, these conversions are referred to as the Usual arithmetic conversions
(described by Implicit Conversions (2022)), in Java, they are Integer Conversions and
Promotions (described by Gosling et al. (2013)), and in C# these conversions are referred
to as the Built-in Numeric Conversions (described by Wagner et al. (2022)).

50

CHAPTER 3. A CONTAMINATING COMPRESSOR

the declaration of a sequence model can be made dependent on such a static
definition, in a programming language with sufficient compile-time program-
ming facilities it is possible to form a compile-time error when one attempts
to perform any invalid conversions implicitly. For example, a program at-
tempting to compress bit-symbols with a compressor declared to compress
byte-level symbols will not compile successfully. Moving such correctness-
testing to compile-time drastically improves run-time performance, as run-
time symbol checks are no longer necessary to ensure correctness.

Similarly, all other aforementioned entities can be strongly-typed7 which
will create compile-time errors for any invalid conversions between such en-
tities.

Separating traversal and histogram manipulation

A typical implementation of a suffix tree compressor embeds child and vine
pointers in the histogram and marries traversal logic with histogram ma-
nipulation. In the typical implementation of a hash compressor it is more
natural, however, to separate node traversal from histogram manipulation.
This is because histogram lookup (typically through a hash function) is
done globally in a single table, rather than locally traversing histograms
(a.k.a “pointer-chasing”). If this externalised structure is mimicked in the
unbounded/suffix-tree implementations, then histogram manipulation need
only be written once for each method, and traversal logic can be implemented
separately. Such modularisation schemes are important because compressor
implementations are often subtle, complex, and error prone. Additionally,
if modularisation is achieved, then for N unique traversal methods and M
unique histogram manipulation methods, only N +M methods must be im-
plemented rather than N ·M methods.

As a result, the dominant implementation structure of suffix tree com-
pressors in this thesis’s supporting implementation was to maintain a flat
storage of histograms with an external adjacency list describing node map-
pings. Such a design provides clean separation of histogram manipulation
and traversal logic.

Composition through static polymorphism

The aforementioned modularisation and separation of concerns permit a
declarative means of defining novel compressors via composition.

7 In C, for example, any unique enum is strongly-typed, meaning it cannot be implicitly
converted to any other type. In other C-like languages, the use of an aggregate such as a
class or struct is a more idiomatic way to produce strongly-typed integers.

51

CHAPTER 3. A CONTAMINATING COMPRESSOR

For example, the traversal methods described in section 16: TopDown-

Traversal, BottomUpTraversal, and CocktailShakerTraversal can be
combined with different backing schemes, such as AdjacencyList or Hashing.8

This composition can be extend further, for example, by the Hashing back-
ing scheme relying on FNVHash or hash combine. To illustrate a full-featured
declaration of a compressor using C++ template syntax, the traversal scheme
of a CTW compressor utilising FNV hashing could instantiated declaratively
as TopDownTraversal<Hashing<FNVHash>>.

Though the notion of clean interface separation is not novel in the con-
text of research compressor implementations, existing implementations re-
alise composition through dynamic polymorphism. For example, TopDown-
Traversal would maintain a virtual reference to some arbitrary backing
scheme. The runtime costs of dynamic polymorphism (typically an indirec-
tion through a virtual table) are nontrivial when dereferencing is on the “hot
path”, which is the case for compressors, as operations are performed per-
symbol, symbols are bytes, and input files are typically millions or billions
of bytes. However, the use of static polymorphism (achieved in this thesis’s
supporting implementation through the use of C++’s template facilities),
permits the compiler to “optimise away” the costs of dynamic polymorphism
while keeping the benefits of readability and single-definitions.

8 Distinct histogram manipulation schemes are necessarily attached to a corresponding
traversal scheme. For example, although one could associate a CTW manipulation scheme
(which relies on a top-down traversal) with a bottom-up traversal, one would not arrive at
coherent probabilities because probability weighting inherently favors lower-order contexts.
The same applies to PPM-DP, which could theoretically function if depth and fanout-
dependent parameters were re-trained.

