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Abstract

Estimation of shape and pose of 3D objects is one of the fundamental challenges in computer
vision, with important uses in augmented reality, self-driving vehicles, and robotics. Classical
deep-learning-based approaches like Mask2CAD and have tackled this problem by training
neural networks on images and 3D data, but these methods are limited by the diversity of the
data they train on and notably struggle when they encounter new, unseen objects. The recent
development of Large Language Models (LLMs) like GPT-4 trained on massive corpora of
data provides a new paradigm for solving these complex problems through their adaptability
and robustness, effectively enabling modern systems to avoid the performance gap between
training and testing. At the same time, currently accessible LLMs have not been trained on
image data, making it difficult to use them for computer vision tasks.

In this work, we tackle topology reconstruction from monocular images with an intel-
ligent system for CAD model retrieval and alignment. Our system combines GPT-4 with
foundation models (e.g Segment Anything for segmentation and InstructBLIP for visual
question answering) and the Render & Compare approach, where a system iteratively updates
an object mesh, renders it, and compares it with a ground-truth image. We use Render
and Compare due to its benefits as an extremely general task. Render and Compare has no
limitations on how objects are rendered, how images are compared, and how meshes are
updated, making our system completely flexible in implementation and robust to flaws in
custom-trained methods. We use GPT-4 as an inference engine, using its latent knowledge of
objects to extract properties for CAD retrieval and to write executable code orchestrating
multiple tools to align CAD models to images. Inspired by Visual ChatGPT, we utilize pre-
trained foundation models to gather visual information from images for GPT-4 to understand.
We use Blender to update and render meshes.

We demonstrate that with the aforementioned tools, GPT-4 can apply the Render and
Compare approach without being explicitly trained on 2D and 3D data. Our work shows that
by giving GPT-4 access to foundation model tools that provide visual information like object
pixel locations and normal vectors, our system can align objects without any training. We
further find that by pairing the LLM with Visual Question Answering (VQA) models, we
can automatically create datasets of CAD models with structured annotations for each object
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with any human intervention. Using these datasets, our system is able to retrieve visually
similar CAD models for an input image and achieve 36% top-1 retrieval accuracy, competing
with state-of-the-art trained systems.

End-to-end, our system can also retrieve and align CAD models for images of tables
without any training. Our system already has baseline performance on the Pix3D dataset,
achieving a 0.4 average APmesh score, and demonstrates strong potential for competition with
the state-of-the-art. Furthermore, unlike trained methods, our approach has no dependence on
data and object categories making them more useful for real-world scenarios with numerous
unexpected object categories. Therefore, we provide a starting point for object reconstruction
using LLMs, and demonstrate that it is feasible to combine them with Render & Compare to
perform 3D tasks in a human-like manner.
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Chapter 1

Introduction

1.1 Objective

The work in this thesis introduces a new paradigm for solving tasks in 3D Computer Vision.
We specifically focus on the task of 3D topology recovery as a CAD model retrieval and
mesh alignment problem. These tasks are described in further detail below:

3D Topology Recovery focuses on recovering the high-level three-dimensional
structure of an object from a two-dimensional image, including the location
and orientation of the object in 3D and how its components relate in position
and orientation to each other.

CAD model retrieval is the task of selecting the best CAD models from a
database that match the object in an input image. This could include extract-
ing the exact CAD model for an object in an image, or the most visually
similar model if an exact match does not exist.

Mesh alignment seeks to shift and rotate (and potentially scale) meshes in 3D
space to overlap with a corresponding object in an image when rendered.

With these descriptions in mind, our system’s goal is to take an input image of an object,
find a CAD model that best matches the object, and align the CAD model in 3D with the
object in the image.

1.2 Motivation

Identifying objects in 3D is a fundamental part of how humans navigate and interact with
the world. We develop this skill over time, seeing numerous examples and learning the
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Fig. 1.1 Our system takes in an image of an object as input. We output a CAD model, rotation
matrix, and translation vector where the CAD model is aligned with the image when placed
at the outputted rotation and translation, as visualized in the render on the right.

core characteristics that identify objects like chairs and tables. Using our accumulated
knowledge of object characteristics, we can easily process unseen objects and identify their
corresponding classes. With the ability to identify objects, we position them in 3D to create
a mental model of the world around us. This ability is crucial for planning what to do and
how to interact with objects along the way. For example, how can you make a cup of coffee
without identifying a coffee cup and determining its relative location and rotation to you? As
a result, CAD retrieval and alignment is useful for many real world scenarios:

• Augmented reality is centered around virtually interacting with and modifying the
world around you. It is therefore essential to computationally understand what objects
are around the user and where they are located.

• Robots must be able to detect objects and determine their relative positions and
orientations. Intelligent agents must know the 3D locations of objects to navigate
towards or around them and must be able to detect their orientations to interact with
them. For example, if an assembly robot is trying to fit a car door onto a chassis, it
must know where the chassis is in 3D and how it is rotated in order to plan where to
attach the door.

• In order to navigate and move around public roads, autonomous vehicles have to
be robust to a variety of visual stimuli including pedestrians, other vehicles, signs,
roadblocks, etc. Determining the location and velocities of these objects can be assisted
with object retrieval and alignment, as position is essential and rotation can provide
context for the directions they may move in.



1.3 Challenges 3

Fig. 1.2 Real-world use-cases for CAD retrieval and alignment. Augmented reality (left)
creates a virtual representation of the physical world (in this case a sofa), by finding a relevant
CAD model and fitting it to the sofa’s location. Robots (middle) must estimate the rotation
and position of objects like the coffee mug in order to interact with them. Self-driving
vehicles (right) must estimate location and orientation of multiple objects in order to safely
navigate. Examples like the image above from the Waymo Open Dataset (Sun et al., 2020)
are used to train self-driving agents.

1.3 Challenges

There are a variety of challenges in object reconstruction:

• Visual variances: Differences in lighting, pose, color, texture, and overall image
content make CAD model retrieval a complex task. This leads to a common sim-to-real
gap in performance for approaches that train a network to learn embedding vectors for
images and use them for retrieval (Gümeli et al., 2022; Kuo et al., 2020; Langer et al.,
2021).

• Structure consistency and smoothness: Methods that directly estimate a 3D mesh,
like Mesh-RCNN (Gkioxari et al., 2019) struggle to produce smooth surfaces and
structurally consistent meshes. These methods reconstruct the part of the object that
faces the camera well, but they do not understand the objects well enough to extrapolate
the rest of the shape that is unseen. CAD models avoid this issue, since they have a
well-defined shape and surface.

• Unexpected object types: All trained methods can demonstrate strong performance
on the types of objects they see in training data. In the real world, these systems will
encounter completely new categories that they were not designed for. This causes
mesh creation methods like Mesh-RCNN to struggle to create the object and CAD
retrieval systems like Langer et al. (2021) to struggle to find relevant CAD models that
match the object.
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Fig. 1.3 High-level diagram of our system. We first take an input image and use the Object
Annotator to get object annotations for that image. We generate a CAD database by passing
renders of each CAD model through the Object Annotator as well. The CAD Retriever takes
the image annotations along with the database of CAD annotations and outputs the CAD
models that best match the image. The selected CAD model is loaded and Rendered in
Blender. The system then uses various visual foundation model tools to Compare the render
to the input image and gather information like pixel shifts and surface normals to help with
alignment. The system then plans and executes an Update to the Mesh, after which it is
re-rendered and the loop continues until termination.
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1.4 Our approach

To retrieve and align CAD models to an image, our system gathers annotations about an
object in an image using our Object Annotator. The system takes in an image of an object
and uses a VQA model to collect key properties about the object in the image (e.g. number of
legs) as annotations. The system then passes the input image’s annotations and the database
of CAD model annotations into the CAD Retriever, which selects the top CAD models whose
annotations match those of the input image. With a CAD model for the image, the system
then undergoes the Render and Compare loop. The CAD model is loaded into Blender
and rendered. The render and input image are passed into image-processing tools based on
foundation models, which Compare the images and output information about differences
in position and orientation of the objects in the two images. The system then uses GPT-4-
written code to to process these differences and Update the Mesh in Blender. The system
then re-renders the object, continuing the loop until termination, after which it outputs the
CAD model and its final rotation and translation.

• Object Annotator: To avoid the weaknesses of trained networks, we do not take the
classical approach of representing an image or CAD model by a learned embedding
vector. Instead, we leverage the general-purpose knowledge of GPT-4 (OpenAI, 2023)
to suggest key attributes of the type of object we are annotating. We then use a
InstructBLIP (Dai et al., 2023), a state-of-the-art VQA (Visual Question Answering)
foundation model to answer questions about those attributes based on the input image
or a render of the CAD model. GPT-4 plans the questions to ask based on the attributes
it chose. The answers to the questions become the annotations for the image or CAD
model.

• CAD Retriever: Since the annotations are purely text-based, we are unable to use
traditional methods for retrieving CAD models like nearest-neighbors search over
embedding vectors of images. Therefore, we use GPT-4 to directly filter our data. To
do so, we pass in the annotations of the CAD models as well as the annotations of the
input image as part of our prompt to GPT-4. We then task the LLM with outputting a
list of the CAD models it believes best fit the annotations of the input image.

• Compare Render and Image: With the input image and a render of the CAD model in
its current position and orientation, we use the Compare module to gather information
related to the differences in 3D position and rotation between the object in the image
and the CAD model. Inspired by Visual ChatGPT (Wu et al., 2023), we use state-of-
the-art foundation models and neural networks (Bae et al., 2021; Kirillov et al., 2023;
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Liu et al., 2023c) to gather pixel shifts between the two images for horizontal and
vertical 3D shifts, differences in width and height for depth shifts, and differences in
median surface normals for rotations.

• Mesh Update: This module takes the information produced by the compare module
and applies transformations to the CAD model in Blender (Blender Online Community,
2018). The module is instantiated by querying GPT-4 to produce executable methods
that take in pieces of information from the Compare module (e.g. pixel shifts, surface
normals) and output Blender code that can be run on the object to update its 3D
position and orientation. This module then runs the corresponding method created by
GPT-4, inputting the information provided by the Compare module. The module then
re-renders the CAD model to continue the Render & Compare loop.

Our approach is designed to tackle the challenges discussed in Section 1.3. By using
foundation models for VQA and comparing images, we mitigate the issue of visual variances
between images, since these networks are trained on a multitude of images that contain these
different variations. We avoid issues in structure consistency and smoothness by aligning
CAD models, which have predefined shapes that match real-world objects. We finally avoid
the issue of unexpected object types by retrieving from a database of CAD models. In doing
so, our system has the potential to handle new object types by gathering sets of CAD models
from large online databases, as opposed to re-training networks for the new object types.

