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Abstract

Contrastive language-image pre-training has emerged to be a simple yet effective way to train large-
scale vision-language models [165, 83, 181, 220] that are capable of learning semantic and structured
information jointly from images and texts – this has been fostered by the curation of internet-scale
multi-modal datasets. These models are capable of remarkable zero-shot performance on unseen
visual tasks corroborating their rich correlated multi-modal knowledge. This has led to their wide-
spread use in several downstream tasks like image classification, semantic segmentation, visual
question-answering etc. However, a key understanding of why these models work so well is still
lacking.

In this thesis, we aim to understand one such large-scale vision-language model, CLIP [165]. We
dive deep into unpacking the CLIP model architecture, and present a counter-intuitive phenomenon that
occurs in its embedding space called the Modality Gap. We showcase the existence of this modality
gap in several settings and hypothesise possible reasons for its existence. We then systematically study
the emergence of this modality gap by trying to reproduce realistic behaviour through several toy
experiments, which we then transfer to real world settings. Having gained an improved understanding
of what the modality gap is and why it exists, we set about delineating its implications on downstream
tasks. We discuss how the presence of the modality gap prevents effective visualisation of vision-
language embedding spaces. We then present a simple method to mitigate this issue thereby leading
to an increased interpretability of CLIP’s embedding space. We then uncover problems with CLIP’s
intra-image embedding space, and discuss its implications on few-shot classification tasks. We
propose a method called TIP-X that fixes these issues and achieves state-of-the art results for few-shot
classification on 11 benchmark datasets. Finally, we study a new task, vector arithmetic, under the
light of the modality gap in CLIP’s embedding space. We conclude our thesis by discussing the
implications of the modality gap on downstream task and vector arithmetic performance, and find
interesting and conflicting regimes emerging.
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Chapter 1

Introduction

We perceive the world around us through multiple sensory inputs [142]. For example, our eyes help
us sense our surroundings through the visual lens, and our ears help us localise sounds related to
diverse objects. Clearly, our brain simultaneously processes such multi-modal inputs [101, 188, 9]
– the complementary information encoded by these different modalities is combined efficiently to
enable us to perform varied tasks [183, 21].

Inspired by this multi-modal processing in the human brain, the deep learning community has
embraced the idea of learning from multiple modalities to effectively solve several tasks. Recent years
have seen an influx of large pre-trained multi-modal foundation models [16] that efficiently train on
web-scale multi-modal datasets, and are capable of learning data representations that are transferable
to several uni-modal and multi-modal downstream tasks [165, 160, 181, 209, 223, 83, 3, 111, 218,
100, 115, 48, 222]. In this thesis, we limit our scope to studying pre-trained vision-language models
i.e. models that are trained to learn representations for image and text data only.

OpenAI’s CLIP [165] is one prominent vision-language model that has shown impressive zero-shot
classification and cross-modal retrieval performance. By leveraging large-scale paired image-text data,
CLIP learns a shared multi-modal embedding space with rich semantic properties. CLIP’s remarkable
performance on unseen visual tasks further demonstrates the utility of this embedding space in not only
correlating multi-modal knowledge, but also improving downstream task performance. As a result,
the emergence of CLIP has fostered several works that aim to utilise its strong representation learning
capabilities on a myriad of downstream tasks including few-shot image classification [232, 56, 239,
240, 235], video-retrieval [11, 10, 127], depth estimation [236], image captioning [223, 140, 15, 32]
and visual question answering [178, 92]. However, most of these methods are heuristic and somewhat
poorly understood. They simply optimise for downstream task performance without comprehending
the effects on the underlying embedding space. Rather than taking this top-down approach, a more
principled bottom-up approach of understanding the embedding space can lead to better insights into
why the model performs so well, contributing to increased interpretability. There are several such
bottom-up analyses of uni-modal embedding spaces in self-supervised representation learning [203,
63, 37], manifold learning [191, 163] and generative modelling [8, 179, 175]. However, despite the
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aforementioned plethora of vision-language models, only a handful of works try to understand the
properties of their multi-modal embedding spaces.

One such interesting work from Liang et al. [118] uncovers a fascinating geometric phenomenon
called the Modality Gap. They observe that the image and text embeddings of CLIP (and several of
its variants) lie far apart in the embedding space. They explain this phenomenon by analysing the
loss used to train CLIP-like models. They further perform some analyses on the implications of this
effect on downstream tasks. However, they do not study these relationships in concrete detail and
only provide a brief overview of the modality gap.

In this thesis, we aim to tease apart the modality gap phenomenon in greater detail. We first
introduce the modality gap by demonstrating its existence in several vision-language models and
subsequently hypothesising possible reasons for it. We then conduct toy simulations to test our
hypotheses by digging into the properties of the embedding space. Finally, we discuss the implications
of the modality gap phenomenon on multi-modal downstream tasks.

1.1 Contributions

We now lay out the explicit contributions made by this thesis to the field of multi-modal learning. To
the best of our knowledge, these are novel contributions.

• We decompose the factors affecting the contrastive loss into six abstract factors, and provide
intuitive explanations for the existence of the modality gap. Through this, we build on pre-
vious works that explain the behaviour of the embedding spaces of vision-language models
(Chapter 4).

• We propose a novel yet simple method for the visualisation of the embedding spaces of vision-
language models, that can capture their underlying semantic structure (Section 5.1).

• We dig into the properties of CLIP’s embedding space, and uncover a pathology with respect to
its intra-modal vs inter-modal similarity comparisons. By proposing a simple fix, we obtain
state-of-the-art results on 11 benchmark datasets for few-shot image classification (Section 5.2).

• We provide an in-depth study of the relationships between modality gap, downstream task
performance and vector arithmetic performance (Section 5.3).

1.2 Thesis Outline

We now outline the broad structure of the thesis, by enumerating each of the chapters with a brief
description for each.

In Chapter 2, we provide a thorough review of multi-modal learning methods and their evolution
over the years. As CLIP and its variants are used extensively in this work, we review CLIP’s training
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and inference paradigms. We also describe two major frameworks, namely Prompt Learning and
Adapters, that aim to improve CLIP’s few-shot classification performance. We then move into the first
of the three technical chapters of the thesis.

In Chapter 3, we give a broad overview of the modality gap phenomenon. We describe the factors
that lead to this phenomenon, and conduct a simple experiment to motivate why studying the modality
gap is important.

In Chapter 4, we pick apart several components of the contrastive loss function and provide
arguments for the formation of the modality gap. We conduct several toy and real-world experiments
to study the behaviour of CLIP’s embedding space under various conditions. Throughout this chapter,
we discuss claims about the modality gap, and its relationship to CLIP’s design choices.

In Chapter 5, we show why the modality gap phenomenon even matters in practice. We propose a
simple yet effective method to visualise CLIP’s embedding space that allows us to view the image
and text embeddings under a new light. We subsequently lay out the implications of the modality gap
on downstream task performance, and provide recommendations for how to improve it. With such an
analysis, we propose a novel method that achieves state-of-the-art performance on few-shot image
classification.

Finally, we conclude the thesis in Chapter 6 by summarising our main contributions and highlight-
ing potential future research directions.





Chapter 2

Background

In this chapter, we position our work in the vast landscape of vision-language models. We briefly
introduce the two major motivating pillars that fostered the rise of large-scale vision-language learning:
(1) multi-modal learning, and (2) self-supervised contrastive learning. We then provide an overview of
the different types of vision-language models in the literature, before diving into the backbone around
which our thesis revolves, the CLIP model. We describe CLIP’s model architecture, its training
protocol, and its accompanying design choices in-depth. Finally, we explore several post-CLIP
methods that repurpose, fine-tune and build upon CLIP for the task of few-shot image classification.

2.1 The Two Pillars

In this section, we give a broad overview of multi-modal learning and self-supervised contrastive
learning, motivating them as the main pillars underlying the vast terrain of vision-language models.

2.1.1 Multi-modal learning

Human perception of the world is largely multi-modal [14, 79, 225]. Two key characteristics of
multi-modal perception have received particular attention from psychologists:

1. Degeneracy. The principle of degeneracy (or redundancy) allows humans to function even with
the loss of a sensory component [50]. For example, our knowledge of objects is not limited by
sight alone, we experience things around us by using our other senses of touch, sound, and even
smell. Several experimental studies [20, 161, 104, 17] investigated the effects of degeneracy
in infants, concluding that the complementary nature of multiple sensory systems enable the
development of the human cognitive system.

2. Re-entry. This principle refers to the simultaneous and explicit inter-relation of multiple
representations across modalities. This implies that the sensation of one modality can subse-
quently invoke the sensation of another, suggesting that humans can effortlessly link high-level
semantics across different modalities [51, 182, 87].



6 Background

The efficacy of multi-modal learning in humans has inspired a multitude of machine learning
methods that make use of cross-modal redundancy [145, 143, 144, 146, 4] and fusion [121, 90, 180,
212, 84] to solve diverse tasks. The effectiveness of these methods is a testament to the potential of
using multiple modalities to improve representation quality and task performance.

2.1.2 Self-supervised Contrastive learning

In recent years, the dominant paradigm of machine learning has been supervised learning, where
labelled data is provided with input-target pairs [139]. This is however a bottleneck for building
intelligent generalist models that can perform multiple tasks adaptively [106]. This bottleneck stems
from the laborious effort required to manually label large-scale datasets.

This limitation of supervised learning has paved the way for the field of self-supervised learning.
It has enabled AI systems to learn from orders of magnitude more data and endowed them with the
ability to understand subtle patterns of the world.

Self-supervised learning methods obtain proxy supervisory signals from the data itself. They
often leverage the underlying structure of the data to predict unobserved/hidden parts of the inputs to
obtain strong representations. This is common in the natural language processing literature with many
models predicting masked, hidden or missing tokens from texts [45, 122, 94, 164, 35, 86, 134, 156]
to learn high-quality representations. Most self-supervised learning approaches for computer vision
use different kinds of pretext tasks for acquiring their proxy supervisory signal. Examples include
predicting image rotations [58], colouring images [234], predicting patch spatial positions [46],
solving jigsaw puzzles [150, 26] and predicting affine transformations [230, 168, 151, 89].

Underlying many recent works in self-supervised learning is the idea of contrastive learning: we
learn representations for an input datapoint by maximising similarity with a noisy or transformed
version of the input datapoint itself while minimising similarities with all other input datapoints [152].
These methods rely on the contrastive loss [162], first introduced by Gutmann et al. [68] to estimate
unnormalised statistical models. In recent years, the profusion of internet-scale data and access to
massive compute infrastructure has given rise to several of these self-supervised models [69, 27, 72,
196, 23, 73, 138, 28, 62, 31, 22], which achieve state-of-the-art results on visual tasks, and even close
the performance gap to supervised models. For a deeper review of self-supervised learning, several
in-depth surveys can be referred [171, 82, 99, 5, 85].

2.2 A Taxonomy of Vision-Language Models

Owing to the substantial but independent successes of self-supervised contrastive learning and multi-
modal learning, it is natural to wonder if combining these approaches can lead to learning rich,
semantic representations of the world that can be transferred to both uni-modal (image classification,
text retrieval etc.) and multi-modal (cross-modal retrieval, visual-question answering etc.) tasks.



2.2 A Taxonomy of Vision-Language Models 7

Image 
Encoder

Text 
Encoder

Cross-Modal Interaction

(a) IE = TE >> CI

Image 
Encoder

Text 
Encoder

Cross-Modal Interaction

(b) IE > TE > CI

Image 
Encoder

Text 
Encoder

Cross-Modal Interaction

(c) CI > IE = TE

Cross-Modal Interaction

Image 
Encoder

Text 
Encoder

(d) IE = TE > CI

Fig. 2.1 Taxonomy of the vision-language pre-training model landscape. IE is short for image
encoder, TE is short for text encoder, and CI is short for cross-modal interactions. The height of each
box depicts the relative capacity of the corresponding model. For example, if IE = TE, this represents
that both the image and text encoder have a comparable number of parameters. TE >> CI represents
that the number of parameters for computing the cross-modal interaction is zero or almost negligent
as compared to the text encoder. We adopt this taxonomy from [92].

There have been several initial attempts at answering this question by fusing the strong representa-
tion learning capabilities of uni-modal self-supervised learning methods [29, 27, 65, 227, 13, 30, 103,
109, 19, 166, 45] and supervised multi-modal learning methods [205, 60, 6, 67, 197, 77, 91]. Such
approaches have used proxy tasks like image-captioning (VirTex [44]), masked language modelling
(ICMLM [170]) or contrastive learning (ConVIRT [238]) to obtain rich representations, highlighting
the potential of using natural language for learning representations that excel at downstream task
transfer.

In the past few years, internet-scale multi-modal dataset curation has rapidly accelerated the
growth of such models. This new breed of vision-language foundation models [16] appear to exhibit
qualitatively different behaviours to their predecessors. Kim et al. [92] proposed a unifying taxonomy
of such vision-language models1, which we revisit in Figure 2.1 to ground our summary of several
vision-language models. All these models use independent image and text encoders (blue and orange
boxes in Figure 2.1). They then capture the interactions between the image and text embeddings (red
box in Figure 2.1) using several different techniques.

Type 2.1a models use encoders of comparable capacity but perform a shallow-level fusion (simple
dot-product) of image-text embeddings. CLIP [165] (discussed in detail in Section 2.3) falls under
this umbrella of models – It uses two independent image and text encoders that output normalised
embeddings which can be compared through simple dot products. Jia et al. [83] extended this by
introducing ALIGN, which focused on scaling up the pre-training paradigm of CLIP. They scraped a
dataset of 1.8 billion images with alt-text descriptions and employed it to train a CLIP-like architecture,
achieving strong downstream performance on a suite of tasks. The ALIGN model also seems to acquire
a compositional embedding space capable of doing vector arithmetic, similar to that exhibited by the
Word2Vec [134, 135] model. We further explore this capability of vision-language models in detail in

1This taxonomy was also reused and slightly extended by Xu et al. [215]
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Section 5.3. Some other examples of Type 2.1a models include BASIC [160], PyramidCLIP [57],
DeCLIP [117], LiT [229], WenLan [80], K-LITE [177], CapKP [112] and SLIP [141].

Several models come under the umbrella of Type 2.1b where the image encoder is heavier
than the text encoder. Examples of these models include VSE [53], SCAN [107], OSCAR [116],
CM3 [2], and VisualBERT [114]. They typically use pre-trained image encoders with lightweight text
encoders that usually process simple tags/textual tokens. To model cross-modal interactions, they use
a cross-attention Transformer [199].