52

Chapter 4

Conclusion

This thesis explored a novel, generally-applicable technique to sequence mod-
els used in lossless data compression: the use of contamination in suffix-tree-
based sequence models to impose O(1) memory usage restrictions. A con-
taminating compressor utilises a fixed-size hash table as the backing storage
of a sequence model’s suffix tree, which permits (and embraces) hash colli-
sions for memory and time efficiency. In some cases, contamination presents
improved utilisation of reduced memory over other generally-applicable tech-
niques, such as Amnesia. For appropriate choices of parameters, contamina-
tion was found to reduce peak run-time memory usage of certain sequence
models by 70% at a cost of only 2.5% worse compression effectiveness.

This thesis can make the following recommendations for the design of
a suffix-tree-based compressor that operates on human-readable text. For
intense memory restrictions (using less than 1% of the peak run-time mem-
ory usage of an unbounded suffix-tree-based compressor), one should use
contamination over Amnesia as a means of restricting sequence model size
(regardless of the underlying sequence model). With slightly weaker memory
restrictions (anywhere from 10% or more of the peak run-time memory usage
of an unbounded compressor) and a sequence model that is power-law-based,
one should use of Amnesia over contamination as a means of restricting se-
quence model size. In the case of a compressor whose underlying sequence
model is FSMX-based, one should use contamination over Amnesia.

A difficult design decision in the implementation of a compressor is deter-
mining a good trade-off between resource utilisation and compression effec-
tiveness. The tools available to compressor designers making such a decision,
without deviating significantly from their chosen model or architecture in-
clude techniques such as Amnesia or random deletion. Contamination is
a generally-applicable modification to a broad family of compressors which
presents the same ability to finely control run-time memory usage as Amne-

53

CHAPTER 4. CONCLUSION

sia, but has been shown in a variety of cases to present improved compression
effectiveness.

4.1 Future Work

Candidates worthy of investigation with contamination that are unexplored
in this thesis are infinite-depth compressors such as PPM*, CTW*, and
infinite-depth Deplump, which do not use an explicit context depth and
typically require the use of compacted suffix trees (see subsection 2.1.2). It
would be worthwhile to see if the same memory-effectiveness trade-off is seen
between infinite-depth unrestricted compressors and infinite-depth contami-
nating compressors.1

Additionally, it might be interesting to investigate a hybrid Amnesia and
contamination approach, which uses contamination normally, but under some
heuristic condition resets all accumulated statistics as is done in Amnesia.
Such a compressor might find a sweet spot where the accumulated statistics
do not get too inaccurate from premature deletion in Amnesia, and not too
inaccurate from the histogram collisions caused by prolonged use of contam-
ination. A hybrid compressor may present better compression-effectiveness
characteristics than simple contaminating compression, particularly in the
case of power-law-based sequence models.

As a means of further improving power-law-based compressors under con-
tamination and taking inspiration from PPM-DP’s novel contributions: it
may be worthwhile to add more context-distinguishing parameters for his-
togram weighting on top of the fanout-dependent and depth-dependent pa-
rameters. Specifically, a “histogram-corruption”-dependent parameter which
changes as some function of the number unique contexts that map to a
given histogram could weight the indicator function present in equation (2.7).
Counting the number of unique contexts could be facilitated in constant space
through the use of a fixed-size array, using a context hash as a unique identi-
fier and employing similar saturating/clamping mechanisms as described in
section 2.4. The optimisation of these additional parameters would follow the
same approach used to optimize fanout and depth-dependent parameters.

Along the lines of incorporating context information in contaminating ap-
proaches, another method which could potentially improve the performance
of power-law-based sequence models is a more intelligent collision design, or
an intelligent method that decides when to collide histogram statistics of
distinct contexts. Perhaps this method could incorporate existing histogram

1 For an investigation of infinite-depth Deplump and Amnesia, see Bartlett, Pfau, and
F. Wood (2010).

54

CHAPTER 4. CONCLUSION

statistics when selecting where to place the statistics of a novel context. Such
a method would require a small, per-histogram overhead to track which con-
texts map to the current histogram. Although an initial attempt may use a
fixed-size array of context hashes, one could also use a Bloom Filter (B. H.
Bloom (1970)) or another probabilistic data structure for set membership
testing, whose accuracy degrades more gracefully a fixed-size array as the
number of inserted elements increases.