We evaluate our approach on CAD model retrieval, alignment, and end-to-end retrieval
and alignment on the Pix3D dataset (Sun et al., 2018). Our system achieves achieves 36%
top-1 and 77% top-10 retrieval accuracies on images of tables. Our system additionally
maintains its performance on images of beds, achieving 34% top-1 and 74% top-10 accuracy.
Our system achieves an average APmesh score of 1.2 in realigning CAD tables that have been
randomly transformed. Our end-to-end system achieves a 0.4 average APmesh score which,
while not a strong result, demonstrates that our approach has potential for strong performance
in topology retrieval since it can be improved in many ways.

1.5 Contributions

In this thesis, we contribute the following:

• We develop a novel use of Render and Compare for topology reconstruction and align-
ment using LLMs as a knowledge agent by combining them with visual and multimodal
foundation models. We are the first to take this approach and demonstrate that it
is a feasible direction for future research.
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• We design an intelligent new way to automatically annotate data for CAD model
retrieval. This approach does not require any training and utilizes the latent knowledge
of LLMs, enabling us to produce textual annotations that humans can understand. It is
also easily adaptable to new object categories out-of-the-box (see Section 5.1.4).

• We introduce a framework for joint retrieval and alignment using zero model training
that achieves commendable results on a popular dataset. Note we provide an exciting
new baseline for future research into LLMs and foundation models for computer vision
tasks. Our work can be expanded and improved upon with analysis on more test images,
other datasets, and stronger foundation models and LLMs that improve performance.

1.6 Outline

This thesis is divided into 6 chapters. Chapter 2 discusses other works with topical relevance
to this project. Chapter 3 discusses our method in depth, including how we annotate images
and each CAD model, how we use GPT-4 to retrieve CAD models for an image, what models
and tools we use to extract information for translations and rotations, and how we actually
apply those translations and rotations using GPT-4-produced code and Blender. Chapter 4
discusses the details of our experiments and additional implementation details. Chapter 5
explores the results of our experiments and the insights they provide about our system. We
conclude with Chapter 6, summarizing our project’s contributions and discussing exciting
directions for future work.



Chapter 2

Background

This section discusses related works that contextualize our approach in this project. We break
this section down into the key topics of this project. Section 2.1 discusses existing works in
topology reconstruction, providing background on the different methods researchers have
used to tackle this problem. Section 2.2 discusses LLMs and foundation models, providing a
brief overview of what they are and why they benefit our system.

2.1 Topology Reconstruction

Topology reconstruction focuses on recovering the spatial structure of objects. In the context
of this project, topology reconstruction involves gathering a 3D representation of an object in
an image such that its surface is consistent with the overall structure of the image’s object.
For example, chair armrests may have holes in them that need to be accurately modeled in
the object’s structure. In this section, we discuss the variety of methods that try to recover
an object’s topology from an image. We split this discussion into classical computer vision
methods and recent diffusion-based methods that attempt to solve this problem.

2.1.1 Classical Approaches to Reconstruction

Recent classical reconstruction methods use network training and loss optimization to
reconstruct from images. These approaches include training end-to-end networks that
directly regress 3D shapes, applying iterative loops to refine meshes to an image, and
applying diffusion methods to multi-view reconstruction methods.
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End-to-End Networks

Many approaches use a trained network architecture from start to finish. Some systems
directly predict voxel representations, where an object is encoded by a three-dimensional
grid of cubes (Liu and Liu, 2021; Shi et al., 2021). These methods suffer from the tradeoff of
voxel representations, where low-density voxel grids have cubic surfaces but high-density
voxel grids have high computation requirements.

Graph convolution-based methods directly predict a fitted mesh for the object. These
methods start with an initial mesh of the object and iteratively refine them through graph con-
volutions to better fit the input image (Gkioxari et al., 2019; Wang et al., 2018). Pixel2Mesh
(Wang et al., 2018) starts with an ellipsoid as its initial mesh and refines from there, but as a
result suffers from weak topology due to its inability to break the ellipsoid down into more
difficult structures. Mesh-RCNN (Gkioxari et al., 2019) avoids this issue by first predicting a
voxel grid with a trained network, converting it to a mesh, and then refining the mesh using
graph convolutions. While this method better captures the topology of objects, it still suffers
from rough surfaces and inconsistencies for parts of the object that are not directly visible in
the image.

Other methods reconstruct an object as a Signed Distance Function, where the object
is represented as a function that outputs the distance to its surface from an input 3D point
(Jiang et al., 2020; Park et al., 2019). This function simplifies learning complex topologies,
but makes in-context reconstruction from images more difficult, hence their focus on re-
constructing topology from point clouds or synthetic data. Again, we avoid fully trained
end-to-end networks due to their inability to maintain performance on unseen data as well as
their inability to output smooth and consistent surfaces.

CAD Model Retrieval and Alignment

A large class of approaches retrieve corresponding CAD models and align them to the input
image. More specifically, these methods select a CAD model that best matches the object in
an image out of a database of other CAD models. They then estimate the 3D location and
rotation of the object in the image. With these outputs, a system can render the CAD model
at the location and rotation to spatially overlap with the object in the image. State-of-the-art
classical methods retrieve the best CAD model by using learned image embeddings. These
approaches pass the input image and renders of the CAD models into a network that outputs
an image embedding.

IM2CAD chooses the CAD model whose render has the highest cosine similarity to the
input image. The system then aligns the CAD model to the image by numerically optimizing
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Fig. 2.1 Diagram of Approach in Langer et al. (2021) for CAD retrieval and alignment.
For retrieval, they train an encoder network to produce vector embeddings for each image.
They use a triplet loss to force the embeddings of images and renders of the same CAD
model closer together, while pushing away images and renders of other CAD models. For an
input image, the system retrieves the CAD models whose renders have the closest (nearest-
neighbor) embeddings to the image. Their system then aligns the CAD models to the image
by computing keypoint correspondences between the image and CAD model, then jointly
optimizing the 3D pose and shape based on those correspondences. While accurate on
training data, this method is privy to losses in performance on unseen CAD models and
images due to its trained networks.
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the cosine similarity between the rendered scene and input image in terms of the position and
rotation of the object (Izadinia et al., 2017). Mask2CAD learns a joint CNN embedding space
between renders of CAD models and the regions of images that contain objects. The CAD
model’s translation and rotation in the image is estimated by using a combination of Huber
loss and extra trained network layers on the image features (Kuo et al., 2020). Patch2CAD
takes this further by applying the same approach as Mask2CAD but computes embeddings
on patches of the images and renders them instead of the entire images. Langer et al. (2021)
learns an embedding space over the entire image and renders. It aligns a CAD model to
the image by finding correspondence points between the input image and the 3D mesh of
the CAD model and then computing the translation and rotation as a PnP problem. They
further improve performance by stretching the CAD models along different 3D planes to
better fit input images. Their approach is visualized in Figure 2.1. ROCA (Gümeli et al.,
2022) also retrieves CAD models through a joint embedding space, but to align CAD models
it uses a combination of image to 3D correspondences, depth estimation, and differentiable
Procrustes optimization over the rotation and translation. Each of these methods provide
strong performance on datasets they are trained on like Pix3D (Sun et al., 2018) and ShapeNet
(Chang et al., 2015), but due to their reliance on classical trained networks, they struggle
with the Sim2Real gap, losing performance on unseen test data and real-world images. Like
end-to-end trained methods, these approaches still suffer from losses in performance on
unseen data, hence we leverage their strength in using CAD models while avoiding manually
training networks.

Multi-View Reconstruction with Diffusion Models

A few recent methods have taken advantage of the powerful capabilities of view-conditioned
diffusion models, networks that are capable of producing novel views of scenes by con-
ditioning on existing images of the scene and the new viewing angle (Liu et al., 2023b;
Rombach et al., 2021; Zhou and Tulsiani, 2023). These systems use view-conditioned diffu-
sion models to generate novel views of an object and apply the generated views to multi-view
3D reconstruction methods. To preface, a key multi-view reconstruction method is Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020). NeRFs represent a scene through a
learned function that maps input viewing angles and 3D positions to radiance/color and
occupancy at that position. This function therefore encodes a 3D representation of the scene
which can be used to easily compute depth maps and therefore other 3D representations
like meshes. Multiple methods use variants of NeRFs as well as Instant NGP (Müller et al.,
2022), a heavily optimized extension of NeRFs, as their multi-view reconstruction system
and learn the 3D shape by generating view-conditioned novel view images using diffusion
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models, alongside various other system optimizations (Deng et al., 2022; Liu et al., 2023b;
Melas-Kyriazi et al., 2023; Zhou and Tulsiani, 2023). One-2-3-45 (Liu et al., 2023a) is an
alternative method that uses a view-conditioned diffusion model with an SDF-based neural
reconstruction system, enabling it to quickly produce full meshes of an object from an image.
While these diffusion-based approaches do not lost performance on unseen data, they still
struggle to produce sharp surfaces so we continue with CAD models due to their strict and
accurate surfaces and shapes.

2.2 LLMs and Foundation Models

Our approach relies on the inferential capabilities of LLMs and the zero-shot performance of
visual and multimodal foundation models. We provide a brief background on both types of
models below, leading to the final models we use in our system.

2.2.1 LLMs

Large Language Models are large Transformer networks (Vaswani et al., 2017) trained on
huge corpora of data in order to effectively predict text as a continuation of some input
text. BERT (Devlin et al., 2018) introduced an approach to training transformers on purely
text data, sparking a turning point where new models could be trained on data scraped
from the internet. Radford et al. (2018) proposed the idea of large-scale pre-training of
language models on text data followed by fine-tuning on datasets for specific tasks. Wei et al.
(2021) demonstrated that by fine-tuning LLMs on a variety of instruction-based datasets, they
improve on new, unseen tasks. GPT-3 (Brown et al., 2020) crucially found that LLMs with
large enough scale have the emergent property of adapting to new tasks with a single prompt,
sparking few-shot instruction fine-tuning and new applications of multi-billion-parameter
LLMs.

InstructGPT, also known as GPT-3.5, (Ouyang et al., 2022) demonstrated the conversa-
tional capabilities of LLMs as well as their ability for complex reasoning by training them
using reinforcement learning from human feedback. LLaMa (Touvron et al., 2023a) and
Vicuna (Chiang et al., 2023) are recent LLMs that have been open-sourced to the public and
have demonstrated performance competitive with popular closed-source LLMs like GPT-3.5
and Claude (Anthropic AI, 2023). GPT-4 (OpenAI, 2023) is OpenAI’s latest and largest
LLM which has demonstrated unprecedented capabilities in complex reasoning, code writing,
and general task completion. LLaMa 2, on the other hand, is a recent human-centered model
focused around AI safety and red-teaming, sparking a new direction of responsible LLM
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development (Touvron et al., 2023b). At the same time, LLaMa 2 lacks the inferential
strength of GPT-4, so we use GPT-4 in our work.

2.2.2 Foundation Models

Foundation models are large networks that are trained on a massive amount of unlabeled data
(Bommasani et al., 2022). LLMs are one such type of foundation model. In this section we
focus on visual and multimodal foundation models relevant to the topic of this project.

