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Abstract

Precision medicine is transforming disease diagnosis, treatment, and prevention. Research in
this field is fueled by the increasing availability of vast, high-dimensional biomedical data,
with machine learning offering methods to analyse and interpret this complex landscape. One
such method is model-based clustering to subtype diseases, which can be paired with feature
selection to simultaneously extract informative biomarkers and enhance the quality and inter-
pretability of the stratification. However, many existing approaches rely on computationally
demanding inference methods and scale poorly with these expansive datasets, making them
impractical unless dimensionality reduction or preprocessing is applied to the data. Though
Variational Inference can offer an efficient alternative, it has not gained popularity in the field.
Motivated by this gap, we develop a novel method to perform simultaneous clustering and
variable selection, harnessing the computational efficiency of Variational Inference, while
ensuring accuracy and reliability despite its approximate nature. We demonstrate empirically
its superior speed, scalability, and robust performance both in simulated environments and
with real biomedical data from The Cancer Genome Atlas. Furthermore, we tackle the
local-optima trap by introducing annealing in the variational framework. Theoretically, this
should help the optimiser navigate multi-modal posterior landscapes, which are common with
biomedical data, and our results validate this with a stabilised and improved performance.
Overall, this project provides a computationally affordable algorithm capable of rapidly
analysing whole biomedical datasets, and introduces a previously unexplored enhancement
to the inference process in this context through annealing.
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Chapter 1

Introduction

By customising healthcare strategies and therapies to each person’s unique characteristics,
precision medicine is revolutionising how diseases are treated and prevented. The wealth
of high-dimensional data generated in the biomedical field has played a pivotal role in
advancing precision medicine, especially in the field of oncology (Cremin et al., 2022). Often,
these datasets are used to identify disease subtypes and meaningful features, via clustering
algorithms such as model-based clustering, with the goal of enhancing our understanding of
disease and improving patient outcomes (Golub et al., 1999; Weinstein et al., 2013). However,
this task is fraught with challenges, due to the high-dimensionality and heterogeneity of the
data involved (Fop and Murphy, 2018; Kirk et al., 2023; Witten and Tibshirani, 2010).

Frequently, all available variables are used in the modeling process on the assumption that
making use of all available information will improve the expected performance of a clustering
algorithm (Law et al., 2004). However, in practice, this can be computationally expensive,
as well as detrimental to the stratification task due to the inclusion of irrelevant, “noisy”
variables (Bouveyron and Brunet-Saumard, 2014; Gnanadesikan et al., 1995; Hastie et al.,
2004). Therefore, employing variable selection techniques can aid model fitting, simplify the
interpretation of results, and enhance data classification quality (Fop and Murphy, 2018).

Bayesian methods, including Bayesian mixture models, have shown promise in enabling
both stratification and feature selection in high-dimensional, unsupervised settings where
there are no labels available to guide selection and subtyping (Fop and Murphy, 2018).
Many existing algorithms perform inference using Markov Chain Monte-Carlo (MCMC)
methods (Bensmail and Meulman, 1998) as, in principle, they can accurately quantify
uncertainty and integrate automatic inference of the number of clusters. Nonetheless, MCMC
is computationally demanding and scales very poorly in high dimensional settings, which
makes its application to real biomedical datasets significantly slow, impractical, and inefficient
(Kirk et al., 2023). In contrast, Variational Inference (VI) typically offers more scalable and
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efficient inference, even if the results are only approximate (Blei et al., 2017). Nevertheless,
VI has not gained popularity in the research field.

Importantly, a commonly overlooked challenge in both MCMC and VI is the local optima
trap, which makes it very hard, if not impossible to escape a local minimum and find the
global optimum in multi-modal landscapes. Therefore, performance heavily relies on the
number of local minima of the objective function, the effectiveness of the chosen initial
configuration, and the quality of the assumptions on the prior probability distributions. One
way in which we can tackle the local optima trap and improve inference is via simulated
annealing (Katahira et al., 2008; Rose et al., 1990; Ueda and Nakano, 1998). Annealing
is based on principles of statistical mechanics. A temperature parameter is introduced in
the objective function and eventually varied according to a time-dependent schedule. This
effectively smooths the objective function, thereby preventing the optimisation process from
becoming trapped in shallow local optima.

In this thesis, motivated by existing challenges, we provide a scalable and computationally
efficient algorithm for simultaneous clustering and variable selection, leveraging Variational
Inference. Our model is exceptionally faster than other popular methods, making it feasible
for very high-dimensional and large datasets, while maintaining accuracy, reliability, and
performance. Furthermore, we introduce annealing into our algorithm to enhance inference
when dealing with multi-modal posterior distributions. To the author’s knowledge, annealing
remains largely unexplored in our problem setting.

1.1 Contributions

The main contributions of this thesis are:

• An extensive and systematic overview of model-based clustering, variable selection,
and (annealed) Variational Inference, together with a review of similar established
methods.

• Detailed derivation and mathematical formalisation of a Variational Bayes algorithm
for simultaneous model-based clustering and feature selection, using Gaussian mixture
models with diagonal covariance and a binary covariate selection indicator. Importantly,
our method uniquely integrates annealing into the variational framework.

• The creation and implementation of a novel algorithm, which we name VBVarSel,
as well as auxiliary functions to facilitate data generation, loading, visualisation, and
results processing. This also includes extensive and detailed guidance on how to
initialise parameters and how to fine-tune them to maximise performance.
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• An exhaustive evaluation of our proposed algorithm and comparison against established
methods on synthetic data. We showcase its superior efficiency and speed, which is
achieved while maintaining accuracy and performance. We also demonstrate the
benefits of annealing in this controlled environment.

• A thorough application and evaluation of the algorithm on real biomedical high-
dimensional data. The algorithm achieved sensible results, in agreement with existing
knowledge and literature, but in a drastically reduced runtime. The introduction of
annealing enhanced and stabilised inference. We also provide insights into biomarkers
for breast cancer stratification.

1.2 Thesis Plan

The remainder of this report is divided in chapters, which are structured as follows:

• In Chapter 2 we formalise the problem context and discuss relevant and necessary
concepts to understand the theoretical as well as technical background of the project.
Additionally, we provide a review of relevant literature.

• In Chapter 3 we provide an overview of our methodology, focusing on the technical
and mathematical details of our proposed model. We tie together the foundational
concepts introduced in Chapter 2 into a unique algorithmic framework, which we
name VBVarSel, and provide details on parameter initialisation, model selection, and
performance evaluation.

• In Chapter 4 we perform an in-depth investigation of VBVarSel’s performance in a
comprehensive series of simulations with synthetic data.

• In Chapter 5 we consider a real-world biomedical application, applying the algorithm
to breast cancer transcriptomic data from The Cancer Genome Atlas (TCGA). We
execute a wide array of experiments to provide a robust and realistic analysis of the
developed algorithm, including challenges and limitations.

• In Chapter 6 we apply VBVarSel to pan-cancer proteomic data from The Cancer
Proteome Atlas (TCPA) to analyse the algorithm performance on a real dataset that is
inherently different in terms of dimensionality and correlation.

• In Chapter 7 we conclude our investigation with a summary of our findings and
explore future directions.





Chapter 2

Background

In this chapter, we set the scene by framing our problem setting in the context of precision
medicine and motivating its relevance. We explain pivotal concepts for our model, such as
model-based clustering and feature selection, and our variational inference process, and try
to conceptually tie them together in a cohesive manner. Throughout the chapter, we provide
sparse literature on existing approaches.

2.1 Problem setting

2.1.1 What is precision medicine?

Historically, population averages and generalised standards have been used to develop
medical diagnoses and treatments, which is what we define as conventional therapy (Figure
2.1). However, given the heterogeneity and variability both in disease manifestations and
individuals, conventional standardised treatments can have different outcomes for different
patients.

Fig. 2.1 An overview of conventional medicine.



6 Background

In contrast, precision medicine (Figure 2.2), often referred to as personalised or individualised
medicine, customises medical interventions and treatments based on a patient’s particular
genetic make-up, environment, lifestyle, and other characteristics. The end goal is to
deliver the appropriate treatment to the right patient at the right time in order to maximise
effectiveness and yield the best outcome for each individual.

Fig. 2.2 An overview of precision medicine.

The role of Machine Learning

Precision medicine acknowledges and recognises heterogeneity and variability, which most
often involves dealing with large amounts of data that is also high-dimensional in nature.
To make sense of this vast and complex landscape, advanced Machine Learning (ML)
approaches have become essential resources. ML algorithms are able to find complex rela-
tionships and patterns in highly dimensional data, facilitating the identification of previously
elusive connections, biomarkers, and treatment responses that are difficult to identify using
conventional statistical methods. For instance, ML allows us to stratify patients into disease
subtypes, and identify biomarkers driving this stratification to ultimately develop different
diagnoses and treatments.

2.1.2 Problem formulation

We now provide a conceptual overview of this project, mentioning technical concepts
that will be explained later in this chapter. The general aim of our research is to stratify
patient populations into subgroups while simultaneously extracting relevant biomarkers that
characterise the specific clustering structure. This can provide insights not only into disease
heterogeneity but also into the biomarkers that drive the variability. Moreover, given the
high-dimensionality of biomedical data, we show that incorporating feature selection can
improve computational scalability.
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To accomplish this, we will model our data as a finite Gaussian Mixture Model (GMM),
making several independence assumptions to streamline the computations. Consequently, the
task of stratifying the patients becomes an unsupervised model-based clustering task, which
will be executed simultaneously with feature selection. The parameters of our model will be
inferred using Variational Inference. We propose annealing as a way to improve inference,
specifically the exploration of the multi-modal posterior distribution.

2.2 Unsupervised model-based clustering

After outlining the problem formulation, we begin our model discussion focusing on the
subtyping task. We are formulating this through an unsupervised model-based clustering
approach, which is an elegant yet accessible way of analysing intricate, high-dimensional
data. The clustering task is framed within a modeling context, and data generation is
represented as a finite mixture of probability distributions, each of which characterises a
distinct cluster (Fraley and Raftery, 2002; Lau and Green, 2007; McNicholas, 2016). Unlike
conventional techniques like k-means (MacQueen et al., 1967) or hierarchical clustering
(Ward Jr, 1963), this methodology offers a robust statistical framework that permits a
probabilistic interpretation of cluster allocations (McNicholas, 2016). This is particularly
relevant in biomedical applications as it enhances the interpretability of results.

Importantly, as we take an unsupervised approach, the model is tasked with discovering
hidden structures (clusters) within unlabeled data.

2.2.1 Finite mixture model

The key statistical tool underlying model-based clustering is finite mixture models which fall
under the umbrella of probabilistic models. Using a notation similar to Bishop (2006), in an
unsupervised setting, we have the data X = {xn}N

n=1 where xn is a J-dimensional vector of
random variables, J being the number of features. We define the K-components, or clusters,
generative finite mixture models as,

p(X |Φ,π) =
N

∏
n=1

K

∏
k=1

πk fX(xn|Φk) (2.1)

Where πk is the mixing coefficient for the kth component, i.e. the prior probability of the
kth cluster being the one that generated observation xn, and fX(xn|Φk) is the model which
serves as the probability density function for each individual cluster or component k. It
characterises the statistical properties of the observations within the cluster, with Φk denoting
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the set of parameters that govern its distribution. The set of xn generated from the same
model fX(xn|Φk) is called a cluster.

