
Data Compression with Variational
Implicit Neural Representations

Jiajun He

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Fitzwilliam College August 2023

To wisdom.

Declaration

I, Jiajun He of Fitzwilliam College, being a candidate for the MPhil in Machine Learn-
ing and Machine Intelligence, hereby declare that this report and the work described in it
are my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable purpose.

Software Declaration: All of this work is implemented using standard Python packages.

Word count: 14996

Jiajun He
August 2023

Acknowledgements

I would like to acknowledge my supervisors, Gergely Flamich and Prof. José Miguel
Hernández-Lobato, first and foremost. Their passion, enthusiasm, and patience are extremely
helpful throughout this project. I feel very fortunate to have had the opportunity to be their
supervisee.

I would also like to extend my thanks to Zongyu Guo, whose expertize in this field has
been a constant source of inspiration, and his initial works greatly facilitated my experiments
in this project. It is amazing to work with him.

I would like to thank my loving parents, grandparents, my girlfriend Yang, and all
relatives for always being there, consistently supporting and caring for me. I am such a lucky
boy from a lucky family.

Last but certainly not least, a huge thank you to Qiaosong, Murray, and many others, to
whom I am so honored to refer as my friends. They have greatly colored my life.

Abstract

Title: Data Compression with Variational Implicit Neural Representations
Name: Jiajun He

The growing need for data transmission and storage highlights the requirement for effi-
cient compression techniques. The recent surge in deep learning has propelled remarkable
progress in the field of neural compression. While the mainstream of studies is centered
around variational autoencoder architectures, which enable end-to-end rate-distortion opti-
mization with entropy models, there is a recent emerging trend in research involving treating
individual data points as continuous functions. Known as Implicit Neural Representations
(INRs), this framework has demonstrated the potential to develop codecs with transferability
across various data modalities.

Our work in this thesis is rooted in this methodology. We present a general framework,
dubbed as COMBINER (Compression with Bayesian Implicit Neural Representations),
addressing a significant challenge in existing INR-based codecs: their lack of support for
joint rate-distortion optimization, which potentially degrades the compression performance.
On top of COMBINER, we further propose COMBINER+, employing simple yet efficient
approaches enhancing performance. Fundamentally different from most INR compression
researches, which adopt increasingly complicated parameterizations to enhance compression,
our approaches take a novel direction that we believe holds significant potential. Experimental
results demonstrate that our methods achieve strong performance on image compression
while retaining simplicity.

Table of contents

Nomenclature xiii

1 Introduction 1
1.1 Contributions and Publication . 2
1.2 Outline . 2

2 Background 3
2.1 Compression . 3

2.1.1 Lossless Compression . 3
2.1.2 Lossy Compression . 4

2.2 Deep Learning . 8
2.2.1 Neural Networks . 8
2.2.2 Bayesian Neural Networks . 9
2.2.3 Implicit Neural Representations 11

2.3 Related Works . 11
2.3.1 Data Compression with INRs . 12
2.3.2 Probabilistic Model Compression with REC 15

3 COMBINER: Compression with Bayesian Implicit Neural Representations 17
3.1 Methods . 18

3.1.1 Posterior Inferring by Stochastic Variational Inference 19
3.1.2 Prior Learning by Coordinates Ascent 20
3.1.3 Block-wise Compression with Progressive Fine-tuning 21
3.1.4 Entire Pipeline of COMBINER 25

3.2 Experiments and Results . 28
3.2.1 Experiment Settings . 28
3.2.2 Compression Performance . 29
3.2.3 Analysis . 35

xii Table of contents

3.3 Summary . 37

4 COMBINER+: Improving COMBINER with Linear Transformation and Learn-
able Positional Encoding 39
4.1 Methods . 39

4.1.1 Linear Transformation on Network Parameters 40
4.1.2 Learnable Positional Encoding . 42
4.1.3 Implementation in Practice . 43
4.1.4 Towards Scalability: Compression with Patches 46

4.2 Experiments and Results . 47
4.2.1 Experiment Settings . 47
4.2.2 Compression Performance . 48
4.2.3 Analysis . 54
4.2.4 Transferability across Modalities 59

4.3 Summary . 59

5 Conclusions 61
5.1 Limitations . 61
5.2 Future Works . 62

References 63

Appendix A Relative Entropy Coding with A* Coding Algorithm 69
A.1 Pseudocodes . 69
A.2 Bound on the Bias of A* Coding . 70

Appendix B Closed-Form Update for the Model Prior 71

Appendix C Supplementary Experiments Details 73

Appendix D Supplementary Experiments Results 75
D.1 Coding Time . 75
D.2 Influence of Sample Size in COMBINER+ 76
D.3 Decoded Audio Examples . 78

Nomenclature

Codes(■) (the color scheme is inspried by Havasi (2021))

M(X) Binary message encoding X

Matrices

diag(xxx) A diagonal matrix with xxx as the diagonal elements

Vec(WWW) A vector containing elements of matrix WWW

Distributions and Variables(■)

x,X Symbolic representation of one continuous / discrete variable

xxx,X Realization of one continuous / discrete variable

p(xxx) The density of a continuous random variable x at point xxx, i.e., p(x = xxx)

P(X) The probability of a discrete random variable X being X , i.e., P(X = X)

xxx∼ p A random continuous sample from p

X ∼ P A random discrete sample from P

Sets(■)

/0 Empty set

{a,b,c} A set contains elements a,b,c

{xi}N
i=1 A set contains elements x1,x2, ...,xN

A Set A

x ∈ A The element x in set A

{A,B} A set contains set A and set B as elements

Chapter 1

Introduction

Compression plays a pivotal role in modern digital era by reducing the data storage space
and enabling swifter data transmission. While the history of apply machine learning to
data compression can be traced back to earlier ages [Jiang (1999)], the recent surge in
deep learning, especially the development of variational autoencoders (VAEs) [Kingma and
Welling (2014)], has propelled significant advancements in neural compression, particularly
within the realm of lossy image compression [Ballé et al. (2017, 2018); Cheng et al. (2020);
Guo et al. (2022); Theis et al. (2017)]. However, the success of these methods largely
thanks to their elaborately designed modality-specific architectures, highly limiting their
transferability across data modalities.

A recent line of studies has shown the potential of designing modality-agnostic codecs by
treating individual data points as continuous functions mapping coordinates to signal values.
Such functions, parameterized by compact neural networks, are known as Implicit Neural
Representations (INRs). Moreover, thanks to the small size of INRs, these codecs typically
feature a remarkably shorter decoding times in comparison to VAE-based codecs.

However, existing INR-based codecs experience limitations in performance. A major
reason for this disparity is that these methods are unable to directly optimize compression
costs, and merely quantize parameters to a fixed precision. In contrast, VAE-based methods
support end-to-end rate-distortion optimization with powerful entropy models.

To this end, in this thesis, we propose a general framework, dubbed as COMBINER
(Compression with Bayesian Implicit Neural Representations), which naturally supports joint
rate-distortion optimization, and adaptively controls its bit-rates. On top of this framework,
we further propose COMBINER+, enhancing its performance by linear transforming INR
parameters and introducing learnable positional encodings. Experiments show that our
methods achieve strong performance among INR-based codecs.

2 Introduction

1.1 Contributions and Publication

Contributions

• a comparative review of recent INR-based codecs;

• COMBINER, a novel INR-based codec naturally supporting joint rate-distortion
optimization;

• COMBINER+, a codec developed on top of COMBINER, demonstrating significantly
enhanced performance.

Publication
The following paper presents COMBINER. It has been submitted as a conference paper to
NeurIPS. It receives a high average rating1, and thus is likely to be accepted. A pre-print
version is available at https://arxiv.org/abs/2305.19185.

Title: Compression with Bayesian Implicit Neural Representations
Authors: Zongyu Guo*, Gergely Flamich*, Jiajun He, Zhibo Chen and José Miguel

Hernández-Lobato
My contribution: I implemented the practical coding algorithms, performed the image

compression experiments with Zongyu, and conducted ablation studies and supplementary
experiments. I also wrote the paper together with Zongyu Guo and Gergely Flamich.

Other authors’ contribution: Zongyu Guo handled preliminary experiments, including all
hyperparameter tuning, collaborated with me on image compression, drafted the paper, and
was fully responsible for experiments on audio compression, which falls beyond the scope of
the COMBINER part in this thesis. Gergely Flamich provided the idea of this work.

Besides, we are planning another paper on COMBINER+ for ICLR.

1.2 Outline

The thesis is organized as follows:

• in Chapter 2, we offer the related background in compression and deep learning,
followed by a review of related works;

• in Chapter 3, we introduce COMBINER;

• in Chapter 4, we introduce COMBINER+;

• in Chapter 5, we conclude the thesis with a discussion on limitations and future works.

1We receive 8, 7, 6, 6, 3. The last comes with a low confidence, and is likely to be raised after rebuttal.

https://arxiv.org/abs/2305.19185

Chapter 2

Background

The chapter begins by outlining the core principles of lossless and lossy compression,
followed by a concise introduction to deep learning. While both areas are extensive, the
chapter primarily focuses on topics most relevant to this thesis. The chapter ends with a
review of related works.

2.1 Compression

In this section, we look at compression. There are two scenarios in compression, known as
lossless and lossy compression. Lossless compression aims to encode data while guaranteeing
a perfect reconstruction. On the other hand, lossy compression encodes data, permitting the
loss of information. In the following, we introduce these two scenarios respectively.

2.1.1 Lossless Compression

Lossless compression, also known as source coding, aims to encode all information in data
with as few bits as possible. It involves first estimating the underlying distribution of the data,
and performing entropy coding according to this distribution.

Entropy Coding

Assuming a discrete random variable X ∈ X whose probability mass function (PMF) is
denoted by P(X), the goal of Lossless compression is to find an invertible mappingM from
X to binary sequences, so that the codelength |M(X)| is minimized.

The core concept in lossless compression is the entropy of a distribution, introduced
by Shannon (1948) to measure the information content of a distribution. Specifically, the

4 Background

entropy of distribution P(X) is defined as

H[X] = EX∼P(X)[− log2 P(X)]. (2.1)

Shannon (1948) showed that the minimal average codelength of a random variable X is
lower-bounded by the entropy of its distribution in lossless compression, which is known as
Shannon’s source coding theorem.

This bound on the codelength is tight. The basic strategy to approach this bound is to
replace common symbols with shorter codewords, and rarer symbols with longer ones. In
fact, the optimal codelength of X should be close to its negative log-probability, i.e.,

|M(X)| ≈ − log2 P(X). (2.2)

Methods close to this limit are referred to as entropy coding methods. The most promi-
nent entropy coding approaches include Huffman coding [Huffman (1952)] and arithmetic
coding [Witten et al. (1987)].

Approximating P

However, in practice, the underlying distribution P is typically unknown but need to be
approximated by Q. The average number of bits required to encode a sample X ∼ P(X) using
a code optimized for Q is given by the cross-entropy between P and Q:

H[P,Q] = EX∼P(X)[− log2 Q(X)]. (2.3)

The overhead of this approximation is called relative entropy or Kullback-Leibler (KL)
divergence, given by

DKL[P||Q] = EX∼P(X)

[
log

P(X)

Q(X)

]
. (2.4)

2.1.2 Lossy Compression

Lossy compression allows data to have minor distortions after compression. Lossy com-
pression is necessary when working with continuous data, as storing any continuous value
requires an infinite number of bits. Also, it is sometimes acceptable to discard non-essential
information, such as imperceptible textures in images or audio frequencies beyond the range
of human hearing, during data transmission. In general, allowing information loss brings
huge flexility, in comparison with lossless compression.

2.1 Compression 5

Rate-Distortion Theory

The lossy compression is typically evaluated by two metrics, a distortion measure ∆(X , X̂),
and the (bit-)rate |M(X)|. Note that in lossy compression, we do not require the data
to be discrete any more. The choice of distortion measure depends on the data modality.
For instance, in image compression, the Mean Square Error (MSE) is commonly used.
Additionally, perceptual losses are sometimes employed to assess visual similarity between
images, including multi-scale SSIM (MSSSIM) [Wang et al. (2004)], Frechet Inception
Distance (FID) [Heusel et al. (2018)], etc.

Given the above, lossy compression is generally formalized as a multi-objective optimiza-
tion problem where we attempt to minimize the average distortion EX∼P(X)[∆(X , X̂)] and the
bit-rate EX∼P(X)[|M(X)|] at the same time.

Rate-Distortion (R-D) theory establishes limits on the performance of any lossy compres-
sion algorithm [Berger (2003); Yang et al. (2022)]. Lossy compression implements a noisy
channel that receives X and outputs X̂ , described by a conditional distribution Q(X̂|X). The
lowest achievable bit-rate, limiting the average distortion to be smaller than a threshold D, is
given by the information rate-distortion function, defined as:

inf
Q

I[X, X̂], s.t. EX̂ ,X∼P·Q(X̂,X)[∆(X , X̂)]≤ D, (2.5)

where P ·Q represents the joint distribution of X̂ and X. Denoting Q̃ as the marginal
distribution of X̂, and ⊗ as the product measure, the mutual information I is given by

I[X, X̂] = DKL[P ·Q||P⊗ Q̃]. (2.6)

The R-D function is always non-increasing and convex, but is otherwise unknown
analytically beyond a few cases [Yang et al. (2022)].

In practice, instead of attempting to approach the aforementioned theoretically optimal
rate, we usually consider the operational rate-distortion function to minimize the expected
coding cost |M(X)| (instead of the mutual information) among all the acceptable codecs
(instead of all possible codecs in theory), given the distortion threshold D. Note that this
function can be stated conversely as well: to minimize the distortion so that the coding cost
is governed by a threshold C, which we will revisit, from the perspective of Implicit Neural
Representations (INRs), when presenting our approach.

6 Background

Transform Coding

A common approach to perform lossy compression is to transform data into a transformed
space, where ideally the representation of data is uncorrelated [Goyal (2001)], and perform
compression in this space. As its core, the sender first applies an analysis transform f to
data, obtaining an (ideally decorrelated) representation zzz = f (xxx), and then encode zzz into
a bit-stringM(zzz), e.g., by quantization and entropy coding. The receiver, after receiving
M(zzz), computes the reconstruction x̂xx using a synthesis transform g.

This is closely related to neural lossy compression. If we learn the analysis transform
f and the synthesis transform g by two neural networks, the entire framework of transform
coding can be viewed as a variational autoencoder (VAE) [Kingma and Welling (2014)].

Compression without Quantization

In the previous sections, when encoding zzz = f (xxx), we use quantizing and entropy coding as
the example. Quantization is required, since storing any continuous value deterministically
requires an infinite number of bits.

However, surprisingly, there exist methods to compress a continuous value without
quantization, provided we are willing to accept some level of stochasticity. To be more
specific, these methods encode a continuous but stochastic sample zzz ∼ qz|x(z|xxx). Li and
Gamal (2018) showed that assuming we use an appropriate zeta distribution for q, the coding
cost is upper-bounded by

Exxx,zzz∼px·qz|x [|M(zzz)|]≤ I[x,z]+ log2(I[x,z]+1)+4.732, (2.7)

where px ·qz|x represents the joint distribution of px and qz|x.
Algorithms encoding such a sample are commonly known as Channel Simulation, Reverse

Channel Coding, or Relative Entropy Coding [Theis and Yosri (2022); Yang et al. (2022)]. In
the following, we refer to it as Relative Entropy Coding, or REC.

Here we look at two examples of REC, namely Minimal Random Coding (MRC), and
Ordered Random Coding (ORC). Both of them assume the encoder and decoder have access
to the prior distribution pz.

Minimal Random Coding: MRC encodes a sample following qz|x(z|xxx) approximately. To
achieve this, the sender first draws

N = 2⌊DKL[qz|x||pz]+t⌋ (2.8)

2.1 Compression 7

samples from the prior zzz(1),zzz(2), ...,zzz(N) ∼ pz using a pseudo random generator with a seed
shared with the receiver, and then calculate the importance weight, given by

wn =
qz|x(zzz(n)|xxx)

pz(zzz(n))
(2.9)

for each sample zzz(n). After that, the sender randomly samples an index n∗ from a discrete
distribution P(n) ∝ wn. Note that the index is uniformly distributed, and thus can be encoded
with log2 N bits. To decode this sample, the receiver simply draws N samples from the prior
with the same random seed, and directly takes the n∗-th one.