Segment Anything (Kirillov et al., 2023) is a foundation model designed to segment any
object. Trained on a diverse set of curated images and segmentations, the model is able to
take in points or bounding boxes as prompts and output segmentation boxes for almost any
object with its zero-shot capabilities. By combining this model with Grounding DINO, an
open-set object detector, (Liu et al., 2023c), one can create an open-set object segmentation
system, which we heavily use in our work.

Multimodal foundation models are foundation models that can handle multiple forms of
data, like images and text. CLIP (Radford et al., 2021) introduced an efficient pre-training
task for models to learn visual-text relations, which served as a key step in multimodal
foundation models. CLIP uses large datasets of image-text pairs to learn image-text relations
by contrastive pre-training a network to select the best caption for an image. This pre-training
enables models to learn key properties of image-text relations, so those models can be
fine-tuned on new tasks for zero-shot transfer of their emergent knowledge. CLIP relies on
a curated dataset to learn, but ALIGN (Jia et al., 2021) expands on CLIP for multimodal
contrastive learning on noisy, imperfect datasets.

Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023b) are key approaches that
combine pretrained vision encoders and language models by inserting and training network
architectures between them to bridge the image-text gap. These models achieve strong
performance on a variety of different datasets for different multimodal tasks. InstructBLIP
(Dai et al., 2023), the successor of BLIP-2, expands on its predecessor by introducing
instruction-tuning to the network. It adds an instruction-aware transformer between its vision
and text models, enabling task-specific tuning. By training on 13 different vision-language
task datasets, InstructBLIP achieves state-of-the-art performance on multiple tasks including
VQA. As a result, we use InstructBLIP for VQA in our system.



Chapter 3

Method

This chapter discusses the key details of our approach in this work. We tackle topology
reconstruction through two stages: CAD model retrieval and CAD model alignment. In CAD
model retrieval, we filter through a database of annotated CAD models to find the models
that best match the object in an input image. CAD model alignment then takes the CAD
model and rotates and translates it in 3D to have the same position and orientation as the
object in the input image. Our approach to both of these tasks uniquely uses pre-trained
LLMs and foundation models instead of manually trained networks for specific subtasks.

3.1 Overall System

Our full system is visualized in Figure 3.1. We begin by annotating the CAD models. We
use GPT-4 (OpenAI, 2023) to plan questions to ask for each image (input and CAD model
renders). These questions are passed into InstructBLIP (Dai et al., 2023) and the answers
become the annotations for the image and CAD models, respectively. We pass the annotations
back into GPT-4 and task the LLM to select the CAD model(s) that best fit the image’s
annotations. This completes the retrieval portion of our system, described further in Section
3.2.

Once a CAD model is selected, it is loaded into Blender (Blender Online Community,
2018) and rendered. GPT-4 is queried to produce executable code that will align the CAD
model to the input image using the foundation model tools that are available. The code
applies an iterative loop, where the 3D model is rendered, compared to the image using the
foundation model tools, and updated in Blender. Once the iterations are complete, the system
outputs the aligned CAD model 1. More details can be found in Section 3.3.

1The aligned CAD model consists of the CAD model, its final rotation matrix, and its final translation matrix
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Fig. 3.1 Diagram of our entire system. Each key function is displayed in red, highlighting
the flow of information from the input image to the final aligned CAD model.
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3.2 CAD Model Retrieval

The first key stage in our system is CAD model retrieval. In this subtask, our system must
find the best CAD model that matches an object in an image. In our approach, we construct a
database of the available CAD models, gathering textual annotations of different properties of
the objects using InstructBLIP. We then pass these annotations as well as the annotations for
the input image into GPT-4 to select the best CAD models. The first subsection describes the
CAD database and what types of annotations are collected. The second subsection discusses
our process for gathering these annotations automatically. The third and final subsection
explains how we use the CAD database and annotations of the input image to finally select a
corresponding CAD model.

3.2.1 CAD Database

To retrieve CAD models, classical methods (Kuo et al., 2020; Langer et al., 2021) employ
learned networks that compute high-dimensional embedding vectors for any image or CAD
model render. Our work must crucially avoid relying on a network that is trained for this
specific task2. Therefore, we encode details of each CAD model in a format that any LLM
and system can understand: text.

Each CAD model is annotated for a set of key properties. These properties encode
semantic information about the CAD model that can distinguish it from other possible CAD
models. One such property is "number of table legs". The number of legs on a table is
a unique property that every table has, and furthermore it is an important property to use
when finding similar tables and filtering out dissimilar tables. Such properties are beneficial
because they are easy to understand and can be directly passed into any language model
without any modification, unlike an embedding vector or other complex structure. Examples
of additional properties are provided in Figure 3.2.

3.2.2 Auto-Annotation of Attributes

To gather annotations for each CAD model in the database, we use GPT-4 (OpenAI, 2023)
paired with InstructBLIP (Dai et al., 2023), a state-of-the-art Visual Question Answering
(VQA) foundation model. The data annotation is completed in four steps:

1. Each CAD model is rendered as an image (see Section 4.2.1 for details).

2These networks lose significant performance on unseen CAD models and images. See Section 5.1.1.
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Fig. 3.2 Examples of table properties and annotations. Properties are in the left column
and each annotation for the property is below its corresponding table image. Each property
provides key information that can help our system filter through a database of different CAD
models.
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Fig. 3.3 Diagram of auto-annotation for CAD models. GPT-4 is prompted to produce a set of
properties to annotate. GPT-4 is then prompted to write code that will use InstructBLIP to
answer questions about a CAD render. The code produces a set of annotations for the CAD
model based on InstructBLIP’s responses.
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2. GPT-4 is told it will annotate a set CAD models and chooses a series of properties it
will annotate.

3. GPT-4 is then given access to InstructBLIP for VQA through an ask() function. The
LLM writes a snippet of code which will do the following:

• Create a data entry for each CAD model.

• Ask a question about each aforementioned property to the VQA network, with
the render of the CAD model as input.

• Record the answer to each question as an annotation for the corresponding
property.

4. The code snippet is executed on the list of CAD model renders.

This process is visualized in Figure 3.3. For full details on prompting for GPT-4, see
Section 4.2.1.

Through this auto-annotation system, we automatically annotate each CAD model without
any need for training data. This approach uses GPT-4’s latent knowledge and the robustness
of the InstructBLIP foundation model such that it can annotate any object of any category
without any modification. As a result, our system can easily adapt to an ever-growing database
of CAD models and object categories, unlike classical methods that train a network to produce
embedding vectors. In addition, this system is modular by design, so any subsequent LLM or
multimodal foundation model for VQA can be directly swapped with GPT-4 and InstructBLIP
respectively to improve performance. We note that we additionally evaluate our retrieval
system with hand-annotated CAD models as an alternative to auto-annotations and find
performance to be significantly worse. See Section 5.1.2 for further details.

3.2.3 Retrieval from Auto-Annotated Data

With the database of annotated CAD models, we retrieve the best-match CAD models using a
similar approach to auto-annotation. We use GPT-4 (OpenAI, 2023) to process the annotated
tables and produce a list of questions to ask InstructBLIP (Dai et al., 2023) for an input
image with an unknown object. The outputted questions are then passed one-by-one into
InstructBLIP with the input image to get the annotations for the unknown object. These
annotations are finally passed back into GPT-4 alongside the original database of auto-
annotated CAD models. With the annotations and database, GPT-4 is given a new prompt to
output the 10 CAD models in the database that it believes best match the unknown object’s
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Fig. 3.4 Diagram of CAD model retrieval with auto-annotated tables. GPT-4 is given the
database of auto-annotated CAD models and is prompted to prepare a series of questions to
ask a new input image. The system then asks each question to InstructBLIP with the input
image and saves the list of answers. The answers are passed back into GPT-4 with the CAD
database and a new prompt asking it to output the top-10 CAD models that correspond to the
answers, along with confidence scores for each outputted CAD model.
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annotations. GPT-4 is also asked to output a confidence score for each of the 10 CAD models,
enabling a sequential ranking of the models. This process is visualized in Figure 3.4.

Like our auto-annotation system, this retrieval system does not require any training or
fine-tuning of models. By design, GPT-4 plans every question we ask to a new image, and
we do not apply any processing to the CAD database. This makes the system fully adaptable
to new CAD models, object categories, and annotation types. Furthermore, the system can
be easily upgraded with more intelligent LLMs and multimodal foundation models in the
future by simply replacing GPT-4 and InstructBLIP.

3.3 CAD Model Alignment

To align a CAD model with an object in an image, we take an iterative, two-step approach
that follows the Render and Compare paradigm. To initialize, we load the CAD model into
Blender (Blender Online Community, 2018) and render it in its current position. We first
extract information from the image and render using tools built around visual foundation
models and neural networks. We use the tools to compare visual information between the
image (goal) and render (current state). Second, we use GPT-4 (OpenAI, 2023) to write
code that will update the CAD mesh in Blender based on the extracted information and
render the updated CAD model. We repeat these two steps for a set number of iterations.
We group this section into horizontal and vertical shifting, depth shifting, and rotation. For
each transformation, we discuss the tools used to gather key visual information and the code
that is generated to apply the transformation to the CAD model in Blender.

3.3.1 Horizontal and Vertical Shifting

In this subsection we discuss the tools our system uses and the code it generates to detect
and fix horizontal and vertical shifts of objects between two images.

Extracting Information for Horizontal and Vertical Shifts

To detect horizontal and vertical shifts, we estimate the center point of the object in the input
image and current render, and then compute the pixel difference between the two center
points. This gives a horizontal and vertical delta between the current position in the render
and the target position in the input image. Our system detects the center point of the object
using Grounding DINO (Liu et al., 2023c) and Segment Anything (Kirillov et al., 2023). By
combining these two models together, we have a strong system for producing segmentation
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masks from textual inputs3, enabling us to get the 2-dimensional attributes of the object we
are trying to align in both the input image and the render of the CAD model in its current
state.

For horizontal and vertical shifts specifically, we apply a simple operation on the seg-
mentation mask by gathering the minimum and maximum x and y coordinates and taking
the average as the center point of the object. We then compute the shifts by subtracting the
object’s center point in the current render from its center in the input image, providing a delta
towards the target location.

Applying Horizontal and Vertical Shifts

In order to generate code to apply the horizontal and vertical shifts in 3D, we apply a custom
prompt to GPT-4 providing key information. The prompt informs GPT-4 that an object has
been shifted an unknown amount horizontally and vertically in 3D and that it must undo that
shift. The LLM is informed that it must produce a method that takes in the horizontal pixel
shift, vertical pixel shift, and current 3D position of the CAD model and outputs a string of
Blender Python code that will transform the object back to its original position. The LLM is
additionally told it has access to the camera parameters, including focal length, sensor width
and height, and image resolutions, which it must use to convert the pixel shifts to 3D.

