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InfoGAN [1] learns disentangled and interpretable representations by Wasserstein GANs (WGANS) [2] optimise Wasserstein distance. Benefits:

maximizing the mutual information between a subset of the latent vari-
ables and the GAN generated sample. This is done through the addition
of an extra term to the objective function.

1. This metric is less prone to model collapse and vanishing gradients.
2. Introduction of weight clipping to enforce Lipschitz constraint.

min max Vivean (D, &) = By [D(2)] = B [D(G(2))]
Background: GANs and Mutual Information

GANs are trained by a two-player minimax game between Discriminator
D and Generator GG with value function Voan(D, G):

mén mgx VGAN<D, G) = Eprreal(x) [log D(fl?)] + Ezwpz(z) [10g<1 _ D<G<Z)))]

The mutual information (MI) I(X; Y) between random variables X (all im-
ages) and Y (real/fake label) is:
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. o although it finds difficulties interpreting the continuous ones.
As the Ml is intractable, we use a variational lower bound on I(c; G(z, ¢)): Heh | Thedies interpreting uou
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I(c;G(z,¢)) > Epcio.oBomp(enllog Q(|2)]] + H(c) = Li(G,Q
(&Gl ) Gzt ()] ) 1 ) Stability Analysis and Mutual Information MINE (Mutual Information Neural Estimator) [3] is a lower bound on the

MI, obtained from the Donsker-Varadhan representation of the KL diver-
gence by restricting function T to be parametrized by a neural net.

In GANs G minimizes the same variational lower bound on I(X;Y)) [5]:
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