Ordered Random Coding: ORC also generates N samples in the same way as MRC.
However, sample important weights are permuted in a similar fashion to the Gumbel-max
trick [Papandreou and Yuille (2011)].

To be more specific, besides the samples from the prior, the sender also draws a sequence
of Gumble noises G(n), and sorts them in decreasing order such that G̃(1) ≥ G̃(2) ≥ ...≥ G̃(N).
The importance weights of each sample is given by

logwn = log
qz|x(zzz(n)|xxx)

pz(zzz(n))
+ G̃(n). (2.10)

Then the sender takes the index n∗ with the largest weight, i.e.,

n∗ = argmax
n=1,2,...,N

logwn. (2.11)

Note that by permuting the weights, n∗ is no longer uniformly distributed, and thus can be
encoded with bits ≤ log2 N. Therefore, ORC is strictly more efficient than MRC [Theis and
Yosri (2022)].

Note that the sample encoded by ORC also follows qz|x(z|xxx) approximately. However,
Theis and Yosri (2022) showed that, if q̃ represents the distribution of the samples encoded
by ORC, the total variation distance, defined as

DTV[q̃,qz|x] =
1
2

∫ ∣∣q̃(z)−qz|x(z|xxx)
∣∣dz, (2.12)

vanishes exponentially quickly when N = 2⌊DKL[qz|x||pz]+t⌋, t→ ∞. See Appendix A.2 for a
more formal statement.

8 Background

ORC is also known as depth-limited, global-bound A* coding [Flamich et al. (2022)],
to which we refer as A* coding hereafter. We provide its encoding and decoding process in
Algorithm 6 and Algorithm 7 in Appendix A.1 for completeness.

2.2 Deep Learning

In the following, we shift our attention to deep learning. Based on (artificial) neural networks,
which has been shown to be highly efficient in capturing complex patterns in data, deep
learning is undergoing an explosive rise and revolutionizing many fields. In this section,
we focus our introduction on the most relevant topics, including neural networks, Bayesian
Neural Networks (BNNs), and Implicit Neural Representations (INRs).

2.2.1 Neural Networks

Neural networks can be seen as a form of linear model, with stacks of learnable non-linear
basis functions [Bishop (2006)]. One common choice of the neural network architecture is
Multi-layer Perceptron (MLP). Precisely, an MLP models a mapping

f : Rdx → Rdy , (2.13)

where dx and dy represent the dimensionality of the input and the output, respectively. For
an L-layer MLP, the mapping is decomposed into L−1 sub-mappings between successive
layers, i.e.,

f = f [1] ◦ f [2] ◦ ...◦ f [L−1]. (2.14)

Each of the sub-mapping f [l] : Rdl → Rdl+1 is parameterized by a weight matrix WWW [l] ∈
Rdl×dl+1 and a bias vector bbb[l] ∈ Rdl+1 . Formally, if xxx[l] denotes the input of the l-th layer,
and yyy[l] denotes the output, then

yyy[l] = f [l](xxx[l]) = φ(WWW [l]xxx[l]+bbb[l]), (2.15)

where φ(·) represents an element-wise non-linear activation function. The output of one
layer will then be fed into the next layer as the input, i.e., xxx[l+1] = yyy[l].

The choice of φ is one hyperparameter. The most common choices of φ , including
Rectified Linear Unit (ReLU) [Nair and Hinton (2010)], Sigmoid and Tanh, are illustrated

2.2 Deep Learning 9

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(x
)

ReLU
Sigmoid
Tanh

Fig. 2.1 Visualization of three common choices of the non-linear activation functions.

in Fig 2.1. We will revisit the choice in Section 2.2.3 when introducing Implicit Neural
Representations.

From now on, unless stated otherwise, we use www to denote the vector concatenating

all parameters in the network, i.e., www =
[
Vec(WWW [1])

⊤
,bbb[1]

⊤
, ...,Vec(WWW [L−1])

⊤
,bbb[L−1]⊤

]⊤
for

brevity’s sake. Besides, we use Roman letters (e.g. w,w) for symbolic representation of
random variables and italicized letters (e.g. www,w) for their realizations.

2.2.2 Bayesian Neural Networks

A Bayesian Neural Network (BNN) is the probabilistic variant of a standard neural network.
Instead of learning a set of point estimators of the network parameters, BNNs infer their
posteriors given the training data by Bayes Rule. More formally, assuming a prior distribution
over the network parameters p(w) and a set of training observations D = {(xxxi,yyyi)}N

i=1, the
posterior distribution is given by

p(w|D) ∝ p(w)p(yyy1, ...,yyyN |w,xxx1, ...,xxxN). (2.16)

However, unfortunately, Equation (2.16) is intractable in most case. Numerous re-
searches have been done to address the intractability. There mainly exist two paradigms,
one is to approximate the intractable p(w|D) by a tractable q(w), including variational
inference [Blundell et al. (2015); Graves (2011); Kingma and Welling (2014); Kingma et al.
(2015)], Laplacian approximation [Neal (1995); Ritter et al. (2018)], etc.; the other is to
simulate samples from p(w|D), such as Hybrid Monte Carlo (HMC) [Brooks et al. (2011);

10 Background

Duane et al. (1987)], Stochastic Gradient Langevin Dynamics (SLGD) [Welling and Teh
(2011)], etc.

Here, we look at variational inference since it is closely related to our work. Variational
inference uses q(w) to approximate the true posterior by minimizing the KL divergence from
p(w|D) to q(w), i.e.,

argmin
q(w)

DKL[q(w)||p(w|D)]. (2.17)

However, due to the intractability of p(w|D), the KL divergence is also intractable. Therefore,
VI maximizes

(
log p(D)−DKL[q(w)||p(w|D)]

)
, since the marginal distribution of data

p(D) is a constant w.r.t. any choices of q. This objective function is known as Evidence
Lower Bound (ELBO), with a better-known form, given by

ELBO = Ewww∼q(w)[p(D|w)]︸ ︷︷ ︸
Data-fit term

−DKL[q(w)||p(w)]︸ ︷︷ ︸
Penalty term

. (2.18)

It is also common to down-weight the penalty term by β , known as β -ELBO, defined as

β -ELBO = Ewww∼q(w)[p(D|w)]−β ·DKL[q(w)||p(w)]. (2.19)

A natural question is how to optimize this objective functional. In practice, we first
parameterize q within a tractable distribution family, and perform SGD on the parameters.
For example, the most common parameterization is mean field (fully-factorized) Gaussian,
i.e., q =N (µµµq,diag(σσσ2

q)).
Another difficulty lies in the calculation of the expectation Ewww∼q(w)[p(D|www)], which, in

most cases, has no analytical form. To address this, it is typical to use a Monte Carlo estimator,
employing the reparametrization trick to ensure that the gradient can back-propagate through
the random samples, as introduced by Kingma and Welling (2014). This approach is also
referred to as Bayes by Backprop (BbB) in some contexts.

However, q(w) over the weights in BNNs can be high-dimensional. As a result, the
Monte Carlo estimator will have a large variance, which slows down the convergence during
training and may also negatively impact the performance. To address this, Kingma et al.
(2015) proposed local reparametrization trick. When dealing with mean field Gaussian
posteriors, this technique enables us to translate the global parameters’ uncertainty into local
noise, which is independent across data in one mini-batch. As a result, it effectively reduces
variance.

2.3 Related Works 11

Pixel Coordinates

Pixel RGB Value

Neural
Network

Fig. 2.2 Illustration of an INR applied to an image.

2.2.3 Implicit Neural Representations

Implicit Neural Representations (INRs) refer to continuous and differentiable signal repre-
sentations that are implicitly defined by neural networks [Sitzmann et al. (2020)]. Its core
idea is to view each data point as a function that maps coordinates to the signal values.

Consider the example of an image, as depicted in Fig 2.2. In the context of INRs, we
can interpret the image as a function that maps each pixel’s coordinates to its corresponding
(R,G,B) values. The neural network fitted to this mapping is referred to as an Implicit Neural
Representation of the image. It is worth noting that, from this perspective, a single data point
is essentially viewed as a dataset consisting of coordinate-value pairs.

The most common architecture of INRs is the sinusoidal representation networks (SIREN),
introduced by Sitzmann et al. (2020). It is a shallow MLP with sine as the activation function,
i.e., φ(x) = sin(ω0x), where ω0 is a hyperparameter typically set to 30−50.

2.3 Related Works

In this section, we briefly review related works, including recent INR-based codecs, and
MIRACLE (Minimal Random Code Learning) [Havasi et al. (2019)] which compresses
Bayesian Neural Networks with Minimal Random Coding.

12 Background

2.3.1 Data Compression with INRs

In this section, we first introduce recent INR-based codecs respectively, followed by a
summary in Table 2.1.

COIN [Dupont et al. (2021)]

Dupont et al. (2021) proposed COIN (Compression with Implicit Neural representations),
applying INRs to image compression for the first time. When encoding an image, COIN fits
an INR to an image, by minimizing the MSE between the predictions and the ground truth.
Then COIN simply quantizes the INR parameters to 16 bits, without further compression
such as entropy coding.

Bit-rates in COIN are controlled by Bayesian optimization among all valid network sizes.
Precisely, given a bit-rate budget, COIN first lists all valid combinations of network depth
and width. For instance, for images in the Kodak dataset [Kodak (1993)] (512×768 pixels)
at 0.3 bpp, valid architectures include INRs with 10 layers of width 28, 7 layers of width 34
and so on. Then COIN runs a hyperparameter search over learning rates and architectures,
on a single image from the dataset, by Bayesian optimization. The outcome will be used for
all images in the same dataset at this bit-rate.

Without entropy coding or learning distributions over INR parameters, COIN outperforms
JPEG at low bit-rates. However, the encoding is slow, because it involves thousands of
gradient descent iterations to compress a single image. Besides, the framework is not yet
competitive with state-of-the-art codecs at that time. Despite its limitations, COIN points
out a potential direction for applying INR to compression, laying the foundations for all the
following works.

COIN++ [Dupont et al. (2022)]

As the sequel to COIN, COIN++ partially addresses the problems of COIN.
By leveraging Model-Agnostic Meta-Learning (MAML) [Finn et al. (2017)], COIN++

reduces the encoding time significantly. For each test image, COIN++ only requires 10
iterations of gradient descent to converge. Besides, COIN++ learns a base network using
the training set and subsequently employs modulations on this network to encode individual
test data points, which enables information sharing between networks and thus increases
the compression efficiency. Also, COIN++ uses entropy coding to compress quantized
modulations. The quantization is applied uniformly within 3 standard deviations.

2.3 Related Works 13

The authors also proposed their own modulation parameterization. Given a meta-learned
base network, for each test datum, COIN++ only apply shifts βββ

[l] as the modulation, by

sin(ω0(WWW [l]xxx[l]+bbb[l]+βββ
[l])) (2.20)

at each layer l. To further enhance compression, instead of directly learning {βββ [l]}L
l=1,

COIN++ learns a latent vector which is linearly mapped to the modulations {βββ [l]}L
l=1.

The authors applied COIN++ to a wide range of modalities, spanning images, audio, MRI
scans, and climate data. However, due to the instability of meta-learning, when dealing with
large target data, the authors cropped large data into smaller patches, and then compressed
these patches individually, which negatively impacts the performance.

As the authors pointed out, the main drawback of COIN++ is the limited stability and
scalability by meta-learning. Also, although COIN++ demonstrates applicability to multiple
modalities, it does not outperform codecs specialized to each modality.

Furthermore, Huang and Hoefler (2023) pointed out the climate data compression in
COIN++ assumes an infinite number of time slices, which does not align with the real-world
climate data. Taking this into account, the actual compression ratio should be below 50×
instead of the reported 3000× [Huang and Hoefler (2023)].

Strümpler et al. (2022)

Strümpler et al. (2022) proposed an approach using meta-learned INRs for image compression.
Unlike COIN++, where meta-learning is applied in the modulation space, this method directly
applies meta-learning in the network parameter space. Specifically, this approach first meta-
learns a set of initial INR parameters, denoted as www0. For each test data point, the sender
learns the updates to the parameters ∆www, and then quantizes ∆www to ∆w̃ww, followed by entropy
coding. To enhance compression, the author trained the network with L1 regularization.
During the decoding process, the image is reconstructed using the INR with the parameters
www = www0 +∆w̃ww.

Moreover, the authors employed more sophisticated quantization in this approach. Specif-
ically, the authors quantized each weight tensors with a different precision, and utilized
AdaRound [Nagel et al. (2020)] to decide whether to round a weight up or down. Also, the
authors fine-tuned the quantized weights using Quantization Aware Training (QAT), to avoid
performance degradation.

14 Background

MSCN [Schwarz and Teh (2022)]

Schwarz and Teh (2022) proposed MSCN (Meta-Learning Sparse Compression Networks).
In this work, the authors adopted a technique proposed by Louizos et al. (2018), introducing a
reparameterized L0 objective using stochastic gates on parameters, to sparsitize the network.

The authors proposed two setups, and investigated different applications of MSCN. Here
we only present the setup related to compression (Section 3.3.2 and 5.3 in [Schwarz and Teh
(2022)]).

First, MSCN meta-learns a base network, parameterized by θθθ , and the distribution
parameters φφφ . A specific datum is represented by a set of smoothly gated modulations
δθθθ = {mmm[l]⊙ zzz[l]}L

l=1 on the base network, where each zzz[l] = min(1,max(0,sss)) and sss follows
the Hard concrete distribution q(s|φφφ). The modulation in MSCN has the same form as that
in COIN++, i.e., only shift is applied.

When fitted to a specific datum D = {(xxxi,yyyi)}N
i=1, δθθθ is learned by optimizing:

L= Esss∼q(s|φφφ)

[
N

∑
i=1
||yyyi− ŷyyi||22

]
︸ ︷︷ ︸

Distortion

+λ

dim(φφφ)

∑
j=1

(
1−Q(s j ≤ 0|φφφ)

)
︸ ︷︷ ︸
Penalty term enforcing sparsity

. (2.21)

Q denotes the cumulative distribution function (CDF) of q, and ŷyyi represents the prediction
of xxxi using modulations δθθθ on the base network. We omit the dependency in the notation for
simplicity. Subsequently, MSCN quantizes and entropy-codes the modulations following
COIN++’s settings.

However, it is important to note that when dealing with large images in Kodak dataset with
patches, the authors evaluated the PSNR of each patch independently without reconstructing
them back to the entire image. As a result, the reported results on the Kodak dataset may not
be directly comparable with other approaches.

VC-INR [Schwarz et al. (2023)]

Schwarz et al. (2023) proposed VC-INR (Variational Compression of Implicit Neural
Representations), which employs variational autoencoder to compress low-rank modulations.
VC-INR has two key components:

1. low-rank soft gated modulations: VC-INR also begins with a base network learned
by MAML, and applies modulation for each test datum. Different from COIN++ and

2.3 Related Works 15

MSCN, the modulation is defined as

sin(ω0(GGG
[l]
low⊙WWW [l]xxx[l]+bbb[l])). (2.22)

Assuming GGG[l]
low ∈ Rd×d , then

GGG[l]
low = sigmoid(UUU [l]

lowVVV [l]
low
⊤
), where UUU [l]

low,VVV
[l]
low ∈ Rd×m, (2.23)

with m≪ d to enforce a lower rank explicitly.

The authors employed LayerNorm [Ba et al. (2016)], residual connections [He et al.
(2015)] with large layer widths, and the sigmoid applied to GGG[l]

low to stabilize the
meta-learning.

2. variational compression of modulations: Following the deep-factorized prior intro-
duced by Ballé et al. (2017), the authors adopted a VAE to compress the modulations.
The entire setup of the VAE remains consistent with [Ballé et al. (2017)], except the
encoder and decoder are defined by residual Multi-layer Perceptrons (MLPs) with
SeLU activations [Klambauer et al. (2017)]. During training, the author approximated
quantization with uniform noise U(−1

2 ,
1
2). Besides, although the VAE is applied to

the modulations, the distortion is directly measured between the reconstructed image
and the target image.