GPT-4 extrapolates from this information to produce the following equations in Python
code,

∆x =
sw

rx
∗ z

f
∗h (3.1)

∆y =
sh

ry
∗ z

f
∗ v (3.2)

where h and v are the horizontal and vertical pixel shifts, respectively, and x, y, and z are
the horizontal, vertical, and depth positions, respectively. sw and sh are the sensor width and
height, rx and ry are the horizontal and vertical image resolutions, and f is the focal length of
the camera. These equations are derived from Equation 3.3, the camera-to-world formula
that converts pixel position px to 3D position x at depth z (and py to position y WLOG).

x =
sw

rx
∗ z

f
∗ px (3.3)

Following this computation, the GPT-produced code applies the shift to the object’s 3D
position in Blender. Since we prompt GPT-4 to output a Python method, it can be called with

3See Section 2.2.2.
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1 def shift_from_pixel_diff(horizontal_pixel_shift, vertical_pixel_shift, current_position):
2 # Convert pixel shifts to 3D shifts
3 horizontal_shift = (horizontal_pixel_shift * current_position[1] * sensor_width) / (focal_length * resolution_x)
4 vertical_shift = (vertical_pixel_shift * current_position[1] * sensor_height) / (focal_length * resolution_y)
5
6 # Subtract shifts from current position to get original position
7 original_position = [current_position[0] - horizontal_shift, current_position[1], current_position[2] - vertical_shift]
8
9 # Return Blender code to shift object back to original position

10 return ’obj.location = ’ + str(original_position)

Fig. 3.5 GPT-generated code to take pixel shifts and output Blender code that will shift the
CAD model accordingly. The code directly applies Equations 3.1 and 3.2 and outputs a
string of Blender code that modifies the object position. Note that depth is the y-position in
Blender, hence current_position[1].

each pixel shift without prompting GPT-4 again, making the system more time-efficient and
less costly. An example of GPT-4’s output is provided in Figure 3.5. This approach further
demonstrates the impressive intelligence of LLMs and their potential as an agent that can
directly modify objects in 3D.

3.3.2 Depth Shifting

In this subsection we discuss the tools our system uses and the code it generates to detect
and fix differences in object depth between two images.

Extracting Information for Depth Shifts

For differences in depth, we estimate the width and height of the object in the input image
and current render as surrogate measures of depth. Our system again utilizes the masks
generated from Grounding DINO and Segment Anything, as discussed in 3.3.1.

From the segmentation masks, we compute the minimum and maximum horizontal and
vertical pixel values. We then compute the width and height of the objects in the images as
the difference between the maximum and minimum values.

Applying Depth Shifts

We again generate code by prompting GPT-4. Since the conversion from width and height
to depth is more complex, we explicitly provide the following relation derived from the
triangulation formulas of an object with fixed dimensions that is shifted in depth:

do =
wc

wo
dc (3.4)
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11 def shift_depth_from_width_height(original_width, original_height, current_width, current_height, current_position):
12 # Calculate the depth from the width and height
13 original_depth_width = (current_width * current_position[1]) / original_width
14 original_depth_height = (current_height * current_position[1]) / original_height
15 # Average the depth
16 original_depth = (original_depth_width + original_depth_height) / 2
17 # Calculate the depth ratio
18 depth_ratio = original_depth / current_position[1]
19 # Scale the horizontal and vertical positions
20 original_position_x = current_position[0] * depth_ratio
21 original_position_z = current_position[2] * depth_ratio
22 # Return the Blender code
23 return f’obj.location = ({original_position_x}, {original_depth}, {original_position_z})’

Fig. 3.6 GPT-generated code to take pixel widths and heights and output Blender code that
will shift the CAD model’s depth accordingly. The code directly applies Equation 3.4, scales
the horizontal and vertical positions based on the new depth, outputs a string of Blender
code that modifies the object position. Note that depth is the y-position in Blender, hence
current_position[1].

where do is the original depth, dc is the current depth, wo is the object width in the original
(pre-transformation) image and wc is the width in the current render. The same equation
applies when wo and wc are replaced with ho and hc, the object heights in the original image
and current render.

Our system’s prompt to GPT-4 provides the relation in Equation 3.4 and instructs it to
produce code that shifts the CAD model’s depth in Blender. We further instruct GPT-4 to
compute the original depth in terms of width and height separately, and take the average of
the two as the updated depth of the object. We additionally tell the LLM to scale the x and
y positions of the CAD model based on the ratio of the original depth to the current depth.
This is derived from Equation 3.3 when z is changed to a new value. The outputted GPT-4
code is provided in Figure 3.6.

This approach highlights the limitations of GPT-4, as it cannot apply the complex multi-
step reasoning to derive each property needed for converting widths and heights to depth
shifts, but it still demonstrates the ability of the model to take key properties and convert it
into executable code in Blender.

3.3.3 Rotation

In this subsection we discuss the tools our system uses and the code it generates to align
objects with different orientations between two images.

Extracting Information for Rotations

We gather rotation information through the surface normals of an object, which encode the
overall orientation of the object in a single vector. To extract this information, we apply a
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24 def rotate_from_normals(original_normal, current_normal):
25 blender_code = """
26 import bpy
27 import mathutils
28
29 # Convert the input normals to Blender Vector objects
30 original_normal = mathutils.Vector(({}))
31 current_normal = mathutils.Vector(({}))
32
33 # Calculate the rotation difference between the original and current normals
34 rotation_difference = current_normal.rotation_difference(original_normal)
35
36 # Convert the rotation difference to Euler rotation
37 euler_rotation = rotation_difference.to_euler(’XZY’)
38
39 # Apply the Euler rotation to the object’s rotation_euler attribute
40 obj.rotation_euler.rotate(euler_rotation)
41 """.format(original_normal, current_normal)
42
43 return blender_code

Fig. 3.7 GPT-generated code to take median surface normals and output Blender code that
will rotate the CAD model to align the surface normals together. The code directly uses
Blender’s built-in functions to compute and apply the rotation based on the normal vectors.

surface normal estimator (Bae et al., 2022) to get per-pixel surface normals in the input image.
For the current render of the 3D object, we use Blender directly to provide ground-truth
surface normals of the CAD model. Since these surface normals are per-pixel, we use the
combination of Grounding DINO and Segment Anything as described in Section 3.3.1 to
get a per-pixel mask of the object. We then take the median of the extracted surface normals
within the image mask.

Applying Rotations

Unlike for shifting, where we or GPT-4 had to derive an equation in order to apply
the correct transformation, Blender provides a variety of powerful functions for rotations,
including a built-in function called Vector.rotate_difference() which GPT uses to
calculate a quaternion rotation from the median surface normal of the render to the median
surface normal of the input image. Blender additionally provides built-in methods to con-
vert quaternions to Euler rotations and apply these rotations to the CAD model. GPT-4
demonstrates some latent knowledge of these functions out of the box, but we mention these
functions in the prompt to add more consistency in its code generation. The code output of
GPT-4 is provided in Figure 3.7.

3.3.4 Orchestrating the the tools and parts to Align

To make it simple for GPT-4 to orchestrate many moving parts, we specifically design our
system to be modular. Each tool for gathering information (e.g. pixel shifts, median surface
normal) can be run via a single function. Each snippet of code to update the mesh based on



3.3 CAD Model Alignment 26

Fig. 3.8 Descriptions of the functions built around each tool and code snippet. get_shift(),
get_width_height(), and get_normals() are the tools we provide for extracting in-
formation for horizontal and vertical shifts (see Section 3.3.1), depth shifts (see Sec-
tion 3.3.2), and rotations (see Section 3.3.3), respectively. shift_from_pixel_diff(),
shift_depth_from_width_height(), and rotate_from_normals() are the functions
generated by GPT-4 (see Figures 3.5, 3.6, and 3.7, respectively) that produce Blender code
to apply modifications to the CAD model. run_blender() takes the outputs of these GPT-
generated functions to execute the code in the Blender environment and re-render the CAD
model. In combination, these methods enable GPT-4 to apply the Render and Compare loop
from end-to-end.
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44 def transform_object_back():
45 object_name = ’table’
46 for _ in range(num_iters):
47 # Get shift
48 shift = get_shift(object_name)
49 # Get current position
50 current_position = get_position(object_name)
51 # Generate Blender code to undo shift
52 shift_code = shift_from_pixel_diff(shift[0], shift[1], current_position)
53 # Run Blender code
54 run_blender(shift_code)
55 # Update current position
56 current_position = get_position(object_name)
57 # Get width and height
58 width_height = get_width_height(object_name)
59 # Generate Blender code to undo depth shift
60 depth_shift_code = shift_depth_from_width_height(width_height[0], width_height[1], width_height[2], width_height[3],

current_position)
61 # Run Blender code
62 run_blender(depth_shift_code)
63 # Update current position
64 current_position = get_position(object_name)
65 # Get normals
66 normals = get_normals(object_name)
67 # Generate Blender code to undo rotation
68 rotation_code = rotate_from_normals(normals[0], normals[1])
69 # Run Blender code
70 run_blender(rotation_code)

Fig. 3.9 GPT-generated code to orchestrate the tools and Blender code together for align-
ment. For each transformation in horizontal and vertical translations, depth translations,
and rotations, the code first uses the corresponding information function, followed by the
corresponding Blender code generation function, and finally the run_blender() function to
execute the code. This demonstrates GPT-4’s ability to effectively combine these different
functions to tackle the overall task of alignment.

the gathered information can also be generated via a method call. A function to execute a
Blender code snippet is also provided to tie everything together. Each function and a brief
overview are listed in Figure 3.8.

GPT-4 is told it has images of an object before and after an unknown transformation.
It is given the names and descriptions of each function in Figure 3.8 and is told to use the
functions to move the object back to its original position and orientation. With this prompt,
GPT-4 produces Python code that orchestrates the functions together to transform the object
back, which is provided in Figure 3.9.



Chapter 4

Experiment Design

Our experiments in Chapter 5 extensively evaluate our system’s abilities in CAD model
retrieval and alignment. This chapter discusses our setup for these experiments. The first
section discusses the core dataset we use for all experiments. The second section discusses
the pipeline for each experiment, including Blender (Blender Online Community, 2018)
configuration and rendering. The third section introduces our evaluation metrics for retrieval
and alignment.

4.1 Dataset

In this work we use Pix3D (Sun et al., 2018), a dataset of paired images and CAD models. The
dataset is split into different categories of objects including chairs, tables, beds, wardrobes,
and more. Each category has a set of CAD models and up to thousands of images, each
annotated with one of the CAD models. Some examples are visualized in Figure 4.1. The
dataset provides information on camera parameters as well as the rotation and translation
matrices of the CAD model in the image, allowing us to render and evaluate our alignments.