Lastly, the excellent memory and compression effectiveness trade-off pre-
sented through the use of contamination in this thesis might be attractive in
an ensemble setting such as PAQ from Mahoney (2005) as a means of further
increasing ensemble size.2

2 Due to the implementation of PAQ effectively being several hash-tables identifying
different counts of different context occurrences (for example, N-grams of bytes, N-grams of
text, N-grams gaps) where looked-up counts are combined in a neural network to arrive at
conditional symbol probabilities, using contamination would mean reducing or eliminating
collision detection mechanisms present for different context tables.

55

Appendix A

Computational Details

A.1 Efficiently Rescaling Narrow-Width In-

tegers

Although integer division is typically a high-latency operation in most mi-
croarchitectures, divide-by-two-and-round-up can be efficiently implemented
in terms of three efficient bitwise operations.

uint8_t rescale(uint8_t count):

// Determine if count is odd.

tmp = count & 0x1;

// Divide by two, rounding down.

count >>= 0x1;

// Correct for odd numbers being rounded down.

count += tmp;

return count;

This procedure is not only amenable to vectorization (provided that all
counts are stored contiguously), but also avoids short conditional jumps or
predication-induced serialisation which would typically be required by a sat-
urating scheme.

A.2 Incremental Computation in CTW

Following a proof given in Willems, Shtarkov, and Tjalkens (1995), under a
binary alphabet for |C| = 0 and Pleaf(s | c) = 1

2
, then if a symbol s is seen the

following update is performed:

56

APPENDIX A. COMPUTATIONAL DETAILS

Pleaf(s | c)←
C [s] + 1

2

|C|+ 1
· Pleaf(s | c)

For a given update along a single path, the
∏

l∈As
term from equation (2.1)

only has a single changed value, which can be incrementally updated as well
(provided appropriate weighting by 1

2
).

A.3 boost::hash combine and the Choice of a

Non-Cryptographic Hash Function

Boost’s hash combine is a state-less scheme for incrementally constructing a
hash described in James (2006). Inspired initially by techniques presented in
Hoad and Zobel (2003), the entire implementation can be written concisely
as:

uint32_t hash_combine(uint32_t seed, uint32_t value) {

return seed ^ (value + 0x9e3779b9 + (seed<<6) + (seed>>2));

}

Which has the appealing property of being exceptionally efficient, requir-
ing just five bit-wise arithmetic operations, many of which can be conducted
in parallel.

The magic number 0x9e3779b9 results from the binary expansion of the
quotient formed from an irrational number: 232

φ
= 232

1+
√
5

2

, and serves to avoid

mapping 0→ 0.
However, hash combine is a subpar hash function due to the fact that for

distinct {a, b}, the probability of a collision, or that hash combine(seed, a)

equals hash combine(seed, b) is much greater than the desirable 1
2p

which
a good non-cryptographic, uniform hash would provide.

That being said, using a more standard (and slightly more computa-
tionally expensive) hash function which avoids these properties, such as the
Fowler-Noll-Vo hash described in Fowler et al. (2019) does not yield empirical
improvement in compression effectiveness.

uint32_t fnv_offset = // Some value

uint32_t fnv_prime = // Some value

uint32_t init_seed = fnv_offset;

uint32_t fnv_hash_combine(uint32_t seed, uint32_t value) {

57

APPENDIX A. COMPUTATIONAL DETAILS

for (int i = 0; i < 32; i+=8) {

char byte = (value >> i) & 0xFF;

acc ^= byte;

acc *= fnv_prime;

}

return acc;

}

The FNV hash function1 is more computationally expensive as it works
byte-wise and involves an integer multiplication for each byte, does not yield
improved compression over the Calgary corpus, as shown in Figure A.1.