The Type 2.1c models concentrate entirely on modelling the intricate cross-modal interactions.
They use lightweight encoder networks for the individual modalities and complex methods to model
their interactions. Examples include OFA [206], SimVLM [209], FILIP [220], X-VLM [228],
FLAMINGO [3] and ViLT [92].

Finally, models that come under Type 2.1d use expressive image and text encoders of similar ca-
pacities along with large Transformers for capturing cross-modal interactions. A few examples include
FLAVA [181], ALBEF [113], BLIP [111], CoCa [224], TCL [218], METER [49], LOUPE [110] and
MDETR [88].

2.3 Contrastive Language-Image Pre-training (CLIP)

We now describe the vision-language model that is the focus of this thesis, CLIP. Radford et al. [165]
introduced CLIP – A large-scale vision-language model that was trained on a massive corpus of 400M
image-text pairs acquired from the internet, and exhibits exemplary downstream visual task transfer.
CLIP extends upon the pre-training task of ConVIRT [238] – It’s training objective is to maximise
the similarities of the embeddings of paired image-text samples while minimising the similarities of
unpaired samples.

Training Objective. Given a set of N paired image-text samples, CLIP learns a joint image-
text embedding space by training image and text encoders jointly. Both the encoders map their
corresponding uni-modal inputs into the joint embedding space. Note that the embeddings of both
images and texts are l2-normalised. Therefore, the embedding space of CLIP effectively is a subspace
on the unit hypersphere. Several works [204, 214, 153] have empirically shown the utility of working
on the unit hypersphere justifying this design choice. By constructing a similarity matrix of size N×N
(similarities of each image embedding with every text embedding), CLIP is trained to predict which
of the N×N samples are the true paired-samples. This standard approach to contrastive learning boils
down to a symmetric loss that involves two cross-entropy loss terms as shown below:
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LT→I =−
1
N

N

∑
i=1

log
exp(⟨Ti, Ii⟩/τ)

∑
N
j=1 exp(⟨Ti, I j⟩/τ)

LI→T =− 1
N

N

∑
i=1

log
exp(⟨Ii,Ti⟩/τ)

∑
N
j=1 exp(⟨Ii,Tj⟩/τ)

L =
1
2
[
LI→T +LT→I

]
(2.1)

where ⟨a,b⟩= aT b
∥a∥∥b∥ represents the cosine similarity of two embeddings a and b and τ ∈R+ represents

the temperature parameter. Since CLIP’s embeddings are l2-normalised, the cosine similarity of two
embeddings is equal to their dot product. CLIP’s training objective is illustrated in Figure 2.2a.
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Building a large dataset. In spite of CLIP using a standard cross-modal contrastive loss that
has been used before in the vision-language setting [238], it achieves tremendous performance
on visual recognition tasks. One of the biggest driving factors of this performance gain is the
massive and diverse vision-language dataset that was collected. Previous vision-language datasets
were either too small (MS-COCO [119] with 88K image-text pairs/VisualGenome [97] with 101K
image-text pairs/CC3M [176] with 3M image-text pairs) or annotated with poor quality captions
(YFCC100M [195] with 100M image-text pairs). The authors of CLIP mitigated these issues by
collecting a large-scale dataset from the web containing 400M diverse image-text pairs. For maximal
semantic concept coverage, they manually curated a set of queries for searching image-text pairs on
the web2.

Model Architectures and Training Protocol. CLIP uses a modified Transformer [199] network
as its text encoder. It uses a lower-cased byte-pair-encoding (BPE) [174] for pre-processing textual
tokens. By bracketing all text sequences with start (<SOS>) and end (<EOS>) tokens, CLIP’s text
embedding is readily retrieved as the representation of the <EOS> token from the final layer of the
Transformer. For CLIP’s image encoder, it makes use of different variants of either a ResNet [70] or a
Vision-Transformer [47]. CLIP uses linear projection heads on top of its text and image encoders for
embedding the representations of both images and texts into the same space. These embeddings are
then l2-normalised.

For training, CLIP uses a large batch size of 32768 samples. Each variant is trained for 32 epochs
with an Adam optimizer [93] and weight decay [124] with mixed precision [133] to accelerate training
and improve memory constraints. Their largest models take up to 20 days to converge.

Zero-shot Transfer. One of the biggest paradigm shifts introduced by the CLIP model is its
ability to perform zero-shot image classification. The term zero-shot classification is traditionally
used to refer to models generalising to unseen classes [102, 132]. CLIP however transforms this idea
into a classification setup where none of the dataset classes are known a-priori i.e. it extends the task
to unseen datasets. This capability of CLIP is one of the main reasons for its pervasive use across
domains.

Since CLIP was directly optimised to measure similarities between a given image and text pair,
this ability is reused to perform zero-shot task transfer. For any given downstream classification
task, the labels of the dataset can be directly converted into suitable captions. For example, if the
classification task is “cats” vs “dogs”, the labels can be converted into class-wise captions using a
suitable textual prompt such as ‘A photo of a <CLASS>’ where the <CLASS> token is replaced by
the corresponding class label (“cat” or “dog”). Using these class-wise captions, CLIP transforms the
classification task into a simple image-caption matching task: For every test image, CLIP computes the
similarity scores of the test image with every class caption, and the class with the maximal similarity
is predicted. More concretely, CLIP generates a classifier weight matrix WC×d by concatenating all
the generated class caption embeddings. Here, C denotes the number of classes and d is CLIP’s

2Schuhmann et al. [173] constructed a similar open-source dataset of approximately the same size and distribution called
LAION-400M.
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embedding dimension. Using W , CLIP conducts classification over t test features ft×d by producing
logits using a matrix multiplication:

ZSL = fW T (2.2)

This entire zero-shot pipeline is depicted in Figure 2.2b.

2.4 Improving CLIP’s few-shot image classification

One of CLIP’s major strengths was that it demonstrated surprisingly robust few-shot image classifica-
tion and text-to-image retrieval on a broad range of data distributions. However, to reach its full per-
formance potential, fine-tuning on the target domain still appears to be necessary [165, 186, 211, 81].
Recently, several works [56, 232, 239, 193] have highlighted the potential of two techniques, Prompt
Learning and Adapters, that may enable these models to achieve some of the benefits of fine-tuning
without the associated computational costs. Figure 2.3 illustrates a high level overview of both these
methods. In this section, we describe these two avenues for improving CLIP’s few-shot classification.

2.4.1 Few-shot Learning Setup

We first describe the typical few-shot image classification setup [202, 184]. For a dataset containing
C classes, a K-shot dataset consists of K labelled images per class. Therefore, the training set for this
task contains CK labelled samples, which is typically orders of magnitude smaller than a full-sized
training dataset. The goal is to maximise classification performance on a test set by only using these
CK labelled samples.

Seminal works for solving the few-shot learning problem used attention-weights for linearly
combining labels of the few-shot dataset [202] and methods to construct prototypes in a learned
metric-space to compute query distances efficiently [184]. These methods improved classification
performance with the added benefits of reduced training latency and increased data efficiency.

2.4.2 Prompt Learning

Rather than using manually engineered prompts for generating the class captions, prompt learning
approaches aim to learn the optimal set of prompts by initialising learnable token vectors into the class
caption prompt. These vectors are then trained using a cross-entropy loss directly on the few-shot
dataset keeping CLIP’s image and text encoders frozen. Once these prompt vectors are trained,
classification can be conducted by constructing the weight matrix WC×d and computing logits akin
to Equation 2.2. Examples of such methods include CoOP [239], CoCoOp [240], DualCoOP [192],
ProDA [126], ProGrad [241], CPT [221], UPL [78] and PromptTuning [217].
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2.4.3 Adapters

This class of models aims to train lightweight modules on top of CLIP’s encoders so as to efficiently
fine-tune CLIP in a way that enables balancing novel information (from the few-shot dataset) and
world-knowledge (from CLIP’s pre-training). Houlsby et al. [75] introduced these lightweight
adapter modules for the first time in the domain of natural language processing. This led to a rapid
proliferation in the use of such Adapters for meticulous adaptation of large pre-trained models to
diverse downstream tasks across several domains [194, 158, 159, 219, 105, 193, 189, 125, 216, 34,
207, 40, 231].

Following their popularity, Gao et al. [56] proposed CLIP-Adapter that trained such Adapter
modules over both the image and text encoders. They further noted that naively doing this fine-tuning
might still lead to over-fitting. To mitigate this, they adopted residual connections to smoothly blend
the fine-tuned knowledge from the few-shot dataset with the world knowledge from the pre-trained
CLIP. Concretely, they trained image and text adapter networks aI and aT using a cross-entropy loss.
The test features and the classifier weight matrix are updated using:

f∗ = αaI( f )︸ ︷︷ ︸
New knowledge

+ (1−α) f︸ ︷︷ ︸
Pre-trained knowledge

W∗ = βaT (W )︸ ︷︷ ︸
New knowledge

+ (1−β )W︸ ︷︷ ︸
Pre-trained knowledge

(2.3)

Using these updated features and classifier weights, the logits for prediction are computed as:

CL = f∗W T
∗ (2.4)
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where α and β are residual ratios that balance the pre-trained and few-shot knowledge.
Zhang et al. [237] take this one step further by improving few-shot classification accuracy without

the need for fine-tuning. Instead of training the image adapter, they directly set the weights of the
adapter layer to be a set of affinities that are pre-computed between the test features and the few-shot
dataset. Concretely, they embed the few-shot images using CLIP’s image encoder, and call these
image embeddings as cache keys FCK×d . They then convert each of the few-shot class labels to
one-hot vectors, and call them cache values LCK×C. They compute similarities of the t test features
ft×d with all the cache keys, which are then used as attention weights for the cache values. They then
compose these weighted values with the zero-shot CLIP logits as their final predicted logits:

Affinities︷︸︸︷
A = exp(−β (1− f FT ))

T L = αAL︸︷︷︸
Few-shot knowledge

+ fW T︸︷︷︸
Pre-trained knowledge

(2.5)

where β controls the sharpness of the affinity distribution and α balances CLIP’s pre-trained knowl-
edge with the new few-shot knowledge. They further extend TIP-Adapter into the fine-tuning domain
by training the adapter layer (initialised with the cache keys) using standard cross-entropy loss. This
achieves state-of-the-art results for few-shot classification on 11 benchmark datasets.

Apart from these two major methods, several other Adapter-based methods have been proposed
that extend CLIP’s capabilities to other task domains including 3D point-cloud understanding [233],
dense prediction [167], video understanding and retrieval [148, 24, 11], depth understanding [236],
image captioning [140, 15], and object detection [66, 226, 137].





Chapter 3

What is the modality gap?

In this chapter, we illustrate a ubiquitous but non-intuitive geometric phenomenon that occurs in the
embedding spaces of vision-language models, termed the Modality Gap. This phenomenon has been
studied in some detail in previous work by Liang et al. [118].

3.1 The Modality Gap

(a) Imagenet with CLIP-Resnet [165] (b) Imagenet with BLIP [111] (c) Imagenet with TCL [218]

(d) Imagenet with CLIP-ViT-B/16 [47] (e) Stanford Cars with CLIP-Resnet

Fig. 3.1 t-SNE visualisations of image-text embeddings across datasets (Imagenet vs Stanford Cars),
contrastive pre-training methods (BLIP vs CLIP vs TCL) and model architectures (Resnet vs ViT-B/16).
The blue points are image embeddings while orange points are text embeddings.
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To demonstrate the modality gap phenomenon, we take the labelled test sets of two supervised
classification datasets, Imagenet [169] and Stanford Cars [96], and encode their images and corre-
sponding text captions using various CLIP-like models1. We then visualise these embeddings using a
2-dimensional t-SNE [198] projection. From Figure 3.1, we see that the image and text embeddings
of CLIP (and its variants) are placed far-apart from each other in the shared multi-modal space. This
phenomenon generalises across datasets, contrastive pre-training methods and model architectures.
This is counter-intuitive to the expected structure of the embedding spaces of these models – since
CLIP-like models use the contrastive loss (refer Equation 2.1) to maximise the similarity of paired
image-text embeddings, we would expect that the paired image-text embeddings lie close together
(thereby maximising their cosine similarity) while being separated from other paired image-text
embeddings.

3.2 Pairwise Distances of Image-Text embeddings

A natural question arises on inspecting the t-SNE visualisations in Figure 3.1 – ‘Is this visualisation
an accurate depiction of the true embedding space or simply an artefact of the t-SNE method used
for projecting the embeddings into 2 dimensions?’. Since the low dimensional embeddings obtained
using t-SNE2 only depend on the distance distribution of the high dimensional points, examining their
pairwise-distances can help answer this question.

In Figure 3.2a, we plot the pairwise distances between high dimensional embeddings of 50000
image features and 1000 text features from Imagenet3. We see that the pairwise intra-modal distances
are much smaller than the inter-modal distances i.e. the smallest image-text distances are likely
larger than the largest image-image or text-text distances. This serves as evidence that the t-SNE
method of visualisation is not a confounding factor but merely reflects the properties of the underlying
multi-modal space. Since t-SNE trades-off distance preservation vs dimensionality reduction, the large
high dimensional inter-modal distances are amplified in the low dimensional space, and therefore the
text and image embeddings lie far apart in the visualisations.

3.3 Narrow Cone Effect

Having analysed the distribution of distances of these embedding spaces, a natural next step is to
analyse the intra-modal and inter-modal cosine similarities. Since during training we use a contrastive
loss, we are directly optimising for a maximisation of the cosine similarities between paired image-
text embeddings i.e. for example, an embedding of a dog image should ideally have a large cosine
similarity (⪆ 0.5) with an embedding of a text caption of a dog. Further, since these embeddings

1Since these datasets are supervised classification datasets, we use prompt ensembling as in [165] to create text captions
corresponding to each test image by using their label information.

2A rigorous explanation of t-SNE can be obtained from the original paper [198].
3We use the 50000 Imagenet test set to plot the image features and use a prompt ensemble with 7 prompts for each of

the 1000 Imagenet classes to plot the text features. For obtaining image and text features, we use the CLIP-Resnet model.
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(a) Euclidean Distances (b) Cosine Similarities (c) Narrow Cone Effect

Fig. 3.2 Pairwise inter-modal and intra-modal euclidean distances (a), cosine similarities (b) and
depiction of the narrow cone effect (c)

lie on the unit hypersphere, they are all unit vectors. Hence, maximisation of paired image-text
cosine-similarities can only be achieved by aligning them as close together as possible i.e. reducing
the angle between the paired image and text embeddings.