Mesh R-CNN (Gkioxari et al., 2019) provides random splits of Pix3D called S1 and S2.
S1 splits the images such that all CAD models are used in train and test. S2 splits the images
such that the models in train do not overlap with the models in test.

Due to the large scale of the dataset and limited resources, we primarily focus on the
’tables’ category in Pix3D for almost all experiments.
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Fig. 4.1 Pix3D has a set of images for different categories. Each image has a corresponding
CAD model in the dataset. The top row visualizes some Pix3D images and the bottom row
visualizes their corresponding CAD models. Each image is annotated with the 3D position
and rotation of the object in the image.
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71 "IKEA_BJORKUDDEN_1": {
72 "type": "dining table",
73 "number of legs": 4,
74 "tabletop shape": "square",
75 "size": ["small/medium", "tall"],
76 "style": "rustic",
77 "number of drawers": 0,
78 "number of cabinets": 0,
79 "number of shelves": 0,
80 "edge design": ["straight", "sharp"],
81 "table base design": "none",
82 "structure complexity": "simple",
83 "legs style": "rectangular",
84 "support": "yes",
85 "apron": "yes",
86 "tabletop thickness": "medium",
87 "glass elements": "none",
88 "wheels": "none",
89 "leg attachment position": "corners"
90 }

Fig. 4.2 Hand annotations for a single CAD model. Each key is a property and each value/list
of values is the annotations for the CAD model.

4.2 Pipeline

We split our system into two sub-components: the retrieval subsystem and the alignment
subsystem. This section discusses the implementation details of the experiments we use to
evaluate each subsystem, as well as the full system as a whole.

4.2.1 Retrieval Experiment Pipeline

To evaluate our retrieval subsystem, we run experiments on hand-annotated data and auto-
annotated data. We discuss implementation details for gathering hand-annotated data, gather-
ing auto-annotated data, using the annotations to retrieve CAD models for new images in our
experiments, and notes on why we use truncated datasets for our experiments.

Hand-Annotated Data

We first manually construct a dataset of hand-annotations for each table CAD model. We
query GPT-4 (OpenAI, 2023) multiple times for key attributes to annotate for every CAD
model. The query we send to GPT-4 is provided in Figure 4.4. Once we have the set of
attributes, we determine annotations for each attribute for each CAD model. To do so, we
look at the CAD model in Blender (Blender Online Community, 2018), multiple Pix3D
images of the model, and resources online related to the CAD model. We then create a
JSON file with a dictionary for each CAD model containing each property as a key and the
attributes as the value. An example hand-annotation is provided in Figure 4.2.
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Fig. 4.3 CAD models are rendered at a slight angle. This helps our system see more of the
CAD model’s key features.

Auto-Annotated Data

We auto-annotate the CAD models following our methodology in Section 3.2.2. First, we
render each CAD model. We use Blender to render each CAD model, using a focal length
of 35mm and placing the object 2m from the camera. We slightly rotate the tables by 15°
around the vertical axis and 30° around the depth axis facing out of the camera. This angle
lets the render highlight more of the table’s structure and properties. Example renders of
CAD models are provided in 4.3.

We then query GPT-4 for properties to annotate using the prompt in Figure 4.4, as we did
for hand-annotations. Using the same conversation memory so the LLM can see its previous
response with the properties it planned, we follow up with a second prompt, provided in
Figure 4.5, asking the model to write code that will auto-annotate the CAD models. We
provide key information in the prompt, including that it can ask questions to the VQA model
using the ask() function and that the CAD model names and images are in a list called
model_imgs. From this information, GPT-4 outputs a full snippet of code that creates a
dictionary named annotated_cads containing the annotations. We then execute the snippet
of code to get the annotations. An example of the auto-generated annotations for a CAD
model is provided in Figure 4.6.

Retrieving CAD models with Annotated Data

Once we have the annotations for each CAD model in our database, whether it be hand-
annotations or auto-annotations, we ask GPT-4 to produce a series of questions to ask for
any new, unseen image. Our prompt is provided in Figure 4.7. We ask the LLM to output a
series of questions that can help it filter through the database of CAD models, such that it
asks as few questions as possible for efficiency. In the prompt, we provide the annotations of
the CAD models as well as the descriptions of each property that is annotated, which was
already generated by GPT-4 earlier. We then get back a list of questions to answer. Since
InstructBLIP (Dai et al., 2023) hallucinates often, we prompt GPT-4 to not use open-ended
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91 You have a variety of different {object_category}s available in a database. You will receive an image of a {object_category} and must
figure out which {object_category} in the database is in the image. To do so, you must annotate each {object_category} in the
database with properties of your choice.

92
93 More specifically, you have access to a model that can answer questions about an image. You will render each {object_category} as an

image and use the model to ask questions about each {object_category} image. This is how you will gather the properties for each {
object_category}.

94
95 You must decide which properties to gather for the {object_category}s. For a table, for example, you could gather the number of legs of

the as a property. This means each table will be rendered and you will ask the model how many legs are in the table for each render
. For each {object_category} in the database, the annotation will be the model’s response to this question (recall the input to the
model is the question and a render of {object_category} table from the database).

96
97 {object_category}s can have the same CAD model but different colors and/or materials, so they may not be a good property to focus on. You

will later use a VQA model to annotate the CAD models based on the properties you choose. This model is unreliable, so some of its
annotations may be inaccurate. Plan your attributes to account for this unreliability.

98
99 Decide which properties to allocate for the {object_category}s. You want to choose properties that have high entropy. This means that you

want to choose properties for which you can identify the correct {object_category} as quickly as possible, so each property should
help split up the database of {object_category}s as much as possible. Choose 12 to 15 properties.

Fig. 4.4 Prompt to GPT-4 to generate properties to annotate for each CAD model of
object_category.

100 With all these properties in mind, you will now auto-annotate the data.
101
102 You have a function called ask(img, question) which can ask a question about an image. The different CAD models have been rendered and

put into a list called model_imgs. Each entry of this list has a pair with the first item being the model name and the second item
being the image.

103
104 Write python code to loop through each CAD model, ask your questions, and output a dictionary called annotated_cads where the key is the

model name and the value is the corresponding attributes for that model based on the questions you ask and their corresponding
answers.

105
106 ask() and model_imgs have already been defined and will be loaded before the code is executed. Use tqdm on the loops to help keep track

of progress.
107
108 Choose a short name for each attribute. DO NOT use the question as the name of the attribute. After planning, run the code.

Fig. 4.5 Prompt to GPT-4 to generate executable code to annotate renders of CAD models.

110 "IKEA_BJORKUDDEN_1": {
111 "How many legs does this table have?": "2",
112 "What is the shape of the table top?": "square",
113 "What are the dimensions of the table?": "The table in the image has a height of 30 inches and a width of 20 inches.",
114 "Does this table have drawers?": "no",
115 "How many drawers does this table have?": "1",
116 "Does this table have shelves?": "no",
117 "How many shelves does this table have?": "1",
118 "What is the design of the table edge?": "The table edge is square.",
119 "Does this table have extensions?": "no",
120 "What is the material of the table?": "The table is made of wood.",
121 "What is the color of the table?": "The table is brown.",
122 "What is the style of the table?": "square",
123 "Does this table have decorative elements?": "no",
124 "What type of table is this?": "bar",
125 "Does this table have casters?": "no"
126 }

Fig. 4.6 Auto-annotations for a single CAD model. Each key is the question asked and each
value/list of values is the annotations for the CAD model, which is the response generated by
InstructBLIP.
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127 """You have access to the following dataset of CAD models. the dataset is a dictionary where the key is the name of each CAD model and
the {object_category}’s attributes are the corresponding dictionary. You are given an image of one of the CAD models and must
determine which CAD model is in the image. You have a visual question answering model that can answer any question you have about
the image.

128 A description of the data is as follows: \n""" + data_description + """
129
130 The dataset is as follows:
131 """ + cad_annotations + """ . Choose a series of questions to ask the model in a way that minimizes the total number of questions needed

to select a CAD model in this dataset. Due to cost issues, you must ask all your questions in one go. Avoid asking open-ended
questions. Instead give options with each question (for example instead of ’What is the size of the {object_category}?’ ask ’Is the
{object_category} small, medium or large in size?’). Limit the number of options per question to 4-5. Plan all your questions and

output them with ask_questions"""

Fig. 4.7 Prompt to GPT-4 to generate questions to ask a new input image.

132 """
133 You have access to a dataset of CAD models. The dataset is a dictionary where the key is the name of each CAD model and the table’s

attributes are the corresponding dictionary. You are given an image of one of the CAD models and must determine which CAD model is
in the image.

134
135 The dataset is as follows:
136 """ + {annotated_cads} + """ . A series of questions have been asked to the model. The questions and their answers are as follows:
137 """ + qa_pairs + """
138 Note that properties like color and material may be less important, as the image could have a CAD model in a different color.
139
140 The VQA model that answered the questions is unreliable, so some responses may be inaccurate. If no clear CAD model exists, choose the

next-closest CAD model that fits the provided answers. Based on this information, use the output_answer to output a list of
possible CAD models from the database that correspond to the image as well as a confidence score between 0 and 1 that you believe
the image and CAD model correspond. Choose the 10 best CAD models.

141
142 When you are ready, save the CAD models with the available function. DO NOT output code and instead choose the top CAD models yourself"

Fig. 4.8 Prompt to GPT-4 to select its top-10 CAD models for a new input image, given
the InstructBLIP-generated answers for each question planned by GPT-4. The question-
answer pairs are stored in qa_pairs variable and the annotations for each CAD model in the
database are stored in annotated_cads.

questions and instead ask questions about quantities or multiple-choice questions. Once
GPT-4 returns its questions, we ask each question to InstructBLIP for each image in our
experiment.

Once we have the questions and answers for a new image, we query GPT-4 a final time,
providing the CAD model annotations and the question and answer pairs, and asking the
LLM to output the top-10 CAD models it believes best fit the annotations of the new image.
We also ask GPT-4 to output confidence scores for each model to enable top-1, top-5, and
top-10 rankings. Our prompt is provided in Figure 4.8. The output of GPT-4 is our final
retrieval results. Since the confidence scores are each between 0 and 1, we additionally
normalize them.

Truncated Datasets

Two key limitations with GPT-4 is its context length and cost. GPT-4 has a limited context
length of 8,000 tokens. In each conversation with a GPT model, the current prompt, any
message history, functions to call, and the LLM’s response are all included in this context
limit. In our retrieval experiments, we found that using annotations for at most 30 out of
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the 63 available table CAD models would fit within this context limit across hand- and
auto-annotations. We additionally note that the cost for GPT-4 is $0.03 for every 1,000
tokens, making individual experiments costly. As a result, we only evaluate our retrieval
subsystem on 50 images in our experiments. For S1 and S2 each, we randomly select 50
images out of the 419 images in S1 and 393 images in S2.