1 The algorithm described above uses the FNV-1a variant which performs an exclusive-
or before multiplying, which yields slightly better dispersion properties as described in
Fowler et al. (2019, Section 2).

58

A
P

P
E

N
D

IX
A

.
C

O
M

P
U

T
A

T
IO

N
A

L
D

E
T

A
IL

S

Figure A.1: Comparison of hash combine and FNV as the hash function for contaminating variants of CTW and
PPM-DP over the Calgary corpus. Notably, FNV and hash combine curves nearly overlap, implying that the choice
of hash function for a uniform hashing scheme does not drastically impact compression effectiveness.

59

Appendix B

Compression Results on Full
Corpora

For brevity, only “vanilla” contaminating compression effectiveness is shown
over both the Canterbury and Calgary corpora. All other variants discussed
in chapter 3 are demonstrated over the Calgary corpus alone.

60

A
P

P
E

N
D

IX
B

.
C

O
M

P
R

E
S
S
IO

N
R

E
S
U

L
T

S
O

N
F

U
L

L
C

O
R

P
O

R
A

Figure B.1: Comparison of standard compression schemes all using a finite context depth of D = 8 with associ-
ated hash variants over the Calgary corpus. Dotted vertical line indicate memory usage and compression ratio of
unbounded scheme. Grey figures denote that the test file is not human-readable text. Data points are sampled
for every 2p for integer p ∈ [7, 21). SM1PF is omitted as it exhibits extremely similar compression effectiveness to
SMUKN.

61

A
P

P
E

N
D

IX
B

.
C

O
M

P
R

E
S
S
IO

N
R

E
S
U

L
T

S
O

N
F

U
L

L
C

O
R

P
O

R
A

Figure B.2: Comparison of standard compression schemes with contaminating variant over the Canterbury corpus.
Note that ptt5 is identical to pic from the Calgary corpus.

62

A
P

P
E

N
D

IX
B

.
C

O
M

P
R

E
S
S
IO

N
R

E
S
U

L
T

S
O

N
F

U
L

L
C

O
R

P
O

R
A

Figure B.3: Comparison of PPM-DP and CTW with contaminating and Amnesia variants over the Calgary corpus.
For Amnesia, the independent variable represents the maximum number of Histograms the compressor is allowed
to create, beyond which the backing Suffix Tree will be destroyed. SMUKN is omitted due to exhibiting similar
behaviour as PPM-DP.

63

A
P

P
E

N
D

IX
B

.
C

O
M

P
R

E
S
S
IO

N
R

E
S
U

L
T

S
O

N
F

U
L

L
C

O
R

P
O

R
A

Figure B.4: Demonstration of HashPPM-DP with various amounts of reserved “pure” histograms. CTW and
SMUKN are omitted due to exhibiting similar behaviour as PPM-DP in all cases. Decreasing line widths have been
used to demonstrate how similarly all systems behave.

64

A
P

P
E

N
D

IX
B

.
C

O
M

P
R

E
S
S
IO

N
R

E
S
U

L
T

S
O

N
F

U
L

L
C

O
R

P
O

R
A

Figure B.5: Demonstration of HashPPM-DP and HashPPM-DPFull variants over the Calgary corpus. CTW omitted
because it inherently uses full updates. SM variants omitted because they present near identical behaviour to PPM-
DP.

65

Bibliography

Bartlett, Nicholas, David Pfau, and Frank Wood (Aug. 2010). “Forgetting
Counts: Constant Memory Inference for a Dependent Hierarchical Pitman-
Yor Process”. In: ICML 2010, pp. 63–70.

Bell, Tim et al. (2000). Description of the fax file. url: https://corpus.
canterbury.ac.nz/descriptions/cantrbry/fax.html.

Bloom, Burton Howard (1970). “Space/Time Trade-Offs in Hash Coding with
Allowable Errors”. In: Commun. ACM 13.7, pp. 422–426. doi: 10.1145/
362686.362692. url: https://doi.org/10.1145/362686.362692.