In the paper, the authors applied VC-INR to various data modalities, including image,
audio, and video, showcasing strong performance compared to other INR-based codecs.

To summarize, we offer a comparative review of these methods in Table 2.1.

2.3.2 Probabilistic Model Compression with REC

Another work that closely related to our method is MIRACLE (Minimal Random Code
Learning), proposed by Havasi et al. (2019), to compress Bayesian Neural Networks with
Minimal Random Coding (MRC).

Specifically, the authors introduced a prior p(w) on the network parameters, and inferred
the variational posterior q(w) by maximizing the β -ELBO:

L= Ewww∼q(w)[log p(D|www)]−β ·DKL[q(w)||p(w)]. (2.24)

16 Background

Parameterization MAML Compression Modalities

COIN a single INR for each test datum ✗ uniform quantization to 16 bits image

COIN++
a base network with modulation

sin(ω0(WWW [l]xxx[l]+bbb[l]+βββ
[l]))

✓

uniform quantization
within 3 std;

entropy coding

image, audio,
medical data,
climate data

Y.S. et al.* an initial network with updates
www = www0 +∆w̃ww ✓

quantization with
tensor-specific precision;

AdaRound; QAT;
entropy coding

image,
3D shape**

MSCN
a base network with modulation

sin(ω0(WWW [l]xxx[l]+bbb[l]+mmm[l]⊙ zzz[l]))
✓

uniform quantization
within 3 std;

entropy coding
image***

VC-INR
a base network with modulation
sin(ω0(GGG

[l]
low⊙WWW [l]xxx[l]+bbb[l]))

GGG[l]
low = sigmoid(UUU [l]

lowVVV [l]
low
⊤
)

✓

variational compression
with deep-factorised prior;

entropy coding

image,
audio,
video,

climate data

Table 2.1 Comparative review of current INR-based codecs. *Strümpler et al. (2022). **The
only goal of 3D shape compression in this paper is to show the transferability of the approach.
***In MSCN paper, the authors applied the methods to multiple data modalities, but only
evaluated on images for compression.

The first term on RHS is the data-fitting term, reflecting the prediction accuracy. The second
term is an approximation of the coding cost of REC.

After learning the variational posterior, the author adopted MRC to encode a sample
www∼ q(w). In order to keep the MRC sample size N = 2⌊DKL[q(w)||p(w)]+t⌋ manageable, the
authors partitioned w into blocks and compress them separately. Besides, the authors also
proposed to train the model after the compression of each block. These approaches are
borrowed into our framework, and play crucial roles in both COMBINER and COMBINER+.
We will describe them with more details when introducing our approaches.

Besides the encoded samples, in this work, the prior p(w) also needs to be transmitted
to the receiver. To avoid using excessive additional bits, the authors set the prior to be a
layer-wise isotropic Gaussian, centred around 0. Therefore, the sender only needs to transmit
one float number per layer, corresponding to the prior variance.

Chapter 3

COMBINER: Compression with
Bayesian Implicit Neural Representations

In the last chapter, we introduced Relative Entropy Coding (REC) and Implicit Neural
Representations (INRs). We also looked at how INRs are being used for data compression.
In this chapter, we introduce COMBINER (Compression with Bayesian Implicit Neural
Representations), which compresses INR parameters by REC, resulting in a substantial
improvement of its performance.

To motivate of our approach, we restate the operational rate-distortion function from
the perspective of INRs: assuming an image with N pixels, represented as a dataset D =

{(xxxi,yyyi)}N
i=1, where xxxi and yyyi represent the coordinate vector and the RGB value of the

i-th pixel. When compressing this image, we hope to minimize the distortion between the
targets {yyyi}N

i=1 and the predictions {ŷyyi}N
i=1, and meanwhile control the code cost of the INR

parameters to be smaller than some budget C.
Most current INR-based codecs treat this as two separate tasks: they first fit an INR as

well as possible, and then compress the quantized parameters. As a result, these methods
cannot directly optimize the coding cost, and simply quantizing the parameters to a fixed
precision will impact the pre-learned fitting. Although works like MSCN [Schwarz and Teh
(2022)] attempt to control the rate by enforcing sparsity during training, their penalty term is
not a well-defined entropy model directly linked to the coding cost.

Is there a way to optimize the coding cost, and obviate the need for post-training quantiza-
tion, thus avoiding potential performance degradation? This reminds us of Relative Entropy
Coding. It, on the one hand, compresses a continuous value without quantization; on the
other hand, offers an upper bound on the coding cost which we can optimize directly. More
precisely, if we introduce a prior p(w) (abbreviated as pw) and a posterior distribution q(w)

18 COMBINER: Compression with Bayesian Implicit Neural Representations

(abbreviated as qw) over network parameters w, the coding cost by REC, as discussed in Sec-
tion 2.1.2, is approximately bounded by the Kullback-Leibler (KL) divergence DKL[qw||pw].

Therefore, given a certain distortion measure ∆ and the coding budget C, the operational
rate-distortion function of lossy compression can be re-formalized into the constrained
optimization problem:

min
qw

Ewww∼qw

[
∑

(xxx,yyy)∈D
∆(yyy, ŷyyxxx,www)

]
, s.t. DKL[qw||pw]≤C, (3.1)

where ŷyyxxx,www is the output of INR given xxx and a parameter sample www∼ qw. After qw is learned,
we can naturally perform REC to compress a sample from it without exceeding the budget C.

In a nutshell, COMBINER can be summarized as:

learning a posterior distribution of the INR parameters, and compressing a sample from
this distribution by REC.

Our approach has several advantages. As we already discussed, it enables a joint op-
timization of the distortion and the coding cost. Also, as we will show, our approach can
adaptively activate or prune hidden units at different bitrates, avoiding tedious tuning of the
network size. Besides, our approach demonstrates strong robustness during the prior learning
stage since it does not rely on MAML (Model-Agnostic Meta-Learning [Finn et al. (2017)])
which involves second-order gradient and therefore can be unstable.

Sections below are organized as follows. Section 3.1 describes COMBINER in details.
Section 3.2 shows its performance on two image datasets. This section also includes analysis
to better understand our model, and ablation studies to verify the effectiveness of our methods.
We close this chapter with a brief recap in Section 3.3. We will discuss more about the
limitations in Chapter 5 at the end of this thesis.

3.1 Methods

Although Equation (3.1) serves as the objective function, there still exist three gaps to fill in
before turning it into a practical compression algorithm:

• given a set of training data, how to find a prior pw that works for the test data to be
compressed within the same domain;

• after pw is learned, given a datum represented as D = {(xxxi,yyyi)}N
i=1 to be compressed,

how to find the posterior qw that satisfies Equation (3.1);

3.1 Methods 19

• after qw is learned, how to encode a sample from it in practice.

This section explains how COMBINER addresses these questions. We first describe the
inference of the posterior distribution, followed by the introduction of prior learning and
the compression algorithm. We rearrange their order, since the prior learning stage also
involves the posteriors on the training data. In the end, we summarize the entire pipeline of
COMBINER.

3.1.1 Posterior Inferring by Stochastic Variational Inference

Assuming we have a prior over INR parameters pw, and want to compress a new-coming
datum D = {(xxxi,yyyi)}N

i=1. To solve the constraint optimization problem in Equation (3.1), we
introduce a slack variable β and optimize its Lagrangian dual, which yields:

L(qw, pw,D) = Ewww∼qw

[
∑

(xxx,yyy)∈D
∆(yyy, ŷyyxxx,www)

]
+β ·DKL[qw||pw]+ const. (3.2)

This objective function naturally combines the distortion and the coding cost together, and
balance their importance with a hyperparameter β . In the following content, we will refer to
it as the rate-distortion objective.

Note that this has the same form as the negative β -Evidence Lower Bound (β -ELBO) as
discussed in Section 2.2.2, suggesting the applicability of the standard stochastic variational
inference.

In COMBINER, we parameterize the variational posterior qw as mean field (fully-
factorized) Gaussian, i.e.,

qw =N (µµµq,diag(σσσ2
q)). (3.3)

While the KL divergence on the RHS of Equation (3.2) can have analytical solution, the
expectation of distortion is generally intractable. Therefore, we follow the convention of
Bayesian Neural Networks, using the Monte Carlo estimator with local reparametrization
trick [Kingma et al. (2015)] as discussed in Section 2.2.2. We use Adam [Kingma and Ba
(2014)] to optimize the parameters µµµq and σσσq, whose gradients of are calculated by standard
back-propagation1.

1In order to ensure the positivity of the standard deviation, we transform it into the entire Euclidean space
by a bijection φ−1. We set φ(·) = softplus(·)/6 = log(exp(·)+1)/6 in practice.

20 COMBINER: Compression with Bayesian Implicit Neural Representations

Algorithm 1 Learning the model prior

Require: Training data {D1,D2, ...,DM}; slack variable β .

Initialize: q(m)
w =N

(
µµµ
(m)
q ,diag

(
σσσ

(m)
q

2
))

of every training instance Dm.

Initialize: pw =N
(

µµµ p,diag
(
σσσ2

p
))

.

repeat until convergence
for m← 1 to M do

q(m)
w ← argmin

q(m)
w
L(q(m)

w , pw,Dm) ▷ Optimizing posteriors by SVI
end for
pw← argminpw

{
1
M ∑

M
m=1L(q

(m)
w , pw,Dm)

}
▷ Update prior by Equation (3.8)

end repeat

Return: pw =N
(

µµµ p,diag
(
σσσ2

p
))

.

3.1.2 Prior Learning by Coordinates Ascent

We now consider how to find a good prior pw. A prior that matches well with the data
distribution enables us to allocate bits more efficiently, and thus is critical to guarantee
COMBINER performs well in practice.

First, we determine the form of the prior. Since we parameterize the variational posterior
qw by mean field Gaussian, it is natural to use mean field Gaussian as the prior to ensure
an analytical KL divergence. In standard applications of Bayesian Neural Networks, it
is common that all dimensions of the network parameter share the same, fixed prior, e.g.,
N (0,1). However, this form of prior will cost a huge waste in terms of compression, since
different dimensions in the network can exhibit varying importance. Therefore, we consider
a parameter-wise prior with different means and standard deviations for each parameter, i.e.,

pw =N (µµµ p,diag(σσσ2
p)). (3.4)

Second, we consider what a good prior means. For a training set with M training data
points {D1,D2, ...,DM}, we want to find a prior, so that their average rate-distortion objective
is minimized, after their posteriors are inferred using this prior, i.e.,

p∗w = argmin
pw

{
1
M

M

∑
m=1

[
min
q(m)

w

L(q(m)
w , pw,Dm)

]}
, (3.5)

where we use q(m)
w to represent the posterior corresponding to the m-th training instance.

3.1 Methods 21

In order to solve this nested optimization problem where q(m)
w and pw are dependent on

each other, we propose a coordinate ascent algorithm that iteratively update and the prior
and the posteriors. To begin, we randomly initialize the model prior and the posteriors, and
alternate the following two steps:

1. Optimize the variational posteriors: we fix the prior pw and optimize the posteriors
of all training instances, as discussed in Section 3.1.1.

Note that given the fixed prior, the optimization of the posteriors can be split into M
independent optimization problems, which we can perform in parallel:

for each m = 1, ...,M: q(m)
w ← argmin

q(m)
w

L(q(m)
w , pw,Dm). (3.6)

2. Update the prior: we fix the posteriors {q(m)
w }M

m=1 from the last step, and update the
model prior by computing:

pw← argmin
pw

{
1
M

M

∑
m=1
L(q(m)

w , pw,Dm)

}
, (3.7)

When q(m)
w and p(m)

w are Gaussians as given by Equation (3.3) and (3.4), this admits a
closed-form solution:

µµµ p =
1
M

M

∑
m=1

µµµ
(m)
q , σσσ p =

√
1
M

M

∑
m=1

[(
σσσ

(m)
q

)2
+
(

µµµ
(m)
q −µµµ p

)2
]

(3.8)

We provide the full derivation of this procedure in Appendix B, and formalize this iterative
updating in Algorithm 1. Note that Equation (3.6) also depends on the hyperparameter β . In
practice, we learn multiple priors with a range of β s, corresponding to various bit-rates.

Since the gradient optimization in Step 1, as the standard variational inference of BNNs,
is stable, and the closed-form update in Step 2 guarantees the objective function to decrease,
this algorithm features a stable training process and does not have convergence issue.

3.1.3 Block-wise Compression with Progressive Fine-tuning

Algorithm 1 provides an efficient solution for learning the prior pw, which will be used to
train the variational posterior qw for a new datum to be compressed. In the following content,
we will refer to the new datum as test datum.

22 COMBINER: Compression with Bayesian Implicit Neural Representations

Once qw is learned for a test datum, COMBINER uses Relative Entropy Coding (REC)
to directly encode a single random sample www∼ qw instead of quantizing a point estimator
and entropy coding it. This approach was first proposed by Havasi et al. (2019) who used
minimal random coding (MRC) to compress Bayesian Neural Networks. In COMBINER,
we use A* coding since it is more efficient than MRC as discussed in Section 2.1.2. Similar
to the strategies used by Havasi et al. (2019), we also partition the parameters into blocks,
compress blocks separately, and perform training between the compression of each block.

Block-wise Compression

In order to compress a sample from qw by A* coding, we need to draw N =
⌊

2DKL[qw||pw]+t
⌋

number of samples www(1),www(2), ...,www(N) from the prior pw, and select the best sample according
to their (permuted) importance weights. However, when w is the vector containing all
parameters in a neural network, the required sample size is infeasible for any reasonable
DKL[qw||pw]. To handle this, we partition the vector w into K blocks: w1,w2, ...,wK , and
perform REC on each of the block separately. To avoid transmitting extra bits, this partition is
shared between the sender and the receiver, and remains fixed for any datum to be compressed.

First, we discuss the consideration when partitioning the parameter vector w. Let
δk = DKL[qwk ||pwk] denote the KL divergence for the k-th block. The coding cost for

A* coding is bounded by
(

δk + log2(δk + 1)+ const.
)

bits. If δk is too small, the second
and the third term will dominate the coding cost and lead to a huge overhead. On the other
hand, if δk is too large, the required sample size Nk =

⌊
2δk+t

⌋
will still be computationally

intractable. Therefore, it is important to ensure that the KL divergences of all blocks stay
within a reasonable range. In fact, to guarantee that COMBINER’s runtime is consistent, we
would like the KL divergences across all blocks to be approximately equal. To this end, we
set a bit-budget of κ bits per block. When encoding each block by A* coding, we draw 2κ+t

samples instead of 2⌊δk+t⌋ samples from the prior.
Besides, to better ensure this budget on the test datum, we partition parameters according

to the average KL divergence on the training dataset. To be more specific, given a set of
training data {D1,D2, ...,DM}, we first choose β according to the desired bitrate and learn
a model prior pw by Algorithm 1. We then calculate the average KL divergence for each
dimension of w across all M training data, and allocate dimensions into blocks, so that the
average divergence δ̄k of each block matches the coding budget, i.e., δ̄k ≈ κ . Unfortunately,
allocating dimensions into blocks under this constraint is the NP-hard bin packing problem. In
our experiments, we use the greedy next-fit bin packing algorithm with random permutation,
as presented in Algorithm 2. We found that randomly assigning dimensions into blocks with
a fixed size also works well in practice.

3.1 Methods 23

Algorithm 2 Partition the network parameters by Next-fit Bin Packing Algorithm

Require: Model prior pw, and the variational posteriors of the training data {q(m)
w }M

m=1
learned by Algorithm 1; bit-budget κ for each block.