4.2.2 Alignment Experiment Pipeline

We evaluate alignment by applying random shifts and rotations to table CAD models and
analyzing the alignment subsystem’s ability to move the CAD models back to their original
positions. We discuss implementation details for generating these random transformations
and details on how we apply multiple rotation initializations as discussed in Section 5.2.3.

Generating Random Transformations

To generate random transformations for our alignment experiments, we start with an example
in Pix3D. As mentioned in Section 4.1, each example has a real-world image, a corresponding
CAD model, the rotation and translation matrices to align the CAD model with the image,
and the camera parameters. We use this information to create a render of the CAD model in
its ground-truth alignment using Blender. Once we have the CAD model in its ground-truth
position in Blender, we apply a random transformation.

For random translations, we compute 3D bounds for where the CAD model can be shifted.
We first compute a maximum and minimum size the CAD model can be in the render. The
maximum is 10 times the object’s ground-truth width (or the width of the render, whichever
is smaller) and the minimum is 1/10th the object’s ground-truth width in the image (or 0.08
times the width of the render, whichever is larger). We then use Equations 3.3 and 3.4 to
compute the depth at which the CAD model has these minimum and maximum widths in the
renders. These depths become the minimum and maximum bounds from which we sample
the the new depth. Once we uniformly sample a depth from these bounds, we compute
bounds for horizontal and vertical shifts. We again use Equation 3.3 to compute the furthest
horizontally and vertically we can shift the object such that it is still fully visible in the image.
With these bounds, we randomly sample a horizontal and vertical position uniformly. After
sampling this full 3D position, we render the CAD model at this shifted location and run
alignment between this render and the ground-truth image.

For random rotations, we uniformly sample rotations around the horizontal, vertical, and
depth axes. For the horizontal and depth axes, we sample a rotation angle between -9° and
9°, ensuring the object is not rotated to an extreme, non-practical orientation. For the vertical
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Fig. 4.9 For an input image, the CAD model is loaded with the ground-truth alignment. A
random translation (top), rotation (middle), or both (bottom) are applied.
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axis, we sample a rotation angle between -90° and 90° since large rotations around this axis
are more common in the real world.

We additionally run trials on combinations of rotations and translations. For these
experiments, we simply apply a random transformation followed by a random rotation as
described above. Examples of a random translation, random rotation, and a combination of
the two are provided in Figure 4.9.

Generating Multiple Rotation Initializations

We explore improving our system with multiple rotation initializations. Since these are
initializations and we run our entire existing system on each initialization, we report imple-
mentation details in this section instead of Chapter 3.

To create multiple rotations, we start with the randomly transformed CAD model (post-
rotation and/or translation). We loop through three rotations around the vertical axis: -60°, 0,
and 60°. For each vertical axis rotation, we loop through three rotations around the horizontal
axis: -22.5°, 0, and 22.5°. This results in 9 different rotations (which includes no rotation
when the angles are both 0). For each rotation, we render the CAD model and save that as an
initialization to run alignment on. An example of the initializations is visualized in Figure
4.10.

Once alignment is run on each initialization, we must select which initialization to treat
as the system’s full prediction. To do so, we use Segment Anything (Kirillov et al., 2023) to
generate masks on the ground-truth image and the final render and compute the IoU, the ratio
of the number of pixels where the masks overlap divided the number of pixels in either mask:

IOU =
|Prender

⋂
Pimage|

|Prender
⋃
Pimage|

(4.1)

where Prender and Pimage are the set of pixels within the mask of the final render and input
image, respectively. We select the output which has the highest final IOU as our final
prediction.

4.2.3 End-to-End Experiment Pipeline

For our end-to-end experiment, we combine key implementation details from the experiments
for each subsystem. We start by following the system pipeline for gathering retrievals, starting
with auto-annotations and outputting the top-10 CAD models and their confidence scores.
We then select the CAD model with the highest confidence score and render it in Blender.
Since each image has different focal lengths, we place the CAD model 45 * focal_length
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Fig. 4.10 Renders for a single CAD model after each rotation initialization. Our system is
run on each initialization, and the best result is selected by taking result with the largest mask
IOU between the final render and the object in the input image.
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meters1 from the camera. We then apply the multiple rotation initializations discussed in
Section 4.2.2 and run our alignment system. Again, we select the final prediction out of each
rotation initialization by taking the final prediction with highest mask IOU between its render
and the input image.

4.3 Evaluation Metrics

To evaluate our retrieval system on its own, we compute Top-1, Top-5, and Top-10 retrieval
accuracies. We evaluate alignment and our end-to-end system using the APmesh metric.

• Retrieval Accuracies compute the percentage of evaluation examples where the
predicted CAD model is the same as the actual CAD model in the input image.
We compute Top-1, Top-5, and Top-10 accuracies. Top-1 is the accuracy when the
predicted CAD model with the highest confidence matches the ground-truth. Top-5
accuracy is computed as the percentage of examples where the ground-truth CAD
model is one of the predicted CAD models with a top-5 confidence score. Since our
system outputs 10 CAD models, Top-10 accuracy is the percentage of examples where
the ground-truth CAD model is one of the outputted CAD models. Therefore, top-k
accuracy is

Acck =
1
N

N

∑
i=1

1(con fi(gtcadi)>= ck,i) (4.2)

where N is the number of examples, con fi is a function that maps from a CAD model
to its confidence score for the i’th example 2, gtcadi is the ground-truth CAD model
for the i’th example, and ck,i is the k’th highest confidence score for the i’th example.

• APmesh is a complex metric designed to evaluate the performance of systems that
identify and reconstruct objects in 3D. This metric is defined as the mean area under
the per-category precision-recall curve for predictions. Each prediction is a true positive
if its predicted category label is correct, it is not a duplicate prediction (in the case of
multiple objects in an image), and its F10.3 is greater than an IOU threshold. Therefore,
the APmesh is associated with its threshold3. F10.3 is the harmonic mean of 1) the
fraction of points in the ground-truth mesh that are within 0.3 of a point in the predicted

1Note the focal length is in millimeters so we convert to meters first, hence the large multiplicative constant.
2CAD models that are not in the Top-10 predictions for the i’th example have con fi = 0.
3e.g an APmesh-50 score uses an IOU threshold of 0.5, or 50%
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mesh and 2) the fraction of points in the predicted mesh that are within 0.3 of a point
in the ground-truth mesh.

We follow Langer et al. (2021) and compute an aggregate APmesh score, computed as
the average of the APmesh scores at IOU thresholds of 0.5 to 0.95 with 0.05 increments.
This is also referred to as the AP50-95 score in the COCO object detection protocol
(Lin et al., 2014).

We additionally note that, since we focus on tables alone, we assume perfect category
classification of tables whereas competing methods apply an object detector before
reconstruction or retrieval and alignment.



Chapter 5

Results

This section covers our key experiments for evaluating the different components of our
system as well as their future potential. The first set of experiments focuses on CAD model
retrieval and the system’s ability to find the best table mesh corresponding to an input image.
The second set of experiments focuses on CAD model alignment, specifically aligning a CAD
mesh in 3D with an input image via translation and rotation. The final set of experiments
evaluates the entire system from input image to output aligned CAD model.

5.1 CAD Retrieval using Foundation Models and LLMs

We evaluate our system’s ability to retrieve a CAD model that best matches an object in an
input image, primarily focusing on tables. We apply experiments on hand-annotated CAD
models, auto-annotated CAD models, and we evaluate our system’s ability to extend to a new
object category.

5.1.1 Classical Trained Methods on Unseen Data

Traditional methods (Kuo et al., 2020; Langer et al., 2021) tackle CAD retrieval by training
a network to predict an embedding vector from an image. This approach is limited by the
quality and variety of data the networks are trained on. An inevitable result of this weakness
is low test performance when these systems encounter an image with a CAD model the
networks have not been trained on. For the S1 split, Langer et al. (2021) trains its embedding
network on renders of every CAD model available in Pix3D (Sun et al., 2018), resulting in
the network explicitly learning to separate the embeddings of different CAD models through
its triplet loss and having strong performance on the test data. In S2, the network is trained
on a subset of CAD models but is evaluated on images of different CAD models. As a
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Evaluation Metric
S1 Split S2 Split S1 to S2 Difference in Accuracy

Hand-Annotated* Auto-Annotated* Langer et al. (2021) Hand-Annotated* Auto-Annotated* Langer et al. (2021) Auto-Annotated* Langer et al. (2021)

Top-1 Accuracy (%) 0 30 65 0 42 24 +12 -41
Top-5 Accuracy (%) 8 58 - 16 78 - +20 -
Top-10 Accuracy (%) - 70 85 - 84 52 +14 -33

Table 5.1 Quantitative comparison of results on the S1 and S2 splits for CAD model retrieval
using hand-annotated and auto-annotated data. Our system performs significantly better
on auto-annotated data in comparison to hand-annotated data. Our system also notably
outperforms competitors in the S2 split, a scenario where their networks are not trained on
the CAD models, demonstrating our system’s strength on unseen data. *Our results are for
50 random test images of tables, with 30 out of the 63 Pix3D tables as possible CAD models.
Langer et al. (2021) is run on the entire dataset for all categories. We are unable to report
Top-10 Accuracy for hand-annotations due to query limitations in the GPT-4 API.

result, their approach loses notable performance on the new images, as demonstrated in Table
5.1 where there is a large loss in accuracy between S1 and S2 for both Top-1 and Top-10
accuracy.

5.1.2 LLM- and VQA-based Retrieval with Hand-Annotations

We first run our retrieval system on random samples of Pix3D table images, retrieving
CAD models from a hand-annotated dataset. Details on the construction of this dataset are
discussed in 4.2.1. We pass the hand-annotations into GPT-4 (OpenAI, 2023) and tell it to
plan a series of questions to ask InstructBLIP (Dai et al., 2023) for a new image. With the
planned questions, we apply the rest of our retrieval method, asking each question about the
image to InstructBLIP, passing the answers and CAD dataset into GPT-4, and collecting the
top CAD models outputted by the LLM. The results of this approach are provided in Table
5.1.

The results show that our system struggles with hand-annotations. The high granularity
is not well-suited for the inconsistent predictions of InstructBLIP. As demonstrated in Figure
5.1, InstructBLIP provides responses that do not match the hand-annotations of the true CAD
model. In addition, InstructBLIP can misunderstand parts of the question, like interpreting
"glass elements" of a table as any glass items on or around the table. At the same time,
InstructBLIP demonstrates commendable intuition of complex characteristics like the type of
table, detecting that the last example image is a nightstand.