How do we determine K?

A persistent challenge in clustering methods, including mixture models, is determining the
optimal number of clusters. While we can often assume to have some knowledge of the
number of components in the mixture K, generally speaking, model selection is largely about
determining K. One way to address this is by simulating different clustering models with
different finite K, eventually in a hierarchical manner, as in Yau and Holmes (2011), and
selecting between those via Bayesian Model Selection or Averaging (Claeskens and Hjort,
2008; McLachlan and Rathnayake, 2014; Raftery and Dean, 2006). Another approach is to
use overfitted mixtures, where K is large but finite, and throughout the inference process,
the mixture weights of the “extra” components are shrunk towards zero (Rousseau and
Mengersen, 2011). This is similar to what we implement in our model.

Alternatively, one can fit mixture models with an unknown number of components
involving the use of stochastic processes, such as the reversible-jump MCMC (Richardson
and Green, 1997; Tadesse et al., 2005) or the continuous-time Markov birth-death processes
(Stephens, 2000). These methods allow for the creation and removal of mixture components,
providing greater flexibility in the model fitting process. Another Bayesian, non-parametric
alternative to finite K involves using Dirichlet process priors on the mixture proportions
(Ferguson, 1973; Tadesse et al., 2005), which is equivalent to fitting mixture models with
countably infinite components. This approach was first proposed in this context by Kim et al.
(2006), and then gained more popularity in works such as Kirk et al. (2023) and Papathomas
et al. (2012).

2.3 Feature selection for clustering

Determining the number of underlying components in the data is but one of the challenges
that arise in the clustering process. In fact, when for instance model-based clustering is
applied to a variety of molecular variables, the task becomes exceedingly complex due to the
high-dimensionality and heterogeneity of the data involved (Kirk et al., 2023). Frequently, all
available variables are used in the modeling process as in principle, the greater the amount of
information available for each data point, the better the expected performance of a clustering
algorithm (Law et al., 2004). Nonetheless, in practice, this approach can lead to unnecessary
computation. Indeed, some features can amount to little more than noise, and may not
carry any valuable clustering information, making them unhelpful or even detrimental to
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the clustering process (Hancer et al., 2020; Miao and Niu, 2016). The increasing number
of dimensions introduces the curse of dimensionality (Bellman, 1957) and the inclusion of
extraneous variables may result in identifiability issues and over-parametrisation (Bouveyron
and Brunet-Saumard, 2014; Gnanadesikan et al., 1995; Hastie et al., 2004). Hence, employing
variable selection techniques can aid model fitting, simplify the interpretation of results, and
enhance data classification quality (Fop and Murphy, 2018).

In our proposed approach, model-based clustering is performed concurrently with the
selection of relevant variables. Starting from the mixture model in Equation (2.1), we
introduce a latent binary variable γ j ∈ {0,1} indicating whether feature j should be used to
infer the clustering structure (γ j = 1) or not (γ j = 0). We name γ j as a covariate selection
indicator. We make one important assumption which is the independence between covariates,
given the cluster allocation. This allow us to factorise the functional form f (xn|Φk) as
follows:

f (xn|Φk) =
J

∏
j=1

f j(xn j|Φk j), (2.2)

Therefore, we have a univariate functional form f j(xn j|Φk j) for each dimension, i.e.
covariate. Introducing now the selection indicator γ j, we write:

f (xn|Φk,γ) =
J

∏
j=1

f j(xn j|Φk j)
γ j f j(xn j|Φ0 j)

1−γ j , (2.3)

where Φ0 j denotes parameter estimates obtained under the null assumption that there is no
clustering structure present in the jth covariate, i.e. the jth feature is not relevant.

Defining variable saliency

The key to performing variable selection is to define the saliency, or importance, of each
variable. We can distinguish between relevant and irrelevant covariates. Relevant variables
are those that contain essential clustering information. Conversely, irrelevant variables do
not convey any useful information to the clustering process, their inclusion does not improve
the accuracy of the clusters and it may occasionally even detract from it. The structure of
any given cluster will be dependent on relevant covariates, but independent of irrelevant ones
(Fop and Murphy, 2018).
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2.3.1 Bayesian Wrapper methods

The interaction between the variable selection algorithm and the model fitting process
characterises the overall approach to the problem. We can distinguish between filter methods,
where the selection is performed as a pre-processing (or occasionally post-processing) step,
and wrapper methods, which integrate learning and variable selection concurrently. In the
latter, the selection procedure is “enveloped” around the learning algorithm (Fop and Murphy,
2018; Hancer et al., 2020). Filter approaches offer ease of implementation and computational
efficiency. Nevertheless, wrapper methods often deliver better outcomes, despite being more
complex (Fop and Murphy, 2018). We focus our attention on wrapper methods, as we aim to
simultaneously infer the latent clustering structure and relevant covariates.

Within the category of wrapper methods, we can further distinguish 3 main sub-categories,
depending on the statistical approach used. We have Bayesian approaches, penalisation
approaches, and model-selection approaches, but most existing methods show some overlap
between these (Fop and Murphy, 2018). We restrict our focus to Bayesian approaches, which
assume the existence of latent variables encoding whether a covariate is relevant or not,
and the cluster assignments and inference is made about the posterior distribution of these
variables.

Related work

We report key studies pioneering the research around Bayesian wrapper methods, and later
enhancing the baseline, and we address the reader to the cited extensive reviews (Celeux
et al., 2013; Fop and Murphy, 2018; Hancer et al., 2020; Miao and Niu, 2016; Steinley and
Brusco, 2008).

Liu et al. (2003) proposed a “hard” variable selection, the anchor mode model, which
begins with dimensionality reduction such as Principal Component Analysis (PCA) and
retains only the first k0 factors of the data as relevant variables. The inference on the
number of components to retain is carried out via MCMC. While this method shows a good
performance, it comes at the risk of losing important information given the dimensionality
reduction. The first to introduce the concept of feature saliency was Law et al. (2004).
Saliency is represented via a binary variable γ j such that γ j = 1 if the jth covariate is relevant,
γ j = 0 otherwise. The saliency of the jth covariate is expressed as the probability that
γ j = 1. The authors used Expectation-Maximisation (EM) for maximum a posteriori (MAP)
estimation. Constantinopoulos et al. (2006) later extended this work by implementing VI.
The idea of a binary covariate selection indicator gained popularity in other studies such as
the work of Tadesse et al. (2005), in which posterior samples for the inferred parameters
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are taken using Metropolis moves and the reversible-jump MCMC, embedded within a
Gibbs sampler. Shortly after, Kim et al. (2006) proposed a similar model that used instead
split-merge MCMC and a Dirichlet process mixture model.

More recently, the literature focused on enhancing or expanding baseline Bayesian wrap-
per methods, as we attempt to do. Swartz et al. (2008) proposed an approach to improve
the latent clustering imposing a known substructure within the data, i.e. incorporating prior
knowledge on subgroups in the inference process. Kirk et al. (2023) identified and addressed
two issues with traditional approaches: the first is that omics datasets often define multiple
clustering structures, or views, depending on the subset of variables selected; the second
is the task of selecting among these different views. Their proposed implementation is a
semi-supervised multi-view Bayesian clustering model which extracts different mixture
models during inference and then decides between them using a left-out measurable variable
such as survival time. Notably, Crook et al. (2019b) instead focused on making the algorithm
more efficient by using a different fast approximate implementation, namely the Sequential
Updating and Greedy Search (SUGS) algorithm (Wang and Dunson, 2011; Zhang et al.,
2014). This was also attempted by Liverani et al. (2014) for MCMC-based sampling methods.

This encapsulates the essential knowledge required for the present discussion. As we
progress further in the subsequent chapter, we will unfold additional layers of complexity
and delve into the specifics of our model. We now introduce the core of our methodology:
Variational Inference (VI).

2.4 The inference process

In our model implementation, we have introduced different distributions, parametrised by
unknown parameters and latent variables. Inference is about estimating those parameters by
evaluating their posterior distributions, which is essentially the probability of the parameters
taking certain values, given the observed data. However, for complex probabilistic mod-
els, evaluating these distributions or computing expectations with respect to them may be
infeasible due to high dimensionality or intricate form (Bishop, 2006). Hence, we resort
to approximation techniques, which are broadly categorised into two classes: stochastic or
deterministic. Stochastic techniques such as MCMC methods operate on the principles of
sampling. While these methods can generate exact results given infinite computational time,
they tend to be computationally demanding and resource-intensive (Bishop, 2006). This
makes them impractical for large-scale computation problems (Kirk et al., 2023). Conversely,
deterministic methods like VI rely on analytical approximations but they scale better to large
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problems, making them suitable for high-dimensional datasets such as those encountered in
molecular medicine (Bishop, 2006; Constantinopoulos et al., 2006).

Despite VI’s computational advantages, it remains less popular in the field. Established
literature predominantly includes studies using MCMC or EM methods for inference, there-
fore typically implementing pre-processing or dimensionality reduction for handling large,
high-dimensional datasets. Motivated by this gap and our problem’s complexity, we choose
to operate with VI and focus our efforts on providing a significantly more efficient and faster
method, without sacrificing accuracy, reliability, and ease of use.

2.4.1 Variational Inference

Variational Inference, or Variational Bayes (VB), is a family of deterministic approximation
techniques aimed at finding an analytical approximation for the posterior distribution. As an
indispensable computational tool in our research, VI allows us to bridge the model-based
clustering task and feature selection in an efficient and scalable way.

Mean-field variational methods

We work in the Bayesian formalism, in which parameters are assigned prior distributions. Let
X denote the set of all observed variables, and θ the set of all parameters and latent variables.
Our probability model specifies the joint distribution p(X ,θ), and we seek the posterior
distribution p(θ |X), and also (perhaps) the marginal likelihood, p(X). The main idea behind
VI is to approximate the true posterior distribution p(θ |X) with a simpler distribution q(θ),
usually found by minimising a divergence measure between the two. We note that for any
distribution q(θ), the following equality holds:

ln p(X) = L (q)+KL(q||p), (2.4)

where

L (q) =
∫

q(θ) ln
(

p(X ,θ)

q(θ)

)
dθ (2.5)

KL(q||p) =−
∫

q(θ) ln
(

p(θ |X)

q(θ)

)
dθ (2.6)

and KL(q||p) is the Kullback-Leibler (KL) divergence between q(θ) and p(θ |X) (Kullback
and Leibler, 1951). Since KL(q||p)≥ 0, with equality if and only if q(θ) = p(θ |X), it fol-
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lows that L (q) is a lower bound for ln p(X), with equality if and only if q(θ) = p(θ |X). We
define L (q) as the Evidence Lower-BOund (ELBO). By maximising L (q) via optimisation
of q(θ), we minimise the KL divergence between q(θ) and p(θ |X).

If we allow any possible form of q(θ), then the ELBO is maximised when the KL
divergence vanishes for q(θ) = p(θ |X). However, in VI we work under the assumption
that the true posterior distribution is intractable. Hence, we restrict q(θ) to a family of
distributions that yields only tractable solutions, while still being sufficiently rich and flexible
to provide a good approximation. We choose the family of distributions that can be factorised
as:

q(θ) =
M

∏
i=1

qi(θi). (2.7)

where M is the total number of parameters and latent variables in the model. This factorised
approach to VI is known as mean field theory, which is an approximation framework origi-
nated in physics by Parisi (1979).