Initialize: k← 1; ▷ Initialize number of blocks
Initialize: Empty list Bk = {}; ▷ Initialize list of parameters in the current block
Initialize: δ̄ ← 0. ▷ Initialize KL of current block to 0

repeat until all parameters are assigned
Randomly pick one unassigned parameter w j; ▷ Ensure the KL spreads evenly
Calculate d̄ j← 1

M ∑
M
m=1 DKL[qw j ||pw j];

if δ̄ + d̄ j > κ then ▷ Check if current block is full
k← k+1;
Bk←{}; ▷ Initialize a new block
δ̄ ← 0; ▷ Reset KL of the new block

end if
Append w j to Bk; ▷ Add current parameter to current block
δ̄ ← δ̄ + d̄ j; ▷ Update KL of current block

end repeat

Return: B1,B2,

KL-aware Training

However, despite the effort we take to partition the parameters carefully, we can only ensure
δ̄k ≈ κ for each block on average even when the test data and the training data matches well.
For a certain datum, it is unlikely that the actual KL divergence δk matches κ . Therefore, we
impose block-wise βk, and optimize a modified version of Equation (3.2), given by

L({qwk}
K
k=1,{pwk}

K
k=1,D) = Eqw1qw2 ...qwK

[
∑

(xxx,yyy)∈D
∆(yyy, ŷyy)

]
+

K

∑
k=1

βk ·δk + const. (3.9)

Here we omit the dependency between ŷyy and xxx,www1, ...,wwwK for simplicity.
To enforce the budget κ , each βk is dynamically adjusted during optimization: every I

iterations, we calculate the KL divergence δk for each block. If the KL for block k exceeds
the coding budget, i.e., δk > κ , we increase βk to βk× (1+ τ); if δk < κ− εκ , we decrease
βk to βk/(1+ τ). This procedure is modified from Havasi et al. (2019) by introducing a
buffer area εκ where we do not change βk to stabilize the training. We present the detailed
algorithm in Algorithm 3. In our experiments, unless stated, we set t = 0, I = 15, κ = 16
bits, εκ = 0.4 bits, and τ = 0.05.

24 COMBINER: Compression with Bayesian Implicit Neural Representations

Algorithm 3 KL-aware Training

Require: Test datum D; model prior pw learned by Algorithm 1, and the β used in this prior
learning process; parameter blocks B1, ...,BK by Algorithm 2.

Initialize: qwk =N (µµµqk
,diag(σσσ2

qk
)),∀k = 1, ...,K; ▷ Initialize posterior for each block

Initialize: βk← β ,∀k = 1, ...,K. ▷ Initialize βk for each block

for u in 1,2, ..., NumIter do
{qwk}K

k=1←VariationalUpdates
(
L({qwk}K

k=1,{pwk}K
k=1,D)

)
;

▷ Update posteriors by SVI; L is defined in Equation (3.9)
if u≡ 0 (mod I) then
{βk}K

k=1← AdjustBeta
(
{βk}K

k=1,{qwk}K
k=1,{pwk}K

k=1

)
▷ Update βk by Algorithm 4

end if
end for

Return: adjusted {βk}K
k=1; variational posteriors {qwk}K

k=1 for each block.

Algorithm 4 AdjustBeta({βk},{qwk},{pwk}): adjust βk according to δk.

Require: current {βk}K
k=1 values; model priors {pwk}K

k=1; variational posteriors {qwk}K
k=1.

for k in 1,2, ...,K do
Calculate δk← DKL[qwk ||pwk];
if δk > κ then

βk← βk× (1+ τ); ▷ Increase βk if budget is exceeded
end if
if δk < κ− εκ then

βk← βk/(1+ τ); ▷ Decrease βk if budget is not fully occupied
end if

end for

Return: updated {βk}K
k=1 values.

Fine-tuning between Compression of Blocks

To further improve the performance, after the compression of each block, we follow the
approach proposed by Havasi (2021) to train the posteriors of not-yet encoded blocks. We
will refer to this training process as fine-tuning in our content.

This fine-tuning not only corrects the error caused by A* coding, which only generate
samples following the posterior approximately, but also allows us to obtain a better posterior
sample from a richer variational family.

3.1 Methods 25

To provide an intuition how this process enrich variational family, we first consider
the optimal posterior distribution q∗w that minimizes the rate-distortion objective given in
Equation (3.2). Ideally, we want to search among all valid distributions and select the best
one as q∗w, which is clearly intractable. In practice, we restrict ourselves within a much
smaller set, i.e., the set of all fully-factorized Gaussian distributions, which yields a rather
crude approximation, where all the dependencies between dimensions are lost.

However, fine-tuning allows us to partially retrieve the dependency between blocks.
Assuming the first blocks is A* encoded by the sample www1, the objective function of the
following fine-tuning process becomes

L({qwk}
K
k=2,{pwk}

K
k=2,D|www1)

= Eqw2|www1
qw3|www1

...qwK |www1

[
∑

(xxx,yyy)∈D
∆(yyy, ŷyy)

]
+

K

∑
k=2

βk ·DKL[qwk|www1||pwk|www1]+ const. (3.10)

we use “·|www1” to explicitly indicate that the fine-tuning of the posteriors for block 2,3, ...,K
are conditional on the first sample www1. In total, we iterate the fine-tuning procedure K times,
progressively conditioning on more blocks, until we obtain samples for all blocks {wwwk}K

k=1.
Due to the dependency introduced by fine-tuning, the final posterior is autoregressive, and
thus approximates q∗w much better2. In Section 3.2.3, we will provide examples to illustrate
the effectiveness of fine-tuning.

We also adaptively adjust δk for not-yet compressed blocks every I iterations to ensure
the bit-budget will not be exceeded after fine-tuning. We describe the entire compression
procedure in Algorithm 3.

3.1.4 Entire Pipeline of COMBINER

In this section, we recap the entire pipeline of COMBINER. We also provide a visualization
in Fig 3.1. In total, there are 4 steps:

1. Given a training dataset {D1,D2, ...,DM}, we select an appropriate INR architecture,
and run Algorithm 1 with different β values to obtain model priors for a range of rate-
distortion trade-offs.

2Note that, although each conditional posterior distribution qwk|www1 is parameterized by Gaussian, its de-
pendency on the current sample www1 introduced by the fine-tuning is highly non-linear. Therefore, the final
autoregressive posterior is not Gaussian any more. In fact, it is even more complex than fully-joint Gaussian.

26 COMBINER: Compression with Bayesian Implicit Neural Representations

Algorithm 5 Relative Entropy Coding with Fine-tuning

Require: Test datum D; model prior pw; variational posteriors {qwk}K
k=1 and adjusted

{βk}K
k=1 by Algorithm 3; the bit-budget κ .

for k̃ in 1,2, ...,K do
n∗

k̃
,wwwk̃← A* Coding(qwk̃

, pwk̃
,κ) ▷ Encode k̃-th block by A* coding

for u in 1,2, ..., FineTuneIter do
{qwk}K

k=k̃+1← VariationalUpdates
(
L({qwk}K

k=k̃+1,{pwk}K
k=k̃+1,D|{wwwk}k̃

k=1)
)

;
▷ Fine-tune uncompressed blocks by SVI

if u≡ 0 (mod I) then
{βk}K

k=k̃+1← AdjustBeta
(
{βk}K

k=k̃+1,{qwk}K
k=k̃+1,{pwk}K

k=k̃+1

)
;

▷ Update βk for uncompressed blocks by Algorithm 4
end if

end for
end for

Return: n∗1,n
∗
2, ...,n

∗
K ▷ Return sample indices for each block

2. Given a coding budget κ , we partition the parameter vector w into K blocks w1,w2, ...,wK

by Algorithm 2. Note that for different model priors learned with different β will end up
with different partitions.

3. For a new test datum D to be compressed, according to the desired rate-distortion
trade-off, we select a prior and its corresponding partition. Then we run Algorithm 3 to
infer the variational posterior qwk for each block. To ensure the coding budget κ , we run
Algorithm 4 every I iterations to adjust βk for each block.

4. Finally, we encode a single random parameter sample wwwk ∼ qwk for each block k
by A* Coding, and perform fine-tuning after the compression of each block, as described
in Algorithm 5. Since the model prior, the parameter partition, and the pseudo random
generator are shared with the receiver, we only need to transmit one index for each block,
corresponding to the sample.

Note that steps 1, 2 are shared with the receiver, while steps 3, 4 only happen on the
sender’s side. After compression, the receiver can easily retrieve the sample wwwk by its index
n∗k and the shared pseudo random generator.

3.1 Methods 27

Variational Inference

Distortion

+

… …

… …

… …

Coordinates

Reconstruction

Test Datum

Block-wise
Coding Cost

… …

… …

… …

Training Set Model Prior

Coordinates Ascent

… …

… …

… …

Training Posteriors

… …

… …

… …

… …

… …

… …

… …

… …

… …

Block-wise Prior

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

bit-string

(a) Step 1&2: model prior learning, and block partitioning.

Variational Inference

Distortion

+

… …

… …

… …

Coordinates

Reconstruction

Test Datum

Block-wise
Coding Cost

… …

… …

… …

Training Set Model Prior

Coordinates Ascent

… …

… …

… …

Training Posteriors

… …

… …

… …

… …

… …

… …

… …

… …

… …

Block-wise Prior

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

bit-string

(b) Step 3: posterior learning by variational inference.

Variational Inference

Distortion

+

… …

… …

… …

Coordinates

Reconstruction

Test Datum

Block-wise
Coding Cost

… …

… …

… …

Training Set Model Prior

Coordinates Ascent

… …

… …

… …

Training Posteriors

… …

… …

… …

… …

… …

… …

… …

… …

… …

Block-wise Prior

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

bit-string

(c) Step 4: Relative Entropy Coding with progressive fine-tuning.

Fig. 3.1 Overview of COMBINER’s pipeline. (a) For a certain data modality (e.g., image
in our case), COMBINER learns the model prior pw using a set of training data D1, ...,DM.
Then, COMBINER partitions parameters into blocks by Algorithm 2; the crossing arrows
indicate the random permutation when partitioning blocks. (b) for a test datum D, COM-
BINER run Algorithm 3 to learn the posterior qwk for each block; (c) COMBINER performs
REC with fine-tuning to compress a sample for each block. In this figure, we colour priors in
orange and posteriors in blue. The orange crosses in (c) indicate the fact that the sample by
REC is actually drawn from the prior.

28 COMBINER: Compression with Bayesian Implicit Neural Representations

3.2 Experiments and Results

In this section, we test the performance of COMBINER on both the low-resolution Cifar-10
images [Krizhevsky (2009)] and the high-resolution Kodak dataset [Kodak (1993)]. Also,
we perform a comprehensive study of our approach in Section 3.2.3. We illustrate that our
model can adaptively activate or prune the INR hidden units to represent a specific signal.
We also investigate the effectiveness of fine-tuning quantitively and qualitatively. Moreover,
we conduct an ablation study of the model prior, and demonstrate the strong robustness of
our approach against the number of training instances.

3.2.1 Experiment Settings

We evaluate COMBINER on two image datasets: Cifar-10 and Kodak. On both datasets, we
adopt SIREN [Sitzmann et al. (2020)] as the INR architecture. Before feeding the coordi-
nates xxx into INRs, we apply Fourier embeddings [Tancik et al. (2020)] to the coordinates.
Specifically, for the coordinate xxx = [x1,x2]

⊤, we define its Fourier embeddings γ(xxx) ∈ RD as

γ(xxx) =
[

cos(a0/d
πx1),cos(a0/d

πx2), ...,cos(ad/d
πx1),cos(ad/d

πx2),

sin(a0/d
πx1),sin(a0/d

πx2), ...,sin(ad/d
πx1),sin(ad/d

πx2)
]⊤

, (3.11)

where d =
⌊D

4

⌋
− 1 and a = 1024 in our experiments. Moving forward, we present the

specific experiment settings for each of these two datasets:
Cifar-10: CIFAR-10 consists of 50,000 train and 10,000 test images with a resolution

of 32×32. We randomly select 2,048 images from the training set to learn the model prior,
and evaluated our model on all 10,000 test images. The model we use for Cifar has 4-layers,
each with 16 hidden units. In total, there are 1,123 parameters in each INR.

Kodak: Kodak is a standard dataset used to evaluate compression models, comprising
24 high-resolution images with sizes of either 512×768 or 768×512. Since there was no
specific training dataset available for Kodak, we randomly crop 512 patches, each having the
same size as Kodak images, from the CLIC training set [Toderici et al. (2020)]. We train our
model priors on these patches and then evaluate on 24 Kodak images. To cover a broader
range of bit rates, we employ two distinct model sizes. The smaller model contains 12,675
parameters, while the larger model consists of 21,563 parameters.

For more information on the detailed model structures and additional experimental details,
please refer to Table C.1 in Appendix.

3.2 Experiments and Results 29

3.2.2 Compression Performance

Rate-Distortion Curve

We present the Rate-Distortion (R-D) curve of our approach in Fig 3.2, showing the PSNR
averaged across all test images at different bitrate. Specifically, we use the Mean Square
Error (MSE) as the distortion measure, and calculate PSNR by

PSNR = 10 · log10

[
2552

MSE

]
. (3.12)

Besides the baseline model COIN [Dupont et al. (2021)], we also compare our method
with other INR-based codecs, including COIN++ [Dupont et al. (2022)], MSCN [Schwarz
and Teh (2022)]. Additionally, we include results from VAE-based codecs such as [Ballé et al.
(2018)] and [Cheng et al. (2020)], and traditional codecs including JPEG, JPEG2000, BPG
for reference. We also present results of VC-INR [Schwarz et al. (2023)], a hybrid codec of
VAE and INR. We can see our proposed method presents a significant gain compared to its
baseline approach, COIN. Besides, when compared to other INR-based codecs, our model
also exhibits competitive performance. However, there is still a gap between COMBINER
and methods utilizing VAEs.

Also, as a qualitative evaluation of our method, we decode and visualize some sample
images from both datasets. We show 5 images from Cifar-10 test set at 0.906 bpp and 4.453
bpp in Fig 3.3, and Kodak-03, Kodak-05 and Kodak-23 at 0.070 bpp and 0.293 bpp in Fig 3.4,
Fig 3.5, Fig 3.6.

Encoding and Decoding Speed

We provide the compression speed of our method on Cifar and Kodak in Table D.1 and
Table D.2 in Appendix D.1.

The encoding speed is measured on a single NVIDIA A100 (80GB) GPU. On Cifar, we
compress images in batch, with a batch size of 500 images3. On Kodak, we compress each
image separately. The decoding speed is measured per image on CPU.

Similar to COIN, our approach features a high encoding time complexity: the encoding
period in our method takes thousands of iterations to converge, and REC with fine-tuning
procedure also requires extra thousands of iterations. However, the decoding process is
remarkably fast, even on CPU.

3We should note that the batch size does not influence the results. Individual INRs for images within a batch
are optimized in parallel, and their gradients are not crossed.

30 COMBINER: Compression with Bayesian Implicit Neural Representations

0 1 2 3 4 5 6 7
bitrate (bpp)

20

25

30

35

40

45

PS
NR

 (d
B)

7.59 dB

COIN
COIN++
MSCN
VC-INR
Cheng et al. (2020)
Ballé et al. (2018)
JPEG2000
BPG
COMBINER (Ours)

(a) Cifar-10

0.0 0.1 0.2 0.3 0.4 0.5
bitrate (bpp)

22

24

26

28

30

32

34

PS
NR

 (d
B)

2.97 dB

COIN
COIN++
MSCN
VC-INR
Cheng et al. (2020)
Ballé et al. (2018)
JPEG2000
BPG
COMBINER (Ours)

(b) Kodak

Fig. 3.2 The Rate-Distortion Curve of COMBINER on Cifar-10 and Kodak datasets. The
arrows illustrate the gains in comparison to the baseline model COIN. We use solid lines
to denote INR-based methods, dotted lines for VAE-based methods, and dashed lines for
classical methods.

3.2 Experiments and Results 31

31.96 dB

23.70 dB

32.00 dB

23.12 dB

Ground Truths

Decoded Images at 4.453 bpp

34.45 dB

Residuals at 4.453 bpp

Decoded Images at 0.906 bpp

26.14 dB

Residuals at 0.906 bpp

36.79 dB

28.77 dB

34.48 dB

25.41 dB

Fig. 3.3 Decoded Cifar-10 Images and their residuals at 4.453 bpp and 0.906 bpp. These 5
example images are randomly selected from the Cifar-10 test set.

32 COMBINER: Compression with Bayesian Implicit Neural Representations

(a) Ground Truth

(b) Decoded Image (PSNR 33.59 dB) (c) Decoded Image (PSNR 29.81 dB)

(d) Residuals (e) Residuals

Fig. 3.4 Decoded Kodak-03 and its residuals at 0.293 bpp (left) and 0.070 bpp (right).