Diving deeper into the behavior of our system using hand-annotated data, in Figure 5.2
we plot the distribution of predictions of each CAD model in comparison to the distribution
of actual ground-truth CAD models in the images. We can see that the CAD models predicted
by the system differ immensely from the actual CAD models in the image, to the point that
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Fig. 5.1 Examples of retrieval with hand-annotations. The first column contains the input
image. The second column is the question planned by GPT-4 for the attribute we visualize.
The third column contains InstructBLIP’s response for the image and question, and the fourth
and fifth columns are the hand-annotations for the ground-truth CAD model and system’s
output CAD model, respectively. Due to the unreliability of InstructBLIP responses, the
system will often collect annotations from input images that match incorrect CAD models,
as exemplified by the top example. There are some responses, like in the second example,
where ambiguity arises based on misinterpretations of the question. At the same time, the
model does get some predictions correct, like in the third example.
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Fig. 5.2 Histogram of final predictions using hand-annotations (blue) in comparison to the
distribution of ground-truth CAD models (orange) for S1 (top) and S2 (bottom). There is
little-to-no overlap between the predictions and ground-truth data. This demonstrates that,
after aggregating all the questions and answers for an input image, the system struggles to
correctly accumulate information from an input image to match human-level annotations.
This further demonstrates a bias towards certain CAD models, suggesting the InstructBLIP
outputs may better match the hand-annotations of a specific subset of CAD models in the
dataset.
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the system tends to predict CAD models that never show up in any of the images tested. This
difference exemplifies the mismatch between the outputs of InstructBLIP and the granular,
ground-truth detail of the hand-annotations. Furthermore, the bias towards a specific few
incorrect CAD models suggests that InstructBLIP consistently outputs incorrect answers
which coincidentally align with these CAD models’ annotations.

5.1.3 Improving Retrieval with Auto-Annotations

We now run our full retrieval system including auto-annotation of CAD models using GPT-4
(OpenAI, 2023) and InstructBLIP (Dai et al., 2023). As described in Section 3.2.2, we render
each CAD model, use GPT-4 to write code that will ask questions about each render, and
execute that code to automatically generate a database with the CAD model annotations.
We then retrieve CAD models using the same approach as described in Section 5.1.2: we
pass the CAD model annotations into GPT-4, get back a list of questions to ask for the input
image, ask those questions for the input image using InstructBLIP, and pass the responses to
GPT-4 again to select the best-matching CAD models from the data. The results using our
auto-annotations are provided in 5.1.

Using auto-annotations significantly improves retrieval accuracies. Our system becomes
more competitive with Langer et al. (2021) on the S1 split and even outperforms them on
the S2 split. We note that since our system retrieves from 30 candidate table CAD models
whereas Langer et al. (2021) retrieves from 63 candidate table CAD models (alongside the
CAD models of other object categories), it is more accurate to compare our system’s Top-5
accuracy with Langer et al. (2021)’s Top-10 accuracy, which we still outperform for S2.
Furthermore, our system surprisingly has a positive change in performance between S1 and
S2 performance in comparison to Langer et al. (2021)’s large performance loss, though this
can likely be attributed to random chance between our sub-samples of S1 and S2 images.

Looking at specific examples of annotations in Figure 5.3, we can evaluate how auto
annotations improve performance for retrieval. As demonstrated by the first example, in
many cases InstructBLIP hallucinates incorrect outputs for certain CAD models. When using
the hand-annotated data, these hallucinations for input images do not match the ground-truth
annotations we created, resulting in the system retrieving different CAD models for the input
image. For some questions, InstructBLIP provides the same incorrect response for almost
every CAD model. For example, in the auto-annotations, InstructBLIP incorrectly believes
that every table has 1 drawer. As displayed in the second example of Figure 5.3, GPT-4
intelligently avoids asking questions about drawer quantity, but still asks if any drawers are
present on the table. As a result, for the auto-annotated retrieval, InstructBLIP provides the
same output for the correct and incorrect CAD model, preventing incorrect information that
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Fig. 5.3 Qualitative examples of hand-annotations vs auto-annotations. Whereas hand-
annotations are perfect, auto-annotations make consistent mistakes for both the image and
CAD models, resulting in the auto-annotations better matching annotations for new images.
InstructBLIP often hallucinates 2 legs or 1 leg instead of 3 legs, 4 legs, or no legs at all. By
auto-annotating, the database’s annotations include these hallucinations, resulting in GPT-4
planning questions around the incorrect data, leading to more consistency in predictions. In
the second example, InstructBLIP hallucinates 1 drawer for every table. GPT-4 therefore
does not ask a drawer quantity question and instead asks if any drawers are present or not,
leading to fewer mismatches compared to the hand-annotations. In the third example, we
can see a case where InstructBLIP is inconsistent with its responses on the same image. It
correctly outputs "square" for the question from hand-annotated data but incorrectly outputs
"rectangle" for the question from the auto-annotated data. This is a rare example where the
hallucinations from InstructBLIP benefit the hand-annotated retrieval.
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Evaluation Metric
S1 Split S2 Split S1 to S2 Difference in Accuracy

Tables Beds Tables Beds Tables Beds

Top-1 Accuracy (%) 30 30 42 38 +12 +8
Top-5 Accuracy (%) 58 56 78 54 +20 -2
Top-10 Accuracy (%) 70 72 84 76 +14 +4

Table 5.2 Quantitative comparison of retrieval results on table and bed images. Our system
maintains strong performance in both categories, demonstrating that our system can easily
adapt to new categories without any customization.

can actually affect the retrieval. For the hand-annotated retrieval, however, GPT-4 asks how
many drawers are present, and InstructBLIP makes the same hallucination which does not
match the hand-annotations for the correct CAD model.

5.1.4 Extending to New Object Categories

Although our retrieval subsystem performs well on tables, it is uncertain if our approach
is simply well-suited for table retrieval but does not expand to other categories. We there-
fore attempt retrieval on beds in Pix3D and provide our results in Table 5.2. Our results
demonstrate that our system still performs strongly on new categories like beds without any
change in its architecture or training. This performance demonstrates the adaptive power of
our system, suggesting that it can adapt to any type of object for which GPT-4 has sufficient
knowledge of the properties of the object category.

5.2 CAD Alignment

We evaluate our alignment sub-system based on its ability to re-align objects after random,
unknown transformations including random translations, rotations, and both. We additionally
evaluate how applying multiple rotation initializations improves the performance of our
system.

5.2.1 Classical Methods on Unseen Images

While classical methods tackle the task of fitting an object to an image in a variety of different
ways, each of them rely on trained networks that inevitably struggle with unseen data. Langer
et al. (2021) relies on a Swin Transformer (Liu et al., 2021) trained on Pix3D data to produce
segmentation masks as part of their alignment. Mesh-RCNN (Gkioxari et al., 2019) uses a
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Evaluation Metric Langer et al. (2021)* Mesh-RCNN* Translation Rotation Combined

S1 AP mesh 24.7 11.0 25.2 12.8 1.3
S2 AP mesh 3.5 7.0 36.4 10.0 1.1
Change in Performance from S1 to S2 (%) -85.8 -36.4 +44.4 -21.9 -15

Table 5.3 Quantitative results on the S1 and S2 split for re-aligning a table CAD model after
an unknown transformation, in comparison to end-to-end results for competitors. Columns
indicate the type of random transformation applied (combined refers to both transformation
and rotation) or the name of the competitor. The system performs well on translation, but
notably loses performance with rotation and the combined transformations. Our system
also maintains a much larger portion of performance between S1 and S2 compared to other
methods, even improving for translation. *Note that our AP metrics are computed assuming
perfect classification and CAD retrieval. Langer et al. (2021) results are taken from their
end-to-end retrieval and alignment results. Mesh-RCNN results are also end-to-end. We pull
Mesh-RCNN results from Langer et al. (2021) because the original paper only reports AP50
scores.

trained network to produce its initial voxel structure of the object. As demonstrated in Table
5.3, these methods lose notable performance between the S1 and S2 splits. We consider the
caveat that these systems’ results are end-to-end and therefore incorporate their retrieval or
object categorization accuracy. Langer et al. (2021) still loses significantly more performance
between the two datasets considering its difference in retrieval performance in Table 5.1.
Mesh-RCNN does not retrieve CAD models and instead directly predicts meshes from
images, therefore its loss in performance is a noteworthy point of comparison.

5.2.2 Alignment with Foundation Model Tools

Since our alignment system consists of separate tools for translation and rotation, we evaluate
their performance separately and in combination. We evaluate these components by randomly
perturbing the 3D position and rotation of examples in Pix3D and rendering the transformed
objects for our system to re-align, as described in Section 4.2.2. The quantitative results of
these experiments are provided in Table 5.3. Our system performs strongly on translation,
but notably loses performance on rotation and further loses performance on the combination
of the two.

As demonstrated in Figure 5.4, our system can successfully align a variety of different
tables that have been translated unknown amounts. Our system is especially effective at
aligning tables that are fully in frame and only partially occluded. We can see in the second
example that the segmentation model is sometimes able to separate the occluding objects
from the table, strengthening the performance of the alignment. At the same time, there
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Fig. 5.4 Examples of alignment after random translations. The first column contains the
renders after the CAD models are randomly translated from the ground-truth position. The
second column contains the target image. The third and fourth columns visualize the
segmentation masks generated by the system to calculation horizontal, vertical, and depth
shifts. In the final column we overlay the aligned CAD model with the target image. As
demonstrated in the first and second examples, the system is able to translate objects to their
target position, even when the target image is occluded by other objects. In the third and
fourth examples, however, we see failure cases. The system struggles with objects that are
partially out of frame and struggles to identify parts of tables alone. The system also often
fails when multiple tables are in the target image, since it is not designed to distinguish
between multiple tables for segmentation.
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are cases where the segmentation is inadequate for alignment. When the object is partially
out of frame, the segmentation mask cannot extend out of frame, resulting in the width and
height estimations being inaccurate. As a result, you can have cases like in the third example
where both segmentation masks take up the full image, resulting in width and height being
the same and the horizontal and vertical pixel differences being zero. In other cases, the
target position may be partially out of frame, resulting in the target width or height being
smaller than expected. As a result, the system interprets that as the object being smaller in
the target image and therefore pushes the CAD model further in depth, resulting in incorrect
alignment. In the fourth example, we see another failure case where there are multiple tables
in the image, so the segmentation network segments the wrong table. As a result, the CAD
model is properly aligned to the wrong table.

Our system is able to rotate tables to align surface normals, but certain properties must
hold true in order to have an accurate alignment. As demonstrated in the first two examples
of Figure 5.5, our system can fix random rotations almost perfectly when the random
initializations are well-suited for computing median surface normals to represent orientation.
When the primary surface of the table (like the tabletop in the first example of Figure 5.5) is
heavily in-view of both images, it takes up the majority of pixels corresponding to the table.
As a result, the median surface normals in the CAD render and in the target image will be on
that same surface, resulting in consistency in surface normals and ideal alignment. There are
additional scenarios where rotation works well when the primary surface is not fully in view,
like in the second example of the figure. The majority of pixels for the table correspond to
the longer horizontal side of the table in both the render and target image, leading to the same
behavior of the median surface normal lying on the same part of the table in both images.