Among all potential distributions q(θ), we seek the one maximising the ELBO, which
requires us to conduct a free-form (variational) optimisation of L (q) with respect to all the
distributions qi(θi). We achieve this through iterative optimisation of individual factors. We
rewrite the ELBO equation using this factorised form for q, focusing on the contribution of
the factor ql(θl) to give,

L (q) =
∫

∏
i

qi

(
ln p(X ,θ)−∑

i
lnqi

)
dθ (2.8)

=
∫

ql ln p̃(X ,θl)dθl−
∫

ql lnqldθl +C, (2.9)

where qi denotes qi(θi), C is a term that does not depend on ql(θl), and we defined a new
distribution p̃(X ,θl) such that

ln p̃(X ,θl) = Ei̸=l[ln p(X ,θ)]+ const. (2.10)

Here const is a constant that ensures p̃(X ,θl) integrates to 1, and the notation Ei̸=l[ f (X ,θ)] is
defined as follows: Ei̸=l[ f (X ,θ)] :=

∫
f (X ,θ)∏i̸=l qidθi. Note that Equation (2.9) is simply

the negative KL divergence between ql(θl) and p̃(X ,θl) (plus a constant). Thus, maximising
L (q) with respect to ql(θl) is equivalent to minimising the KL divergence between ql(θl)
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and p̃(X ,θl), which occurs when ql(θl) = p̃(X ,θl). Hence the optimal solution, q∗l (θl),
satisfies:

lnq∗l (θl) = Ei̸=l[ln p(X ,θ)]+ const. (2.11)

In words, this says that the natural logarithm of the optimal solution for the factor ql is
obtained by considering the natural logarithm of the joint distribution over all θ and X ,
and then taking the expectation with respect to all of the other factors qi. We can write the
solution for q∗l (θl) explicitly as follows:

q∗l (θl) =
exp
(
Ei̸=l[ln p(X ,θ)]

)∫
exp
(
Ei̸=l[ln p(X ,θ)]

)
dθl

. (2.12)

The collection of equations provided by Equation (2.12) establish a set of consistency
conditions for the maximisation of the lower bound, given the factorisation constraint.
Nevertheless, these do not present an explicit solution since each factor l depends on the
expectations computed with the other factors i ̸= l. Within the VI machinery we therefore
first initialise all the factors qi(θi) and sequentially update them according to Equation (2.12)
based on the current estimate of all the other factors. This iterative process will converge to a
solution, as the ELBO is convex with respect to each factor ql(θl) (Boyd and Vandenberghe,
2004).

2.4.2 Annealed Variational Inference

As we draw this introductory exploration of VI to a close, we must address one final
hurdle - local optima in the posterior density. When VI reaches a local minimum during
optimisation, it is very hard, if not impossible to escape and find the global optimum.
Therefore, performance heavily relies on the number of local minima within the objective
function, the chosen initial configuration, and the quality of the assumptions on the prior
probability distributions (Rose et al., 1990; Tadesse et al., 2005). In the realm of clustering
and biomarker identification, it is crucial to understand that there is no single best solution. In
fact, there are different plausible - maybe even equally optimal and valid - clustering structures
depending on the set of features selected (Kirk et al., 2023). Hence, our posterior distribution
is very multi-modal, which increases the likelihood of getting trapped in local optima. In
an attempt to enhance the exploration of this multi-modal space, we implement annealing.
Annealing is an approach based on principles of statistical mechanics and maximum entropy
which can help navigate intricate posterior landscapes (Katahira et al., 2008; Rose et al.,
1990; Ueda and Nakano, 1998). The idea is to introduce a temperature parameter T into the
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ELBO to gradually transition from the prior to the posterior. The annealed version of the
ELBO can be written as:

L (q) =
∫

q(θ) ln p(X ,θ)dθ −T
∫

q(θ) lnq(θ)dθ (2.13)

When T = 1 this reduces to the standard ELBO, which encourages exploitation. When T > 1
the KL term, which is the entropy term, is scaled up while the log of the joint distribution
is penalised. This makes the variational distribution closer to the prior and encourages
exploration as the approximation is more dispersed.

Similarly to standard VI, we can derive the solution for q∗l (θl) explicitly for annealed VI
(AVI) as follows:

q∗l (θl) =
exp
( 1

T Ei̸=l[ln p(X ,θ)]
)∫

exp
( 1

T Ei̸=l[ln p(X ,θ)]
)

dθl
. (2.14)

To the author’s knowledge, no existing literature has provided a comprehensive annealing
framework in our problem context. Tadesse et al. (2005) mentions the use of parallel
tempering (Earl and Deem, 2005) in their MCMC method but they lack mathematical
and empirical details. In contrast, Ruffieux et al. (2020) provides a detailed annealed VI
framework, but it is focused on variable selection in regression tasks with numerous predictors
and multiple outcomes. Yet, their results show that annealing yields a more robust and stable
inference.





Chapter 3

Variational mixture of Gaussians with
feature selection

In this chapter, we tie together the elements introduced in the previous chapter into a unique
algorithmic framework, which we name VBVarSel, and explain how the model is constructed
and operates. Our goal is ambitious, yet clear: building a model to perform clustering and
feature selection simultaneously, which can excel in terms of efficiency, complexity, and
scalability without sacrificing reliability and accuracy. In the following sections, we discuss
our model’s core features, its underlying inference process, and practical implementation,
including the pseudocode.

3.1 Model definition

The first step in understanding the model is to grasp how the mathematical components
interact with each other, providing the framework for simultaneous clustering and variable
selection. We commence from the foundational aspects and progressively add up, gradually
unfolding the complexities of VBVarSel layer by layer.

3.1.1 Product of univariate - multivariate - Gaussians

In Section 2.2.1 we introduced finite mixture models. Given the data X = {xn}N
n=1 where xn

is J-dimensional vector of random variables, we define the K-components generative mixture
models as,

p(X |Φ,π) =
N

∏
n=1

K

∏
k=1

πk fX(xn|Φk) (3.1)
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where fX(xn|Φk) is the functional form for component k, parametrised by Φk. In our model,
we focus on GMM, which are linear combinations of Gaussian distributions, mathematically
presented as follows:

p(X |Φ,π) =
N

∏
n=1

K

∏
k=1

πkN (xn|µk,Λ
−1
k ) (3.2)

and

N (xn|µk,Λ
−1
k ) =

√
|Λk|

(2π)J/2 exp
(
−1

2
(xn−µk)

T
Λk(xn−µk)

)
(3.3)

We used multivariate Gaussian distributions with parameters Φk = {µk,Λk}, respectively
mean vector µk and precision matrix Λk. For each observation xn we introduce a latent
variable zn, representing cluster assignment, which is a “1-of-K” binary vector of length K
which has precisely one non-zero element (one-hot encoding). If znk = 1, then xn is associated
with the kth component. By conditioning on the latent variable Z, we can decompose the
joint distribution as follows:

p(X ,Z,π,Φ) = p(X |Z,Φ)p(Z|π)p(π)p(Φ) (3.4)

where p(π) and p(Φ) are priors on the mixture weights and component-specific parameters
(respectively). We can write down the conditional distribution of Z as

p(Z|π) =
N

∏
n=1

K

∏
k=1

π
znk
k ; (3.5)

and similarly the conditional distribution of the observed data as

p(X |Z,Φ) =
N

∏
n=1

K

∏
k=1

fX(xn|Φk)
znk . (3.6)

In this formulation, we have implicitly assumed independence between observations and
components, which allowed us to factorise in n and k. We make another critical assumption
on the independence between covariates j, given the component allocations Z, which allows
us to further factorise our functional form as follows,

fX(xn|Φk) =
J

∏
j=1

f j(xn j|Φk j) =
J

∏
j=1

N j(xn j|µk j,τ
−1
k j ) (3.7)

Where xn j denotes the jth dimension of xn, Φk j =
{

µk j,τk j
}

denotes the parameters asso-
ciated with the kth mixture component, restricted to the jth covariate. This factorisation is
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equivalent to having Λk as a diagonal matrix with diagonal entries τk j. Our functional form
is now a univariate Gaussian distribution:

f j(xn j|Φk j) = N j(xn j|µk j,τ
−1
k j ) =

(
τk j

2π

)1/2
exp
(
−1

2
τk j(xn j−µk j)

2
)

(3.8)

We refer to our mixture model as a product of univariate - multivariate - Gaussians. This
conditional independence assumption is fundamental to the functionality of VBVarSel and
plays a significant role in its ability to efficiently perform clustering and feature selection
simultaneously.

3.1.2 Covariate selection model

In our approach, model-based clustering is performed concurrently with the selection of
relevant variables. We stress the fact that this is not a two-step approach but we simultaneously
infer each cluster’s parameters and allocations as well as the selection indicators. In our
formulation, we introduce a latent binary variable γ j ∈ {0,1} indicating whether feature j
should be used to infer the clustering structure (γ j = 1) or not (γ j = 0). We name γ j as a
covariate selection indicator. We extend Equation (3.7) as follows:

f (xn|Φk,γ) =
J

∏
j=1

f j(xn j|Φk j)
γ j f j(xn j|Φ0 j)

1−γ j (3.9)

=
J

∏
j=1

N j(xn j|µk j,τ
−1
k j )

γ jN j(xn j|µ0 j,τ
−1
0 j )

1−γ j (3.10)

where Φ0 j denotes parameter estimates obtained under the null assumption that there is
no clustering structure present in the jth covariate. We pre-compute these estimates before
starting the inference procedure by Maximum Likelihood Estimate (MLE) as the mean and
the precision of the data. Given the data X = {xn}N

n=1 where xn is J-dimensional vector of
random variables, for each dimension j we compute:

µ
MLE
0 j =

1
N

N

∑
n=1

xn j (3.11)

τ
MLE
0 j =

(
1
N

N

∑
n=1

(xn j−µ
MLE
0 j )2

)−1

(3.12)
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Given the introduction of the latent variable γ , we update the decomposed joint distribution
as follows:

p(X ,Z,π,Φ,γ) = p(X |Z,Φ,γ)p(Z|π)p(π)p(Φ)p(γ) (3.13)

where p(γ) is the prior on the covariate selection indicators. We can write the conditional
distribution of the observed data in Equation (3.6) as

p(X |Z,Φ,γ) =
N

∏
n=1

K

∏
k=1

[
J

∏
j=1

f j(xn j|Φk j)
γ j f j(xn j|Φ0 j)

1−γ j

]znk

(3.14)

where the functional form f j is given in Equation (3.8). In the next sections, we will define
the prior distributions p(π), p(Φ), and p(γ).

3.2 Variational framework

We now focus our discussion on how we apply the variational machinery to infer the
parameters of our model and obtain cluster allocations, cluster parameters, and covariate
selection indicators. Our starting point is the model joint distribution at Equation (3.13).

3.2.1 Prior distributions

The choice of an appropriate prior is a delicate task as it is crucial to strike a balance between
incorporating existing knowledge or belief and letting the data “speak” for itself. As we
proceed to introduce the priors over the parameters π , Φ = {µ,τ}, and γ , we strategically
choose to work with conjugate prior distributions. The inherent properties of conjugate
distributions ensure that the posterior distribution over the parameters is of the same family
as the prior. Given that our primary task in VI is to accurately approximate the posterior
distribution, knowing already its expected form streamlines calculations.