3.2 Experiments and Results 33

(a) Ground Truth

(b) Decoded Image (PSNR 23.54 dB) (c) Decoded Image (PSNR 20.28 dB)

(d) Residuals (e) Residuals

Fig. 3.5 Decoded Kodak-05 and its residuals at 0.293 bpp (left) and 0.070 bpp (right).

34 COMBINER: Compression with Bayesian Implicit Neural Representations

(a) Ground Truth

(b) Decoded Image (PSNR 33.97 dB) (c) Decoded Image (PSNR 28.46 dB)

(d) Residuals (e) Residuals

Fig. 3.6 Decoded Kodak-23 and its residuals at 0.293 bpp (left) and 0.070 bpp (right).

3.2 Experiments and Results 35

3.2.3 Analysis

Visualization of Adaptive Activation and Pruning

In this section, we visually illustrate how our model adaptively activates or prunes its hidden
units to represent a specific signal, and how the priors are adjusted for different bit-rates,
eliminating the necessity for manual tuning of the network size.

Specifically, we investigate a model trained on Cifar-10 dataset at 3.50 bpp. This MLP
is built with 4 layers and 16 units in each hidden layer. Here we take the second layer for
visualization. As shown in Fig 3.7, we visualize the model prior (both µµµ p and σσσ p) learned
by Algorithm 1 in the left column. We display the variational posteriors of two distinct
images (randomly selected from the Cifar-10 test set) in the second and third columns, and
KL divergence DKL[q

(1)
w ||pw], DKL[q

(2)
w ||pw] in the rightmost column. Note that both the

prior and the posteriors are fully-factorized, enabling us to visualize the KL at each position
separately.

Interestingly, there are seven darker columns in σσσ p, indicating that only seven hidden
units of this layer will be activated when fitting to a test datum at this specific bit-rate. For
example, when representing image 1, four columns are activated, which is evidenced by the
KL divergence. Similarly, only three columns are activated when representing image 2.

This observation clearly demonstrates the role of the variational posterior as model
selection: it adaptively selects different subsets of units to activate, tailoring the representation
for distinct test signals. Additionally, from the visualization of the prior, we can see the model
prior learned by our proposed approach (Algorithm 1) is automatically adjusted according
to a specific bit-rate. Certain columns (corresponding to certain units) in the prior exhibit
extremely small standard deviations, effectively preventing these units from being activated
by any test datum at this particular bit-rate. As a result, the network with such a prior is
equivalent to a smaller network, but does not require manual tuning of the network size.

Effectiveness of Fine-tuning

When presenting our methods, we motivate the fine-tuning as an approach to not only
rectify A* coding errors, but also attain a better posterior approximation from a theoretical
perspective. Here, we provide experimental evidence, using Cifar-10 dataset at 3.50 bpp as
an example.

Fine-tuning rectifying A* coding errors: first, we demonstrate how fine-tuning prevents
the accumulation of A* coding errors. We randomly select 500 Cifar images as examples,
encode them at 3.50 bpp, and visualize their average PSNR during REC in Fig 3.8. As
depicted in the graph, there is a slight decline in PSNR after encoding each block. However,

36 COMBINER: Compression with Bayesian Implicit Neural Representations

µµµ p, prior µµµq
(1), image 1 µµµq

(2), image 2 DKL / bits, image 1

σσσ p, prior σσσq
(1), image 1 σσσq

(2), image 2 DKL / bits, image 2

Fig. 3.7 Visualizations of the prior, and the posteriors for two test images. We focus on the
2nd layer, with 16 hidden units. Each column represents parameters for one hidden unit. The
parameter matrix has a shape of 17×16 (the first 16 rows is the weight matrix, and the last
is the bias vector).

the subsequent fine-tuning effectively compensates for this decrease. We also plot the results
without fine-tuning for comparison. We can see the performance consistently degrades due
to the error introduced by REC.

Fine-tuning attaining a better posterior approximation: in the following, we demonstrate
how fine-tuning can yield a better posterior approximation qualitatively. We randomly select
1 Cifar image and encode it at 3.50 bpp as an example.

We first run Algorithm 3 to learn the posterior distribution qw. Then, starting from the
same qw, we perform REC with fine-tuning (Algorithm 5) 500 times with different random
seeds, and collect samples from each run. For comparison, we also perform another 500
runs, starting from the same qw, without fine-tuning. Visualizing the density of these samples
offers insights into how the fine-tuning yields a more complicated posterior.

We curate two dimensions in w and visualize their prior, the posterior, and samples in
Fig 3.9. The results clearly show that, through fine-tuning, it is possible to retrieve the
correlation between parameters to a certain extent and obtain a more complex posterior than
the mean-field Gaussian approximation qw.

We further provide an ablation study on Cifar-10 to quantitively demonstrate the effec-
tiveness of fine-tuning. As depicted in Fig 3.10, fine-tuning provides an overall improvement
of 2-4 dB, with greater gain observed at higher bit-rates.

3.3 Summary 37

Fig. 3.8 Average PSNR when performing REC with fine-tuning. Two zoom-in plots provide
a closer look at what happens after the REC of each block, and after subsequent fine-tuning.

Ablation Study of Model Prior

We also conduct an ablation study to verify the effectiveness of the model prior on Cifar-10.
To be more specific, instead of learning model priors, we learn and transmit one univariate
Gaussian prior for each layer, as proposed by Havasi et al. (2019). As shown in Fig 3.10,
learning model priors increase the performance consistently by 4 dB.

Besides, we investigate the influence of the training size in the prior learning stage. We
train model priors with different numbers of training data, and evaluate their R-D curve
on 500 randomly selected Cifar-10 test images, as shown in Fig 3.11. Surprisingly, the
performance levels off when the training size is larger than 16, indicating our approach learns
a good prior even with merely 16 training data. This demonstrates the strong generalizability
of the model prior, and the robustness of the prior learning process.

3.3 Summary

In this chapter, we propose COMBINER, a new neural compression framework representing
data as variational INRs, and then encoding an approximate posterior sample by REC. Unlike
previous INR-based codecs, it naturally supports joint rate-distortion optimization and is able
to adaptively activate and prune the network units according to certain bit-rates and certain
data signal. Within the confines of this framework, we propose an iterative algorithm for
learning prior, and introduce fine-tuning with REC, substantially enhancing the performance.

38 COMBINER: Compression with Bayesian Implicit Neural Representations

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
wi (6th param in Gro(p 3)

−0.0150

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

w
j (

4t
h

pa
ra

m
 in

 G
ro

(p
 7

)

Prior distrib(tion pw

0

150

300

450

600

750

900

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
wi (6th param in Gro(p 3)

−0.0150

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

w
j (

4t
h

pa
ra

m
 in

 G
ro

(p
 7

)

Mean Fie d Vaiationa Posterior qw

0

10000

20000

30000

40000

50000

60000

70000

80000

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
wi (6th param in Gro(p 3)

−0.0150

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

w
j (

4t
h

pa
ra

m
 in

 G
ro

(p
 7

)

Samp es by REC)itho(t Fine-tuning

0

6000

12000

18000

24000

30000

36000

42000

48000

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
wi (6th param in Gro(p 3)

−0.0150

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050
w

j (
4t

h
pa

ra
m

 in
 G

ro
(p

 7
)

Samp es by REC)ith Fine-tuning

0

5000

10000

15000

20000

25000

30000

35000

40000

Fig. 3.9 Illustration of how REC with fine-tuning yields a more complicated posterior. wi
is the 6th parameter in block 3; w j is the 4th parameter in block 7. The top left plot shows
the prior pw; the top right plot shows the variational posterior qw; the bottom left plot shows
the samples by REC without fine-tuning; the bottom right plot shows the samples by REC
with fine-tuning. We can see the correlation between wi and w j is retrieved after fine-tuning.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bpp)

24

26

28

30

32

34

PS
NR

 (d
B)

COMBINER (ours)
without model prior
without fine-tuning

Fig. 3.10 Ablation Study of fine-tuning and
the model prior.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
bitrate (bpp)

18

20

22

24

26

28

30

32

PS
NR

 (d
B) 2 Training Images

4 Training Images
8 Training Images
16 Training Images
32 Training Images
128 Training Images
512 Training Images
2048 Training Images

Fig. 3.11 R-D performance with different
training sizes.

Chapter 4

COMBINER+: Improving COMBINER
with Linear Transformation and
Learnable Positional Encoding

In the previous chapter, we introduced COMBINER, a framework for data compression based
on Bayesian Implicit Neural Representations. While the performance does not reach the
state-of-the-art level, its simplicity in principle allows ample room for further improvements.

In this chapter, we present advancements in enhancing the COMBINER framework,
named as COMBINER+ , which remarkably outperforms its predecessor without loss of its
simplicity. On Cifar-10 dataset, it achieves the state-of-the-art rate-distortion performance at
low bit-rates, outperforming even VAE-based codecs. On Kodak images, although falling
short of matching the performance of VAEs, it significantly narrows the gap.

This chapter is organized as follows. In Section 4.1, we describe the methods. Rather than
introducing COMBINER+ from scratch, we focus on the modifications to the COMBINER
pipeline. In Section 4.2, we present the experimental results, and analyze our approaches in
depth. We also evaluate COMBINER+ on audio to illustrate its modality transferability. This
chapter is ended with a summary in Section 4.3, while more discussion on the limitations
will be presented in Chapter 5 at the end of this thesis.

4.1 Methods

Built on top of COMBINER, COMBINER+ shares the same pipeline as described in Sec-
tion 3.1.4. Beyond this, it improves its performance through two key modifications:

1. it employs linear transformation on the network parameters to eliminate redundancy;

40
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

2. it incorporates learnable positional encoding, assisting the fitting of INRs.

We first describe these two approaches in Section 4.1.1 and Section 4.1.2 respectively,
and discuss their practical implementation together in Section 4.1.3.

Besides, to increase the scalability of COMBINER+, we choose to use patches for high-
resolution images. To mitigate the influence of patching, we take a simple yet efficient trick
to allocate bits across patches adaptively, which is described in Section 4.1.4.

4.1.1 Linear Transformation on Network Parameters

To motivate this approach, we consider the big picture of transform coding. As we discussed
in Section 2.1.2, when compressing data xxx, we apply an analysis transformation f into a
transformed space, where the transformed data f (xxx) is ideally decorrelated. In COMBINER,
this transformation is conducted implicitly by gradient descent, and the transformed data is
simply the network parameters, i.e., www = f (xxx).

However, the parameters of a neural network are known to have inherent redundancy.
Denil et al. (2013) showcased that a small subset of parameters is adequate to reconstruct the
entire network; Chen et al. (2015) demonstrated that, by randomly sharing parameters in the
network, the model size can be reduced drastically, with only minor impact on the accuracy.
This indicates that our data representation in the transformed space (i.e, the space of network
parameters) is not fully decorrelated.

Therefore, we adopt linear transformation on the network parameters. Specifically, for an
L-layer INR, we introduce latent network parameters

hhh =

[(
hhh[1]
)⊤

,
(

hhh[2]
)⊤

, ...,
(

hhh[L]
)⊤]⊤

, (4.1)

and a set of linear transformations
{

AAA[l]
}

L
l=1. The parameters of each INR layer is mapped

from the latent parameters by the linear transformation corresponding to this layer, i.e.,

www[l] = AAA[l]hhh[l]. (4.2)

www[l] denotes the vector concatenating the weight and bias of the l-th layer, i.e., www[l] =

[Vec(WWW [l])
⊤
,bbb[l]

⊤
]⊤. The dimensionality of hhh[l] is set to be the same as www[l] in our experiments.

We find, empirically, applying a single linear transformation to the entire network provide
no improvement comparing with the layer-wise transformations, indicating the redundancy
between layers is less than that within each layer.

4.1 Methods 41

To simply notations, we hereafter denote

AAA =

AAA[1]

AAA[2]

. . .

AAA[L]

 , www = AAAhhh. (4.3)

In the following, we describe the learning of hhh and AAA respectively. We focus on a
conceptual introduction here, and will provide more practical details in Section 4.1.3, after
introducing the learnable positional encoding.

Learning hhh by Stochastic Variational Inference

The latent parameter vector h in COMBINER+ is treated in the same way as the network
parameter vector w in COMBINER. Specifically, we put a prior ph which is learned by
coordinate ascent on the training set, and a posterior qh which will be learned by stochastic
variational inference for each test datum. Then we perform REC with fine-tuning to encode
a sample hhh∼ qh. Similar to COMBINER, the prior and the posterior are parameterized by
mean field Gaussian.

Learning AAA with Prior by Coordinate Ascent

Before delving into the learning of AAA, we first consider the role that it should fulfil in our
setting. Ideally, INR fitted to each datum exhibits its unique redundancy pattern. For instance,
an INR for a simple image is likely to present higher redundancy. Therefore, it appears to
be the most effective to learn a different AAA for each datum. However, encoding AAA for each
datum is not favored since it will require a large amount of bits.

Consequently, rather than learning and compressing an individual AAA for each datum, we
seek to find an AAA that captures the common redundancy pattern across the whole dataset. By
sharing it between the sender and receiver, we eliminate the need for additional bits.

To achieve this, we incorporate the learning of AAA into the prior learning stage. Similar
to COMBINER (Algorithm 1), the prior learning process involves a 2-stage coordinate
ascent, where the posteriors of the training data and the prior are updated iteratively. In
COMBINER+, when optimizing the posteriors of the training data using stochastic variational
inference, we also back-propagate the gradient through AAA and perform gradient descent on it.

Recall in COMBINER, we learn multiple priors for a range of bit-rates. Here, we also
learn multiple matrices AAA, each corresponding to one bit-rate, as INRs at different bit-rates
can display diverse patterns of redundancy.

42
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

4.1.2 Learnable Positional Encoding

A major dilemma associated with INR-based codecs is that the network represent the entire
signal globally. While this characteristic enables an efficient removal of global redundancy,
it simultaneously poses challenges in the fitting of INR. For instance, a minor change in a
single pixel may result in the changes of all network parameters.

There exist studies on signal representations using hybrid coordinate-based neural rep-
resentations (hybrid CNRs) which incorporates learnable latent code, or positional fea-
tures [Chen et al. (2021b); Jiang et al. (2020); Kim et al. (2022); Mehta et al. (2021)].
Inspired by these works, we introduce a learnable positional encoding into our compression
framework. The learnable positional encoding can be viewed as an explicit representation,
complementing the implicit neural representation. To further enhance compression, this
positional encoding is mapped from a down-sized code in the latent space.

In the following, we focus on image as the example. Data compression in other modality
follows the same principle, and we only need to match the positional encoding’s dimension-
ality with the data’s dimensionality.

First, we introduce a latent positional encoding tensor Z ∈ RCZ×WZ×HZ for each image,
and a convolution-based up-sampling network φCNN(·). When reconstructing an image
D = {(xxxi,yyyi)}N

i=1, we first map its ZZZ through φCNN, resulting in a pixel-wise positional
encoding:

Z̃ZZ = φCNN(ZZZ) ∈ RD0×W×H , (4.4)

where W and H are the width and height of the image. Then, for each pixel at position i, we
concatenate the corresponding positional encoding z̃zzi ∈ RD0 , with the Fourier embedding
γ(xxxi) ∈ RD of its coordinate xxxi, i.e.,

x̃xxi =
[
z̃zz⊤i ,γ

⊤(xxxi)
]⊤
∈ RD0+D. (4.5)

The Fourier embedding is defined in Equation (3.11)1 in Section 3.2.1. Finally, we map x̃xxi

through the INR, resulting in the reconstructed pixel value ŷyyi. Unless stated otherwise, we

1For easier reference, we restate the Fourier embedding here:

γ(xxx) =
[

cos(a0/d
πx1),cos(a0/d

πx2), ...,cos(ad/d
πx1),cos(ad/d

πx2),

sin(a0/d
πx1),sin(a0/d

πx2), ...,sin(ad/d
πx1),sin(ad/d

πx2)
]⊤

,

where d =
⌊D

4

⌋
−1 and a = 1024.

4.1 Methods 43

set D = D0 = 16, Cz = 128, Wz =W/4, Hz = H/4 in our experiments. The up-sampling
network architecture is presented in Fig C.1 in Appendix.

