Weight Uncertainty in Neural Networks

A. Macijauskas M. Sadiq V. S. Bøe
Team 10

Motivation

• Classical feed-forward NNs use **point estimates** for weights.

Overfitting

Overconfident

• Bayesian neural networks (BNNs) tackle this by learning a posterior distribution over weights.

Uncertainty estimates

Regularization

Bayes by Backprop (BBB) [1]

• Variational approximation to infer the posterior $q(\mathbf{w}|\theta)$:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \mathcal{F}(\mathcal{D}, \theta) =$$

$$= \underset{\theta}{\operatorname{arg\,min}} \operatorname{KL}[q(\mathbf{w}|\theta)||P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}|\theta)}[\log P(\mathcal{D}|\mathbf{w})]$$

- Approximate \mathcal{F} using MC estimation:

$$\mathcal{F}(\mathcal{D}, \theta) \approx \frac{1}{n} \sum_{i=1}^{n} \log q(\mathbf{w}_i | \theta) - \log P(\mathbf{w}_i) - \log P(\mathcal{D} | \mathbf{w}_i)$$

Averaging outputs for multiple weight samples for inference:

$$P(\hat{y}|\hat{x}) = \mathbb{E}_{P(\mathbf{w}|\mathcal{D})} P(\hat{y}|\hat{x}, \mathbf{w}) \approx \frac{1}{n} \sum_{i=1}^{n} P(\hat{y}|\hat{x}, \mathbf{w}_i), \quad \mathbf{w}_i \sim q(\mathbf{w}_i|\theta)$$

Regression on nonlinear data

• Fit a network to **noisy**, **nonlinear** data.

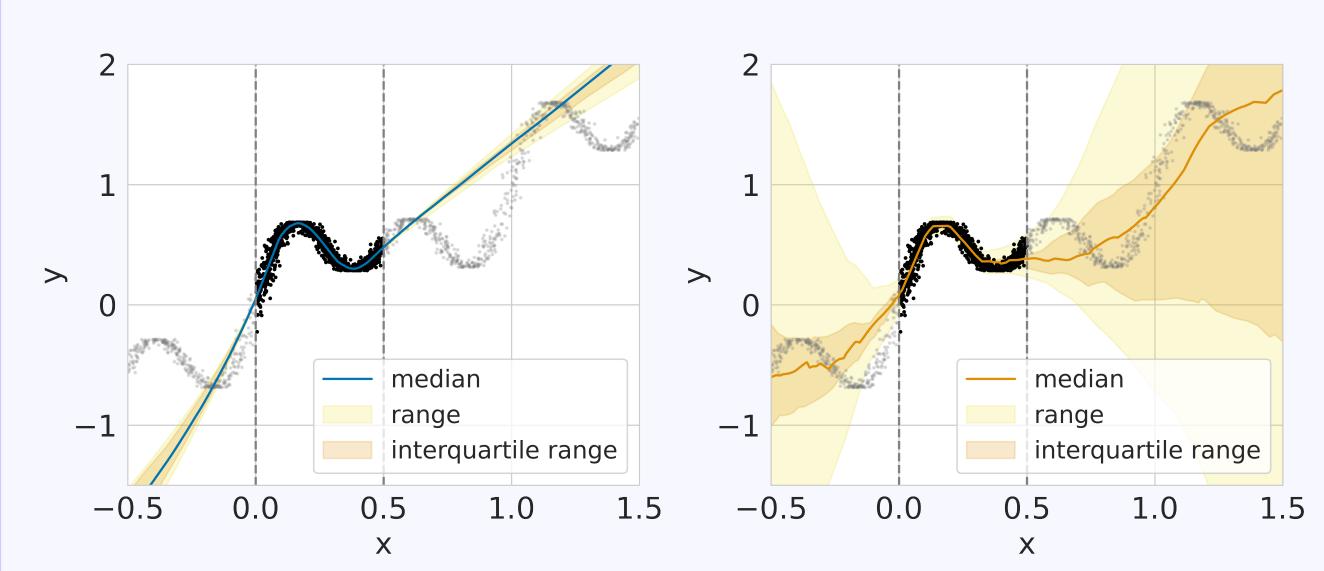


Figure 1. Vanilla NN (left), BBB (right).

- Vanilla NN has almost no variance, over-confident.
- BBB shows more uncertainty further away from training data.

Classification on MNIST

• 50k/10k/10k data split, trained using **SGD optimizer**.

Model	# Units	Test Error	Test Error
		(reported)	(achieved)
SGD	400	1.83%	2.15%
	800	1.84%	1.82%
	1200	1.88%	1.98%
SGD with Dropout	400	1.51%	1.48%
	800	1.33%	1.60%
	1200	1.36%	1.43%
BBB Gaussian	400	1.82%	1.61%
BBB Scale Mixture	800	1.34%	1.37%
BBB Scale Mixture	1200	1.32%	1.48%

Table 1. Comparative study of different models.