We take our prior on π to be a symmetric Dirichlet distribution with fixed concentration
parameter α0 for each cluster, not subject to inference.

p(π) = Dir(π | α0) =C (α0)
K

∏
k=1

π
α0−1
k (3.15)

where C(α) is just the normalisation constant. This distribution is a common choice in this
context. The α0 parameter can be interpreted as pseudocounts, i.e. the effective prior number
of observations associated with each mixture component. Think of it this way: the α0k
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parameter for each cluster k is asserting that before observing any data, we already believe
that there are around α0k instances of the kth component. Given we do not want to impose a
strong preliminary belief of how the proportions should be distributed, we set it to be the
same for every component, meaning that all components are equally likely a priori. The role
of α0 is also crucial to automatically infer the number of clusters K. By setting 0 < α0 < 1,
we effectively favor clustering structures in which some of the mixing coefficients are zero,
i.e. some clusters are shrunk to zero assignments.

We then proceed to discuss the prior distribution on Φ= {µ,τ}. Each mixture component
k is modeled as a product of independent univariate Gaussian distributions with parameters
Φk j = {µk j,τk j}. We take independent Gaussian-Gamma priors for all µk j,τk j, so that:

p(Φk j) = p(µk j,τk j) = p(µk j|τk j)p(τk j) (3.16)

= N (µk j|m0k j,(β0k jτk j)
−1)Γ(τk j|a0k j,b0k j) (3.17)

and,

Γ(τk j|a0k j,b0k j) =
b

a0k j
0k j

Γ(a0k j)
τ

a0k j−1
k j exp(−b0k jτk j) (3.18)

where Γ is the Gamma distribution. Together these distributions constitute a Gaussian-
Gamma conjugate prior distribution and their conjugacy guarantees that the posterior will
take the form of a Gaussian-Gamma. This type of prior is a common choice when both
parameters of a Gaussian distribution, µ and τ , are unknown (Bishop, 2006) and it comprises
the product of a Gaussian distribution for the mean µ , whose precision is proportional to
τ , and a Gamma distribution over τ . We have introduced 4 hyperparameters. The mean
parameter m0k j influences the center of the corresponding Gaussian distribution in the mix-
ture, while the shrinkage parameter β0k j influences the tightness and spread of the cluster,
with smaller shrinkage leading to tighter clusters. The degrees of freedom, a0k j, controls the
shape of the Gamma distribution, the higher the degree of freedom, the more peaked (i.e. less
dispersed) the Gamma distribution will be. Hence, a0k j directly influences the variability of
the clusters and their overlap in the feature space. Finally, the scale parameter b0k j scales
the Gamma distribution, the larger b0k j, the broader the range of potential precisions, which
influences the spread of the corresponding cluster. We set β0, a0 to be equal for every jth

dimension and every kth cluster, while we set a m0 j and b0 j for every jth dimension.
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For the covariate selection indicators γ , we introduce another parameter δ , on which
we condition to allow conjugacy. Indeed, for each γ j, we take an independent Bernoulli
conditional prior with parameter δ j, so that:

p(γ j|δ j) = δ
γ j
j (1−δ j)

1−γ j , (3.19)

The conjugate prior of a Bernoulli distribution is the Beta distribution. Hence, we take
independent symmetric Beta priors for δ j, so that:

p(δ j) = Beta(d0). (3.20)

The value of δ j represents the probability of γ j = 1. We use a symmetric Beta distribution
with fixed shape parameter d0, equal across every dimension j. The symmetry around 0.5
implies no prior preference for either γ j = 1 or γ j = 0. When d0 = 1, the Beta distribution
turns into a uniform distribution. For d0 < 1, the Beta distribution is “U-shaped” and δ j is
more likely to take “extreme” values (0 or 1). For d0 > 1 it is instead “bell-shaped”, and
middle values (≈ 0.5) are preferred.

3.2.2 Variational distribution

Having defined the variational framework in which we operate, we are ready to derive our
complete variational distribution. The complete joint distribution of all variables is given by:

p(X ,Z,π,µ,τ,γ,δ ) = p(X |Z,µ,τ,γ)p(Z|π)p(π)p(µ|τ)p(τ)p(γ|δ )p(δ ) (3.21)

This decomposition is also shown graphically in Figure 3.1.
For the variational distribution, we obtain the following factorisation between parameters

and latent variables:

q(Z,π,µ,τ,γ,δ ) = q(Z)q(π)
J

∏
j=1

q(γ j|δ j)q(δ j)
K

∏
k=1

q(µk j|τk j)q(τk j) (3.22)

Each factor will be updated iteratively as we minimise the KL divergence between the
variational distribution and the actual posterior distribution. To derive the update equations,
we utilise the foundational formula presented earlier at Equation (2.12). For convenience, we
reserve examples of the full derivations to Appendix A. In the main body of this chapter we
only present the final update equations implemented within our algorithm.
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Fig. 3.1 Directed acyclic graph representing the complete model in Equation (3.21). The grey shade
corresponds to observed variables. The boxes denote a set of i.i.d. observations and latent variables. The purple

dots represent the hyperparameters in the corresponding posterior (or prior) distributions.

Updating Z

Starting with the latent cluster assignments Z, we derive the following:

lnq∗(Z) =
N

∑
n=1

K

∑
k=1

znk lnρnk + const (3.23)

where we define

lnρnk = Eπ [lnπk]+EΦ,γ [ln f (xn|Φk)] (3.24)

Note that:

EΦ,γ [ln f (xn|Φk)] = Eγ [EΦ[
J

∑
j=1

(γ j ln f j(xn j|Φk j)+(1− γ j) ln f j(xn j|Φ0 j))] (3.25)

=
J

∑
j=1

(
c jEΦ[ln f j(xn j|Φk j)]+(1− c j) f j(xn j|Φ0 j)

)
(3.26)

where c j = Eγ [γ j]. We introduce rnk, the responsibility of the kth component for the nth

observation.

rnk =
ρnk

∑
K
k=1 ρnk

= E[znk] (3.27)
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Further, we make the following definition:

Nk =
N

∑
n=1

rnk (3.28)

which is the expected number of observations associated with the kth component (note that
Nk need not be a whole number).

Updating π

Next, we consider the mixing proportions π . Unsurprisingly, given the conjugate prior on
this parameter is a Dirichlet distribution, we recognise q∗(π) as an asymmetric Dirichlet
distribution with parameter α = [α1, . . . ,αk], where

αk = α0 +Nk (3.29)

Recall that Nk is a function of the responsibilities, rnk, as given in Equation (3.28). Hence,
the contribution of the covariate selection indicators on π occurs via the responsibilities, rnk.

Updating Φ

We derive the following expression for q∗(Φ):

lnq∗(Φk j) =
N

∑
n=1

rnkc j ln f j(xn j|Φk j)+ ln p(Φk j)+ const (3.30)

Note that we weight the contribution of the log-likelihood, ln f j(xn j|Φk j), by the factor
c j = Eγ [γ j]. Hence if the jth covariate does not contribute to the clustering structure (i.e.
c j ≈ 0), then Φk j will be dominated by the prior.

Given the form of the conjugate prior on Φk j (Equation (3.16)) and the functional form
f j(xn j|Φk j), we derive:

q∗(Φk j) =q∗(µk j|τk j)q∗(τk j) (3.31)

=N (µk j|mk j,(βk jτk j)
−1)Γ(τk j|ak j,bk j) (3.32)

We introduced the following parameters (βk j, mk j, ak j, bk j), and statistics (x̄k j, Sk j) of the
observed data, with respect to the responsibilities:
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βk j = c j

N

∑
n=1

rnk +β0 (3.33)

mk j =
1

βk j

(
c j

N

∑
n=1

rnkxn j +m0 jβ0

)
(3.34)

ak j =
1
2

c j

N

∑
n=1

rnk +a0 (3.35)

bk j = b0 j +
1
2

[
c jNkSk j +

β0c jNk

β0 + c jNk

(
x̄k j−m0 j

)2
]

(3.36)

x̄k j =
1

Nk

N

∑
n=1

rnkxn j (3.37)

Sk j =
1

Nk

N

∑
n=1

rnk(xn j− x̄k j)
2 (3.38)

Updating γ j

For the covariate selection indicator γ j we unsurprisingly obtain a Bernoulli distribution,

q∗(γ j|δ j) = cγ j
j (1− c j)

1−γ j (3.39)

where

c j =
η1 j

η1 j +η2 j
= Eγ [γ j], (3.40)

and

lnη1 j = Eδ j [ln(δ j)]+
N

∑
n=1

K

∑
k=1

rnkEΦ[ln f j(xn j|Φk j)] (3.41)

lnη2 j = Eδ j [ln(1−δ j)]+
N

∑
n=1

K

∑
k=1

rnk ln f j(xn j|Φ0 j)]. (3.42)

Updating δ j

Next, we consider δ j, for which we obtain an asymmetric Beta distribution:

q∗(δ j) = Beta(c j +d0,1− c j +d0). (3.43)
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Evaluating rnk and c j

Having derived update equations for the variational distributions, we are left to evaluate rnk

and c j, which are the expected value of the cluster allocations and the covariate selection
indicators respectively. Recall that we have:

rnk =
ρnk

∑
K
k=1 ρnk

= E[znk] and c j =
η1 j

η1 j +η2 j
= Eγ [γ j], (3.44)

where to evaluate ρnk, η1 j and η2 j as in Equations (3.24), (3.41), and (3.42) respectively, we
require expressions for Eπ [lnπk], EΦ[ln f j(xn j|Φk j)], Eδ j [lnδ j], and Eδ j [ln(1−δ j)]. We can
easily write the value for Eπ [lnπk] from standard properties of the Dirichlet distribution:

Eπ [lnπk] = ψ(αk)−ψ

(
K

∑
k=1

αk

)
, (3.45)

where ψ denotes the digamma function.

We evaluate EΦ[ln f j(xn j|Φk j)] as

EΦ[ln f j(xn j|Φk j)] =−
1
2

ln2π +
1
2
Eτk j [lnτk j]−

1
2
Eµk j,τk j [(xn j−µk j)

2
τk j], (3.46)

and

Eτk j [lnτk j] = ψ(ak j)− lnbk j (3.47)

Eµk j,τk j [(xn j−µk j)
2
τk j] =

ak j

bk j
(xn j−mk j)

2 +(βk j)
−1. (3.48)

Finally, from standard properties of the Beta distribution we evaluate:

Eδ j [lnδ j] = ψ(c j +d0)−ψ(2d0 +1) (3.49)

Eδ j [ln(1−δ j)] = ψ(1− c j +d0)−ψ(2d0 +1). (3.50)

3.2.3 Inference

The inference process itself, which concerns the optimisation of the variational posterior
distribution, can be divided into two steps, much like the EM algorithm. It begins with a
variational E-step, during which the current distributions and the current estimate of the
parameters, are used to evaluate the expected values in Equations (3.45), (3.47), (3.48), (3.49),
and (3.50). These are then used to evaluate the current estimate of the cluster assignments
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E[znk] = rnk, and the covariate selection indicators E[γ j] = c j. Then, in the variational M-step,
rnk and c j are kept fixed and used to re-compute an estimate of the posterior variational
distributions. The algorithm cycles through E and M steps until convergence is achieved.