We treat the Z in the same way as h, and learn the up-sampling network during the prior
learning process in the same way as AAA. To be more specific, denoting zzz=Vec(ZZZ)∈RCZ·WZ·HZ ,
we learn prior pz and φCNN(·) by coordinate ascent. Then pz and φCNN(·) will be fixed for
all test datum, and shared between the sender and receiver. For a test datum at a specific
bit-rate, we learn a posterior qz by stochastic variational inference, and compress a random
sample zzz∼ qz by REC with fine-tuning. Same as h, pz and qz are parameterized by mean
field Gaussian.

Connection with VAEs

Essentially, the up-sampling network can be viewed as the decoder of a VAE. This leads to our
method being positioned as an interpolation between VAE-based and INR-based codecs, al-
beit without an explicit encoder. Importantly, the balance between VAE and INR components
can be adaptively learned without manual tuning. In Section 4.2.3 (Fig 4.10), we demonstrate
that our method dynamically adjusts the emphasis between these two components, rather
than consistently favoring one.

Therefore, our approach holds the potential to inherit advantages of VAEs, particularly
in terms of better scalability. Furthermore, owing to the compact size of our up-sampling
network in comparison to fully VAE-based techniques like [Ballé et al. (2018)], our method
preserves INRs’ fast decoding.

Moreover, unlike many VAE-based codecs elaborately designed for each specific data
modality, our up-sampling network φCNN, composed solely of up-sampling layers, convolution
layers, and LeakyReLU activations, can be adapted to various modalities by simply adjusting
the dimensionality of the convolution kernels. We demonstrate its strong transferability by
1D audio data in Section 4.2.4.

4.1.3 Implementation in Practice

Since we treat h and z in the same way, we concatenate them to form a single vector v in
practice, i.e.,

vvv = [hhh⊤,zzz⊤]⊤. (4.6)

44
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

split

reshape

linear transformation

concatenate with

positional encoding decoded imageINR parameters

Fig. 4.1 Visualization of the reconstruction process of COMBINER+.

We then directly operate on this unified vector v, with the prior pv and the posterior qv, both
parameterized by mean field Gaussian, i.e.,

pv =N
(

µµµ pv,diag
(
σσσ

2
pv

))
, qv =N

(
µµµqv,diag

(
σσσ

2
qv

))
. (4.7)

When decoding an image, we simply split vvv into hhh and zzz, and predict the pixel values, by the
INR with parameters www = AAAhhh and the up-sampled positional encoding Z̃ZZ = φCNN(ZZZ). This
process is depicted in Figure 4.1.

In the following, to avoid ambiguity, we call h as the latent network parameter, w as the
network parameter, z & Z as the latent positional encoding, z̃ & Z̃ as the positional encoding,
v as the latent vector.

Having presented all the key components, we state the entire pipeline of COMBINER+
below. Similar to COMBINER, there are also 4 steps:

1. Given a training dataset {D1,D2, ...,DM}, we select a β corresponding to the desired
bit-rate, and learn pv, AAA and φCNN(·) by coordinate ascent, where we iteratively alternate the
following steps (a) and (b):

(a) optimize posteriors, linear transformation and up-sampling network: fixing the prior pv,
we minimize the average rate-distortion objective across all M training instances:

L({q(m)
v }, pv,AAA,φCNN,{Dm}) ∝

M

∑
m=1
L(q(m)

v , pv,AAA,φCNN,Dm) (4.8)

=
M

∑
m=1

{
E

vvv∼q(m)
v

[
∑

(xxx,yyy)∈Dm

∆(yyy, ŷyyxxx,vvv,AAA,φCNN
)

]
+β ·DKL[q

(m)
v ||pv]

}
,

(4.9)

4.1 Methods 45

where ŷyyxxx,vvv,AAA,φCNN
denotes the reconstructed pixel value at coordinate xxx. The minimization is performed

by gradient descent on AAA, φCNN , and the variational parameters of training data {µµµ(m)
qv ,σσσ

(m)
qv }, jointly.

(b) update the prior in closed-form: fixing {µµµ(m)
qv ,σσσ

(m)
qv }, AAA and φCNN, we update prior by:

µµµ pv
=

1
M

M

∑
m=1

µµµ
(m)
qv

, σσσ pv =

√
1
M

M

∑
m=1

[(
σσσ

(m)
qv

)2
+
(

µµµ
(m)
qv −µµµ pv

)2
]

(4.10)

The derivation of Equation (4.10) is the same as Equation (3.8) in COMBINER.

2. Given a coding budget κ , we partition the parameter vector v into K blocks v1,v2, ...,vK

by the next-fit bin-packing algorithm. Different priors learned with different β will end up
with different partitions.

3. For a new test datum D, according to the desired rate-distortion trade-off, we select a
prior pv, the matrix AAA, the up-sampling network φCNN, and the corresponding partition. Fixing
AAA and φCNN, we learn the variational posterior qvk for each block by minimizing:

L({qvk}
K
k=1,{pvk}

K
k=1,D) = Eqv1 ...qvK

[
∑

(xxx,yyy)∈D
∆(yyy, ŷyy)

]
+

K

∑
k=1

βk ·DKL[qvk ||pvk]. (4.11)

Here we omit the dependency between ŷyy and xxx,vvv1, ...,vvvK,AAA,φCNN for simplicity. Besides, to
ensure the coding budget κ , we run Algorithm 4, i.e.,

{βk}← AdjustBeta({βk},{qvk},{pvk}) (4.12)

every I iterations to adjust βk, so that the KL divergence for each block is roughly κ .

4. Finally, we encode a single random parameter sample vvvk ∼ qvk for each block by A*
Coding, and perform fine-tuning after the compression of each block.

One subtlety of this approach is that, by the linear transformation www = AAAhhh, the network
parameter www is not fully-factorized, and thus local reparametrization trick [Kingma et al.
(2015)] is not compatible. To mitigate the influence of the consequent higher variance,
when performing stochastic variational inference on test datum by Equation (4.11), we use 5
samples to estimate the expectation2. We present experimental results showing the influence
of sample size in Appendix D.2.

2While during the prior learning stage, we still use 1 sample to optimize Equation (4.9).

46
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

Block 1

Block 2

…

Block 𝐾

Splitting
&

Reshaping

…

Random
Permuting

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

𝜿
bits

Blocking

DecodingDecoding

Latent VectorsBlock-wise
Latent Vectors

Permuted
Block-wise

Latent Vectors

Fig. 4.2 Illustration of the random permutation across patches.

4.1.4 Towards Scalability: Compression with Patches

While introducing the linear transformation eliminates the redundancy in INRs, it limits the
scalability since the number of parameters in AAA grows quartically w.r.t. the number of hidden
units in each layer. Therefore, when applying COMBINER+ to high-resolution images, we
divide the image into non-overlapped 64×64 patches, and encode each patch separately.

Allocating Bits across Patches by Random Permutation

However, in our scenario, patching significantly impairs performance. Apart from the
unavoidable spatial redundancy introduced by patching, another factor is that the number of
bits allocated to each patch only depends on the number of blocks, and thus remains constant
for all patches at a specific bit-rate. Consequently, when compressing an uneven image,
we may waste too many bits on simple patches, leaving insufficient bits for more intricate
patches.

To address this, we apply random permutations across the latent vectors of all patches
in one image. Concretely, considering P patches and their corresponding latent vectors
vvv(1),vvv(2), ...,vvv(P), for each dimension d within the latent vector, we apply a random permuta-
tion on v(1)d ,v(2)d , ...,v(P)d . This permutation is governed by a shared seed with the receiver,
and different seeds are used for different dimensions. We illustrate the random permutation
in Fig 4.2.

4.2 Experiments and Results 47

As a result of this permutation, each block comprises parameters from different patches.
When learning the posteriors and enforcing the KL budget κ to each block, parameters
corresponding to more complex patches can dynamically acquire more bits. Experimentally,
we find the random permutation can bring around 1 dB gain on Kodak images.

Up-sampling on Entire Image

Additionally, unlike the linear transformation, the convolution-based up-sampling network
φCNN(·) is not subject to the size of input. Therefore, instead of passing the latent positional
encoding of each patch separately, we first assemble them together, forming one latent
positional encoding for the entire image, and pass it through φCNN(·) as a whole. After this,
we re-split the up-sampled positional encoding, according to the previous patches’ position,
and pass them through individual INRs. However, we find up-sampling on each individual
patch also works well, with a negligible performance degradation of less than 0.05 dB.

4.2 Experiments and Results

In this section, we evaluate the performance of COMBINER+ on Cifar-10 and Kodak dataset.
We also provide comprehensive analysis of linear transformation, positional encoding and
random permutation. We close this section with ablation studies, providing quantitative
evidence of our methods.

4.2.1 Experiment Settings

On both of the Cifar-10 and Kodak datasets, in the prior training period, we initialize elements
in AAA by:

A∼ U(−0.001,0.001). (4.13)

We find initializing AAA to small values can accelerate the convergence. Besides, we initialize
the latent positional encodings by Z ∼ N (0,0.1) and the latent network parameters h by
SIREN initialization [Sitzmann et al. (2020)], i.e.,

h[l] ∼

U (−1/dl,1/dl) , if l = 1;

U
(
−
√

6/dl,
√

6/dl

)
, otherwise,

(4.14)

48
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

where dl is the input dimension for the layer l. It is worth noting that the initialization of AAA
and h is crucial for a good performance in our case.

Below, we present the experiment settings specific to each dataset.
Cifar-10: We randomly select 15,000 training images from the training set, and evaluate

our model on all 10,000 test images. The INR has 4 layers, and each hidden layer has 32
hidden units. The size of linear transformation for each layer is AAA[1],AAA[2],AAA[3] ∈ R1056×1056,
and AAA[4] ∈ R99×99. The shape of latent positional encoding for each image is Z ∈ R128×2×2.

Kodak: We randomly crop 8,000 patches from Div2k dataset [Agustsson and Timofte
(2017)] as the training set, and evaluate our approach on all the 24 Kodak images. For each
Kodak image, we first rotate it to 512×768, and then divide it into 96 patches, each of size
64×64. We use the same INR architecture as Cifar for each patch, and the latent positional
encoding has a size of Z ∈ R128×4×4.

For additional experimental details, please refer to Table C.2 in Appendix.

4.2.2 Compression Performance

Rate-Distortion Curve

We show the R-D curves of COMBINER+ in Fig 4.3. We can see COMBINER+ exhibits a
significant gain compared with COMBINER. Moreover, on Cifar-10, the method displays
remarkable performance, especially at low bit-rates, surpassing even VAE-based codecs. On
Kodak, it also exhibits clear superiority over JPEG2000. While not reaching the level of
VAE-based codecs, it significantly reduces the gap.

We also visualize some sample images as a qualitative evaluation of our method. We
show 5 images from Cifar-10 test set at 0.297 bpp and 4.391 bpp in Fig 4.4, and Kodak-03,
Kodak-05 and Kodak-23 at 0.078 bpp and 0.484 bpp in Fig 4.5, 4.5, 4.7.

Encoding and Decoding Speed

We provide the encoding and decoding time of COMBINER+ on Cifar-10 and Kodak in
Table D.3 and Table D.4 in Appendix, following the same setup as described for COMBINER
in Section 3.2.2.

As we have not specifically focused on reducing time complexity, COMBINER+ also
features a long encoding time. Using 5 samples to optimize Equation (4.11) also contributes
to the encoding time. However, the decoding time is still remarkably fast due to the compact
nature of the INR, the linear transformation and the up-sampling network.

4.2 Experiments and Results 49

0 1 2 3 4 5 6 7
bitrate (bpp)

20

25

30

35

40

45
PS

NR
 (d

B)

3.43 dB

COIN
COIN++
MSCN
VC-INR
Cheng et al. (2020)
Ballé et al. (2018)
JPEG2000
BPG
COMBINER
COMBINER+

(a) Cifar-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
bitrate (bpp)

25

26

27

28

29

30

31

32

33

34

PS
NR

 (d
B)

0.52 dB

COIN
COIN++
MSCN
VC-INR
Cheng et al. (2020)
Ballé et al. (2018)
JPEG2000
BPG
COMBINER
COMBINER+

(b) Kodak

Fig. 4.3 The Rate-Distortion Curve of COMBINER+ on Cifar-10 and Kodak datasets. The
arrows illustrate the gains in comparison to COMBINER. We use solid lines to denote
INR-based methods, dotted lines for VAE-based methods, and dashed lines for classical
methods.

50
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

35.18 dB

21.13 dB

35.87 dB

21.48 dB

Ground Truths

Decoded Images at 4.391 bpp

39.08 dB

Residuals at 4.391 bpp

Decoded Images at 0.297 bpp

24.38 dB

Residuals at 0.297 bpp

42.38 dB

26.44 dB

38.33 dB

23.60 dB

Fig. 4.4 Decoded Cifar-10 Images and their residuals at 4.391 bpp and 0.297 bpp. These 5
example images are randomly selected from the Cifar-10 test set.

4.2 Experiments and Results 51

(a) Ground Truth

(b) Decoded Image (PSNR 35.89 dB) (c) Decoded Image (PSNR 30.39 dB)

(d) Residuals (e) Residuals

Fig. 4.5 Decoded Kodak-03 and its residuals at 0.484 bpp (left) and 0.078 bpp (right).

52
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

(a) Ground Truth

(b) Decoded Image (PSNR 26.10 dB) (c) Decoded Image (PSNR 21.28 dB)

(d) Residuals (e) Residuals

Fig. 4.6 Decoded Kodak-05 and its residuals at 0.484 bpp (left) and 0.078 bpp (right).

4.2 Experiments and Results 53

(a) Ground Truth

(b) Decoded Image (PSNR 36.16 dB) (c) Decoded Image (PSNR 29.48 dB)

(d) Residuals (e) Residuals

Fig. 4.7 Decoded Kodak-23 and its residuals at 0.484 bpp (left) and 0.078 bpp (right).

54
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

0 20 40 60 80
Dimension

 corresponding to h

0

20

40

60

80

Di
m

en
sio

n
 c

or
re

sp
on

di
ng

 to
 w

0.297 bpp

0.15

0.10

0.05

0.00

0.05

0.10

0 20 40 60 80
Dimension

 corresponding to h

0

20

40

60

80

Di
m

en
sio

n
 c

or
re

sp
on

di
ng

 to
 w

1.922 bpp

0.04

0.02

0.00

0.02

0.04

0 20 40 60 80
Dimension

 corresponding to h

0

20

40

60

80

Di
m

en
sio

n
 c

or
re

sp
on

di
ng

 to
 w

4.391 bpp

0.04

0.02

0.00

0.02

0.04

Fig. 4.8 Visualization of AAA at different bit-rates. Recall www = AAAhhh, thus each column corre-
sponding to each dimension of h, and rows corresponding to w. For a clearer visualization,
this plot only shows 100 randomly selected dimensions from AAA[2].

4.2.3 Analysis

Interpretation of Linear Transformation AAA

Here, we visualize the linear transformation AAA at different bit-rates, which brings us insight
of how our method controls the bit-rate while representing the signal effectively.

We take Cifar-10 dataset as an example, and visualize the linear transformation for the
2nd layer, i.e., AAA[2], at 3 different bit-rates in Fig 4.8. When bit-rate is high, most elements
in AAA are active, enabling a flexible model. Conversely, at lower bit-rates, many columns in
AAA become zero, effectively pruning out corresponding dimensions in h. This clarifies the
reason for initializing elements in AAA to be small, which accelerates the pruning of unnecessary
columns in AAA.

Moreover, this visualization indicates how AAA contributes to improve the performance:
first, it is evident that AAA greatly promotes parameter sharing. For instance, at low bit-rates,
merely 5 percent of the parameters get involved in constructing the entire network. Second,
the pruning in h is more efficient than that in w. Recall how COMBINER controls its bit-rate
in Fig 3.7. Without the linear transformation, COMBINER prunes or activates the hidden
units instead of the network parameters. When a unit is pruned, the entire column in the
weight matrix will be pruned out. In other words, the pruning in w is always conducted
in chunks, which highly limits the flexibility of the network. On the contrary, the linear
transformation AAA enables COMBINER+ to directly prune or activate each parameter in h
individually, ensuring the flexibility of INR while effectively managing the rate.