As exemplified in the third example, however, when a different part of the table is mostly
in view between the render and target image, the system struggles. The median surface
normal in the CAD render is on the bottom of the tabletop, whereas in the target image it
is on the top of the tabletop. As a result, the system aligns the normals, resulting in the
CAD table being flipped over. An edge case visualized in the fourth example shows how
the surface normal estimator struggles with glass and Blender (Blender Online Community,
2018) outputs zero surface normals for the glass surface in the CAD model. At the same
time, the segmentation mask still includes the glass tabletop, so the median surface normal
becomes invalid and therefore the system cannot align the table.

Even when the same primary surface is in view, the system can still fail to align the
object, as visualized in the fifth example. When the object is initialized such that it is rotated
around the axis of the median normal relative to the object in the target image, the system is
unable to fully fix the rotation. This is because the system will align the surface normals,
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Fig. 5.5 Examples of alignment after random rotations. The first column contains the renders
after the CAD models are randomly translated from the ground-truth position. The second
column contains the target image. The third and fourth columns visualize the surface normals
generated by the system. In the final column we overlay the aligned CAD model with the
target image. The system is able to align randomly rotated tables when the the object is only
slightly rotated from its original position, like in the first and second examples. The system
fails when the object is rotated too much, causing the primary visible surface to change. In
such cases, the surface normals extracted from the render and target image are on different
parts of the table, causing the system to align those parts together instead. The system also
struggles with glass since the surface normal estimator and Blender treat them as transparent.
Furthermore, as demonstrated in the final example, if the table is rotated around the axis
perpendicular to the primary visible surface, the system cannot re-align the table fully.
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Fig. 5.6 Examples of alignment with and without multiple pre-rotations. By applying multiple
possible pre-rotations, it is likely one pre-rotation will be close to the target rotation like in
the examples above. This helps the system easily align CAD models to input images without
changing its architecture, but comes with the cost of additional compute.

but it cannot fix the remaining rotation around the axis of the surface normal. We explore a
solution to this problem in 5.2.3.

For combinations of random translations and rotations, we inevitably see even weaker
performance since the challenges from each alignment subtask compound. We additionally
find that poor rotations weaken the performance of translation since different rotations
produce different bounding boxes for tables, which the translation tools rely on. This further
weakens the system’s performance, explaining the low APmesh scores.

5.2.3 Improving Performance with Multiple Rotation Initializations

Since our system is incapable of rotating a table around its primary surface normal, we
pre-rotate the table at 9 pre-determined angles and then align for each pre-rotation, resulting
in 9 possible alignments for a single target image. We select the best alignment by taking
the mask IOU between the render of each alignment and the target image and selecting the
highest one. Further details are provided in Section 4.2.2. We evaluate the benefits of this
approach by comparing the performance before and after this modification.

As demonstrated in Figure 5.6, applying pre-rotations increases the chance that an
initialized rotation is close to the target rotation. When such an initialization occurs, the
system is able to more-accurately align the CAD model to the image, like in the first example.
At the same time, because we attempt only a few possible pre-rotations there are still scenarios
where the initialization is slightly rotated around the axis of the surface normal, preventing
an ideal alignment but still getting close like in the second example.
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Evaluation Metric Single Rotation Multiple Pre-Rotations Single Rotation (w/ Translation) Multiple Pre-Rotations (w/ Translation)

S1 AP mesh 4.0 12.8 0.5 1.4
S2 AP mesh 3.8 10.0 0.2 1.6

Table 5.4 Quantitative results on the S1 and S2 split using multiple pre-rotations vs no
pre-rotations. Using the pre-rotations evidently improves performance significantly, with on
average 3x improvements for every metric.

Evaluation Metric Langer et al. (2021) * Mask2CAD* Mesh-RCNN* Ours Ours (GT Norms)

S1 AP mesh 24.7 29.2 11.0 0.018 0.81
S2 AP mesh 3.5 3.6 7.0 0.72 2.3

Table 5.5 Quantitative results on the S1 and S2 split for end-to-end retrieval and alignment.
After combining both parts of our system together, we achieve performance that demonstrates
our system’s potential to compete with state-of-the-art models in future iterations. We
highlight this potential by evaluating our model’s performance with ground-truth normals
instead of the surface normal estimator. With ground-truth normals, our system approaches
the performance of our competitors on the S2 split. Our system performs unusually worse on
the S1 split, which we believe can be attributed to random chance since we sample around
12% of the available images in the dataset. *Again note that competitor results also include
object category classification, whereas we assume perfect classification.

Quantitative results with and without pre-rotations are provided in Table 5.4. The pre-
rotations significantly increase performance in both S1 and S2 splits. These improvements
demonstrate that there are clear, achievable increases in performance for this alignment
system. For example, with more pre-rotations, we can likely further increase performance to
compete with state-of-the-art competitors.

5.3 End-to-End Topology Retrieval

After combining our retrieval and alignment systems together, we evaluate our approach
on table images in the S1 and S2 splits and report our quantitative results in Table 5.5.
We find that our system is able to retrieve and align CAD models for some input images,
but struggles in comparison to other methods. We attribute this to a combined loss of
performance between the retrieval and alignment subsystems. As seen with our system’s
performance using ground-truth surface normals, however, we can quickly achieve better
performance, demonstrating this approach has exciting potential to quickly compete with
and even outperform state-of-the-art competitors in future iterations.
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Fig. 5.7 Selected examples of end-to-end retrieval and alignment attempts by our system.
We highlight some successes and key weaknesses in our system that cause low performance.
Our system aligns the first example very well, but unfortunately has low APmesh because the
table is rotated 90 degrees and the shelves do not overlap. Our system is able to translate the
tables based on the segmentation masks in the second and third examples, but the table is
partially cut out in the target image and our system does not shift the tables down further.
In addition, the second example does not rotate the table to the proper alignment because
the segmentation mask of the render includes part of the background causing the median
surface normal to point towards the camera. Furthermore in the third example, the retrieved
table is incorrect. In the fourth example, the surface normal estimator for the target image is
slightly inaccurate, causing the aligned table to point too much towards the camera. In the
final example, the retrieved CAD model is incorrect, but the translation and rotation is quite
successful, leading to a good overlap between the CAD model and the table in the target
image.
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We analyze some key examples of our system’s attempts at end-to-end topology retrieval
in Figure 5.7. Due to the variety of moving parts in our system, failure in even one part can
ruin the alignment. Alongside successes, we find some failure cases in our segmentation
model, surface normal estimator, approach for translation alignment, and our retrieval sub-
system. We find in those qualitative examples, however, that in most scenarios the rest
of the system works as expected. This demonstrates that iterative improvements to the
sub-components of our system can drastically improve performance, as we saw quantitatively
with ground-truth surface normals.

As discussed in Section 5.2.3, if we apply more pre-rotations before alignment, our system
would likely succeed on the first example in 5.7 since one of the pre-rotations will properly
align the shelves in the tables. Extensions to Segment Anything like HQ-SAM (Ke et al.,
2023; Kirillov et al., 2023) can improve the quality of segmentation masks. Better surface
normal estimators will continue to appear over time, further augmenting the performance of
our system. We can additionally try different attempts for aligning rotations, including depth
estimation, point correspondences for surface normals, and other approaches. Overall, by
introducing more and better tools, we can increase the robustness of our system and better
compete with the state-of-the-art.
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Conclusion and Future Work

In this project, we developed a novel system for CAD retrieval and alignment using LLMs
and Foundation Models with the Render and Compare approach.

We first designed a system to retrieve CAD models that utilizes the latent knowledge
of LLMs like GPT-4. Our system used GPT-4 to plan properties to annotate for each
CAD model and design questions to ask about the CAD models that correspond to those
properties. We then used the LLM to write code that automatically annotates each CAD
model by passing each question alongside a render of each CAD model into InstructBLIP, a
visual-question-answering model, and storing the answers as a dataset. We demonstrated that
GPT-4 is capable of processing the annotations of the CAD models alongside annotations of
a new input image and can produce CAD models which it believes best correspond to the
object in the input image. Furthermore, we demonstrated that our retrieval system does
not lose performance between datasets, unlike trained methods that lose performance on
unseen data. We additionally showed that our system has strong potential to outperform
state-of-the-art retrieval methods in future iterations.

Our work also introduced a new subsystem for aligning CAD models to an input
image using foundation models and Render and Compare. Our system used a series of
foundation model tools that gather key information between an input image and a render of
the current state of the CAD model, including pixel shifts, width and height information, and
orientation through surface normals. We then used GPT-4 to generate code that orchestrates
these tools together and updates the CAD model in Blender to iteratively align the CAD
model with the input image. Our work showed that with the right prompting, GPT-4 can
generate complex 3D camera projection properties and can crucially write code using
the Blender library that directly modifies CAD model meshes based on the information
it collects from the foundation-model-based tools. We again demonstrated that our system
does not lose performance between datasets unlike state-of-the-art trained methods that lose
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significant performance between seen and unseen data examples.
We finally evaluated our system end-to-end and show that our full system can successfully

retrieve and align CAD models to some images. We further show that with stronger image
processing tools, our system can start to compete with state-of-the-art methods.

Our project therefore contributes an exciting new approach to 3D data annotation and
topology reconstruction using LLMs, foundation models, and the Render and Compare
approach. We hope our work will provide a baseline for additional research into applying
the knowledge of LLMs and the visual capabilities of foundation models to improve our
approach and tackle more challenging 3D tasks.

6.1 Future Work

Alongside the potential improvements we have suggested in this paper, some initial extensions
to our work include:

• Robustness: A key finding in this work was that, due to the variety of models and
moving parts in our system, a single incorrect prediction by one part of our system can
cause the entire prediction to be inaccurate. This fragility can be solved by giving the
model a redundancy of tools for each step in its processing, such that the system can be
robust to the failure of one tool by relying on the other redundant tools. Some examples
of redundant tools to explore can include multiple segmentation models, generating
additional surface normals from depth estimators, and multiple VQA models.

• Better tools for orientation: A large weakness in our alignment subsystem was its
use of the median surface normal as a measure of orientation. The median surface
normal has inaccuracies due to the differences in orientation of visible surfaces when
you rotate objects. Furthermore, we found that even after aligning surface normals,
objects can be rotated around the axis of the surface normal, which our system cannot
handle. Approaches like aligning multiple surface normal correspondences can resolve
this flaw.

• Multimodal LLMs: Our approach relies on multimodal foundation models to bridge
the gap between images and the text that GPT-4 can process. With multimodal LLMs
like GPT-4 with images, our system can be augmented to achieve better performance
by avoiding the need for separate models and unifying information processing. We
look forward to the release of these models to explore this direction further.
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• Multiple objects: We currently designed our approach around retrieving and aligning
CAD models for a single object in an image. At the same time, segmentation mod-
els allow for multi-object detection, making multi-object retrieval and alignment a
straightforward extension of this work.
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