Variational lower bound and convergence

In our variational framework, we evaluate the ELBO as1:

L =∑
Z

∫∫∫
q(Z,π,µ,τ,γ,δ ) ln

{
p(X,Z,π,µ,τ,γ,δ )

q(Z,π,µ,τ,γ,δ )

}
dπ dµ dτ dγ dδ

=E[ln p(X,Z,π,µ,τ,γ,δ )]−E[lnq(Z,π,µ,τ,γ,δ )]

=E[ln p(X | Z,µ,τ,γ,δ )]+E[ln p(Z | π)]+E[ln p(π)]+E[ln p(µ,τ)]+E[ln p(γ,δ )]

−E[lnq(Z)]−E[lnq(π)]−E[lnq(µ,τ)]−E[lnq(γ,δ )].
(3.51)

The lower-bound has two crucial properties aiding in convergence assessment. First,
it monotonically increases at every iteration. Secondly, it converges in a finite number of
iterations. Hence, we can use it to check the correctness of our algorithm and to decide
when to stop iterating. However, note that a converged ELBO does not guarantee that the
variational distribution has converged to the true posterior distribution. Indeed, the algorithm
might have simply reached a local optimum in the posterior space.

The topic of convergence in a multi-modal posterior space is paramount for our model and
motivates our choice to explore the effects of annealing. The quality of the VI approximation
depends on several factors, among which we highlight the flexibility of the variational
distribution, the quality of the priors and parameter initialisation. As an optimisation method,
it also faces the problem of getting stuck in local optima. Indeed, the optimisation starts from
an initial specification of the parameters and latent variables to then iteratively refine those
towards the true posterior distribution. However, when dealing with a multi-modal posterior
distribution, if the initial specification is too far from the global maximum in the ELBO, and
perhaps closer to a local maximum, we may converge there and escape is almost impossible.
We aim to address this issue with annealing. The introduction of a temperature parameter
“smooths” the posterior landscape, making the optimisation easier to perform.

1To keep the notation easier, given the equation is already involved itself, we have omitted the subscripts on
the expectation operator. In reality, each expectation is taken with respect to all the variables in its argument.
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3.3 Annealed Variational framework

Previous derivations followed the standard variational inference procedure for a general
model with latent variables. To introduce annealing in the framework, we proceed as before
but start from the annealed foundational formula in Equation (2.13). In most cases, this only
yields an additional 1/T factor in the parameter update. We report only the equations for the
parameters updates that are directly influenced by the temperature parameter. For the latent
variables Z and γ , we get:

lnρnk =
1
T
Eπ [lnπk]+

1
T
EΦ,γ [ln f (xn|Φk)] (3.52)

lnη1 j =
1
T
Eδ j [ln(δ j)]+

1
T

N

∑
n=1

K

∑
k=1

rnkEΦ[ln f j(xn j|Φk j)] (3.53)

lnη2 j =
1
T
Eδ j [ln(1−δ j)]+

1
T

N

∑
n=1

K

∑
k=1

rnk ln f j(xn j|Φ0 j)] (3.54)

Eδ j [lnδ j] = ψ

(
1
T
(c j +d0 +T −1)

)
−ψ

(
1
T
(2d0 +2T −1)

)
(3.55)

Eδ j [ln(1−δ j)] = ψ

(
1
T
(T − c j +d0)

)
−ψ

(
1
T
(2v+2T −1)

)
(3.56)

which are then used to evaluate rnk and c j as in Equations (3.44). The annealed posterior
distributions over π and Φ are parametrised by:

αk =
1
T
(Nk +α0 +T −1) (3.57)

βk j =
1
T

[
c j

N

∑
n=1

rnk +β0 j

]
(3.58)

mk j =
1

T βk j

(
c j

N

∑
n=1

rnkxn j +m0 jβ0 j

)
(3.59)

ak j =
1
T

[
1
2

c j

N

∑
n=1

rnk +a0 j +T −1

]
(3.60)

bk j =
1
T

b0 j +
1

2T

[
c jNkSk j +

β0 jc jNk

β0 j + c jNk

(
x̄k j−m0 j

)2
]

(3.61)
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And the annealed posterior distribution of δ becomes:

q∗(δ j) = Beta
(

1
T
(c j +d0 +T −1),

1
T
(T − c j +d0)

)
(3.62)

The annealed variational lower-bound is as in Equation (3.51) but with an additional T
factor in front of the negative terms and is also indirectly affected by the updated annealed
parameters. Importantly, when T = 1, we retrieve the standard (non-annealed) variational
inference.

Temperature schedule

One crucial aspect of annealing is the temperature schedule, i.e. how to initialise, set, and
eventually vary the temperature throughout inference. There is generally no consensus on
the type of schedule to use, and not much literature exploring the benefits of one approach
over the other. Hence, everything is determined empirically. We follow Ruffieux et al. (2020)
and Kirkpatrick et al. (1983) in the use of a geometric schedule, and Katahira et al. (2008)
and Mandt et al. (2016) for the use of a fixed temperature. We also implement a harmonic
schedule, which could be preferred for a slower, more gradual decline in temperature.

In the geometric schedule implemented in VBVarSel, the temperature T at every iteration
i is evaluated as Ti = T0α i where T0 is the initial temperature, and α is the cooling rate. We
evaluate the cooling rate as α = (1/T0)

1/(ia−1), where ia is the number of annealed iterations.
This ensures that across the optimisation we slowly and consistently reduce the temperature
until we retrieve the non-annealed model, i.e. T = 1, at the set ia. In doing so, we implement
a “balancing act” between exploration and exploitation. In the early iterations, we keep
a relatively high temperature to encourage exploration, during which the algorithm will
find various configurations, some more optimal than others. As the iterations progress, we
gradually shift from exploration to exploitation, which encourages the algorithm to refine
and optimise the best solution it found so far. We implement the same “balancing act” for the
harmonic schedule, in which we evaluate Ti = T0/(1+α · i), and α = (T0−1)/ia.

Importantly, when using fixed temperature greater than 1, the inference is targeting an
annealed (approximate) posterior. In contrast, when using either geometric or harmonic
schedule, we ultimately retrieve the same (approximate) posterior as the non-annealed
inference since we gradually decrease the temperature to T = 1. This will be accounted for
during empirical comparison.
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3.4 The VBVarSel algorithm

Having thoroughly discussed all the intricate aspects of our algorithm, we now encapsulate
all these concepts into pseudocode, shown in Algorithm 1. It is important to note that during
our implementation process, we addressed several potential numerical instabilities to prevent
underflow/overflow and ensure the robustness of our algorithm.

Algorithm 1: The VBVarSel algorithm

Input: Data X = {xn}N
n=1, maximum number of clusters K, temperature schedule,

initial temperature T0, maximum iterations itrmax, convergence threshold ε

Output: Cluster allocations Z = {zn}N
n=1

Variable selection indicators γ =
{

γ j
}J

j=1

Initialise α0, a0, b0 j, β0, m0 j, δ0, d0, C, Z;
Calculate parameter estimates for Φ0 j according to Eq. (3.11);

converged← False;
i← 0;

while i < itrmax do
if T_schedule is geometric OR harmonic then

T ← eval_temp_schedule(T0, i, ia)
else

T ← T0
end

Update parameters αk, ak j, bk j, βk j, mk j, x̄k j, Sk j, and δ j
Evaluate Z and γ

Compute ELBO according to Eq. (3.51)
improve← ELBO[i]−ELBO[i−1]

if i > 0 and 0 < improve < ε then
converged← True
break

end

i← i+1
end

3.4.1 Parameter initialisation and tuning

Parameter initialisation significantly influences the performance of our model. We tried sev-
eral initialisation approaches, from random values to more sophisticated strategies. Nonethe-
less, with 7 parameters to initialise, excluding the annealing temperature and latent variables,
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it was impractical to test even a considerable amount of possible combinations. Therefore,
we draw on the literature to narrow down the search space, particularly on the studies from
Fraley and Raftery (2007) and McLachlan and Rathnayake (2014).

For the Gaussian-Gamma conjugate prior in Equation (3.18), we introduced 4 hyper-
parameters, namely the mean m0 j, the shrinkage β0, the degrees of freedom a0, and the scale
b0 j. We make the following choices:

• m0 j: As in Fraley and Raftery (2007), we set m0 j as the mean of jth dimension of the
data X .

• β0 j: We explore fixed values between 10−2 and 10−10.

• a0 j: As we are modelling univariate Gaussian distributions, the dimensionality is
XDim = 1. We follow Fraley and Raftery (2007) setting fixed a0 j = XDim+2 = 3,
and explore values of the same order of magnitude.

• b0 j: this is one of the most important parameters. We explore different specifications,
both fixed within the range [0.01,2], or j-dependent as var(X j)/(K2).

For the Bernoulli and Beta distributions in Equations (3.19)-(3.20), we only introduced
the shape parameter d0, for which we explore different values in the range d0 = [0.1,10]. We
initialise the δ latent variables sampling from the symmetric Beta distribution parametrised
by d0. The covariate selection latent variables C are instead initialised either all as 1, 0.5, or
sampling from the Bernoulli distribution parametrised by δ .

For the Dirichlet distribution in Equation (3.15), we introduced a concentration parameter
α0. We explore values 0 < α0 < 1 to encourage the model to empty “extra” components.
We initialise the cluster assignment latent variables Z sampling from a Dirichlet distribution
parametrised by α0.

Finally, for the maximum number of clusters K, we set it as large and finite to simulate
an “overfitted” mixture (Rousseau and Mengersen, 2011), and ensure α0 is small enough to
empty the spurious components.

3.4.2 Model selection

After narrowing down the search space for parameter initialisation, we perform model
selection to extract a range of configurations that work well for a given dataset. For some
parameters, we leverage prior knowledge about the data, if any. For instance, if we know
roughly the number of clusters in the dataset, we set K slightly greater but close to that value.
Or if we know the proportion of relevant/irrelevant variables, we can adjust d0 accordingly.
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Furthermore, having prior expectations about performance can help us to better assess the
impact that parameters have on results.

Within the reduced search space, for each parameter configuration under consideration,
we run the VBVarSel algorithm 10-20 times across different data randomisations to mitigate
the influence of stochastic elements. We then look at the ELBO shapes, ensuring they
are monotonically increasing, and take the average of the convergence ELBOs. Finally,
we compare those final averages between different configurations to extract the parameter
initialisation effectively maximising the ELBO, which is then employed in our experiments.
In Table B.1 we report the parameter initialisation derived from our model selection strategy
on the datasets used in an attempt to promote experimental reproducibility.

