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Introduction
Datasets for each task are generated by permuting pixels of MNIST images.

Datasets for each task are generated by splitting MNIST/notMNIST into subsets of 
two classes each.

split-MNIST split-notMNIST

VCL on GAN is tricky
 It is difficult to balance the Bayesian-generator and discriminator
 GAN loss is not a well-defined likelihood.

 VCL is a universal continual learning framework for both discriminative models 
and generative models; 

 A more representative coreset tends to improve knowledge retention – 
Generative Replay combined with coreset provides a consistently better 
memory mechanism

 Both IWAE Bound and GVCL Bound present superior results to the original
 VCL was successfully applied to GAN. WGAN loss, GVCL Bound and non-

Bayesian heads are key to fully functional VCL-GAN.

Generative ReplayCoreset Selection in VAE 
Embedding Space 

 IWAE Bound provides a tighter bound 
of marginal likelihood than ELBO;

 GVCL Bound uniforms VCL and EWC, 
another continual learning algorithm.

A successful VCL-GAN involves 3 key components:

(1) Wasserstein GAN Loss as the “negative log-likelihood” term

(2) Generalized-VCL Bound

(3) Bayesian body with task-specific non-Bayesian heads



Ablation study:

Standard GAN loss+(2)+(3) (1)+VCL ELBO+(3) (1)+(2)+Bayesian head

Continual learning aims to learn incrementally when data arrive in a possibly non 
i.i.d. way whereby tasks may change over time, without revisiting all previous data.

Bayesian Neural Networks with the following architectures are used:

Discriminative Model                     Generative Model

Bayes Rule gives a well-defined way to perform Continual Learning:





The intractability of posteriors is tackled by Variational Inference by                        :






The error accumulated by sequential approximation is corrected by keeping a 
small “coreset” to avoid catastrophic forgetting:
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