Bloom, Charles (2010). Hashes and Cache Tables. url: http://cbloomrants.
blogspot.com/2010/11/11-19-10-hashes-and-cache-tables.html.

Chen, Stanley F. and Joshua Goodman (1998). An Emperical Study of Smooth-
ing Techniques for Language Modeling. Tech. rep. 10-98. Harvard Univer-
sity.

Cleary, John G. and John J. Darragh (1984). A Fast Compact Representation
of Trees Using Hash Tables.

Cleary, John G. and Ian H. Witten (1984). “Data Compression Using Adap-
tive Coding and Partial String Matching”. In: IEEE Transactions on
Communications 32.4, pp. 396–402. doi: 10.1109/tcom.1984.1096090.
url: https://doi.org/10.1109%2Ftcom.1984.1096090.

De La Briandais, Rene (1959). “File Searching Using Variable Length Keys”.
In: Papers Presented at the the March 3-5, 1959, Western Joint Com-
puter Conference. IRE-AIEE-ACM ’59 (Western). San Francisco, Califor-
nia: Association for Computing Machinery, pp. 295–298. doi: 10.1145/
1457838.1457895. url: https://doi.org/10.1145/1457838.1457895.

Fano, Robert M. (1949). The Transmission of Information. Tech. rep. 65.
Massachusetts Institute of Technology.

Fowler, Glenn et al. (2019). The FNV Non-Cryptographic Hash Algorithm.
Internet-Draft. Internet Engineering Task Force. url: https://datatracker.
ietf.org/doc/draft-eastlake-fnv/17/.

Franken, Erik and Marcel Peeters (2003). CTW Overview: Storing the Con-
text Tree in a Hash Table. url: https : / / web . archive . org / web /

66

https://corpus.canterbury.ac.nz/descriptions/cantrbry/fax.html
https://corpus.canterbury.ac.nz/descriptions/cantrbry/fax.html
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
http://cbloomrants.blogspot.com/2010/11/11-19-10-hashes-and-cache-tables.html
http://cbloomrants.blogspot.com/2010/11/11-19-10-hashes-and-cache-tables.html
https://doi.org/10.1109/tcom.1984.1096090
https://doi.org/10.1109%2Ftcom.1984.1096090
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://datatracker.ietf.org/doc/draft-eastlake-fnv/17/
https://datatracker.ietf.org/doc/draft-eastlake-fnv/17/
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html

BIBLIOGRAPHY

20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.

html.
Fredkin, Edward (1960). “Trie Memory”. In: Commun. ACM 3.9, pp. 490–

499. doi: 10.1145/367390.367400. url: https://doi.org/10.1145/
367390.367400.

Gasthaus, Jan, Frank Wood, and Yee Whye Teh (Jan. 2010). “Lossless Com-
pression Based on the Sequence Memoizer”. In: Proceedings of the 2010
Data Compression Conference, pp. 337–345. doi: 10.1109/DCC.2010.36.

Gosling, James et al. (2013). Conversions and Promotions (From: The Java
SE 7 Language Specification). url: https://docs.oracle.com/javase/
specs/jls/se7/html/jls-5.html.

Griffiths, Thomas et al. (2003). “Hierarchical topic models and the nested
Chinese restaurant process”. In: Advances in neural information process-
ing systems 16.

Hancock, J. C. and J. L. Holsinger (1962). Some Useful Coding Techniques
for Binary Communication Systems. Tech. rep. Purdue University.

Hoad, Timothy C and Justin Zobel (2003). “Methods for identifying ver-
sioned and plagiarized documents”. In: Journal of the American society
for information science and technology 54.3, pp. 203–215.

Howard, Paul G. and Jeffrey Scott Vitter (1992). “Practical Implementations
of Arithmetic Coding”. In: Image and Text Compression. Ed. by James
A. Storer. Boston, MA: Springer US, pp. 85–112. doi: 10.1007/978-1-
4615-3596-6_4. url: https://doi.org/10.1007/978-1-4615-3596-
6_4.