3.4.3 Evaluating performance

After finding the parameter initialisation maximising the ELBO for a specific experiment,
we run VBVarSel 10-20 times on the chosen configuration, across different randomisations
of the covariates in the data to disperse the predictors, yield a distribution of scores, and
mitigate the influence of stochastic elements inherent in the inference process. We then
evaluate performance qualitatively, looking for instance at the scatter plots or heatmaps of
the inferred stratification, and quantitatively, taking into account the number of selected and
discarded covariates and the adjusted Rand index (ARI) (Hubert and Arabie, 1985; Rand,
1971). The Rand index (RI) is a measure of similarity between two data clustering evaluated
as the number of pairs of observations that are either in the same or different clusters in
both partitions. The RI is adjusted to account for the fact that some agreement can occur by
chance. This is done as:

ARI =
RI−E[RI]

max(RI)−E[RI]
(3.63)

The ARI ranges from -1 to 1, where 1 indicates perfect agreement, 0 indicates random
agreement, and < 0 worse than random. For the quantitative evaluation of our experiments,
we report median scores, together with upper and lower quartiles, evaluated on those 10-20
runs.
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Simulations on synthetic data

We begin our evaluation of the VBVarSel algorithm using synthetic data to allow comparison
and bench-marking against alternative algorithms. Subsequently, we demonstrate the benefits
of annealing in different “corrupted” simulations.

4.1 Overview of the compared methods

Before showcasing results, we describe the compared methods. The work of Crook et al.
(2019b) focuses on the Sequential Updating and Greedy Search (SUGS) algorithm (Wang
and Dunson, 2011; Zhang et al., 2014), which they extend to perform variable selection for
clustering (SUGSVarSel), avoiding the use of computationally costly MCMC methods. To
automatically infer the number of clusters, they use a Dirichlet process prior on the mixture
model. Then, the algorithm proceeds sequentially, greedily allocating the ith observation to
a cluster, given the allocations of the previous i−1 observations and the previous variable
selection structure, and simultaneously greedily updating the covariate selection indicators,
given the cluster allocations. Both our method and SUGSVarSel are computationally efficient
relative to MCMC methods, but the mechanisms by which they achieve this efficiency
are different. SUGSVarSel proceeds in a greedy and sequential manner, while VBVarSel
approximates the full posterior distribution in order to make the problem more tractable. In
addition to reporting SUGSVarSel performance, we tested the PReMiuM algorithm (Liverani
et al., 2014), which is based on MCMC methods and uses a Dirichlet process mixture model
to automatically infer the number of clusters. Despite the use of MCMC, the authors claim
this algorithm should be relatively efficient. We choose this method as it implements the
same model as ours: a mixture of multivariate Gaussians with diagonal covariance. For more
details on the underlying model of PReMiuM and SUGSVarSel we address the reader to the
cited papers.
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Importantly, VBVarSel is a Python algorithm while both PReMiuM and SUGSVarSel are
R packages with efficient underlying C++ code, which should give them a speed advantage.

4.2 Crook et al. (2019b) simulation

We recreate the Crook et al. (2019b) simulation of a combination of three Gaussian distribu-
tions with mixing ratios of 0.5, 0.3, and 0.2. These are centred at (0, 0, .., 0), (2, 2, ... , 2),
and (-2, -2, ... , -2) respectively. The variance-covariance matrix for each is set as the identity
matrix. The irrelevant variables are generated following a standard Gaussian distribution. We
generate either n = 100 or 1000 data points, with a total of 200 variables. In both scenarios,
we vary the percentage of relevant variables simulating 5%, 10%, 25%, or 50%.

For VBVarSel we explore different prior specifications following the general guidance
in Section 3.4.1 and we report sensible configurations in Table B.1, experiment synthetic.
Results are showcased in Table 4.1 through Table 4.4, consistent with the format in Crook
et al. (2019b) and what we explained in Section 3.4.3. Across all tables, we include median
scores, with the upper and lower quartiles across 20 runs, for the runtime, the percentage of
both relevant and irrelevant variables that were accurately identified, and the ARI between
the inferred clustering and the ground-truth labels from the generated data.

Method n Time, secs Relevant Irrelevant ARI

VBVarSel 100 4.2 [3.3, 4.6] 1 [1, 1] 1 [1, 1] 1 [1, 1]
SUGSVarSel 100 19.9 [19.7, 20.5] 1 [1, 1] 1 [1, 1] 1 [1, 1]
PReMiuM 100 14.0 [14.0, 14.1] 0.01 [0, 0.02] 0.99 [0.99, 1] 0 [0, 0]
VBVarSel 1000 7.2 [7.1, 9.6] 1 [1, 1] 1 [1, 1] 0.77 [0.72, 0.90]
SUGSVarSel 1000 60.8 [59.8, 64.2] 1 [1, 1] 1 [0.99, 1] 0.78 [0.54, 0.92]

Table 4.1 Performance on Crook et al. (2019b) simulation data where 5% of the variables are relevant.

Together with our VBVarSel algorithm, we report the performance of SUGSVarSel as in
Crook et al. (2019b), and the PReMiuM algorithm on the same data. We ran both VBVarSel
and PReMiuM until convergence, while the authors ran SUGSVarSel for only 2 iterations.
We investigated PReMiuM convergence1 of the chains for the number of clusters K and the
Dirichlet parameter α calculating the Gelman diagnostic using the coda package (Brooks
and Gelman, 1998; Gelman and Rubin, 1992; Roberts and Smith, 1994), and looking at the
chains trace plots, following the guidance from Crook et al. (2019a). However, we underscore
that convergence is only “diagnosed” and not guaranteed. For a more detailed discussion,

1In Appendix 2 we include visualisations of convergence diagnostic in Figure B.5, B.6, and B.7
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we address the readers to the references. Furthermore, PReMiuM variable selection is
continuous, i.e. instead of a binary selection, 0 (discarded) or 1 (retained), we can think of
it as a probability of selection between 0 and 1. Hence, we take each covariate’s selection
probability at every iteration, threshold against 0.5 to discriminate between selected and
deselected, and take the Monte Carlo average across all iterations. The cluster allocations are
instead estimated using dissimilarity matrices (Fritsch and Ickstadt, 2009).

Method n Time, secs Relevant Irrelevant ARI

VBVarSel 100 3.2 [3.1, 3.9] 1 [1, 1] 1 [1, 1] 1 [1, 1]
SUGSVarSel 100 19.7 [19.5, 19.9] 1 [1, 1] 1 [1, 1] 1 [1, 1]
PReMiuM 100 14.2 [14.0, 14.3] 0.01 [0, 0.04] 0.99 [0.99, 1] 0.01 [0.01, 0.01]
VBVarSel 1000 6.5 [6.2, 7.9] 1 [1, 1] 1 [1, 1] 0.83 [0.81, 0.93]
SUGSVarSel 1000 33.3 [33.0, 33.8] 1 [1, 1] 1 [1, 1] 0.90 [0.80, 0.97]
Table 4.2 Performance on Crook et al. (2019b) simulation data where 10% of the variables are relevant.

Method n Time, secs Relevant Irrelevant ARI

VBVarSel 100 2.9 [2.0, 3.1] 1 [1, 1] 1 [1, 1] 1 [1, 1]
SUGSVarSel 100 21.9 [21.9, 22.1] 1 [1, 1] 1 [1, 1] 1 [1, 1]
PReMiuM 100 14.1 [13.2, 14.5] 0.05 [0.02, 0.1] 1 [0.99, 1] 0.26 [0.01, 0.53]
VBVarSel 1000 5.8 [5.1, 7.2] 1 [1, 1] 1 [1, 1] 0.97 [0.92, 0.98]
SUGSVarSel 1000 31.2 [30.7, 31.8] 1 [1, 1] 1 [1, 1] 0.78 [0.54, 0.92]
Table 4.3 Performance on Crook et al. (2019b) simulation data where 25% of the variables are relevant.

When considering moderately small datasets (n = 100), VBVarSel and SUGSVarSel
are very competitive in both variable selection and clustering accuracy. On the contrary,
PReMium struggles with True Positive Rate, i.e. identifying relevant variables, which compro-
mises its clustering capabilities. By plotting the probabilities of selection for each covariate
we observed that while there is an increased probability for the relevant ones compared
to irrelevant ones, it rarely goes above 0.3. We evaluated the area under the ROC curve
(AUC) metric (Bradley, 1997) for PreMiuM experiments to summarise its performance
across all possible thresholds for the covariate selection probabilities scores. The median
AUC metrics across experiments were 0.78, 0.60, 0.51, and 0.50 for respectively 50%, 25%,
10%, and 5% relevant variables. Hence, PReMiuM variable selection can be better than
random (AUC = 0.5) at least for higher percentages of relevant variables. A significant
advantage of our approach compared to PReMiuM and MCMC methods in general is the
ability to use the ELBO for model selection, which allows us to refine prior initialisation and
enhance performance.
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Method n Time, secs Relevant Irrelevant ARI

VBVarSel 100 1.9 [1.8, 2.5] 1 [1, 1] 1 [1, 1] 1 [1, 1]
SUGSVarSel 100 24.6 [23.8, 24.9] 1 [1, 1] 1 [1, 1] 1 [1, 1]
PReMiuM 100 19.2 [19.1, 19.7] 0.12 [0.06, 0.16] 1 [0.99, 1] 0.52 [0.52, 0.54]
Table 4.4 Performance on Crook et al. (2019b) simulation data where 50% of the variables are relevant.

As for runtime, VBVarSel is consistently faster than the two compared methods. More-
over, when increasing the percentage of relevant variables our algorithm converges even
faster. While the number of iterations per second remains stable, fewer are needed.

We then proceed to assess the performance on larger simulated datasets (n = 1000) of only
the scalable methods. VBVarSel always identifies relevant and irrelevant variables perfectly,
and the clustering is generally very accurate. Compared to SUGSVarSel, the stratification
is more stable and similar in accuracy. Moreover, VBVarSel is more than one order of
magnitude faster and, despite the increase in dataset size, the speed is almost not affected.

Overall, we conclude that VBVarSel is generally faster and more scalable than compared
methods, reducing the runtime by up to an impressive tenfold despite the inherent computa-
tional disadvantage of the programming language used. This is achieved while maintaining
high, if not perfect, accuracy in both stratification and variable selection.

4.3 Investigating parameter sensitivity

In Section 3.4.1 we discussed how parameter initialisation significantly influences the perfor-
mance and accuracy of our model. In this concise section, we aim to highlight the parameters
to which VBVarSel is most sensitive and therefore require careful tuning. Our experiments
showed that the model is quite robust to the initialisation of β0, m0 j, a0 and K. On the
contrary, the model performance was influenced by the concentration parameter α0, the shape
parameter d0, and most significantly the scale b0 j. Starting with α0, this parameter strongly
affected the ability to “empty” extra clusters. Nonetheless, any value < 0.5 consistently
allowed convergence to the true K in this simulated environment. As for d0, values < 0.5 led
to higher deselection rate, and the opposite is true for d0 > 5; in between the performance
was stable on perfect selection. Most importantly, VBVarSel requires very careful tuning of
b0 j. Even slight deviations from optimal would significantly and detrimentally impact the
quality of the stratification.
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4.4 Evaluating the benefits of annealing

In Section 2.4.2 we presented the theoretical benefits of introducing a temperature parameter
in the VI machinery, particularly when dealing with a multi-modal posterior distribution.
In this section, we aim to demonstrate the benefits of annealing in overcoming common
challenges faced in real-world data scenarios, such as sub-optimal parameter initialisation,
correlated data, and noise. Therefore, we simulate these three different scenarios using
synthetic data from Crook et al. (2019b). We always generate n = 100 observations with 200
variables, of which 20 (10%) are relevant.