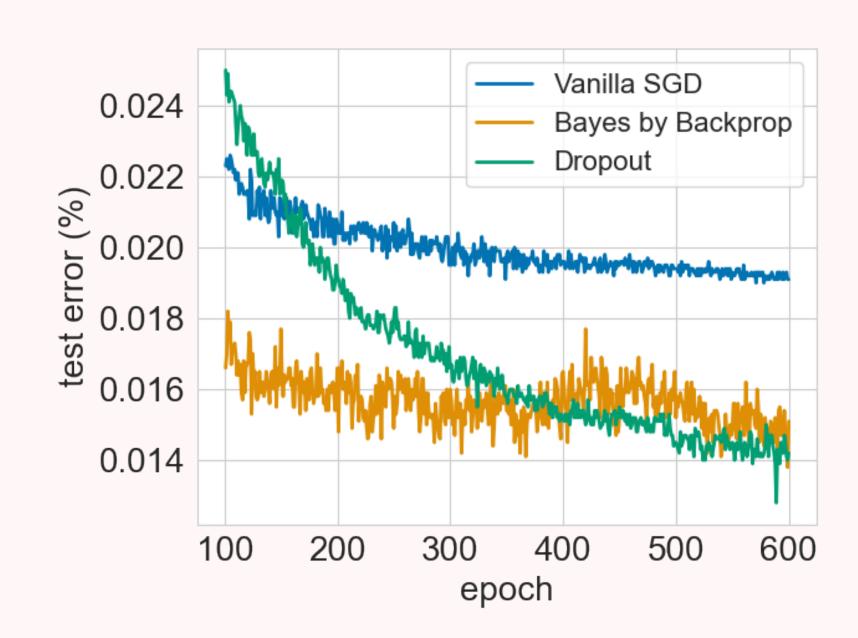


Figure 2. Test error vs epoch as training progresses.

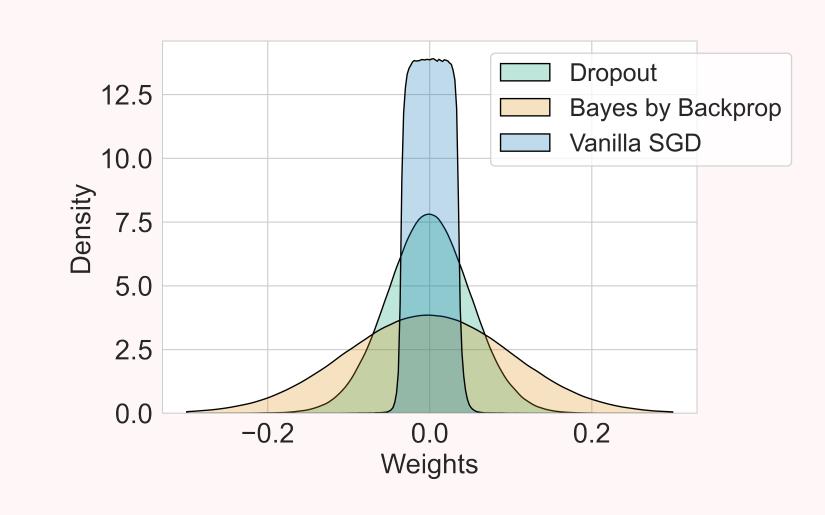


Figure 3. Histograms of weights for different models.

Natural weight pruning using signal-to-noise ratio.

Proportion removed	0%	75%	95%	99.5%
# Weights	2.4	600k	120k	12k
Test error	1.58%	1.62%	1.75%	1.84%

Table 2. Classification error after weight pruning.

Reinforcement learning: contextual bandits

- UCI Mushroom dataset as contextual bandit task.
- Thompson sampling allows the BBB network to naturally trade-off exploration and exploitation.

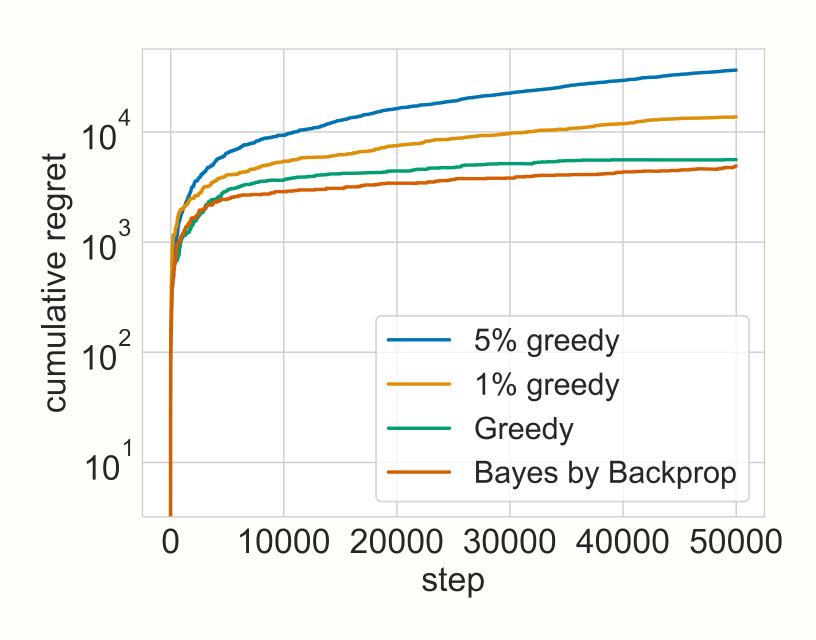


Figure 4. Comparison of cumulative regret values of various agents on the mushroom bandit task.

Takeaways

- Introduced **custom weighting** on the complexity term for BBB regression to work.
- Weight initialization matters a lot.
- Our pure greedy agent alternated actions from the beginning.

Further work

- Finish training models using different configurations.
- Check if BBB can be used to regularize GATs [2].
- Evaluate BBB on more complex datasets.

Reflection

- Restrain from writing all of the code from scratch on our own.
- Be more confident in our own ideas.

References

- [1] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural network. In International conference on machine learning, pages 1613–1622. PMLR, 2015.
- [2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2017.