However, Figure 3.2b uncovers an interesting effect – the inter-modal image-text similarities are
very sparsely distributed with a mean cosine-similarity of≈ 0.1. Upon analysing the cosine similarities
of paired image-text samples, we observe a similar effect – despite the model being explicitly trained
to maximise these paired image-text cosine similarities (the red region in Figure 3.2b), they are still
significantly smaller than the intra-modal cosine similarities. This leads us to conclude that the image
and text embeddings lie in two separate regions of the shared multi-modal embedding space, termed
as the Narrow Cone Effect (refer Figure 3.2c). This effect has been studied extensively by Liang et
al. [118]. They suggest that the effect is caused at model initialization by the independent two-tower
architectural bias of these CLIP-like models – each modality encoder constrains all of its embeddings,
regardless of the input, to a very narrow cone in the embedding space i.e. at initialisation itself, the
average intra-modal cosine similarity for a given modality is very high. Hence, at initialisation, the
shared multi-modal embedding space has two separate narrow cones, one for each modality, each with
a very high average within-modality cosine similarity. They further showcase that the contrastive loss
optimisation process is unable to coalesce these two image and text cones, and therefore even after
the loss optimisation, the model is stuck with an embedding space that has two separate image and
text cones (see Figure 3.2c). Under this new light, the modality gap phenomenon can be expressed as
the distance between the two cones of the text and image embeddings.

3.4 A Simple Control Experiment and its Implications

Having established the narrow cone effect and the modality gap phenomenon, we perform a simple
control experiment to modify the multi-modal embedding space of CLIP to make it more aligned.
This is a further test to establish that the modality gap actually exists in the embedding spaces and
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is not just a pathology of the t-SNE visualisation method. We apply a distance scaling method to
determine if aligning the distributions of inter-modal and intra-modal distances yields more intuitive
t-SNE visualisations.
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Fig. 3.3 Illustration of simple distance scaling method

We start with the observation that the t-SNE method requires pairwise distances between all
possible pairs of points in the shared embedding space. For the plots in Figure 3.2, this yields a
pairwise distance matrix of size 51000×51000 as there are 50000 image embeddings and 1000 text
embeddings. From the previous section, we know that each modality-specific sub-matrix in this
matrix has different distributions (see red box in Figure 3.3). To ensure that all distance distributions
follow the same scale, we perform a crude moment matching by scaling the intra-text distances and
the inter image-text distances to be exactly aligned with the distribution of intra-image distances4. We
then use this modified distance matrix as input to t-SNE. As all the distances are on the same scale,
we observe more aligned t-SNE plots (Figure 3.4), and the text and image embeddings are no longer
farther apart from each other. Hence, this simple method can be used to visualise the image-text
embeddings by removing the effect of the modality gap. We illustrate this simple distance scaling
method in Figure 3.3.

This naive method of scaling therefore produces visualisations that are more intuitive and in line
with our expectations of the structure of contrastive vision-language embedding spaces. Therefore,
this experiment further confirms the existence of the modality gap and reiterates that the t-SNE method
is not a confounder. However, this raises several questions about the modality gap and its implications
on effective visualisation and downstream task performance:

4We match the first two moments by modelling each distance distribution as a Gaussian. The scaled distance matrix will
therefore have sub-matrices with equal means and variances (see green box in Figure 3.3).
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Fig. 3.4 t-SNE visualisation using the simple distance scaling method

1. Why does the modality gap exist at all? What are the factors in the contrastive loss that lead to
this phenomenon?

2. Are there effective and principled ways to visualise the image-text embeddings that are both
understandable and reflective of the true underlying space?

3. What are the implications of the modality gap on the zero-shot downstream capabilities of these
models?

We aim to answer each of these questions in detail in the subsequent chapters.





Chapter 4

Why is there a modality gap?

In the previous chapter, we established the existence of a modality gap between image and text
embeddings of CLIP-like models. In this chapter, we aim to decompose the contrastive loss to identify
the most prominent factors affecting the modality gap. We formulate several toy experiments to
illustrate the principles underlying this phenomenon. We then extend these toy analyses to real world
image-text datasets. To ensure readability, we end each section with the key results from that section.
We begin by reviewing the contrastive loss, and identifying its different moving components.

4.1 Revisiting and Abstracting the Contrastive Loss

The contrastive loss used by CLIP and its variants aims to maximise the cosine similarities of paired
image-text samples while minimising the cosine-similarities of unpaired image-text samples. Consider
N d-dimensional paired image-text embeddings. I = {I1, I2, . . . , IN} is the set of image embeddings
and T = {T1,T2, . . . ,TN} is the set of text embeddings. Note that all embeddings lie on the unit
hypersphere i.e. Ii ∈ Sd−1 and Ti ∈ Sd−1, i ∈ {1,2, . . . ,N}, and are hence unit-norm vectors1. The
contrastive loss for these sets of embeddings is formulated as:

LT→I =−
1
N

N

∑
i=1

log
exp(Ti · Ii/τ)

∑
N
j=1 exp(Ti · I j/τ)

LI→T =− 1
N

N

∑
i=1

log
exp(Ii ·Ti/τ)

∑
N
j=1 exp(Ii ·Tj/τ)

L =
1
2
[
LI→T +LT→I

]
(4.1)

where τ denotes the temperature and A ·B denotes the dot product of vectors A and B.
We now discuss the factors that are crucial for optimising the contrastive loss thereby directly

impacting the geometry of the embedding space:

1We use the standard notation Sd−1 to represent the d-dimensional unit hypersphere, following [74, 130].
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1. Batch Size N. The batch size modulates the difficulty of the learning task. For larger batch
sizes, the N-way classification task of picking the true paired sample out of the N−1 negative
samples is much more difficult compared to smaller batch sizes.

2. Embedding Dimension d. The dimensionality of the embedding space plays a key role in its
geometric properties. Since there are more degrees of freedom in higher dimensional spaces as
compared to the constraints present in lower dimensional spaces [95], this could be a trivial yet
fundamental forming factor for the modality gap.

3. Temperature τ . The temperature can be used to modulate the entropy of the image-text
similarity distribution. Small temperatures can amplify minute differences in similarity whereas
large temperatures produce flat distributions tending to the uniform distribution.

4. Mismatch Ratio M. We define the mismatch ratio as the ratio of number of mismatches divided
by total number of samples. We call an image-text pair a mismatch if the cosine similarity of
the image embedding with any aribitrary text embedding is larger than with its true paired text
embedding. The mismatch ratio acts as a proxy for downstream task performance.

5. Alignment A. The alignment between the image-text embeddings controls the distribution of
the pairwise inter-modal cosine similarities. The modality gap phenomenon arises due to the
alignment of the image-text embeddings being small.

6. Uniformity U . The uniformity of the image-text embedding space controls spread of the
embeddings on the unit hypersphere. Intuitively, the more spread out the embeddings are, the
easier it is to cluster points semantically.

In each subsequent section, we list all our key results in terms of these six factors.

4.2 Toy Problem with Points on the Unit Circle

Having identified the main factors that affect the contrastive loss, we set up a simple toy problem that
abstracts away several of the moving components in the loss, and simply works with points on the
unit circle S1. By working with points in 2 dimensions, we can gain an intuitive understanding of the
properties of the contrastive loss.

Assume two fixed image points on the unit circle S1, I1 =
[
i1x i1y

]T
and I2 =

[
i2x i2y

]T
.

Our goal in this toy problem is to analytically derive the two text points T1 =
[
t1x t1y

]T
and

T2 =
[
t2x t2y

]T
on the unit circle that minimise the contrastive loss for different settings of I1 and

I2 (see Figure 4.1). An analytical derivation of the optimal text points T1 and T2 given a fixed set of
image points I1 and I2 can be found in Appendix A.
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Through this setup, we aim to decouple the effects of two main parameters: (1) d, the distance
between the two image points I1 and I2

2, and (2) τ , the temperature. Note that d is a simple proxy for
Uniformity.

We run this toy experiment for different settings of d and τ to understand their implications, on
the contrastive loss, and on the placement of optimal text points T1 and T2

3.

4.2.1 The effects of the distance between image points

We use 4 different initial configurations of the image points by varying d as shown in Figure 4.1. For
each configuration, we solve for the optimal text points and visualise them in Figure 4.1. In Table 4.1,
we report the contrastive loss L obtained for each setting with the optimal text points. We also report
the loss obtained if we manually set T1 and T2 to be equal to I1 and I2 i.e. if we exactly align the image
and text points. We denote this loss as Lalign. Note that we fix τ = 1 for the loss computation in this
experiment.

d Optimal T1 Optimal T2 L Lalign

1
(
−
√

3
2 , 1

2

) (√3
2 ,−1

2

)
0.313 0.474√

2
(
− 1√

2
, 1√

2

) ( 1√
2
,− 1√

2

)
0.217 0.313

√
3

(
− 1

2 ,
√

3
2

) (1
2 ,−

√
3

2

)
0.163 0.201

2
(
0,1

) (
0,−1

)
0.126 0.126

Table 4.1 Optimal text points and the losses obtained for different values of d. Lalign is the loss
obtained when the image and text points are exactly aligned with each other.

We observe that as the distance between the two image points increases, we get a smaller loss
value. Further, when the two image points are as far apart as possible on the unit circle (Figure 4.1d),
the loss is minimised at exact alignment of the image and text points. Therefore, this simple toy
experiment provides us with some initial clues about the behaviour of the contrastive loss with respect
to the configuration of image and text points on the unit circle. One curious point to note is that d
controls the alignment4 between the optimal text points and the fixed image points. Figure 4.2 makes
this observation concrete – the distance between the optimal text points and the image points shrinks
as d grows i.e. the image and text points get more aligned when the image points themselves are
farther away from each other. Since d represents Uniformity, this result implies that for this setting,
Uniformity and Alignment go hand in hand – at the optimal loss, the more uniformly spread the two
points are on the unit circle, the more aligned the image and optimal text points are.

2We compute d as the euclidean distance between the two image points, d =
√

(i1x− i2x)
2 +(i1y− i2y)

2

3We refer to the text points that minimize the loss at any given setting of d and τ as the optimal text points
4We measure alignment between text and image points as:

√
(i1x−t1x)2+(i1y−t1y)2+

√
(i2x−t2x)2+(i2y−t2y)2

2
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(a) d = 1 (b) d =
√

2

(c) d =
√

3 (d) d = 2

Fig. 4.1 Image points and optimal text points. Image points are represented in black and text points
are represented in blue.

4.2.2 The effects of temperature

For each of the settings studied in the previous section, we analyse the effect of different temperature
values on the loss and the configuration of the optimal text points. We linearly sweep through 1000
values of τ from 0.001 to 1. For each value, we measure the alignment between the fixed image points
and the optimal text points. We also analyse the loss values across temperatures. We first compute the
loss when we use the optimal text points, and term that as optimal loss. Next, we compute the loss
incurred when the image points and text points are exactly aligned (Lalign from the previous section),
and call it aligned loss. By comparing the aligned and optimal losses, we hope to decipher the key
relationships between Temperature, Alignment and Uniformity (initial distance between the image
points), for this toy setting (see Figure 4.3).

Evidently, at low temperatures (τ ∈
[
0,0.2

]
) we get perfect alignment i.e. the image and text

points lie exactly on top of each other. However, there is a steep decrease in the alignment as we
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Fig. 4.3 Effect of temperature on alignment between image-text points and loss values. ‘Optimal’
refers to the loss values computed by using the optimal text points whereas ‘Aligned’ refers to the loss
values computed by exactly aligning the text and image points.

increase the temperature (Figure 4.3a). This observation is further bolstered by the loss landscape at
low temperatures. Figure 4.3b depicts the deviation between the aligned loss, Lalign, and the optimal
loss, L. We see that at higher temperatures, this deviation grows sharply, and this effect is exacerbated
with smaller d. L and Lalign converge at two points: (i) when τ is very low, and (ii) when d is
high. This empirical evaluation therefore suggests that for a given setting of fixed image points, the
alignment between image-text pairs is negatively correlated with temperature.

This toy experiment therefore provides us with some intuition about the contrastive loss, and
its sensitivity to temperature and alignment of the image-text points. However, since this setting is
limited (in terms of dimensionality and number of points), it is not clear if these relationships will
hold at higher dimensions with large batch sizes. This experiment was conducted only to get an
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intuitive sense of the optimal alignment of text points with the image points under the contrastive loss
at different settings, and further tests are required to generalise these inferences.

Key Results.

1. Uniformity is desirable for incurring the lowest loss across different settings.

2. Uniformity and Alignment are correlated regardless of Temperature.

3. Temperature is negatively correlated with Alignment, and the strength of this correlation
is modulated by Uniformity.

4.3 Reproducing the Modality Gap in Simulation Space

Taking the results from the toy problem as a starting point, we aim to understand how the different
moving components interact as the complexity of the problem increases.

Liang et al. [118] conducted one such empirical study where they investigated the existence of the
modality gap using a simple loss probing analysis and 3D toy simulations. We first aim to reproduce
and extend their results, and then discuss their implications.

Setup. We begin with some notation (see Figure 4.4a). We represent any point x on S2 as (1, θ ,
φ ). θ is the angle that the projection of x onto the XZ-plane makes with the X-axis. φ is the angle
that the projection of x onto the XY -plane makes with the Y -axis.

The experimental setup of Liang et al. [118] consisted of 6 image-text embedding pairs on S2.
They sample the image embeddings on the equatorial line of the sphere (i.e. θ = 0◦), all separated by
φ = 15◦. They then sample text embeddings with the exact same φ = 15◦ as the image embeddings.
To simulate alignment between image and text embeddings, they alter the θ of the text embeddings.
The entire setup is succinctly represented in Figure 4.4a. Having set up the image-text embeddings,
they proceed to simulate mismatches by simply swapping the first two text embeddings with each
other (See Figure 4.4b). Using this, they study the effects of mismatches on the alignment through
expected loss plots. Through the lens of our initial abstraction, we can view θ as controlling Alignment
and φ as controlling Uniformity. However, the experiments conducted by Liang et al. [118] only vary
the Alignment while keeping the Uniformity fixed. Therefore, we extend their analysis by additionally
modifying φ (thereby modifying Uniformity) and studying its effects on the contrastive loss.