4.2 Experiments and Results 55

Interpretation of Positional Encoding

To understand how positional encoding functions, we first visualize the positional encoding
Z̃ZZ, using Kodak-23 as an example, in Fig 4.9. We can see that before fed to the INR, Z̃ZZ
already contain the spatial information of the image, therefore significantly simplifying the
fitting of INRs. On the contrary, in the absence of positional encoding, INRs are required
to learn complex mappings from the coordinates to the signal values, which is especially
challenging when bit-rate is constrained. This insight also aligns with the ablation study
(Fig 4.12), showing that positional encoding exhibits more benefits at low bit-rates and for
larger images.

Another question is how much our model relies on the positional encoding. To answer
this, we illustrate the percentage of bits allocated to the latent network parameter h and
the latent positional encoding z on the Kodak dataset at different bit-rates in Fig 4.10. We
use KL as a proxy for the actual coding bits. More precisely, we compute the average KL
divergence δh = DKL[qh||ph] and δz = DKL[qz||pz] across all test data points, and depict

δh
δh+δz

% and δz
δh+δz

% at varying bit-rates. We can see our method dynamically adjusts the
emphasis between these two components based on the bit-rate, rather than favoring one
consistently. When the INR capacity is constrained, the model relies more on the positional
encoding. While INR takes the dominance at higher bit-rates.

Influence of Random Permutation

To intuitively illustrate the effectiveness of random permutation across patches, we compare
the residual of decoded Kodak-23 with and without permutation in Fig 4.13. We can
see the random permutation results in a more balanced distribution of residuals across
patches: complex patches achieve improved reconstructions, whereas simpler patches exhibit
only marginal performance degradation. This observation implies that, through random
permutation, the allocation of bits to each patch occurs in an adaptive manner. Overall,
random permutation yields a 1.28 dB gain on this image.

Ablation Study

We conduct ablation studies to quantitively show the effectiveness of linear transformation,
learnable positional encoding, and the random permutation across patches. The results on
Cifar-10 and Kodak are depicted in Fig 4.12.

The ablation study reveals that the linear transformation yields substantial improvements
on both datasets, particularly at higher bit-rates. For Cifar-10, the improvement can be up to
4dB, and on Kodak, it also delivers over 0.5 dB gain consistently.

56
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

(a) the 1st channel (b) the 2nd channel

(c) the 3rd channel (d) the 4th channel

Fig. 4.9 Different channels of the positional encoding Z̃ZZ = φCNN(ZZZ) for Kodak-23. Positional
encodings of patches are stitched together to form a feature map with the same width and
height as the original image.

4.2 Experiments and Results 57

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
bitrate (bpp)

30
35
40
45
50
55
60
65
70

Bi
t r

at
io

 (%
)

latent network parameter h
latent positional encoding z

Fig. 4.10 Percentage of bits (estimated by
KL) for the latent network parameter h
and the latent positional encoding z on the
Kodak dataset at various bit-rates.

5 10 15 20 25 30 35
bitrate (kbps)

40

42

44

46

48

50

PS
NR

 (d
B)

COMBINER+
COMBINER
MP3

Fig. 4.11 Rate-distortion curve of COM-
BINER+, COMBINER and MP3 on audio
compression. Kbps stands for kilobits per
second.

0 1 2 3 4 5
bitrate (bpp)

22
24
26
28
30
32
34
36
38

PS
NR

 (d
B)

COMBINER+
COMBINER+ (w/o Positional Encoding)
COMBINER+ (w/o Linear Transformation)

(a) on Cifar-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
bitrate (bpp)

24
25
26
27
28
29
30
31
32

PS
NR

 (d
B)

COMBINER+
COMBINER+ (w/o Positional Encoding)
COMBINER+ (w/o Linear Transformation)
COMBINER+ (w/o Random Permutation)

(b) on Kodak

Fig. 4.12 Ablation study of learnable positional encoding and linear transformation on Cifar-
10 and Kodak, and random permutation on Kodak. In the experiments without learnable
positional encoding, the input of the INR only consists of the Fourier embeddings of the
coordinates.

On the other hand, the learnable positional encoding is more effective at lower bit-rate and
on larger images, aligning with our previous discussion. It provides a 0.5 dB improvement
on both Kodak and Cifar-10 at low rates. However, for Cifar-10, no improvement is observed
when the bit-rate surpasses 2 bpp.

Besides, the ablation study also demonstrates the effectiveness of random permutation,
which provides a notable improvement of around 1 dB on Kodak.

58
COMBINER+: Improving COMBINER with Linear Transformation and Learnable

Positional Encoding

(a) Residuals without random permutation (PSNR 28.20 dB)

(b) Residuals with random permutation (PSNR 29.48 dB)

Fig. 4.13 Residuals of decoded Kodak-23 at 0.078 bpp with and without random permutation.

4.3 Summary 59

4.2.4 Transferability across Modalities

In this section, we demonstrate the modality transferability of COMBINER+ using audio
data. We evaluate our method on LibriSpeech [Panayotov et al. (2015)], a speech dataset
recorded at a 16kHz sampling rate. Following Dupont et al. (2022), we take the first 3 seconds
of every recording, corresponding to 48,000 audio samples. For each audio recording, we
crop it into 60 non-overlapped “patches”, with each containing 800 audio samples. We
train COMBIENR+ on 11,820 training “patches” (corresponding to 197 training instances),
and evaluate on 24 randomly selected test instances. During testing, we also apply random
permutation across “patches”. We describe the detailed experimental setup in Table C.2 in
Appendix.

The Rate-distortion curve is depicted in Fig 4.11. We also provide results of COMBINER
and MP3 on these 24 test instances for reference3. We can see COMBINER+ significantly
outperforms both of them, which strongly evidences the transferability and effectiveness of
COMBINER+. We also provide links to the decoded examples in Appendix D.3.

Note that the main aim of this experiment is to show of the transferability of COMBINER+
across modalities. We hence do not tune any hyperparameters apart from replacing 2D
convolutional layers in φCNN with 1D convolutional layers. We may expect an improved
performance with more careful tuning.

4.3 Summary

In this chapter, we propose COMBINER+. Built on top of COMBINER, it enhances the
performance greatly via simple modifications. While a performance gap exists in comparison
to state-of-the-art codecs and scalability considerations arise, COMBINER+ demonstrates the
significant benefits of promoting parameter sharing within the network and the potential of
integrating implicit representations with explicit representations (e.g., positional encodings),
without loss of modality transferability.

3We acknowledge Zongyu Guo for providing the experimental results of COMBINER and MP3 on these 24
instances.

Chapter 5

Conclusions

In this thesis, we propose COMBINER and COMBINER+. The former provides a general
framework of data compression, demonstrating strong performance within the realm of
INR-based codes. While many current studies in INR-based compression strive to develop
increasingly complicated parameterizations to enforce sparsity or low-rankness, our approach
forges a novel path, naturally supporting joint rate-distortion optimization. On top of this
framework, we introduce COMBINER+, significantly improving the performance without
loss of simplicity or transferability. Despite the gap in comparison to VAE-based codecs
on Kodak, COMBINER+ showcases remarkable benefits of sharing parameters within the
network, and the potential of integrating implicit representations with explicit representations,
which, we believe, indicates a valuable direction for enhancing INR-based approaches.

5.1 Limitations

A major limitation of our work is the encoding time complexity. Both COMBINER and
COMBINER+ require thousands of gradient iterations to acquire the variational posterior, and
also need extra thousands of iterations to perform fine-tuning. While a VAE encoder could
be constructed to amortize the learning of the latent positional encoding in COMBINER+,
training and fine-tuning the INR parameters still demand extensive iterations. A potential
remedy involves Probabilistic MAML [Finn et al. (2018)], but it will impact the stability of
the prior learning stage.

Another challenge arises in terms of scalability. This is a common issue for most current
INR-based codecs, including [Dupont et al. (2022); Schwarz and Teh (2022); Schwarz et al.
(2023)]. In COMBINER+, we employ patching to mitigate this problem, albeit with the
drawback of inducing block artifacts and introducing spatial redundancy. Given the successes
observed with positional encoding, which does not suffer from scalability, a possible strategy

62 Conclusions

is to emphasis positional encoding components and utilize a smaller INR for the entire image.
However, this might entail a larger convolutional network, which potentially offsets the
benefits of INRs.

5.2 Future Works

Besides addressing the aforementioned limitations, future works involves different distribu-
tions, different losses, and different data modalities.

Different distributions: Introducing more complicated priors have demonstrated strong
benefits in VAE-based codecs. Ballé et al. (2018) introduced a scale hyper-prior to eliminate
the spatial redundancy in the latent space; following that, Minnen et al. (2018) proposed
an autoregressive context model, and hyper-priors on both mean and scale. Cheng et al.
(2020) further demonstrated the effectiveness of Gaussian Mixture models. Although their
motivation is to obtain a more accurate entropy model, these methods might be inspiring for
the prior in our setting as well.

Different losses: Perceptual loss, which prioritizes generating realistic images over
minimizing MSE, is gaining attention in neural lossy compression. Current efforts involve
introducing adversarial loss to VAEs [Mentzer et al. (2020)] or directly applying diffusion
models [Theis et al. (2022)]. However, the role of INR in this context remains unclear.
One potential avenue is integrating INR with sinGAN [Shaham et al. (2019)], a model
learning statistics from a single image. Alternatively, INR-based generative models like
Poly-GAN [Singh et al. (2023)] are emerging. Investigating these architectures presents an
intriguing direction.

Different Modalities: In this work, we only demonstrate the transferability of COM-
BINER+ to audio. Future work can center on applying our methods to other modalities
like MRI scans, or 3D shapes. Designing suitable 3D convolution networks for positional
encodings will be a key consideration in these modalities.

Video compression is also a challenging task. Treating videos directly as 3D tensors,
similar to how MRI scans or 3D shapes are handled, is not practical due to the considerable
size along the temporal axis. NeRV [Chen et al. (2021a)] tackled this by representing
videos as convolutional neural networks, which take the frame index as the input and output
the corresponding frame. There also exist recent works [Chen et al. (2023); Gomes et al.
(2023); Kim et al. (2022)] investigating hybrid INRs for video representation or compression.
Extending our approaches to these architectures is also a direction worth exploring.

References

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image
compression, 2017.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Varia-
tional image compression with a scale hyperprior, 2018.

Toby Berger. Rate-Distortion Theory. John Wiley & Sons, Ltd, 2003. ISBN 9780471219286.
doi: https://doi.org/10.1002/0471219282.eot142. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/0471219282.eot142.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks, 2015.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng, editors. Handbook of
Markov Chain Monte Carlo. Chapman and Hall/CRC, may 2011. doi: 10.1201/b10905.
URL https://doi.org/10.1201%2Fb10905.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, and Abhinav Shrivastava. Nerv:
Neural representations for videos, 2021a.

Hao Chen, Matt Gwilliam, Ser-Nam Lim, and Abhinav Shrivastava. Hnerv: A hybrid neural
representation for videos, 2023.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen.
Compressing neural networks with the hashing trick, 2015.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with
local implicit image function, 2021b.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression
with discretized gaussian mixture likelihoods and attention modules, 2020.

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471219282.eot142
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471219282.eot142
https://doi.org/10.1201%2Fb10905

64 References

Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and Nando de Freitas.
Predicting parameters in deep learning. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/
paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics Letters B, 195(2):216–222, 1987. ISSN 0370-2693. doi: https://doi.org/
10.1016/0370-2693(87)91197-X. URL https://www.sciencedirect.com/science/article/pii/
037026938791197X.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin:
Compression with implicit neural representations, 2021.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and
Arnaud Doucet. Coin++: Neural compression across modalities, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf.

Gergely Flamich, Stratis Markou, and Jose Miguel Hernandez-Lobato. Fast relative en-
tropy coding with a* coding. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Re-
search, pages 6548–6577. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/flamich22a.html.

Carlos Gomes, Roberto Azevedo, and Christopher Schroers. Video compression with
entropy-constrained neural representations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 18497–18506, June 2023.

V.K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine,
18(5):9–21, 2001. doi: 10.1109/79.952802.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/
7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

Zongyu Guo, Zhizheng Zhang, Runsen Feng, and Zhibo Chen. Causal contextual prediction
for learned image compression. IEEE Transactions on Circuits and Systems for Video
Technology, 32(4):2329–2341, 2022. doi: 10.1109/TCSVT.2021.3089491.

Marton Havasi. Advances in compression using probabilistic models. 2021. doi: 10.17863/
CAM.79008. URL https://www.repository.cam.ac.uk/handle/1810/331555.

https://proceedings.neurips.cc/paper_files/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://www.sciencedirect.com/science/article/pii/037026938791197X
https://proceedings.neurips.cc/paper_files/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
https://proceedings.mlr.press/v162/flamich22a.html
https://proceedings.mlr.press/v162/flamich22a.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://www.repository.cam.ac.uk/handle/1810/331555

References 65

Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random
code learning: Getting bits back from compressed model parameters. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
r1f0YiCctm.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium,
2018.

Langwen Huang and Torsten Hoefler. Compressing multidimensional weather and climate
data into neural networks, 2023.

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898.

Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and
Thomas Funkhouser. Local implicit grid representations for 3d scenes, 2020.

J. Jiang. Image compression with neural networks – a survey. Signal Processing: Im-
age Communication, 14(9):737–760, 1999. ISSN 0923-5965. doi: https://doi.org/10.
1016/S0923-5965(98)00041-1. URL https://www.sciencedirect.com/science/article/pii/
S0923596598000411.

Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scalable neural video representations
with learnable positional features, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks, 2017.

Eastman Kodak. Kodak lossless true color image suite (photocd pcd0992). http://r0k.us/
graphics/kodak/, 1993.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.
URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications
to coding theorems, 2018.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l0 regularization, 2018.

https://openreview.net/forum?id=r1f0YiCctm
https://openreview.net/forum?id=r1f0YiCctm
https://www.sciencedirect.com/science/article/pii/S0923596598000411
https://www.sciencedirect.com/science/article/pii/S0923596598000411
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

66 References

Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and
Manmohan Chandraker. Modulated periodic activations for generalizable local functional
representations, 2021.

Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity
generative image compression. Advances in Neural Information Processing Systems, 33,
2020.

David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical
priors for learned image compression, 2018.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quantization, 2020.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on International Conference
on Machine Learning, ICML’10, page 807–814, Madison, WI, USA, 2010. Omnipress.
ISBN 9781605589077.

Radford M. Neal. Bayesian learning for neural networks. 1995. URL https://api.
semanticscholar.org/CorpusID:60809283.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An
asr corpus based on public domain audio books. 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, 2015. URL
https://api.semanticscholar.org/CorpusID:2191379.

George Papandreou and Alan Loddon Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. 2011 International Conference on
Computer Vision, pages 193–200, 2011.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In International Conference on Learning Representations, 2018. URL
https://api.semanticscholar.org/CorpusID:52366640.

Jonathan Richard Schwarz and Yee Whye Teh. Meta-learning sparse compression networks,
2022.

Jonathan Richard Schwarz, Jihoon Tack, Yee Whye Teh, Jaeho Lee, and Jinwoo Shin.
Modality-agnostic variational compression of implicit neural representations, 2023.

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model
from a single natural image, 2019.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Rajhans Singh, Ankita Shukla, and Pavan Turaga. Polynomial implicit neural representations
for large diverse datasets, 2023.

https://api.semanticscholar.org/CorpusID:60809283
https://api.semanticscholar.org/CorpusID:60809283
https://api.semanticscholar.org/CorpusID:2191379
https://api.semanticscholar.org/CorpusID:52366640

References 67

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 7462–7473. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
53c04118df112c13a8c34b38343b9c10-Paper.pdf.

Yannick Strümpler, Janis Postels, Ren Yang, Luc van Gool, and Federico Tombari. Implicit
neural representations for image compression, 2022.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains, 2020.

Lucas Theis and Noureldin Yosri. Algorithms for the communication of samples, 2022.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compres-
sion with compressive autoencoders, 2017.

Lucas Theis, Tim Salimans, Matthew D. Hoffman, and Fabian Mentzer. Lossy compression
with gaussian diffusion, 2022.