We explore different temperature schedules. We begin with T = 2, 3 or 4, which either
remain constant throughout inference or follow the geometric or harmonic schedule described
in Section 3.3. For time-varying schedules, we set 5 or 10 maximum annealed iterations,
given we normally converge in less than 15 iterations. We report the performance of the
annealing approaches that allowed more significant advantages, and also the non-annealed
model (T = 1) for reference.

4.4.1 Sub-optimal parameter initialisation

We begin our evaluation of the benefits of annealing on the original synthetic dataset from
Crook et al. (2019b), varying parameter initialisations. Table 4.5 shows the results of
our experiments. We refer to optimal parameter initialisation as the one used in previous
simulations, reported in Table B.1, experiment synthetic. As for the sub-optimal initialisation,
we vary the scale b0 j since it is the parameter to which VBVarSel is more sensitive. We
randomly choose a value for b0 j between 0.01 and 1 in each of the 10 randomisations of the
data we ran, and we report the median scores with upper and lower quartiles.

From Table 4.5 we observe how even this little change in b0 j initialisation affects the
performance of the non-annealed VBVarSel. However, introducing annealing generally
allowed the optimiser to better explore the posterior space and ultimately reach the global
optimum, i.e. perfect performance. Moreover, the annealed optimiser explored different,
sensible, clustering configurations, such as a 2-cluster model grouping together 2 of the 3 data
clusters. Although this deteriorates the average performance (worse lower quartiles), it can
be desirable behaviour when dealing with real-data. In contrast, the deteriorated performance
of the non-annealed model is due to “illogical” stratification, where observations are wrongly
allocated or additional spurious clusters are generated.
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Initialisation Temperature Relevant Irrelevant ARI

Optimal
T = 1 1 [1, 1] 1 [1, 1] 1 [1, 1]
T = 3G 1 [1, 1] 1 [1, 1] 1 [1, 1]
T = 2H 1 [1, 1] 1 [1, 1] 1 [1, 1]

Sub-optimal
T = 1 1 [1, 1] 0.98 [0.97, 0.99] 0.84 [0.75, 0.88]
T = 3G 1 [1, 1] 1 [1, 1] 1 [0.70, 1]
T = 2H 1 [1, 1] 1 [1, 1] 1 [0.94, 1]

Optimal T = 2 1 [1, 1] 1 [1, 1] 1 [1, 1]
Sub-optimal T = 2 1 [1, 1] 1 [1, 1] 1 [0.84, 1]

Table 4.5 Annealed VBVarSel performance on Crook et al. (2019b) synthetic data using optimal and
sub-optimal parameter initialisations. G: Geometric, H: Harmonic schedule and the initial temperature is given.

4.4.2 Adding correlation

The data simulated so far is generally easy to work with, there is always a good separation
between clusters, the number of groups is relatively small, observations and covariates
are uncorrelated, and there is a clear difference between relevant and irrelevant variables.
In order to show the benefits of annealing, we make this simulated data more realistic
by first introducing correlation. Instead of using identity variance-covariance matrices to
generate relevant variables, we introduce different degrees of correlation, i.e. off-diagonal
non-zero entries, both fixed and varying among covariates and components. Table 4.6 reports
the performance of VBVarSel with fixed and equal covariance across all dimensions in
all components. Table 4.7 reports instead the performance when randomly sampling the
correlation for each cluster between 0 and 0.5, but fixed across all covariates; Table 4.8
when randomly sampling all covariances. All experiments were run with optimal parameter
initialisations and results are averaged across 10 independent runs.

Covariance Temperature Relevant Irrelevant ARI

0.1
T = 1 1 [1, 1] 1 [0.99, 1] 0.97 [0.97, 0.97]
T = 2H 1 [1, 1] 1 [1, 1] 1 [0.97, 1]

0.5
T = 1 1 [1, 1] 1 [0.99, 1] 0.68 [0.50, 0.71]
T = 3G 1 [1, 1] 1 [1, 1] 0.76 [0.76, 1]

0.1 T = 2 1 [1, 1] 1 [1, 1] 1 [1, 1]
0.5 T = 2 1 [1, 1] 1 [1, 1] 0.70 [0.70, 0.73]

Table 4.6 Annealed VBVarSel performance on synthetic data modified to include fixed covariance. G:
Geometric, H: Harmonic schedule and the initial temperature is given.
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Across all varying degrees of introduced covariance, we observe a general improvement
with annealing. This enhancement manifests in several aspects, whether it is an improved
stratification or variable selection accuracy, or increased stability across experiments. This is
even more pronounced when we amplify the randomness and variability in the correlation
structure (Table 4.8). Indeed, as the stochasticity in the correlation structure increases, we
observe that implementing an effective exploration-exploitation balance with a geometric
schedule becomes more beneficial. Notably, the geometric schedule we used is relatively
straightforward, thus demonstrating that annealing does not require intensive fine-tuning
efforts to show its benefits in a simulated environment.

Temperature Relevant Irrelevant ARI

T = 1 1 [1, 1] 1 [0.99, 1] 0.65 [0.65, 0.70]
T = 2G 1 [1, 1] 1 [1, 1] 0.74 [0.74, 1]
T = 2 1 [1, 1] 1 [1, 1] 0.71 [0.67, 1]

Table 4.7 Annealed VBVarSel performance on synthetic data modified to include randomly sampled
covariances for each cluster. G: Geometric schedule and the initial temperature is given.

Temperature Relevant Irrelevant ARI

T = 1 1 [1, 1] 0.99 [0.99, 0.99] 0.48 [0.41, 0.54]
T = 2G 1 [1, 1] 1 [1, 1] 0.69 [0.69, 0.71]
T = 2 1 [1, 1] 1 [1, 1] 0.59 [0.40, 0.71]

Table 4.8 Annealed VBVarSel performance on synthetic data modified to include randomly sampled
covariances across all clusters and relevant covariates. G: Geometric schedule and the initial temperature.

Finally, while the ARI may sometime appear similar across annealed and non-annealed
simulations in some experiments, the stratifications differ significantly. An example is shown
in Figure 4.1. As previously mentioned, annealed models often group together exactly the
observations from two clusters or yield reasonable separation given the PCA feature space.
In contrast, non-annealed models often misclassify observations or create additional spurious
clusters. The latter is a known problem when dealing with correlated data while assuming
conditional independence, as we do in our model.

4.4.3 Adding Gaussian noise

We conclude our investigation by simulating noise contamination, which is very common in
real data. Starting from the original Crook et al. (2019b) synthetic dataset, we add Gaussian
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noise with zero mean and a varying standard deviation (noise level). Even though in real-
world scenarios the noise might not always follow a Gaussian distribution, it is a sensible
approximation, providing a good balance between simplicity and realism. All experiments
were run with optimal parameter initialisation. Results are shown in Table 4.9.

Noise Level Temperature Relevant Irrelevant ARI

0.1
T = 1 1 [1, 1] 0.98 [0.98, 1] 0.89 [0.86, 0.95]
T = 3G 1 [1, 1] 1 [1, 1] 1 [0.93, 1]
T = 3H 1 [1, 1] 1 [1, 1] 1 [1, 1]

0.5
T = 1 1 [1, 1] 0.98 [0.97, 0.98] 0.90 [0.65, 0.92]
T = 2G 1 [1, 1] 1 [1, 1] 1 [0.77, 1]
T = 2H 1 [1, 1] 1 [1, 1] 1 [1, 1]

0.1 T = 2 1 [1, 1] 1 [1, 1] 1 [1, 1]
0.5 T = 4 1 [1, 1] 1 [1, 1] 1 [0.70, 1]

Table 4.9 Annealed VBVarSel performance on synthetic data modified to include Gaussian noise. We averaged
across 10 independent runs. G: Geometric, H: Harmonic schedule and the initial temperature is given.

Across all varying noise levels, although the VBVarSel algorithm is already reasonably
robust to noise, introducing even a straightforward temperature schedule yields improved
performance and stability, without increasing the computational complexity of the model.
Moreover, in the presence of noise, a slower decaying harmonic schedule seems to be
preferable over a geometric one to retrieve perfect performance, even if less explorative.

(a) Without annealing (b) With geometric annealing

Fig. 4.1 PCA scatter plots showcasing VBVarSel stratification on synthetic data modified to include
correlations among relevant covariates. We notice the annealed VBVarSel produces a more sensible

stratification, even if not perfect.



Chapter 5

Application to TCGA breast cancer data

In Chapter 4 we thoroughly evaluated and benchmarked our VBVarSel algorithm in a
simulated environment. As we move into this new chapter, we transition from synthetic data
to a real-world medical application, applying the algorithm on breast cancer transcriptomic
data from The Cancer Genome Atlas (TCGA). Over the course of our evaluation, we
implemented an extensive number of experiments, pushing the boundaries of our model to
yield a robust and realistic analysis. Before diving into the results, we introduce established
breast cancer subtypes and molecular traits, which is the prior knowledge grounding our
expectations on the algorithm’s performance.

5.1 Primer on breast cancer subtypes

Breast cancer is the most common type of cancer in women worldwide, with about 1 in 7
being diagnosed with it in their lifetime (NHS, 2022). Given the complexity and heterogene-
ity of breast cancer molecular traits and disease manifestations, a conventional medicine
approach to treatment is suboptimal. Hence, extensive research has been dedicated towards
characterising cancer subtypes, each with its own molecular and pathological characteristics.
There is evidence for clustering models ranging from two subtypes (Duan et al., 2013) to
ten subtypes (Curtis et al., 2012), and anything in between (Akbani et al., 2014; Lock and
Dunson, 2013; Prat et al., 2010; Sørlie et al., 2003; Weinstein et al., 2013).

The most widely established stratification, but still continuously refined, is composed
of five subtypes, which have traditionally been classified based on the expression of three
receptor proteins: estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) (School et al., 2012). We can stratify patients into Luminal
A, Luminal B, HER2-enriched, Basal-like, and Normal-like subtypes. For more information
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on the characteristics of each of these groups, we address the reader to Orrantia-Borunda et al.
(2022), Prat et al. (2010), and the literature cited before. Most of the existing stratification
approaches leverage gene expression profiles from defined biomarker gene sets, of which
we focus on the PAM50 set (Parker et al., 2009; Sørlie et al., 2003), where PAM stands for
“Prediction Analysis of Microarray”. This gene set is a 50-genes signature that has been
validated in numerous studies for both subtype identification and risk prediction.

5.2 Introduction to The Cancer Genome Atlas (TCGA)

We extract the breast cancer transcriptomic data from The Cancer Genome Atlas (TCGA).
TCGA is a landmark cancer genomics program, which molecularly characterised over 20,000
primary cancers to yield over 2.5 petabytes of genomic, epigenomic, transcriptomic, and
proteomic publicly available data (Weinstein et al., 2013).

As it is, the extracted transcriptomic dataset contains 348 breast cancer tumour samples,
each with 17814 gene expressions, i.e. covariates. After removing the 441 genes with NaN
entries, we were left with a 348 x 17373 dataset. Only 48 of the 50 PAM50 genes are in
the dataset. We retrieve demographic and clinical characteristics for each observation from
the Supplementary Table 1 of School et al. (2012), including ground-truth labels for cluster
assignments. These are the 5 breast cancer subtypes, distributed as shown in Figure B.3.