Mismatches create a temperature-dependent repulsive structure. We first reproduce the main
result of Liang et al. [118] in Figure 4.55. We observe that when there are no mismatches, the
contrastive loss is minimised when θ is small i.e. the optimisation of the contrastive loss prefers
alignment of image-text embeddings when there are no mismatches (Figure 4.5a). However, when

5We discover a minor inaccuracy in the paper’s simulation setup. The results shown in the original paper are exactly
reproduced when we use φ = 20◦ and not φ = 15◦ as noted in the paper. However, this does not undercut their main claim
as the exact results still hold at φ = 20◦.
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(a) Image and text samples for simulation
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(b) Simulation of mismatches

Fig. 4.4 Simulation setup for modality gap reproduction. In our case, r = 1 since we are working
with points on the unit hypersphere. Given θ and φ , the exact image point coordinates are (sinφ ,
cosφ , 0) and the exact text point coordinates are (cosθ sinφ , cosθ cosφ , sinθ ).

we introduce mismatches, a temperature-dependent repulsive structure emerges in the loss-landscape
(Figure 4.5b). At low temperatures (τ = { 1

100 ,
1
50 ,

1
35}), the loss is minimised when the image-text

embeddings are not aligned whereas at high temperatures (τ = {1
5 ,1}), the loss minimisation still

prefers alignment of the image-text embeddings.
φ modulates the repulsive structure. We now extend these results in Figures 4.6 and 4.7 by

depicting the loss landscape plots at various φ values. It is evident that φ plays a major role in the
resulting loss structure. The temperature-dependent repulsive structure observed previously is now
modulated by φ : At small φ , the repulsive structure disappears and the loss structures both with
and without mismatches appear similar (Figure 4.6a, 4.6b, 4.7a, 4.7b). Contrarily, at large φs, the
repulsive structure with mismatches is exacerbated – at φ = 60◦ (Figure 4.7d), even a high temperature
of τ = 1

5 experiences a small but significant repulsive structure thereby causing the image and text
embeddings to lie far apart from each other.

Uniformity is only desirable when there are no mismatches. From Figure 4.6, we observe
that for a given temperature when there are no mismatches, the lowest losses are incurred at large
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Fig. 4.5 Main result of Liang et al. [118] at φ = 20◦

φs. Further, this lowest less is incurred over a wider range of θs when φ is large. This indicates that
when there are no mismatches, uniformity is a desirable property for the embedding space. However,
Figure 4.7 suggests that the contrastive loss rapidly increases as φ increases. This is especially
prominent at low temperatures. A simple justification of this phenomenon is that the strength of the
mismatches increases as we increase φ . Hence, the loss penalises these mismatches more severely,
especially at low temperatures.
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Fig. 4.6 Loss landscape without mismatches at different φs
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Fig. 4.8 Loss heatmaps depicting φ v/s θ with and without mismatches at τ = 0.01 and τ = 1. Darker
cells denote smaller loss values and lighter cells denote larger loss values. Therefore, darker is better
in these plots. Results with more temperatures can be found in Appendix B.

High Temperatures always prefer Alignment. The heatmaps in Figure 4.8 concretely showcase
that at high temperatures (Figure 4.8b, 4.8d), the contrastive loss is minimised at perfect alignment.
Contrarily, at low temperatures with mismatches (Figure 4.8c), the loss structure promotes mis-
alignment i.e. the image and text embeddings to be far apart. Therefore, low temperatures coupled
with the existence of mismatches foster the modality gap.

Limitations of this simulation setup. Despite this simulation setup being useful for studying the
effects of Alignment, Uniformity and Temperature on the contrastive loss, it is limited in its scope and
not representative of real-world settings (due to a small fixed batch size of 6, small mismatch ratio
and uniform intra-modal distances with fixed φ ). This calls into question the transferability of these
results to real word settings which are likely more stochastic and unstructured. Hence, in the next
section, we introduce a more representative simulation setup that uses random sampling of points on
the hypersphere to study these effects.

Key Results.

1. The Uniformity results from the toy problem (Section 4.2) only hold when there are no
Mismatches.

2. High Temperature promotes Alignment – this result is opposite to the one obtained from
the toy problem.

3. Mismatches and Temperature play a large role in promoting the Modality Gap.

4.4 A More Representative Simulation Framework

To isolate the effects of each individual factor outlined in Section 4.1, we formulate a simple sampling
framework that allows us to alter each factor independently and thus simulate diverse settings of real-
world image-text embedding spaces. We model image and text embeddings on the unit hypersphere
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using a Power Spherical distribution [41] which is a stable approximation to the well-known von
Mises–Fisher distribution [210, 129]6.

Our sampling algorithm takes as inputs embedding dimension d, batch size N, alignment angle θ ,
and concentration κ . The concentration of the Power Spherical distribution denotes the variance of
the angular distribution on the sphere – the larger the concentration, the closer together the samples
on the sphere are. Following our initial abstraction from Section 4.1, θ represents Alignment and κ

represents Uniformity.
We first sample two random vectors from a standard multivariate Gaussian to denote the means of

the image and text embeddings. We then align the text embedding to the image embedding at an angle
θ by using a simple projection operation. We then sample N image and N text embeddings using the
computed means and fixed concentration κ . Our sampling algorithm is depicted in Algorithm 1. We
showcase a few samples on S2 generated by our algorithm in Figure 4.9.

Algorithm 1: Generating image and text embeddings
Input: Batch size N, Dimension d, Alignment angle θ , Concentration κ

Output: Image embeddings I ∈ SN×d−1, Text embeddings T ∈ SN×d−1

1 sample mean image embedding: i∼N (0, Id) // Id is d-dim identity matrix
2 normalise i onto hypersphere: i← i

∥i∥2

3 sample random embedding: r ∼N (0, Id)
4 compute projection: p = r− (r · i)i // ensure p⊥ i
5 normalise p onto hypersphere: p← p

∥p∥2

6 compute text embedding: t = icosθ + psinθ // ensure ⟨i, t⟩= θ

7 sample: I N∼ PowerSpherical(i,κ)

8 sample: T N∼ PowerSpherical(t,κ)
9 return I, T
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(b) N = 32,κ = 1000,θ = 25◦
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(c) N = 128,κ = 1,θ = 0◦
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(d) N = 256,κ = 100,θ = 180◦

Fig. 4.9 Generated image and text samples on S2. Higher κ leads to samples being more concen-
trated around the mean whereas lower κ leads to more uniformity on the sphere.

6Both the Power Spherical and von Mises-Fisher (vMF) distributions define probability distributions on the unit
hypersphere. The vMF distribution is widely regarded as the analogue of the Gaussian distribution on the unit hypersphere.
Refer to [190] for a detailed review of sampling from these distributions.
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Fig. 4.10 The pairing and mismatch simulation operations for the expected loss computation

Equipped with image and text embeddings that mimic real world samples, we now describe
our method for computing the expected contrastive loss incurred by the sampled embeddings under
different temperatures and mismatch ratios. Given sampled image embeddings I and text embeddings
T , we simulate paired samples by permuting the indices of T to match I such that each paired
image-text embedding are maximally similar to each other. This means that the cosine similarity
matrix containing all cross-similarities between I and T will have maximal values on the diagonal
(Figure 4.10a). Then, to simulate a mismatch ratio of M, we simply roll all columns by one position
for the top M% rows in the similarity matrix while preserving the bottom (100−M)% rows as is
(Figure 4.10b). We then use the new mismatched similarity matrix to compute the expected contrastive
loss. We estimate the expected loss for a particular setting by simulating 100 runs with different
random samples. Algorithm 2 shows our expected loss computation for a given setting of temperature
and mismatch ratio. For studying the effects of each factor, we run several simulations by varying the
factors of interest. We keep a large fixed batch size of N = 256 to represent realistic simulations. See
Appendix B for more details.

Algorithm 2: Expected loss computation
Input: Batch size N, Dimension d, Temperature τ , Mismatch Ratio M, Alignment angle θ ,

Concentration κ

Output: Expected loss L for given input settings
1 L=0
2 for k = 1 to 100 do
3 generate I, T using Algorithm 1 with inputs N, d, θ , κ

4 perform pairing and mismatch simulation operations with mismatch ratio M as shown in
Figure 4.10

5 use mismatched similarity matrix to compute contrastive loss l with temperature τ from
Equation 4.1

6 L+=l

7 return L
100
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Fig. 4.11 Loss landscape at high Uniformity (κ = 1)
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Fig. 4.12 Loss landscape at low Uniformity (κ = 1000)

Low Uniformity facilitates the Modality Gap. To pinpoint the exact factors causing the modality
gap, we specifically search for settings in our simulation where the losses incurred by smaller θs
are bigger than those for larger θs. For ease of analysis, we plot negative expected loss for all
experimental settings, therefore higher is better for all our plots. We note from Figures 4.11 and
4.12 that low Uniformity (i.e. large κ) seems to play the most prominent role in determining the
mis-alignment of the image-text embeddings (i.e. large θ ). This observation is agnostic to embedding
dimension d (Figures B.6, B.7, B.8 and B.9) and mismatch ratio M (Figures 4.12 and B.2). This
finding backs our previous key results on Uniformity and Alignment from Sections 4.2 and 4.3.

4.4.1 Simulating a training run at different temperatures.

We now aim to simulate a training run across different temperatures by mirroring the settings of an
initial CLIP model. To replicate as close a real world-setup as possible, we use batch size N = 256
and dimensionality d = 256 in all our training simulations.

Liang et al. [118] concretely showed that the modality gap exists at model initialisation due to the
Narrow Cone Effect (Section 3.3). This implies that at model initialisation, there is low Uniformity and
low Alignment. Further, we make the assumption that since model initialisation is random, our model
starts off with a large mismatch ratio M. Incorporating these model initialisation heuristics, we start
off all our training simulations at κ = 100, θ = 60◦ and M = 90. Since in a real-world training run
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Fig. 4.13 Expected loss dynamics at τ = 0.01
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Fig. 4.14 Expected loss dynamics at τ = 1.0

we fix the temperature prior to training, we simulate different training runs for different temperatures.
For each simulation, we plot the distribution of loss values that can be achieved starting from our
heuristic model initialisation point. We also plot the the expected loss landscape of the model7.

Global minimum occurs at high Uniformity and no Mismatches. From our training simulations,
we sort the expected losses in descending order, and report the settings of the 10 lowest losses for
every temperature. We report these values in Tables B.2, B.3, B.4, B.5 and B.6 in the Appendix due
to lack of space. We observe that regardless of temperature, the expected loss is lowest for settings
where the Uniformity is high and the Mismatch Ratio is 0.

High temperatures close the modality gap. We observe that at low temperatures, the expected
loss distributions have a high variance (Figures 4.13a and B.10a). However, this variance shrinks
rapidly as we increase the temperature (Figures B.11a, B.12a and 4.14a). Further, the mean expected
loss at lower temperatures is also much larger than at higher temperatures. This indicates that (1) at
lower temperatures, the gradients of the loss are much stronger than at higher temperatures, and (2) at
higher temperatures, the magnitude of the difference between the initial and final losses of the model
is much smaller than at lower temperatures. Further, from Figure 4.14 we see that the loss landscape

7In all our loss landscape plots, we plot the landscape as a function of Mismatch Ratio (M) and a function of Alignment
and Uniformity which we simply denote as Alignment (θ ) + Uniformity (κ). We define this as: Alignment (θ ) + Uniformity
(κ) = κ+κ×θ

104



34 Why is there a modality gap?

at a high temperature (τ = 1.0) is very smooth and hence it is easier for the optimisation to arrive at
the global minima. However, Figure 4.13 depicts a much more rugged loss landscape prone to local
minima. Therefore, it is more likely for the optimisation procedure to get stuck in “bad valleys” [147].
This analysis shows that higher temperatures facilitate the model to reach the global minima easily
whereas low temperatures could lead to the model getting stuck at sub-optimal minima. This indicates
that at low temperatures, the model might not fully reach the global minima (complete alignment),
and therefore might not close the modality gap. Contrarily, at high temperatures, due to the easier
optimisation route, closing the gap becomes easier. This finding throws further light upon why high
temperatures has been empirically shown to reduce the modality gap in previous works [118, 185].

Key Results.

1. Low Uniformity facilitates the Modality Gap

2. High Temperatures facilitate an easier loss optimisation, thereby promoting Alignment –
this result adds weight to the result obtained in Section 4.3.

4.5 Transferring to the Real World

Having understood the behaviour of the contrastive loss through toy simulations, we now aim to
verify that these results hold for real world training runs as well. Specifically, we want to examine if
increased temperatures lead to increased alignment, and subsequently reduced modality gap. Further,
we investigate if the relationships between Uniformity and the Modality Gap from Section 4.4 transfer
to the real world.

Fine-tuning CLIP: A Simple Proxy. For conducting this simulation-to-real-world transfer study,
we would ideally like to train CLIP from scratch across different temperatures. However, due to
the prohibitive amount of compute required to train CLIP from scratch, this is infeasible for us. We
instead propose to fine-tune the pre-trained CLIP model as a reasonable proxy. Despite fine-tuning
potentially biasing the embeddings due to different training data distributions, we justify this design
choice as this bias affects all our training runs, and hence we can still isolate the effects of Temperature
and Uniformity on the embedding space.

Previous works [38, 56] have suggested that fine-tuning the entire CLIP model (both image
and text encoders) can lead to gradient instability, over-fitting and high latency. Our initial fine-
tuning experiments reflected these issues8. We therefore adopt the strategy used by Couairon
et al. [38] to fine-tune CLIP at different temperatures. Specifically, we fine-tune linear adapter
layers over CLIP-ViT-B/32’s frozen image and text encoders using a contrastive loss with differ-
ent temperatures on the MS-COCO dataset [119]. We perform the different fine-tuning runs at

8These training instability issues are also well known in the community: https://github.com/openai/CLIP/issues/150,
https://github.com/openai/CLIP/issues/161

https://github.com/openai/CLIP/issues/150
https://github.com/openai/CLIP/issues/161
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τ = {0.005,0.01,0.05,0.1,0.15,0.25,0.5,1.0}. We use an output embedding dimensionality of 512.
We train our models for a maximum of 50 epochs with a batch-size of 512. We use an Adam opti-
miser [93] with a learning rate decay scheduler starting from 0.001. We also clip gradients at norm 1
to ensure training stability. We run all our experiments on 4 NVIDIA A-100 GPUs.