George Toderici, Wenzhe Shi, Radu Timofte, Lucas Theis, Johannes Balle, Eirikur Agusts-
son, Nick Johnston, and Fabian Mentzer. Workshop and challenge on learned image
compression (clic2020), 2020. URL http://www.compression.cc.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004. doi: 10.1109/TIP.2003.819861.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11),
pages 681–688, 2011.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression.
Commun. ACM, 30(6):520–540, jun 1987. ISSN 0001-0782. doi: 10.1145/214762.214771.
URL https://doi.org/10.1145/214762.214771.

Yibo Yang, Stephan Mandt, and Lucas Theis. An introduction to neural data compression,
2022.

https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
http://www.compression.cc
https://doi.org/10.1145/214762.214771

Appendix A

Relative Entropy Coding with A* Coding
Algorithm

A.1 Pseudocodes

We provide A* encoding and decoding pseudocodes in this section. TruncGumbel(·) in
Algorithm 6 represent a standard Gumbel random variable truncated by an upper bound1.

Algorithm 6 A* encoding
Require: Proposal (prior) distribution pw and target (posterior) distribution qw.

Initialize : N← 2⌊DKL[qw||pw]+t⌋ ▷ Initialize sample size
Initialize : G(0)← ∞ ▷ Set the upper bound of truncated Gumbel distribution to ∞

Initialize : www∗,n∗←⊥,⊥ ▷ ⊥ is a placeholder
Initialize : L←−∞ ▷ Set the largest important weight to be −∞

for n = 1, ...,N do ▷ N samples from proposal distribution
www(n) ∼ pw
G(n) ∼ TruncGumbel(G(i−1)) ▷ Truncated Gumbel noise
Ln← G(n)+ log

(
qw(www(n))/pw(www(n))

)
▷ Perturbed importance weight

if Ln ≥ L then
L← Ln
www∗,n∗← www(n),n ▷ Keep the sample with largest importance weight

end if
end for
return www∗,n∗ ▷ www∗ is encoded by its index n∗

1The PDF of a standard Gumbel random variable truncated to (−∞,b) is given by
TruncGumbel(x|b) = 1{x≤ b} · exp(−x− exp(−x)+ exp(−b)).

70 Relative Entropy Coding with A* Coding Algorithm

Algorithm 7 A* decoding

Require: Proposal (prior) distribution pw, sample size N

Simulate {www(n)}N
n=1 from pw ▷ Simulate N samples from pw with the shared seed

Receive n∗ ▷ Receive the code

return www∗← www(n∗) ▷ Retrieve the approximate posterior sample

A.2 Bound on the Bias of A* Coding

Here, we present the bound of the bias of A* coding samples. Assuming we use p(z) to
encode a sample zzz∼ q(z) by A* coding. The real underlying distribution of A* samples is
q̃(z). The bound on the total variation between q̃(z) and q(z) is given by Lemma A.2.1 [(Theis
and Yosri, 2022)].

Lemma A.2.1 (Bound on the total variation between q̃(z) and q(z)). Assuming we run A*
encoding (Algorithm 6) with N = 2DKL[q||p]+t samples for some parameter t ≥ 0, then

DTV[q̃,q]≤ 4ε, (A.1)

where

ε =

(
2−t/4 +2

√
Pzzz∼q

{
log2

q(zzz)
p(zzz)

≥ DKL[q||p]+ t/2
})1/2

. (A.2)

P is the probability of an event. This result indicates that at least N ≈ 2DKL[q||p] samples
need to be drawn in A* coding to ensure low sample bias, and the bias decreases exponentially
as t increases towards infinity. However, it is essential to note that the sample size also grows
exponentially with t. In practice, we observed that when DKL[q||p] exceeds 16 bits, even for
t = 0, we obtain samples of sufficient quality in our application.

Appendix B

Closed-Form Update for the Model Prior

We derive the closed-form update for the model prior in Eqaution 3.8. Recall that, we want
to minimize the rate-distortion objective across all training data:

L=
1
M

M

∑
m=1
L(q(m)

w , pw,Dm) (B.1)

=
1
M

M

∑
m=1

{
E

www∼q(m)
w

[
∑

(xxx,yyy)∈Dm

∆(yyy, ŷyyxxx,www)

]
+β ·DKL[q

(m)
w ||pw]

}
. (B.2)

Now calculate the derivative w.r.t. the prior’s parameters µµµ p, σσσ2
p, yielding

∂L
∂ µµµ p

=
β

M ∑
m

∂DKL[q
(m)
w ||pw]

∂ µµµ p
; (B.3)

∂L
∂σσσ2

p
=

β

M ∑
m

∂DKL[q
(m)
w ||pw]

∂σσσ2
p

. (B.4)

Note that the KL between two fully-factorized Gaussian is given by

DKL[q
(m)
w ||pw] =

1
2

log
σσσ2

p(
σσσq(m)

)2 +

(
σσσq

(m)
)2

+
(

µµµ p−µµµq
(m)
)2

2σσσ2
p

− 1
2

. (B.5)

The logarithm and fractions are element-wise operation.

72 Closed-Form Update for the Model Prior

Therefore, we have

∂L
∂ µµµ p

∝ ∑
m

(
µµµ p−µµµq

(m)
)

(B.6)

= M ·µµµ p−∑
m

µµµq
(m); (B.7)

∂L
∂σσσ2

p
∝ ∑

m

 1
2σσσ2

p
−

(
σσσq

(m)
)2

+
(

µµµ p−µµµq
(m)
)2

2
(
σσσ2

p
)2

 . (B.8)

Now, setting both of the derivatives to be 0, we obtain the closed-form solutions, i.e.,

µµµ p =
1
M ∑

m
µµµq

(m); (B.9)

σσσ
2
p =

1
M ∑

m

(
σσσq

(m)
)2

+
(

µµµ p−µµµq
(m)
)2

(B.10)

Appendix C

Supplementary Experiments Details

Cifar-10 Kodak
small model large model

INR Architecture

layers 4 6 7
hidden units 16 48 56

Fourier embedding dimension 32 64 96
number of parameters 1123 12675 21563

Prior Learning

training size 2048 512
epochs 128 96

optimizer Adam (lr=0.0002) Adam (lr=0.0001)
SGD iterations between updating prior 100 200
SGD iterations before updating prior 250 500

initial posterior variance 9×10−6 4×10−6 {4×10−6,4×10−10}
initial posterior mean SIREN initialization

β
{2×10−5,5×10−6,2×10−6

1×10−6,5×10−7} {10−7,10−8,4×10−7} {4×10−6,4×10−6}

Posterior Learning

gradient descent iterations 25000 25000
optimizer Adam (lr=0.0002) Adam (lr=0.0001)

number of blocks {58,89,146,224,285} {1729,2962,3264} {5503,7176}

Table C.1 Experimental setting of our COMBINER experiments.

74 Supplementary Experiments Details

Cifar-10 Kodak (patch of 64×64) LibriSpeech (patch of 800)

Positional Encodings

latent positional encoding shape 128×2×2 128×4×4 128×50
positional encoding shape 16×32×32 16×64×64 128×800

up-sampling factor 16×

INR Architecture

layers 4
hidden units 32

Fourier embedding dimension 16
number of parameters 3267 3201

Prior Learning

training size 15000 8000 11820
epochs 550

opitmizer Adam(lr=0.0002)
SGD iteration between updating prior 100
SGD iteration before updating prior 200

initial posterior variance 9×10−6

initial posterior mean SIREN initialization

β

{2×10−5,6.5×10−6,
4.5×10−6,2×10−6,

10−6,4×10−7,2.5×10−7}

{10−5,4.5×10−6,
3×10−6,2×10−6,

1.5×10−6,8.5×10−7}

{2.5×10−7,
7.5×10−8,
1.5×10−8}

Posterior Learning

gradient descent iteration 30000
optimizer Adam(lr=0.0002)

number of blocks {19,46,60,98,123,214,281} {20,38,52,70,97,124} {17,33,67}

Table C.2 Experimental setting of our COMBINER+ experiments, including audio compres-
sion in Section 4.2.4.

u
p
sa
m
p
le
4
×

co
n
v
1
2
8
,6
4
,5

u
p
sa
m
p
le
2
×

co
n
v
6
4
,6
4
,3

u
p
sa
m
p
le
2
×

co
n
v
6
4
,1
6
,3

L
ea
k
y
R
eL
U

L
ea
k
y
R
eL
U

Fig. C.1 Architecture of the up-sampling network φCNN(·) in COMBINER+. The parameters
in the convolution layer represent the number of input channels, the number of output
channels, and kernel size respectively. Same padding is used in all convolution layers.

Appendix D

Supplementary Experiments Results

D.1 Coding Time

We provide encoding and decoding time in details in this section.

bit-rate Encoding (500 images, GPU) Decoding (1 image, CPU)
Learning Posterior REC w. Fine-tuning Total

0.91 bpp

∼7 min

∼6 min ∼13 min 0.00206 s
1.39 bpp ∼9 min ∼16 min 0.00209 s
2.28 bpp ∼14 min 30 s ∼21 min 30 s 0.00286 s
3.50 bpp ∼21 min 30 s ∼28 min 30 s 0.00382 s
4.45 bpp ∼27 min ∼33 min 0.00388 s

Table D.1 Encoding time and decoding time of COMBINER on Cifar-10 dataset.

bit-rate Encoding (1 images, GPU) Decoding (1 image, CPU)
Learning Posterior REC w. Fine-tuning Total

0.070 bpp
∼9 min

∼12 min 30 s ∼21 min 30 s 0.34842 s
0.110 bpp ∼18 mins ∼27 min 0.38153 s
0.132 bpp ∼22 min ∼31 min 0.40538 s
0.224 bpp ∼11 min

∼50 min ∼61 min 0.59739 s
0.293 bpp ∼68 min ∼79 min 0.60232 s

Table D.2 Encoding time and decoding time of COMBINER on Kodak dataset.

76 Supplementary Experiments Results

bit-rate Encoding (500 images, GPU) Decoding (1 image, CPU)
Learning Posterior REC w. Fine-tuning Total

0.297 bpp

∼30 min

∼33 min ∼63 min 0.00386 s
0.719 bpp ∼35 min ∼65 min 0.00429 s
0.938 bpp ∼37 min 30 s ∼67 min 30 s 0.00461 s
1.531 bpp ∼42 min ∼72 min 0.00514 s
1.922 bpp ∼45 min ∼75 min 0.00581 s
3.344 bpp ∼56 min 30 s ∼86 min 30 s 0.00776 s
4.391 bpp ∼63 min ∼93 min 0.01050 s

Table D.3 Encoding time and decoding time of COMBINER+ on Cifar-10 dataset.

bit-rate Encoding (1 images, GPU) Decoding (1 image, CPU)
Learning Posterior REC w. Fine-tuning Total

0.078 bpp

∼24 min

∼24 min ∼48 min 0.17682 s
0.148 bpp ∼24 min 30 s ∼48 min 30 s 0.20884 s
0.203 bpp ∼25 min ∼49 min 0.25013 s
0.273 bpp ∼25 min ∼49 min 0.25380 s
0.379 bpp ∼25 min 30 s ∼49 min 30 s 0.28652 s
0.484 bpp ∼25 min 30 s ∼49 min 30 s 0.32980 s

Table D.4 Encoding time and decoding time of COMBINER+ on Kodak dataset.

D.2 Influence of Sample Size in COMBINER+

In COMBINER+, we use 5 samples to optimize Equation (4.11) when learning the posterior
for a test datum. Here, we provide the R-D curve using 1, 5 and 10 samples, on 500 randomly
selected Cifar-10 test images and Kodak-03 as examples. The curves are shown in Fig D.1.
We can see the sample size mainly impacts the performance at high bit-rates. Besides, further
increasing the sample size to 10 only brings a minor improvement. Therefore, we choose 5
samples in our experiments to balance between encoding time and performance.

It is also notable that using 1 sample does not greatly degrade the performance. Thus, we
can choose to reduce the sample size when emphasizing encoding time, with minimal impact
on performance.

D.2 Influence of Sample Size in COMBINER+ 77

1 2 3 4
bitrate (bpp)

22

24

26

28

30

32

34

36

38

40
PS

NR
 (d

B)

sample size = 1
sample size = 5
sample size = 10

4.3 4.4 4.5

37.75

38.00

38.25

38.50

0.39 dB

(a) on 500 Randomly selected Cifar-10 test images

0.0 0.1 0.2 0.3 0.4 0.5 0.6
bitrate (bpp)

29

30

31

32

33

34

35

36

37

PS
NR

 (d
B)

sample size = 1
sample size = 5
sample size = 10

0.46 0.48 0.50 0.52

35.6

35.8

36.0

0.19 dB

(b) on Kodak-03

Fig. D.1 Rate-distortion curve of COMBINER+ with different sample sizes.

78 Supplementary Experiments Results

D.3 Decoded Audio Examples

Here, we provide links to the decoded audio of one test example1: [Ground Truth]; [Decoded
audio at 5.44 kbps]; [Decoded audio at 10.56 kbps]; [Decoded audio at 21.44 kbps].

1In case the hyperlink does not work, the folder containing the examples is available at https://drive.
google.com/drive/folders/1CLkxWMsjytxD3KhIjssClnHTHMO_HIh2?usp=drive_link

https://drive.google.com/file/d/1Zuh5lHfR1ueblgT1Y2zYV-xc21VkPgZr/view?usp=drive_link
https://drive.google.com/file/d/1fcC4AqW_Pu6ygw6wTdAs9kmYO3uywtUa/view?usp=drive_link
https://drive.google.com/file/d/1fcC4AqW_Pu6ygw6wTdAs9kmYO3uywtUa/view?usp=drive_link
https://drive.google.com/file/d/1HZAvUv8pqWmncp4djRsb5Irlu3BYOEQB/view?usp=drive_link
https://drive.google.com/file/d/1fK_QFEf6EXQBDil06dyq8cgEcq6Ila4V/view?usp=drive_link
https://drive.google.com/drive/folders/1CLkxWMsjytxD3KhIjssClnHTHMO_HIh2?usp=drive_link
https://drive.google.com/drive/folders/1CLkxWMsjytxD3KhIjssClnHTHMO_HIh2?usp=drive_link

	Table of contents
	Nomenclature
	1 Introduction
	1.1 Contributions and Publication
	1.2 Outline

	2 Background
	2.1 Compression
	2.1.1 Lossless Compression
	2.1.2 Lossy Compression

	2.2 Deep Learning
	2.2.1 Neural Networks
	2.2.2 Bayesian Neural Networks
	2.2.3 Implicit Neural Representations

	2.3 Related Works
	2.3.1 Data Compression with INRs
	2.3.2 Probabilistic Model Compression with REC

	3 COMBINER: Compression with Bayesian Implicit Neural Representations
	3.1 Methods
	3.1.1 Posterior Inferring by Stochastic Variational Inference
	3.1.2 Prior Learning by Coordinates Ascent
	3.1.3 Block-wise Compression with Progressive Fine-tuning
	3.1.4 Entire Pipeline of COMBINER

	3.2 Experiments and Results
	3.2.1 Experiment Settings
	3.2.2 Compression Performance
	3.2.3 Analysis

	3.3 Summary

	4 COMBINER+: Improving COMBINER with Linear Transformation and Learnable Positional Encoding
	4.1 Methods
	4.1.1 Linear Transformation on Network Parameters
	4.1.2 Learnable Positional Encoding
	4.1.3 Implementation in Practice
	4.1.4 Towards Scalability: Compression with Patches

	4.2 Experiments and Results
	4.2.1 Experiment Settings
	4.2.2 Compression Performance
	4.2.3 Analysis
	4.2.4 Transferability across Modalities

	4.3 Summary

	5 Conclusions
	5.1 Limitations
	5.2 Future Works

	References
	Appendix A Relative Entropy Coding with A* Coding Algorithm
	A.1 Pseudocodes
	A.2 Bound on the Bias of A* Coding

	Appendix B Closed-Form Update for the Model Prior
	Appendix C Supplementary Experiments Details
	Appendix D Supplementary Experiments Results
	D.1 Coding Time
	D.2 Influence of Sample Size in COMBINER+
	D.3 Decoded Audio Examples