Huffman, David A. (1952). “A Method for the Construction of Minimum-
Redundancy Codes”. In: Proceedings of the IRE 40.9, pp. 1098–1101.
doi: 10.1109/JRPROC.1952.273898.

Implicit Conversions (2022). url: https://en.cppreference.com/w/c/
language/conversion.

Iyigun, Mehmet and Seth Juarez (2015). Memory Compression in Windows
10.

James, Daniel (2006). Boost container hash Documentation: Combining Hash
Values. url: https://www.boost.org/doc/libs/1_79_0/libs/

container_hash/doc/html/hash.html#combine.
Kneser, Reinhard and Hermann Ney (1995). “Improved backing-off for m-

gram language modeling”. In: 1995 international conference on acoustics,
speech, and signal processing. Vol. 1. IEEE, pp. 181–184.

Lelewer, D.A. and D.S. Hirschberg (1991). “Streamlining context models
for data compression”. In: Proceedings of the 1991 Data Compression
Conference. Pp. 313–322. doi: 10.1109/DCC.1991.213349.

67

https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://web.archive.org/web/20110823225156fw_/http://www.ele.tue.nl/ctw/overview/hashing.html
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1109/DCC.2010.36
https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1109/JRPROC.1952.273898
https://en.cppreference.com/w/c/language/conversion
https://en.cppreference.com/w/c/language/conversion
https://www.boost.org/doc/libs/1_79_0/libs/container_hash/doc/html/hash.html#combine
https://www.boost.org/doc/libs/1_79_0/libs/container_hash/doc/html/hash.html#combine
https://doi.org/10.1109/DCC.1991.213349

BIBLIOGRAPHY

MacKay, David J.C. and Linda C. Bauman Peto (1995). “A hierarchical
Dirichlet language model”. In: Natural language engineering 1.3, pp. 289–
308.

Mahoney, Matthew Vincent (2005). Adaptive weighing of context models for
lossless data compression. Tech. rep.

Martin, G. N. N. (1979). “Range Encoding: An Algorithm for Removing
Redundance from a Digitised Message”. In: Proceedings of the Video and
Data Recording Conference.

Marton, Yuval, Ning Wu, and Lisa Hellerstein (2005). “On Compression-
Based Text Classification”. In: Advances in Information Retrieval. Ed.
by David E. Losada and Juan M. Fernández-Luna. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 300–314.

McFadden, Andrew (1992). Hacking Data Compression. url: https : / /

fadden.com/apple2/hdc/index.html.
Pasco, Richard Clark (1976). “Source Coding Algorithms for Fast Data Com-

pression”. PhD thesis. Stanford University.
Rein, S., C. Guhmann, and F.H.P. Fitzek (2006). “Low-complexity compres-

sion of short messages”. In: Data Compression Conference (DCC’06),
pp. 123–132. doi: 10.1109/DCC.2006.45.

Rissanen, Jorma (1976). “Generalized Kraft Inequality and Arithmetic Cod-
ing”. In: IBM J. Res. Dev., pp. 198–203.

— (1986). “Complexity of strings in the class of Markov sources”. In: IEEE
Transactions on Information Theory 32.4, pp. 526–532.

Rissanen, Jorma and Glen G. Langdon (1979). “Arithmetic Coding”. In: IBM
Journal of Research and Development 23.2, pp. 149–162. doi: 10.1147/
rd.232.0149.

— (1981). “Universal modeling and coding”. In: IEEE Transactions on In-
formation Theory 27.1, pp. 12–23. doi: 10.1109/tit.1981.1056282.
url: https://doi.org/10.1109%2Ftit.1981.1056282.

Shannon, Claude E. (1948). “A mathematical theory of communication”. In:
The Bell System Technical Journal 27.3, pp. 379–423. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

Stan, M.R. and W.P. Burleson (1995). “Bus-invert coding for low-power
I/O”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 3.1, pp. 49–58. doi: 10.1109/92.365453.

Steinruecken, Christian (2014). “Lossless Data Compression”. PhD thesis.
University of Cambridge.