Formalising the Modality Gap. Until now, we have used the terms Alignment and Modality
Gap interchangeably. However, to analyse the relationships of the Modality Gap with Uniformity
and Temperature, we require a formal definition. We borrow the definition of the modality gap from
Liang et al. [118]. Assume we have N paired image embeddings ({I1, I2, . . . , IN}) and text embeddings
({T1,T2, . . . ,TN}) on the unit hypersphere. Then, we define the modality gap as:

µI =
∑

N
i=1 Ii

N

µT =
∑

N
i=1 Ti

N
Modality Gap = ∥µI−µT∥2

(4.2)

Formalising Alignment and Uniformity. In the toy experiments, we were readily able to alter
Alignment and Uniformity as they were controllable parameters. However, for real world settings,
we do not have access to the underlying statistics of the embedding spaces, rather just the image-
text embeddings themselves. We therefore require a method to compute metrics reflecting the true
underlying Alignment and Uniformity. Wang et al. [208] defined these quantities for the embedding
spaces of uni-modal self-supervised learning methods [27, 29, 69]. Goel et al. [59] extended these
definitions to the image-text setting. We reuse these definitions for our analysis:

Alignment =
∑

N
i=1 IT

i Ti

N

Uniformity = log
(∑

N
i=1 ∑

N
j=1, j ̸=i exp(−IT

i Tj)

N

) (4.3)

High Temperatures reduce the Modality Gap. Having formalised our quantitative metrics,
we analyse the effect of high temperatures on the modality gap. For this, we encode the test set
of MS-COCO [119] (5000 image-text pairs) using our different temperature fine-tuned models.
Figure 4.15a shows that as we increase the temperature, the modality gap decreases. Therefore, this
result corroborates the findings of our toy experiments.

Uniformity and Alignment increase with Temperature. In Figure 4.15b, we show the relationship
of Alignment and Uniformity with temperature9. As the temperature increases, both the Alignment and
Uniformity increase. As we have uncovered from Sections 4.3 and 4.4, high Uniformity is desirable
for obtaining the optimal loss. Therefore, the results from Figure 4.15b further bolsters our claim that

9This correlation between Uniformity and Temperature has not been studied in the vision-language literature before.
Wang et al. [203] however observed contradictory behaviour i.e. a negative correlation between Uniformity and Temperature
when performing a similar analysis for uni-modal image-only self-supervised learning (SSL) methods. This further
highlights that despite the contrastive loss being essentially the same, the vast difference of whether negative samples come
from data augmentations (SSL) or a different modality (CLIP) is pivotal.
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Fig. 4.15 Effects of Fine-tuning with different Temperatures

high temperatures facilitate easier optimisation routes, thereby allowing the model to reach the global
minima.

Key Results.

1. High Temperatures facilitate easy loss optimisation, thereby promoting Alignment.
Hence, at high Temperatures, we reduce the Modality Gap.

2. Uniformity and Alignment are desirable for the embedding space. High Temperatures
make it amenable for the embedding space to achieve these properties.

4.6 Summary

In this chapter, we took a deep dive into understanding the modality gap phenomenon. We first
reviewed the contrastive loss and disentangled its components in Section 4.1. We then analysed
a simple 2-dimensional toy scenario in Section 4.2 to gain an intuitive sense for the behaviour of
the loss. We formulated toy experiments for real world simulation of the expected contrastive loss
under different settings in Sections 4.3 and 4.4 to capture how different factors affected the loss
behaviour. Finally, we confirmed our results from the simulations by transferring to real-world
settings in Section 4.5. We summarise results from all our individual sections below for ease of
comparison.
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Points on the
unit circle

1. U ↑ =⇒ loss ↓

2. U ∝∼ A

3. τ
∝∼ 1

A , and the
strength of this
correlation
depends on U.

Points on the
3D sphere

1. U ↑ =⇒ loss ↓,
when M=0.

2. τ
∝∼ A

3. M and τ play a
large role in
promoting
Modality Gap.

Realistic toy
sampling setup

1. U ↓
facilitates
Modality Gap

2. τ ↑ =⇒ smooth
optimisation,
hence A ↑

Real-world
settings

1. τ ↑ =⇒ reduced
Modality Gap.

2. U ↑ and A ↑ are
desirable.

3. τ ↑ facilitates U ↑
and A ↑.

Table on Notation.

Symbol Meaning Symbol Meaning Symbol Meaning
U Uniformity A Alignment τ Temperature
M Mismatch Ratio loss Expected contrastive loss X ↑ large values of X
X ↓ small values of X X ∝∼ Y X is correlated to Y X =⇒ Y X implies Y

Key Takeaways. The most clear statement that exists about the modality gap is provided by Liang
et al. [118]. They posit that the presence of mismatches at low temperatures causes the preservation of
the modality gap. However, our evidence suggests that these results do not hold under all conditions,
and our extensive experimental results depict that more work is needed to pinpoint the exact set of
factors that underlie the modality gap. We can however provide two key takeaways with confidence:

1. Increasing the temperature is a sure-shot method to reduce the modality gap.

2. For perfect loss optimisation, high alignment and high uniformity are desirable.





Chapter 5

Mitigating the modality gap

In the previous chapter, we have thrown light upon the mechanisms underpinning the behaviour of
CLIP-like models under various conditions. Having understood to some extent what conditions lead
to the formation of the modality gap, we now turn to the question of why its existence matters. To
answer this question, it is useful to remind ourselves that the original motivation of CLIP and its
variants was to solve diverse multi-modal downstream tasks without requiring extensive fine-tuning.
The curious characteristics of the emergent embedding space of these models are only a byproduct of
the larger overarching goal of achieving strong downstream task transfer in zero-shot and few-shot
settings.

In this chapter, we discuss why the modality gap precludes effective visualisation of CLIP-
like models’ embedding spaces. We then propose a simple method to effectively visualise these
embedding spaces by acknowledging the existence of the modality gap. Further, we delineate the
implications of the modality gap phenomenon on different downstream tasks under several settings,
and propose methods to improve the downstream task performance by navigating around the modality
gap. Finally, we motivate an understudied downstream task, vector arithmetic in the embedding space,
and benchmark CLIP’s performance on this task under various settings by relating it to the modality
gap.

5.1 A new way to visualise CLIP’s embedding space

We motivate this section by taking the perspective of a data-scientist / machine learning practitioner. A
meticulous machine learning practitioner is constantly trying to understand and visualise the methods
that he/she is working with. This has led to the blossoming of several interpretability and visualisation
techniques [200, 1, 120]. t-SNE [198] has emerged to be one such strong technique.

In Section 3.1, we showcased several t-SNE plots of the embedding spaces of CLIP-like models
(see Figure 5.1 for a refresher). We observed that the plots showed the image and text embeddings
lying in two separated regions of the embedding space due to the modality gap. This is clearly a
sub-optimal visualisation since it does not capture the intricate inter-modal distances between the
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Fig. 5.1 t-SNE visualisation of the entire image-text embedding space on Imagenet (left) and subspace
containing class-specific image-text embeddings (right)

image and text pairs. Hence, a machine learning practitioner working with these CLIP-like models
can be left unsatisfied with such a visualisation.

Before proposing a solution to this problem, we first consider the applications in which visual-
ising these embedding spaces are most helpful. Typically, we visualise these embedding spaces to
understand the underlying local structure (i.e. clustering of similar semantic concepts) in the case
of downstream zero-shot classification datasets. Consider the case of Imagenet [42]. It has 1000
different classes, and covers a wide span of semantic concepts ranging from birds and animals, to
everyday inanimate objects. These classes are interrelated since they are derived from the Wordnet
hierarchy [136]. Visualising the CLIP embedding space on Imagenet would hence help us understand
how well CLIP is able to capture the relationships between these different semantic classes. Usually,
in these zero-shot problems, we are given N classes (having some text labels). In the case of Imagenet,
a few examples of class labels are ‘tench’, ‘goldfish’ and ‘sturgeon’. For each of these N classes, we
have access to M image samples. Therefore, in the zero-shot setup, we typically have N text prompts
(one for each class) and N×M images. We encode them using CLIP (or its variants) to obtain N text
embeddings and N×M image embeddings.

Having established the problem setup, we present our solution to the visualisation problem. We
start with the pairwise distance matrix D that is typically used to perform t-SNE visualisation. The
regular method to construct D is to compute the pairwise distances between each image-image pair,
each text-text pair, and each image-text pair. This leads to a square matrix of size (N +NM)× (N +

NM) i.e. D ∈ R(N+NM)×(N+NM)
+ (illustrated in Figure 5.2). As discussed above, passing in D to the

t-SNE algorithm leads to sub-optimal visualisations (Figure 5.1).
We design a simple method to manipulate D to contain only inter-modal distances. Since D

consists of all pairwise distances, it can be decomposed into 4 sub-matrices DII , DT T , DIT and DT I

(see Figure 5.2). DII denotes the sub-matrix containing only pairwise image-image distances, DT T
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Fig. 5.2 Illustration of original and modified distance matrices

is the sub-matrix containing only pairwise text-text distances, and DIT and DT I are transposes of
each other and contain only pairwise image-text distances. We extract only the DIT sub-matrix
(or alternatively its transpose, DT I) and consider it to be our inter-modal distance matrix. We then
manipulate this matrix in 3 different ways to form our modified distance matrix D′ which can be
directly used as input to t-SNE (or other related algorithms):

1. Randomly sampling N image embeddings. We randomly sample one image embedding
corresponding to each of the N classes. This way, we sample N out of the total N×M image
embeddings. We then accumulate all the distances from DIT corresponding to the N sampled
images, leading to an N×N matrix. We treat this matrix as D′.

2. Averaging image embeddings. For each class, we average all M image embeddings belonging
to that class, and re-normalise onto the unit hypersphere. We then compute the pairwise
distances between the N average image embeddings and N class text embeddings. We then
treat the resulting N×N matrix as D′.

3. Averaging distances across image embeddings per class. For each class, we take an average
of the pairwise distances of each image embedding belonging to that class with all of the class
text embeddings. This way, for each class we compute the average pairwise distance to each
of the N class text embeddings. Enumerating over all classes again leads to an N×N matrix
which we treat as D′.

In essence, this might seem like an unrefined method since the resulting matrix D′ does not follow
the norms of a regular distance matrix, namely (i) It is not symmetric, i.e. D′[i, j] ̸= D′[ j, i],1≤ i≤
N,1≤ j≤N, and (ii) It has non-zero elements on its diagonal, i.e. D′[i, i] ̸= 0,1≤ i≤N. However, this
distance matrix exactly encapsulates what the CLIP models were trained for – the paired image-text
distances are small i.e. the diagonal elements of D′ are the smallest elements in their corresponding
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Fig. 5.3 t-SNE visualisation of entire embedding space using D′. We colour the different points
according to the order they appear in the dataset class label IDs. This automatically translates to a
strong local semantic clustering behaviour since the label IDs are ordered in such a way that similar
classes have adjacent IDs. For example, there are 120 different dog breeds having adjacent label IDs
in the range 151-270.
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Fig. 5.4 t-SNE visualisation of specific concepts using D′

rows and columns. Thus, when we use D′ as input to t-SNE, we retrieve a visualisation that exactly
captures CLIP’s “pseudo-cross modal space” i.e. the semantic embedding landscape of where CLIP
thinks each class lies relative to other classes. Hence, each point in the above t-SNE plots represents
an explicit embedding of a class.

From Figure 5.3, we see that the embedding space of CLIP now accurately captures the semantic
structure of the different classes in Imagenet. To further concretise this, in Figure 5.4 we show the
local semantic structure of different concepts. We borrow the definition of a concept from the Wordnet
hierarchy [136] i.e. each concept consists of all the classes belonging to that concept synset from
Wordnet. We observe that the points corresponding to the same concept are clustered close together,
highlighting the ability of CLIP to capture semantic concept-level similarities.

One point to note here is that the averaging-based methods for obtaining D′ result in cleaner
visualisations of the semantic concept space as compared to the random sampling method (which can
be prone to outliers due to its stochasticity).

We believe the proposed visualisation technique is both simple and useful. It clearly depicts
how the inter-modal distances of CLIP allow it to capture relationships between different semantic
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concepts, thus enabling it to generalise well to zero-shot downstream tasks. Hence, this method leads
to a richer visualisation of CLIP’s properties. This simple technique can be trivially extended to any
vision-language model since it only involves operating on pairwise distances.

5.2 Improving few-shot classification using inter-modal distances

In this next section, we discuss the implications of the modality gap for the downstream task of
few-shot image classification. As we have previously seen from Chapter 3, the intra-modal and inter-
modal distances and cosine-similarities of the CLIP embeddings have largely different distributions.
The inter-modal cosine similarities are sparsely distributed with a small variance and a small mean,
whereas the intra-modal cosine similarities are much more spread out with larger means and variances
(refer Figure 3.2). Further, we know that CLIP (and its variants) was trained to maximise the inter-
modal cosine similarities of paired samples through the contrastive loss (refer Equation 4.1). However,
the contrastive loss has no explicit terms controlling the intra-modal cosine similarities. This implies
that the intra-modal cosine similarities are not explicitly optimised for, and cannot be considered
reliable estimates for the true intra-modal similarities. These intra-modal similarities simply follow by
virtue of the transitivity property: For example, consider that CLIP’s training dataset has two paired
instances, both of a dog. Since both texts in these training samples likely contain the word “dog” and
other similar words that usually co-occur with the word “dog”, CLIP’s text encoder is constrained to
encode these two texts closer together in embedding space than with respect to the other “non-dog”
texts1. Further, since the contrastive loss forces the paired image and text embeddings to be close
together in the space, by virtue of transitivity, the two image embeddings and the two text embeddings
are implicitly brought close together, as illustrated in Figure 5.5.

We make one further observation: In practice the intra-modal image similarities are weaker than
the intra-modal text similarities. This observation is validated by Figure 3.2 depicting that the mean
intra-modal text similarity is much larger than the mean intra-modal image similarity. This follows
from a simple observation: It is highly unlikely that two images have the exact same set of pixels
whereas it is quite likely for two captions to have the same set of text tokens. Therefore, in practice,
the smoothness regularisation in the text space is stronger than in the image space.

We thus conclude that the image-only sub-space of CLIP’s embedding space is not well calibrated.
This means that the image-only embedding space is not reliable for computing intra-modal image-
image similarity. We further clarify this using a simple example illustrated in Figure 5.6. Consider
two image embeddings that are required to be a distance r away from a particular text embedding.
The two image embeddings can satisfy this condition by being very close to each other or very far
apart from each other. Figure 5.6 shows that this constraint can be satisfied by any two arbitrary
points on a hypersphere of radius r – directly corroborating our conjecture that the image intra-modal

1This smoothness phenomenon follows from the regularisation effects of the architectural prior of text encoders. This
phenomenon has also been hypothesised by concurrent work [59, 25].
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Fig. 5.5 Depiction of the different forces between image-image, text-text and image-text embeddings.
The circles denote embeddings for the dog sample on the left and the triangles denote embeddings
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embeddings denote text embeddings. The green arrows show strong explicit forces in the optimisation
whereas the red arrows depict a weak implicit force.

embedding space is not well-calibrated. To further bolster this claim, we perform a simple analysis on
the intra-modal and inter-modal class rankings obtained by CLIP on Imagenet.
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Fig. 5.6 Figure showing the image intra-modal embedding space calibration problem.

5.2.1 Motivating Analysis: Classwise rankings on Imagenet

Our goal in this experiment is to study the rankings of different classes using inter-modal similarities
and intra-modal similarities. For example, given 4 classes, namely, “Dalmation”, “Greyhound”,
“Indian elephant” and “Tabby cat”, we want to inspect the similarity ranking of each class to every
other class, using image-image ranking, text-text ranking, and image-text ranking. We consider the
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image-text ranking as our gold-standard ranking method since CLIP is trained to optimise image-text
similarities.

For this experiment, we encode the Imagenet test set using CLIP. For the images, we directly
use CLIP’s image encoder whereas for the texts, we use prompt ensembling on the class names,
followed by encoding using CLIP’s text encoder. We get 50000 image embeddings and 1000 text
embeddings, since there are 1000 classes and each class has 50 corresponding images in the test set.
As we want to do ranking of classes, we ideally require one prototype image vector per class – for this,
we simply take the normalised mean of all image embeddings within a specific class, and consider it
to be our class image prototype. This step is not required for the text embeddings since we already
have one representative text embedding per class. We now perform ranking in the image-image space,
image-text space and text-text space using cosine-similarity as our metric. As an example, the top-5
closest classes to the “Dalmation” class and the “Vespa” class, across the three ranking methods are
shown in Table 5.1.

Class Image–Image Ranking Text–Text Ranking Image–Text Ranking
Great Dane Leopard English Setter

English Setter Great Dane Great Dane
Dalmation Basset Hound Jaguar Appenzeller Sennenhund

Bluetick Coonhound Cheetah Brittany dog
Wimaraner Tiger German Shorthaired Pointer

Moped Moped Moped
Tricycle Tricycle Tricycle

Vespa Tandem bicycle Tractor Go-kart
Car wheel Golf cart Recreational vechicle
Golf cart Recreational vehicle Crash helmet

Table 5.1 Ranking of top 5 closest classes in image-image space, text-text space and image-text space,
of two Imagenet classes: Dalmation and Vespa. We exclude the true classes from their own ranking
lists.

It is evident that the ranking orders across the intra-modal and inter-modal methods is quite
different, further hinting at the fact that the intra-modal embedding spaces (image-only and text-only)
are not well calibrated. Having conducted a fine-grained class-level ranking analysis, we test the
coarse-grained ranking similarities across the three methods by leveraging the Wordnet hierarchy [136].
We use the path similarity metric as defined by Pedersen et al. [155] to compute the similarity between
any two classes – it is computed as the inverse of the shortest path distance between the Wordnet
synset nodes corresponding to the two classes. We retrieve the correct Wordnet synset nodes for each
class from the Imagenet metadata. While performing the ranking, we take each retrieved class, and
compute the path similarity of it with the current class we are performing the ranking for. We then bin
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these similarity values into discrete ranking bins, and assign a bin value for each retrieved class2. This
way, for each class, we get a ranking of Wordnet path similarity bins between classes, rather than the
actual retrieved classes themselves. There can be multiple classes that have the same path similarity
bin – for example, “leopard”, “jaguar”, “cheetah” and “tiger” all have a path similarity bin of 5 when
using “Dalmation” as a query class.

Therefore, this method can help us get a more coarse-grained ranking order of classes. This in turn
allows us to compare across the three ranking methods at a coarser scale, rather than at a fine-grained
per-class level. We illustrate the ranking orders of “Dalmation” and “Vespa” using this coarse-grained
method in Table 5.2.

Class Image–Image Ranking Text–Text Ranking Image–Text Ranking
2 5 4
4 2 2

Dalmation 3 5 3
3 5 4
3 5 4

5 5 5
1 1 1

Vespa 2 2 3
8 3 2
3 2 8

Table 5.2 Wordnet path similarity bins of top 5 closest classes in image-image space, text-text space
and image-text space, of two Imagenet classes: Dalmation and Vespa. A smaller path similarity bin
indicates that the query class and retrieved class are closer (in terms of shortest path distance) in the
Wordnet tree. Hence, the smaller the bin, the more semantically similar the two classes are according
to the Wordnet taxonomy. We exclude the true classes from their own ranking lists.

We now compare the ranking orders across all classes, using the fine-grained class-wise ranking as
well as the coarse-grained Wordnet path similarity ranking. For the fine-grained ranking, we consider
the entire ranked list of 999 classes for each query class3, whereas for the coarse-grained ranking,
we consider only the path similarities of the top-5 closest classes. For enabling this comparison, we
consider the image-text rankings to be the gold-standard ranking, and compare the image-image and
text-text rankings individually with the image-text rankings. We then compute the Kendall’s rank
correlation coefficient (τ) between the rankings. In Figure 5.7, we show the distribution of correlation
coefficient values over all 1000 classes.

2For performing the binning of the path similarity values, we first sort all possible unique similarity values obtained
across all pairwise combinations of classes, in descending order. To find the bin value for a particular retrieved class, we
simply index into the sorted unique value array – this implies that the more similar two classes are (high path similarity),
the smaller their bin value would be.

3We remove each class from its own ranking list since we always get a cosine similarity of 1 when considering a class
with itself. Therefore, we are left with 999 classes in the ranking list for each class.
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We see that the the Kendall’s τ values for both fine-grained and coarse-grained rankings using both
image-image and text-text rankings have a very high variance – especially in the case of coarse-grained
rankings, the Kendall’s τ ranges from -1 to 1. This indicates that the intra-modal rankings are not
consistent with the gold-standard inter-modal rankings, which directly corroborates our hypothesis
that the intra-modal embedding spaces are not well-calibrated. Therefore, the results of this simple
experiment further cement the claim that the image-image embedding landscape cannot be directly
used for measuring image-image similarities reliably.
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Fig. 5.7 Distribution of Kendall’s rank correlations between the gold-standard image-text rankings and
the intra-modal rankings. We annotate the correlations of the Dalmation and Vespa classes with red
dotted lines to indicate the degree to which the qualitative results shown previously are representative.
For ease of comparison, the x-axis limits for the fine-grained plots are (-0.3, 0.3) whereas for the
coarse-grained plots are (-1.0, 1.0)

5.2.2 Using the image-text embedding similarities for image-image comparison

Having established that using the intra-image cosine similarities as a similarity metric across image
samples is not reliable, we now discuss why this finding is important for the task of few-shot image
classification.

Recall the TIP-Adapter [232] method (discussed in Section 2.4.3, see Figure 5.8 for a refresher)
for improving few-shot classification. This method uses an image-image similarity comparison in
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CLIP’s image-space to compute the similarities between query images and images from the cache4.
However, our aforementioned analysis uncovers a systematic issue with this approach – since the
image-only embedding space of CLIP is not well calibrated, this method of computing similarities
between the query and cache images might be sub-optimal. We aim to fix this issue by relying on
inter-modal image-text similarities rather than the unreliable intra-modal image-image similarities.
We call our new method TIP-X5.

Method Setup. We follow the exact architectural setup of TIP-Adapter. For a K-shot classification
task, we are given access to a supervised dataset consisting of C classes, with K training images per
class. Therefore, the training dataset consists of CK labelled images. We are also given access to
the pre-trained CLIP model i.e. both CLIP’s image and text encoders. We first convert each of the
C classes into their corresponding embedding vectors by using prompt ensembling [232, 165]. This
gives rise to the standard text classifier weights used by the CLIP zero-shot classifier. We denote
the text classifier as W ∈ RC×d . We next convert the given few-shot dataset to a set of cache image
features and cache labels akin to TIP-Adapter [232]. We encode each of the images in the few-shot
dataset using CLIP’s image encoder, and construct a CK×d matrix, which we call the cache image
features F . F can be thought of as the set of keys with which to compute affinities for each of the test
query images. Then, we compute one-hot encodings of the class labels for each of the images in the
few-shot dataset. We call these the cache labels L ∈ RCK×C . Intuitively, TIP-Adapter can be thought
of as computing attention weights for each of the few-shot dataset images by weighing each image’s
class label with how similar that image is to the given query test image. Our classification task is to
correctly classify t test images. The test image features encoded through CLIP’s image encoder are
denoted f ∈ Rt×d . Recall the computation of the classification logits for Zero-shot CLIP (ZSL) and
TIP-Adapter (T L):

ZSL = fW T (5.1)

T L = fW T +αφ( f FT )L (5.2)

where φ(x) = exp(−β (1− x)). Here, α and β are hyperparameters. α controls the balance
between the zero-shot component and the few-shot component of the logits computation whereas β

modulates the sharpness of the exponential activation of the cache affinities.
Constructing Signature Distributions. We now present our method for fixing TIP-Adapter’s

intra-modal image-image comparison pathology. We first compute the inter-modal similarities between
the cache image embeddings and the text classifier weights:

S = softmax(FW T ) (5.3)

4Here cache refers to the few-shot dataset. We adopt the same terminology as the original paper [237].
5Our method name is inspired by the Tipp-Ex Rapid Correction Fluid – we hope to rapidly correct the effects of using

unreliable intra-modal distances.

https://en.wikipedia.org/wiki/Tipp-Ex
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S ∈ RCK×C contains probability distributions of how similar each cache feature is with respect to
all the class text vectors. Since we use these distributions as features for classification, we call S as the
set of cache signatures (terminology adopted from [12]). We also construct a set of query signatures
s ∈ Rt×C similar to the cache signature construction:

s = softmax( fW T ) (5.4)

Intuitively, these query and cache signatures are analogous to the query and cache image features
f and F . However, the difference stems from the fact that each signature feature is now a probability
distribution over all class text vectors, and not a simple high-dimensional feature vector. This simple
construction of signature distributions helps us compute similarities between the cache image features
and queries by leveraging their inter-modal image-text similarities.

Computing Affinities. Equipped with the cache and query signatures, we need to compute
similarities between them to formulate affinity weights for each of the cache labels. Since the
signatures represent probability distributions, a straightforward way to compute their similarities is by
measuring the KL-divergence between them. We therefore construct the affinity matrix M ∈ Rt×CK

between our queries and cache image features as follows:

Mi, j = KL(si||S j)

1≤ i≤ t,1≤ j ≤CK
(5.5)

where si represents the ith query signature and S j represents the jth cache signature. Since we
are working with discrete probability distributions, we compute the KL-divergence as KL(P||Q) =

∑i Pi log Pi
Qi

.
There are several other techniques for computing the similarity between the signature distri-

butions including optimal transport [201, 157], Jensen-Shannon divergence [131], Bhattacharya
coefficient [43] etc. – we leave this exploration for future work.

The construction of the affinity matrix M can be seen as an analogous step to the affinity computa-
tion through image-image cosine similarity between the cache keys and queries in the TIP-Adapter
framework. However, our affinity construction prevents the problem of relying on the erratic intra-
modal image-image similarities.

Finally, before using our affinity matrix M as weights for the cache values, we pass them through
an activation function ψ to ensure appropriate scaling. Further, since our affinity matrix M consists
of KL-divergence values, the most similar samples will get small weights since their KL-divergence
will be low (close to 0). To mitigate this, we simply negate the values in the affinity matrix M. The
predicted logits of the query images using our TIP-X method are then computed as:

T XL = fW T +αφ( f FT )L+ γψ(−M)L (5.6)
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Fig. 5.8 Depiction of the TIP-X method. We show the computation of CLIP’s zero-shot logits,
TIP-Adapter’s cache logits, and our TIP-X logits. We use the cache model (cache image features
and cache values) to compute affinities of each query image with every cache image. We do this
image-image comparison by using the image-text similarities. For this, we compute the image-text
similarity signatures for both query images and cache images, and then calculate the KL-divergence
between these signatures. These KL-divergences are then used as weights for our cache values.

where the ψ function heuristically scales all the values of M to be of the same scale as the TIP-Adapter
affinities. The entire TIP-X method is depicted in Figure 5.8.

Fine-tuning TIP-X. The original version of TIP-Adapter performs extremely well given a few
number of shots. However, as the number of shots increase, there is still a modest gap in performance
with prior few-shot classification methods [56, 239]. To close this gap, the authors propose a variant of
TIP-Adapter called as TIP-Adapter-F that uses fine-tuning on the few-shot dataset. They parameterise
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a one-layer MLP g with the weights initialised to the cache keys F . They then train g in the exact
same setup as TIP-Adapter, with a cross-entropy loss. The authors justify this method as boosting
the estimation of affinities between the cache keys and the queries. We also propose a variant of our
method, called TIP-X-F, which analogously trains MLPs g and h to compute richer affinities between
the cache and query signature distributions. For training g, we follow the exact same procedure as
TIP-Adapter-F. For training h, we parameterise it by initialising its weights as the cache signatures S.
We consider the output of h to be the pre-affinities between the cache and query signatures. We use
two activation functions prior to the final logits computation: (i) a Hard-Swish activation function [76]
defined as h-swish(x) = x ReLU6(x+3)

6 , and (ii) a weighted exponential w(x) = exp(βx). Our final
logits computation for the fine-tuned TIP-X-F is:

T XFL = fW T +αφ(g( f ))L+ γw(h-swish(−h(s)))L (5.7)

Experiments and Results. Following recent works [239, 232, 56, 235], we conduct few-shot
classification on 11 benchmark datasets: Imagenet [42], StanfordCars [96], UCF101 [187], Cal-
tech101 [54], Flowers102 [149], OxfordPets [154], Food101 [18], SUN397 [213], DTD [33], Eu-
roSAT [71], and FGVCAircraft [128]. We compare the results of TIP-X and its fine-tuned variant
TIP-X-F with zero-shot CLIP [165], CLIP-Adapter [56], TIP-Adapter and TIP-Adapter-F [232]. Since
it has been well established that TIP-Adapter [232] outperforms CoOP [239] across all settings, we
exclude a comparison with CoOP from our results.

We train each model with five different shot settings of the K-shot classification task: 1, 2, 4, 8 and
16. We test classification accuracy on the held-out test sets, following the exact splits used by previous
works. We use the pre-trained CLIP ResNet-50 [70] image encoder for all our experiments. For the
text encoder, we use CLIP’s pre-trained transformer [199]. We use prompt ensembling for converting
the class labels into text prompts for all datasets6. For our TIP-X method, we fix the temperature of
the softmax distribution for computing the signature distributions to be 0.5.