Steinruecken, Christian, Zoubin Ghahramani, and David MacKay (2015).
“Improving PPM with Dynamic Parameter Updates”. In: 2015 Data
Compression Conference, pp. 193–202. doi: 10.1109/DCC.2015.77.

68

https://fadden.com/apple2/hdc/index.html
https://fadden.com/apple2/hdc/index.html
https://doi.org/10.1109/DCC.2006.45
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1109/tit.1981.1056282
https://doi.org/10.1109%2Ftit.1981.1056282
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/92.365453
https://doi.org/10.1109/DCC.2015.77

BIBLIOGRAPHY

Volf, Paulus Adrianus Jozef (2002). “Weighting Techniques in Data Com-
pression: Theory and Algorithms”. PhD thesis. Technische Universiteit
Eindhoven.

Wagner, Bill et al. (2022). Built-in numeric conversions (C# reference). url:
https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/builtin-types/numeric-conversions.
Willems, Franz M.J., Yuri M. Shtarkov, and Tjalling J. Tjalkens (1995). “The

context-tree weighting method: basic properties”. In: IEEE Transactions
on Information Theory 41.3, pp. 653–664. doi: 10.1109/18.382012.
url: https://doi.org/10.1109%2F18.382012.

Witten, Ian H., Radford M. Neal, and John G. Cleary (June 1987). “Arith-
metic Coding for Data Compression”. In: Commun. ACM 30.6, pp. 520–
540. doi: 10.1145/214762.214771. url: https://doi.org/10.1145/
214762.214771.

Wood, Frank D. et al. (2009). “A stochastic memoizer for sequence data”.
In: ICML, pp. 1129–1136. url: https://doi.org/10.1145/1553374.
1553518.

Yang, Ke, Sian-Jheng Lin, and Honggang Hu (2018). “A Modified Version of
Huffman Coding with Random Access Abilities”. In: Proceedings of 2018
IEEE 4th International Conference on Computer and Communications,
pp. 34–38.

Zipf, George Kingsley (1945). “The meaning-frequency relationship of words”.
In: The Journal of general psychology 33.2, pp. 251–256.

69

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/numeric-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/numeric-conversions
https://doi.org/10.1109/18.382012
https://doi.org/10.1109%2F18.382012
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/1553374.1553518
https://doi.org/10.1145/1553374.1553518

	List of Figures
	Nomenclature
	Introduction
	Lossless Compression
	Probability Foundations and Context
	How much can we compress?
	Entropy and surprise
	Adversarial inputs and poor models

	Coding
	Huffman Codes
	Arithmetic Coding
	Shakespeare on a ruler
	An infinite precision Arithmetic Coder
	A finite-precision Arithmetic Coder

	Sequence Modelling and Compression
	Histograms: properties and design
	Histogram semantics
	Histogram internals and storage
	Histogram access
	Histogram set transformation
	Histogram updating

	Existing Sequence Modelling Methods
	Suffix Trees
	A formal description and demonstration
	Compacted suffix trees

	Context Tree Weighting
	CTW's sequence model
	Inference and learning in CTW

	Deplump
	SM: Deplump's sequence model
	Hierarchical Pitman-Yor Processes
	From Hierarchical Pitman-Yor to Deplump

	Inference and learning in Deplump

	PPM-DP
	Classical PPM approaches
	PPM-DP's sequence model
	Inference and learning in PPM-DP

	A Contaminating Compressor
	Hash Tables
	Existing Work
	Constant-Size compressors
	Hashing compressors

	Random Hashing
	Comparison with Amnesia
	Maintaining Pure Histograms
	The Influence of Full Updates
	Concrete Trade-offs in Compression Effectiveness
	Implementation Notes
	Implementation of Amnesia
	Implementation notes for suffix tree compressors
	Distinguishing between integer-encoded entities
	Separating traversal and histogram manipulation
	Composition through static polymorphism

	Conclusion
	Future Work

	Computational Details
	Efficiently Rescaling Narrow-Width Integers
	Incremental Computation in CTW
	boost::hash_combine and the Choice of a Non-Cryptographic Hash Function

	Compression Results on Full Corpora
	Bibliography