For the fine-tuned variant, we train TIP-X-F on the K-shot dataset for 40 epochs with a batch size
of 256. We use an Adam optimiser [93] with weight decay [124] using a learning rate of 0.001 and a
cosine learning rate scheduler [123]. We tune all our hyperparameters (α , β and γ) on the validation
set and then transfer them to our test set, similar to the approach taken by TIP-Adapter. We conduct
all our experiments on a single NVIDIA A-100 GPU.

We present our main results in Figure 5.9. It is immediately evident that our untrained TIP-X
method outperforms the Zero-Shot CLIP and TIP-Adapter baselines by a large margin. We improve
the few-shot classification performance over TIP-Adapter across all datasets by an absolute gain
of 0.91%. Further, we observe that our untrained TIP-X method even approaches the performance
of CLIP-Adapter and TIP-Adapter-F (both of which have been explicitly trained for the few-shot
classification task) under certain settings. This further demonstrates the efficacy of our TIP-X method.

6We use the same set of 7 prompt templates for prompt ensembling as TIP-Adapter. The 7 prompt templates are: “itap
of a <class>.”, “a origami <class>.”, “a bad photo of the <class>.”, “a photo of the large <class>.”, “a <class> in a video
game.”, “art of the <class>.”, and “a photo of the small <class>.”
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Fig. 5.9 Main few-shot classification results of all methods across 11 datasets. The solid lines represent
methods that don’t require training whereas the dashed lines represent methods that use fine-tuning.

Therefore, the plots from Figure 5.9 illustrate the benefits of using the inter-modal similarities to
compute image-image similarities for matching the query images to cache images.
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Despite performing better than the two baselines, TIP-X still lags behind CLIP-Adapter and
TIP-Adapter-F across most datasets. This is due to the two methods in question being explicitly
fine-tuned for the few-shot task. Our fine-tuned version, TIP-X-F is able to close this gap to these
two baselines. We outperform CLIP-Adapter by 1.58% on average and TIP-Adapter-F by 0.07%.
We note that the performance gain of TIP-X-F over TIP-Adapter-F is not as substantial as for the
corresponding untrained variants – we hypothesise that this may be due to the task-specific fine-tuning
bridging the gap between the intra-modal and inter-modal similarity comparison methods, and thereby
potentially masking the failure of the intra-modal image-image comparison.

In sum, our TIP-X method preserves the efficiency of TIP-Adapter’s training-free protocol while
boosting few-shot performance. Our fine-tuned variant, TIP-X-F further improves this few-shot
performance, and achieves state-of-the-art results in the few-shot classification task across 11 datasets.
Therefore, we have shown a simple yet effective way to leverage the reliable inter-modal image-
text similarities to perform an image-image comparison, leading to superior few-shot classification
performance when compared to previous state-of-the-art approaches.

5.3 Reducing the Modality Gap by Fine-tuning

In Chapter 4, we established that fine-tuning CLIP at higher temperatures is an effective solution for
reducing the modality gap in CLIP’s embedding space. This strategy has also been hypothesised in
prior work [118, 185]. However, none of these works concretely analyse the implications of reducing
the modality gap on downstream tasks. In this section, we aim to bridge this gap in the literature by
conducting an in-depth empirical analysis of the relationships between modality gap and downstream
task performance. Further, we introduce a new task that has not been studied in the context of CLIP’s
modality gap phenomenon, vector arithmetic in the embedding space. We then formally relate vector
arithmetic task performance, downstream task performance and the modality gap.

5.3.1 Vector Arithmetic in CLIP’s embedding space

In recent years, there have been an abundance of works that study the geometry of word embedding
models [134, 135, 55, 108, 52]. This has led to the observation that the embedding spaces of such
models enable vector arithmetic, giving rise to tasks that test the ability of these models to perform
analogies in their embedding spaces. The canonical example of this phenomenon was provided
by Mikolov et al. [135] when they showed that the word embedding of “Queen” was very close in
the embedding space to the embedding produced from the arithmetic operation “King” - “Man” +
“Woman”.

Despite the existence of such analogy methods for word embedding models, only a handful
of works have studied such effects in the vision-language landscape. Jia et al. [83] demonstrated
that simple arithmetic operations like addition and subtraction could be performed across image
and text embeddings, leading to interpretable retrieval results. Couairon et al. [39] further studied



54 Mitigating the modality gap

this phenomenon and formalised it by creating a dataset (called SIMAT [38]) to test it. The dataset
comprises of approximately 6000 images, each annotated with a caption and a subject-relationship-
object triplet (see Figure 5.10a for an illustration). To test vector arithmetic performance, SIMAT
contains approximately 18000 transformation queries. Each transformation query contains an image
along with its caption and annotation triplet, and a target transformation that modifies either the
subject, relationship or object in the triplet. Therefore, for each query, we have access to the original
triplet and the target triplet that should be exactly aligned with the transformed image after the vector
arithmetic operation. Figure 5.10b depicts a few transformation queries from the SIMAT dataset.

For evaluating models on their ability to perform such cross-modal vector arithmetic operations,
the paper proposes a simple metric – for each transformation query, we compute image-text matching
scores using OSCAR [116]7 for the target caption and the retrieved image upon performing the
required arithmetic operation. If the image-text matching score is greater than 0.5, the retrieved
image is considered a successful match. More concretely, assume we have a query image xq with an
annotation triplet < sq,rq,oq >

8 and a caption cq, and a transformation query that modifies sq→ st .
The target annotation triplet is thus < st ,rq,oq > and target caption is ct . If we want to evaluate
a model M with image encoder MI and text encoder MT , we retrieve the nearest neighbour image
embedding xt from the SIMAT dataset corresponding to the following retrieved image embedding:

x = MI(xq)+λ (MT (st)−MT (sq))

xt = argmax
xi

(xT xi)

where λ is a scaling parameter whose value can be tuned and i iterates over all the images in the
dataset. We then match xt with the target caption ct to get a matching score, which is thresholded at
0.5 for filtering matches. The final SIMAT score S is computed as the weighted sum of all matches
over the entire dataset:

S = ∑
xqi,cti,µi

µiIPO(xti,cti)≥0.5

where i indexes over all transformation queries in the dataset, µi is a weighting coefficient for each
query, I is an indicator variable, and PO(x,y) denotes the OSCAR image-text matching score of image
x and text y. For more details about the SIMAT dataset and evaluation strategy of the vector arithmetic
performance, refer to the original paper [39].

A simple way to reduce the modality gap. To begin our exploratory analysis on how the modality
gap affects vector arithmetic performance, we specify our hypothesis about their relationship:

7OSCAR is a large-scale pre-trained vision-language model that can be used for computing similarity scores for a given
image-text pair. The usage of OSCAR is a design choice made by the authors in [39]; it can be replaced by any suitable
vision-language model capable of computing image-text similarity scores

8The annotation triplet consists of subject sq, relationship rq and object oq. For examples of such triplets, refer
Figure 5.10
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Caption: A bear laying on the grass
Annotation triplet: <bear, laying on, grass>

Caption: A man running in a field
Annotation triplet: <man, running in, field>

(a) Annotated image samples

Query Caption: A woman sitting on the beach
Query Annotation triplet: <woman, sitting on, beach>

Target Transformation: woman → man

Target Caption: A man sitting on the beach
Target Annotation triplet: <man, sitting on, beach> 

Query Caption: A zebra drinking water
Query Annotation triplet: <zebra, drinking, water>

Target Transformation: zebra → giraffe

Target Caption: A giraffe drinking water
Target Annotation triplet: <giraffe, drinking, water> 

(b) Transformation query examples

Fig. 5.10 Examples of annotated images and transformation queries from the SIMAT dataset

Since the intra-modal distances and inter-modal distances are not calibrated in the pre-trained
CLIP embedding space, we hypothesise that reducing the modality gap9 will help bring the intra-
modal and inter-modal distances to the same scale, thereby calibrating them. As vector arithmetic
performance in the multi-modal embedding space relies on calibrated distances between the modal-
ities, we further hypothesise that reducing the modality gap should improve the vector arithmetic
performance.

We now conduct a preliminary hypothesis test by formulating a simple way to reduce the modality
gap. To quantitatively measure the modality gap, we use our definition from Section 4.5 for all our
subsequent experiments. We assume N paired text and image embeddings. The text embeddings are
denoted by T = {T1,T2, . . . ,TN} and image embeddings are denoted by I = {I1, I2, . . . , IN}. Our aim
is to reduce the modality gap by aligning T and I close together in embedding space. We employ the
Procrustes alignment method [98] for aligning T and I. Since the Procrustes alignment solution is a
simple technique to align two points clouds in high-dimensional embedding space, we justify its use
as a simple proxy for performing the alignment between T and I. This has also been used in prior
work for aligning embeddings in the NLP domain [36, 7, 64].

9Our hypothesis is agnostic to the method used for reducing the modality gap. It only states that a reduction in modality
gap is required and does not require a specific method of doing so.
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(b) Orthogonal procrustes alignment
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(c) Relaxed procrustes alignment
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(f) Relaxed procrustes alignment

Fig. 5.11 Distance distributions (top row) and t-SNE visualisations (bottom row) before and after
alignment of CLIP’s image-text embeddings

We use two techniques to perform the alignment: Orthogonal Procrustes [172] and the Relaxed
Procrustes method [61]10. For each method, we consider I to be the fixed embedding set, and
transform T to be aligned with I. From Table 5.3, we see that both these methods reduce the modality
gap by a large margin over the original CLIP. Figure 5.11 depicts the inter-modal and intra-modal
distance distributions and t-SNE visualisations after performing the alignment – this validates our
hypothesis that by reducing the modality gap, we effectively calibrate the intra-modal and inter-modal
distances.

Having demonstrated that the simple alignment method reduces the modality gap, we aim to study
the relationship of reducing the gap and vector arithmetic performance. In Table 5.3, we report the
SIMAT-scores obtained using the alignment methods compared with the original CLIP model.

10Orthogonal Procrustes aligns the two embedding clouds only using a rotation matrix since it is a norm-preserving trans-
formation. However, Relaxed Procrustes can align the two clouds using any linear transformation (rotation, scaling/dilation
and translations)
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Alignment Method Modality Gap S(λ = 1) S(λ = 2) S(λ = 3)

None (Original CLIP) (from [39]) – 15.90 31.20 35.40

None (Original CLIP) (R) 0.932 14.65 28.22 34.70
Orthogonal Procrustes 0.127 26.69 39.00 35.76

Relaxed Procrustes 0.053 26.84 39.46 35.73
Table 5.3 Modality Gap (using definition from Section 4.5) and SIMAT scores using different
alignment methods. R denotes our reimplementation. Higher is better for the SIMAT scores.

We observe that both alignment methods significantly improve the vector arithmetic performance
across different scaling factors. This further supports our hypothesis that by reducing the modality gap,
we effectively calibrate distances across modalities in turn boosting vector arithmetic performance.

5.3.2 Relating the modality gap with vector arithmetic and downstream tasks

Following our exploratory analysis from the previous section, we now aim to comprehensively study
the relationships between the modality gap, vector arithmetic performance and downstream task
performance in the context of CLIP’s embedding space. We first delineate the two works that have
attempted to do such an analysis and identify their limitations. Liang et al. [118] exemplify that
modifying the modality gap has some implications on downstream tasks like zero-shot classification
and algorithmic fairness. However, they neither quantify the directionality nor the strength of this
modification. Couairon et al. [39] conduct experiments by fine-tuning CLIP at various temperatures
on the MS-COCO dataset [119], and establish relationships between the fine-tuning temperature τ

and the vector arithmetic performance. However, they do not suggest any concrete reasons as to why
τ modulates the vector arithmetic performance. We extend the results of both these works by viewing
the fine-tuning experiments through the lens of the modality gap phenomenon, thereby quantitatively
establishing relationships between the three.

Experimental Setup. To achieve our goal of establishing relationships, we require a reliable
method to modulate the modality gap in a predictable way. We have shown in Section 4.5 that
increasing the temperature is an effective way of reducing the modality gap. We therefore use the
same fine-tuning setup as Section 4.5 for our experiments.

Assessing the modality gap. In Section 4.5, we showcased that high temperatures lead to
reducing the modality gap. In Figure 5.12a, we extend this result by measuring the modality gap
obtained after fine-tuning at different temperatures across the embedding spaces of three datasets: an
in-distribution MS-COCO test set, and two out-of-distribution SIMAT and Imagenet test sets. We term
the MS-COCO as in-distribution since the fine-tuning has been performed on the MS-COCO training
set. Similar to the results of Section 4.5, we observe that the modality gap decreases steeply from
τ = 0.005 to τ = 0.1 across all three datasets. From τ = 0.1 onwards, the decrease in the modality
gap is miniscule. Further, we observe that the absolute values of the modality gap are larger for
out-of-distribution datasets (Imagenet and SIMAT) than for the in-distribution MS-COCO dataset.
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Fig. 5.12 The implications of fine-tuning CLIP at various temperatures on the modality gap, down-
stream task performance and vector arithmetic performance. Modality gap and downstream task
performance monotonically decrease with temperature, while vector arithmetic performance is optimal
at moderate temperatures.

Assessing downstream task performance. For evaluating the effects of modality gap change
on downstream task performance, we study two different tasks – Imagenet zero-shot classification
and MS-COCO cross-modal retrieval. We investigate these two tasks since they allow us to compare
the effects of in-distribution vs out-of-distribution data to the fine-tuning task. For Imagenet zero-
shot classification, we compute the zero-shot accuracy of CLIP using the fine-tuned image and text
embeddings. For MS-COCO, we compute the image-text and text-image recall@1 and recall@5
metrics. From Figure 5.12b, it is evident that the data distribution of the downstream task does not
affect the relationship of the downstream task performance vs fine-tuning temperature. Further, we
observe that the performance of all tasks is optimal at low temperatures, and degrades smoothly as we
increase the temperature.

Assessing vector arithmetic performance. We use the SIMAT test dataset to evaluate vector
arithmetic performance. For all experiments, we use a scaling factor λ = 1. In Figure 5.12c, we
visualise the effects of the fine-tuning temperature on the vector arithmetic performance. We observe
that at very low (τ = 0.005) or very high (τ = 1.0) temperatures, our SIMAT score drops drastically.
Further, there is only a small band of temperatures (τ = 0.05− 0.2) at which we improve vector
arithmetic performance.

Bringing it all together. To study the inter-relation of modality gap, vector arithmetic and
downstream performance, we visualise their trends across different fine-tuning temperatures in
Figure 5.13. First we compare the scores obtained by the original CLIP with the fine-tuned versions.
Recall that the original pre-trained CLIP model was trained with a learnable temperature that converges
to a stable value of 0.01. Thus, to isolate the effect of fine-tuning, we compare the scores attained
at the same fine-tuning temperature τ = 0.01. We observe that the Imagenet performance takes a
drastic hit whereas the MS-COCO retrieval performance is improved. This is due to the fine-tuning
being done on MS-COCO and therefore the retrieval task is an in-domain task for the fine-tuned
model whereas the Imagenet classification is out-of-domain. We expect to see the inverse effects if
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Fig. 5.13 Visualisation of the relationships between the modality gap, downstream task performance
and vector arithmetic performance

we performed the fine-tuning on Imagenet instead. Further, we observe that regardless of temperature,
fine-tuning always reduces the modality gap when compared to the original CLIP.

Next, we investigate the relationships between the three quantities of interest. From Figure 5.13,
we observe two interesting regimes emerging:
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1. τ = 0−0.2: In this regime, we observe contrasting behaviour between the vector arithmetic
performance and the downstream task performance. As illustrated in Figure 5.13, there is an
optimal cross-over point at which we can preserve reasonable vector arithmetic and downstream
performance. However, on either side of this cross-over point, one quantity improves while the
other degrades significantly. Since the modality gap is monotonically decreasing in this regime,
it hints towards the fact that the modality gap is not entirely predictive of downstream task or
vector arithmetic performance.

2. τ = 0.2−1: In this regime, both vector arithmetic and downstream task performance degrade
despite the modality gap reducing consistently. This regime indicates that reducing the modality
gap is not always beneficial for downstream tasks and vector arithmetic performance.

These results call into question our original hypothesis that reducing the modality gap should
always improve vector arithmetic performance. However, we resolve this ambiguity through the
lens of Alignment and Uniformity (Refer Section 4.5). Intuitively, a high alignment implies that the
paired image-text embeddings are close together, and hence implies a small modality gap. Further, a
high uniformity signifies that the image-text embeddings are all spread out very far apart from each
other, uniformly covering the hypersphere. Recall from Figure 4.15b, at very small temperatures,
the alignment and uniformity are extremely low. Therefore, since the image and text embeddings
are far apart, their distances are not calibrated11. Hence, this leads to the observed poor vector
arithmetic performance. Contrarily, at very high temperatures, the image and text embeddings have
high alignment and high uniformity scores. Due to this, all the image-text embeddings will be
spread out on the unit hypersphere, far from each other. This leads to the intra-image and intra-text
distance distributions tending towards a uniform distribution. Due to this, we throw out important
discriminative information between embeddings that is required for the vector arithmetic task. As a
result of this degeneracy, vector arithmetic performance drops. Hence, by viewing the fine-tuning
experiment through the lens of alignment and uniformity, we justify that vector arithmetic performance
does not always improve with smaller modality gaps.

5.4 Summary

In this chapter, we have reflected on why the existence of the modality gap in the embedding spaces of
vision-language models matters. In Section 5.1, we showed that it can hamper effective visualisation
of these embedding spaces, proposed a simple technique to improve visualisation, and thereby gleaned
a better understanding of these embedding spaces. In Section 5.2, we inspected the pathology of the
intra-modal similarities of CLIP’s embedding space and studied how this affects few-shot classification
methods. By proposing a simple fix that leverages inter-modal similarities to perform intra-modal
comparisons, we achieved state-of-the-art results for few-shot classification, without fine-tuning.

11By calibrated, here we mean that the intra-image distances and intra-text distances do not have the same scale (see
Figure 5.11a).
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Finally, in Section 5.3 we examined the implications of the modality gap on downstream tasks and
vector arithmetic performance.





Chapter 6

Conclusions and Future Work

In this thesis, we presented a non-intuitive phenomenon that occurs in the embedding spaces of vision-
language models, called the Modality Gap. We conducted a deep dive into the modality gap, and
hypothesised several reasons for its existence. To this end, we broke down the contrastive loss (used to
train CLIP-like models) into its constituent components. We then formulated several toy simulations
to understand the effects of each component on the loss, and subsequently the modality gap. Having
understood the factors causing the modality gap, we moved on to investigating the implications of the
modality gap. We showed that the modality gap hindered effective visualisation of the embedding
spaces of CLIP-like models, and proposed a simple fix. Using this, we showed visualisations that
furnish greater interpretability. Further, we discussed the implications of the modality gap on different
downstream tasks. Our analysis suggested that using intra-modal similarities is sub-optimal as
compared to inter-modal similarities for image-image comparison. We fix this pathology in previous
few-shot classification methods, by proposing a KL-divergence based method for leveraging the
reliable inter-modal similarities for performing an image-image matching. This method achieves
state-of-the-art results across a wide suite of datasets for the few-shot image classification task.

Despite the interesting results and analyses showcased by our work, there are still lots of unsolved
puzzles to study. We enlist a few of them here:

• A concrete theoretical explanation for the Modality Gap. In Chapter 4, we presented a
myriad of experimental analyses and results to uncover the formation and existence of the
modality gap. In spite of these results, we still do not have a strong theoretical grasp on the
existence of the modality gap. A potential research direction would be to extend the theoretical
analysis conducted in Section 4.2 to the real-world setting, which can help glean better insights
into the phenomenon.

• Analysing the true potential of CLIP’s uni-modal spaces. In Section 5.2, we conducted
experiments to showcase that the intra-modal similarities of CLIP are unreliable. However, the
extent of this is unclear. Can these embedding spaces be used under certain limited conditions or
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are they unreliable at a global level? Answering this question could help derive more effective
vision-language pre-training methods.

• Stronger understanding of vector arithmetic performance. In Section 5.3, we discussed
the effects of the modality gap on vector arithmetic performance, but did so through a simple
empirical analysis. However, several questions remain as to what the optimal levels of distance
calibration and modality gap should be for attaining the best vector arithmetic performance.
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Appendix A

Derivation for Simple Toy Experiment

We are given two fixed image points on the unit circle S1, I1 =
[
i1x i1y

]T
and I2 =

[
i2x i2y

]T
(see

Figure A.1). Our goal is to analytically derive the two text points T1 =
[
t1x t1y

]T
and T2 =

[
t2x t2y

]T

on the unit circle that minimise the contrastive loss for different settings of I1 and I2. Recall that the
contrastive loss is formulated as:

LT→I =−
1
N

N

∑
i=1

log
exp(Ti · Ii/τ)

∑
N
j=1 exp(Ti · I j/τ)

LI→T =− 1
N

N

∑
i=1

log
exp(Ii ·Ti/τ)

∑
N
j=1 exp(Ii ·Tj/τ)

L =
1
2
[
LI→T +LT→I

]
(A.1)

where τ denotes the temperature and A ·B denotes the dot product of vectors A and B.

Fig. A.1 Depiction of one specific setting of the toy problem with I1 =
[
0 1

]T and I2 =
[
0 −1

]T .

Since we are working with two-dimensional points on S1, the losses from Equation A.1 can be
simplified to:
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where

A = exp(i1xt1x + i1yt1y)+ exp(i1xt2x + i1yt2y)

B = exp(i2xt2x + i2yt2y)+ exp(i2xt1x + i2yt1y)

C = exp(i1xt1x + i1yt1y)+ exp(i2xt1x + i2yt1y)

D = exp(i2xt2x + i2yt2y)+ exp(i1xt2x + i1yt2y)

Equipped with this loss formulation, we can now find the values of T1 and T2 that minimize the
loss. However, since we are working on the unit circle, we need two additional norm constraints on T1

and T2:

t2
1x + t2

1y = 1

t2
2x + t2

2y = 1
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We capture these two constraints in our loss optimisation by using two Lagrange multipliers. The
final objective that has to be minimised with respect to T1 and T2 is:

O = L−λ (t2
1x− t2

1y−1)−θ(t2
2x + t2

2y−1)

where λ and θ are the corresponding lagrange multipliers.
To do the minimisation, we take partial derivatives of O with respect to each of t1x, t1y, t2x, t2y,λ

and θ . We first compute the partial derivatives of L:

∂L
∂ t1x

=−1
4
[
2i1x

−
exp(i1xt1x + i1yt1y)i1x

A

−
exp(i2xt1x + i2yt1y)i2x

B

−
exp(i1xt1x + i1yt1y)i1x + exp(i2xt1x + i2yt1y)i2x

C

]
∂L
∂ t1y

=−1
4
[
2i1y

−
exp(i1xt1x + i1yt1y)i1y

A

−
exp(i2xt1x + i2yt1y)i2y

B

−
exp(i1xt1x + i1yt1y)i1y + exp(i2xt1x + i2yt1y)i2y

C

]
∂L
∂ t2x

=−1
4
[
2i2x

−
exp(i1xt2x + i1yt2y)i1x

A

−
exp(i2xt2x + i2yt2y)i2x

B

−
exp(i1xt2x + i1yt2y)i1x + exp(i2xt2x + i2yt2y)i2x

D

]
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∂L
∂ t2y

=−1
4
[
2i2y

−
exp(i1xt2x + i1yt2y)i1y

A

−
exp(i2xt2x + i2yt2y)i2y

B

−
exp(i1xt2x + i1yt2y)i1y + exp(i2xt2x + i2yt2y)i2y

D

]
The partial derivatives of O using the above computed partial derivatives of L are:

∂O
∂λ

= 1− t2
1x− t2

1y

∂O
∂λ

= 1− t2
2x− t2

2y

∂O
∂ t1x

=
∂L
∂ t1x
−2λ t1x

∂O
∂ t1y

=
∂L
∂ t1y
−2λ t1y

∂O
∂ t2x

=
∂L
∂ t2x
−2θ t2x

∂O
∂ t2y

=
∂L
∂ t2y
−2θ t2y

We now have 6 variables and 6 equations, and can therefore find the optimal solution(s) for T1

and T2. We use scipy’s optimize.fsolve function for finding these solutions programmatically.



Appendix B

Simulation Experiment details and
Extended Results

B.1 Experimental Details

In Table B.1, we provide ranges of the different values of each factor that we run simulations for in
Section 4.4. We run simulations with all possible combinations of the different factors listed in the
table leading to a total of 2500 different simulation runs.

Factor Controlled by Range
Batch Size N {256}
Dimension d {2,10,25,100,256}

Temperature τ {0.01,0.04,0.1,0.25,1.0}
Mismatch Ratio M {0,25,50,75,90}

Alignment θ {0,30,60,90,180}
Uniformity κ {1,10,100,1000}

Table B.1 Settings of the different factors for the simulation experiment in Section 4.4

B.2 Extended Results

In this section, we showcase further plots corroborating the main results of Sections 4.3, 4.4 and 4.5.
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Mismatch Ratio (M) Alignment (θ ) Concentration (κ) Expected Loss
0 90◦ 1 1.279
0 0◦ 1 1.280
0 180◦ 1 1.287
0 30◦ 1 1.287
0 60◦ 1 1.288
0 90◦ 10 1.296
0 60◦ 10 1.296
0 0◦ 10 1.298
0 30◦ 10 1.300
0 180◦ 10 1.307

Table B.2 Lowest 10 losses from the training simulation experiment (Section 4.4.1) and their corre-
sponding settings for τ = 0.01

Mismatch Ratio (M) Alignment (θ ) Concentration (κ) Expected Loss
0 180◦ 1 2.442
0 30◦ 1 2.444
0 60◦ 1 2.446
0 90◦ 1 2.447
0 0◦ 1 2.448
0 180◦ 10 2.451
0 60◦ 10 2.453
0 30◦ 10 2.456
0 0◦ 10 2.456
0 90◦ 10 2.456

Table B.3 Lowest 10 losses from the training simulation experiment (Section 4.4.1) and their corre-
sponding settings for τ = 0.04

Mismatch Ratio (M) Alignment (θ ) Concentration (κ) Expected Loss
0 60◦ 1 3.996
0 180◦ 1 3.997
0 30◦ 1 3.997
0 90◦ 1 3.997
0 0◦ 1 3.998
0 0◦ 10 3.998
0 180◦ 10 3.999
0 90◦ 10 3.999
0 60◦ 10 3.999
0 30◦ 10 4.001

Table B.4 Lowest 10 losses from the training simulation experiment (Section 4.4.1) and their corre-
sponding settings for τ = 0.1
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Mismatch Ratio (M) Alignment (θ ) Concentration (κ) Expected Loss
0 60◦ 1 4.876
0 90◦ 1 4.876
0 0◦ 1 4.877
0 30◦ 1 4.877
0 180◦ 1 4.878
0 0◦ 10 4.878
0 180◦ 10 4.879
0 90◦ 10 4.879
0 30◦ 10 4.879
0 60◦ 10 4.880

Table B.5 Lowest 10 losses from the training simulation experiment (Section 4.4.1) and their corre-
sponding settings for τ = 0.25

Mismatch Ratio (M) Alignment (θ ) Concentration (κ) Expected Loss
0 90◦ 1 5.372
0 30◦ 1 5.372
0 180◦ 1 5.372
0 0◦ 1 5.372
0 60◦ 1 5.372
0 60◦ 10 5.372
0 0◦ 10 5.372
0 30◦ 10 5.372
0 180◦ 10 5.373
0 90◦ 10 5.373

Table B.6 Lowest 10 losses from the training simulation experiment (Section 4.4.1) and their corre-
sponding settings for τ = 1.0



88 Simulation Experiment details and Extended Results

0 10 20 30 40 50 60 75 80 90

1
5

10
20

30
45

60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) τ = 1
50 , no mismatches

0 10 20 30 40 50 60 75 80 90

1
5

10
20

30
45

60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) τ = 1
35 , no mismatches

0 10 20 30 40 50 60 75 80 90

1
5

10
20

30
45

60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) τ = 1
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Fig. B.1 Further loss heatmaps depicting φ v/s θ with and without mismatches at τ = 1
5 , τ = 1

35 and
1

50 . These plots extend the results of Section 4.3. Darker cells denote smaller loss values and lighter
cells denote larger loss values. Therefore, darker is better in these plots.
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Fig. B.2 Loss landscape at low Uniformity (κ = 1000)
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Fig. B.5 Loss landscape at high Uniformity (κ = 1)
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Fig. B.6 Loss landscape at low Uniformity (κ = 1000) for d = 2
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Fig. B.8 Loss landscape at low Uniformity (κ = 1000) for d = 25
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Fig. B.9 Loss landscape at low Uniformity (κ = 1000) for d = 100
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