5.3 Unsupervised model-based clustering on PAM50 genes

We begin the appraisal of our model performance on real data focusing on the clustering
capabilities, while temporarily neglecting variable selection. To do so, we extract only the
PAM50 genes from the full dataset, which should constitute only relevant information, we
fix the covariate selection indicators at 1, and disable inference on those.

Experimental set-up

After the thorough investigation described in Section 3.4.1, we report the parameter ini-
tialisations maximising the ELBO in Table B.1, experiment C-TCGA. We normalised the
data to unit variance and zero mean, which was found to improve performance and speed
up convergence. We report results as described in Section 3.4.3, and we evaluate the ARI
between the inferred stratification and the ground-truth cancer subtype of each observation.
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Fig. 5.1 PCA scatter plot of the PAM50 genetic expression of the 348 TCGA samples. The different colours
indicate VBVarSel stratification, obtained without variable selection.

Results

When using a scale b0 j = 1, we obtained 5 clusters that reasonably resemble the breast
cancer subtypes (ARI ≈ 0.54), shown in Figure 5.1. Cluster A is associated with Luminal A
samples, while Cluster C is mostly associated with Luminal B samples. Cluster B contains
only HER2-enriched samples, but it gathers those that are most “distant” in feature space
from Luminal B. Cluster D perfectly represents Basal-like samples, and Cluster E seems to
have identified the Normal-like samples despite very few occurrences. The overlap between
clusters in feature space, which is due to an existing similarity in some genetic expressions,
presents the most significant challenge to our model’s accuracy. However, the results obtained
are aligned with established literature (Crook et al., 2019b; School et al., 2012).

When instead initialising lower b0 j and α0, the algorithm converged to a 2-clusters model,
one containing only basal-like samples, and the other grouping together the remaining types.
This stratification was indeed maximising the ELBO. Looking at Figure 5.1, this is a very
sensible separation, also backed-up by the understanding we have of breast-cancer and
relevant literature (Crook et al., 2019b; Dinalankara et al., 2018).
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It is worth mentioning that when setting K > 5, the algorithm would automatically
“empty” additional clusters, or assign very few observations.

5.4 Simultaneous stratification and biomarker selection

Having established that our model’s clustering performance aligns with the current literature
and expected outcomes, we proceed to enable variable selection. We maintain the PAM50
genes in our dataset, but also progressively add covariates randomly selected from the full
dataset. Throughout this section, we detail the simulations conducted to rigorously investigate
our model’s performance, verify its underlying assumptions, and identify potential limitations.

Experimental set-up

The dataset used always includes the 48 PAM50 genes, to which we add progressively 50,
100, 500, and 1000 genes to simulate scenarios where the number of covariates is either lower,
comparable or larger than the number of observations. We then evaluate the performance
of the VBVarSel on the full TCGA Breast cancer dataset, and on a pre-processed version
of it, as in Crook et al. (2019b) and Lock and Dunson (2013), to allow for comparison. In
all the simulations, we simultaneously infer cluster assignment and variable selection. The
parameters are initialised as reported in Table B.1, experiment TCGA, and data is normalised
to zero mean and unit variance.

5.4.1 Evaluating variable selection on the PAM50 genes

The results obtained applying the VBVarSel algorithm to only the set of 48 PAM50 genes
are aligned with expectations (first row of Table 5.1). Indeed we always retain at least 39
covariates (lower quartile) (Binomial test, p < 0.0001 ). We examined deselected genes to
look for recurring patterns and we found that the gene “MMP11” was deselected in 9 out of
10 runs (Binomial test, p≈ 0.01 ), and genes “MDM2” and “FGFR4” were discarded in 6 and
5 out of 10 runs respectively. To further investigate this, we analysed the correlation between
the frequently deselected genes and the remaining ones using the correlation matrix in
Figure 5.2. As expected, we observe a difference in the correlation levels of these frequently
deselected genes as these are neither positively nor negatively correlated with the other
PAM50 genes, especially gene “MMP11”.

As for the clustering task, the inferred stratification achieved a median ARI ≈ 0.47,
which is comparable to what was obtained without variable selection. This confirms that we
effectively removed covariates that were only introducing more noise rather than signal.
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Fig. 5.2 A correlation heatmap between PAM50 genes with hierarchical clustering.

In Figure 5.3 we show a heatmap of the data with the clustering produced by VBVarSel
using only the PAM50 set, with variable selection. While it is uncommon for a cancer
subtype to be linked to just one cluster, there are clear correlations between gene expressions,
subtypes, and clusters. Moreover, the clustering structure found by VBVarSel seems more
aligned with the genetic expression than the actual subtypes.

We tested the covariate selection’s reliability by permuting the rows of either the last 5,
10, or 25 columns (i.e. covariates). The aim is to disrupt or “break” the existing clustering
information in the permuted genes, making them irrelevant for stratification, and observe if
the model discards them. Indeed, in all three sets of experiments, the permuted covariates
were entirely deselected while at least 87% of the “unperturbed” PAM50 genes were retained.
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We then tested whether the order of relevant/irrelevant covariates influences the selection.
Theoretically, this should not happen as there is no dependence between covariates in the
inference process, i.e. the VBVarSel update equations never show dependency of covariate j
on j−1, j+1, or any other. Hence, we permute the rows of 5, 10, or 25 columns, randomly
chosen in the dataset. As expected, the permuted genes were discarded in all experiments,
no matter their location in the dataset, and at least 90% of the “unperturbed” genes were
retained.

Fig. 5.3 A heatmap of the normalised PAM50 genetic expressions of each observation. The annotation bars
indicate the different cancer subtypes and VBVarSel clusters.

In summing up this section, we mention a few key insights from our experiments.
Primarily, the variable selection machinery is correctly discriminating informative covariates
from uninformative ones, independent of their locations and proximity, to retrieve a sensible
stratification. Additionally, we found a significant amount of correlation exists between
PAM50 genes, which seems tied to the amount of clustering information they convey.
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5.4.2 Adding randomly sampled genes

So far, we worked with only relevant variables and used permutations to artificially generate
irrelevant ones. We now progressively integrate an increasing number of additional covariates
which are randomly sampled from the complete TCGA breast cancer dataset. We do not
expect to discard all the randomly sampled genes, as there is no theoretical basis to conclude
they are irrelevant to the clustering task. However, it is reasonable to assume that the majority
of these genes might not contribute to the stratification. Conversely, we expect to retain the
majority of the PAM50 genes.

Table 5.1 shows the resulting averaged performance of the VBVarSel algorithm for
varying numbers of p additional randomly sampled genes. The first row reports the results
obtained with PAM50 genes only. In the subsequent rows, we increased the dataset size by
either p = 50, 100, 500, or 1000 randomly sampled genes. We report the time, in seconds per
iteration, the number of retained PAM50 genes, together with the total number of relevant
and irrelevant variables, and the ARI between the inferred stratification and the ground-truth
cancer subtype of each observation.

p sec/itr Relevant PAM50 Relevant Irrelevant ARI

0 0.12 42 [39, 44] 44 [43, 45] 4 [3, 5] 0.47 [0.44, 0.51]
50 0.20 41 [39, 45] 58 [54, 63] 40 [36, 44] 0.48 [0.45, 0.50]

100 0.29 42 [40, 44] 78 [72, 83] 70 [66, 78] 0.49 [0.43, 0.51]
500 0.91 42 [41, 45] 163 [158, 168] 385 [380, 390] 0.48 [0.42, 0.48]

1000 2.04 41 [40, 44] 371 [360, 377] 629 [623, 640] 0.47 [0.43, 0.49]
Table 5.1 VBVarSel performance on varying subsets of TCGA data. We present the median scores with the

upper and lower quartiles across 10 independent runs on different data randomisation.

The results are promising. VBVarSel is able to retain at least 39 PAM50 genes across all
the different experiments (lower quartile), independent of the number of randomly sampled
genes. Statistically, the retention of PAM50 genes is significantly better than random across
all experiments (Fisher Test, p < 0.00001). Moreover, the percentage of randomly sampled
genes that are retained by the model is fairly constant. As for the stratification quality, we do
not observe significant variability in ARI between the different dataset sizes which implies
the model is successfully discarding noisy variables to retrieve sensible cluster allocations.
However, we observed more variability in the number of clusters of the obtained stratification
as the model would often group together two or more subtypes. The performance maximising
the ELBO was achieved by a two-clusters model, separating basal subtype samples from
non-basal samples, as in Crook et al. (2019b).
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In Figure 5.4 we visualise the scatter plots of the stratification obtained with 500 additional
genes. We observe how the reduced variable set produces smaller and tighter clusters and
increases the separation between them. Indeed, cluster 3 which is strongly associated with
basal samples is more separated and there is a neater boundary between clusters 1 and 2.

(a) On all covariates (b) On only selected covariates

Fig. 5.4 Scatter plots of VBVarSel stratification on the 348 TCGA samples when PCA is applied to either all
PAM50 plus 500 genes, or only the selected ones.

As before, we investigate the differences in the correlation structure of selected/deselected
covariates. To allow for better visualisations, we focus on the dataset with 100 additional
covariates. Figure 5.5 shows the correlation matrices between the selected genes and the
deselected genes. The discarded genes are almost uncorrelated while we observe significant
positive and negative correlations amongst the retained ones, as expected. Moreover, while
there is a clustering structure within the selected covariates, which is also reflected in the
dendrogram, there seems to be only noise in the deselected covariates. This confirms our
claim that the correlation structure in the genes strongly drives stratification, and most
importantly that VBVarSel is correctly using it to discard uninformative covariates.

If we permute the rows of the “random” genes retained by the model, those are discarded
as expected, independent of the dataset size. This implies that there was indeed some clus-
tering information encoded in those covariates. Moreover, we also observed a significant
overlap in the PAM50 genes discarded by the model across all experiments.

In summary, our experiments revealed that VBVarSel scales well with increasing number
of covariates and the performance stays approximately constant amidst noisy variables.
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(a) Selected covariates (b) Deselected covariates

Fig. 5.5 Correlation heatmaps and hierarchical clustering on the covariates VBVarSel selects vs. deselects when
applied to the PAM50 plus 100 genes. The stratification obtained is shown in Figure B.1.

We confirmed the link between correlation structure and clustering information conveyed.
VBVarSel also kept a very manageable runtime across all dataset sizes.

5.4.3 Experimental validation on complete dataset

Finally, we evaluate the VBVarSel algorithm on the full 348 x 17373 transcriptomic breast
cancer dataset. The magnitude of this dataset underscores one of the key and unique strengths
of our algorithm which is its ability to effectively handle high-dimensional datasets. Existing
methodologies most often require preprocessing of different extents due to scalability issues,
of which we will provide an example in the next section. In terms of runtime, while exact
time is influenced by the specific hardware, the algorithm was always able to converge in
less than 1 hour, which is a very feasible runtime.

Remarkably, we do not observe any considerable difference in VBVarSel performance
and variable selection rates as we significantly scale up the dataset size. Using the same prior
initialisation as before, the model settled on a 4-5 clusters model where a median of 6723
covariates were selected, approximately 39% of the full set. Among the PAM50 genes, the
median rate of selection was 75%, which is similar to what was achieved with smaller dataset
sizes, and significantly better than random (Fisher Test, p≪ 0.00001). The stratification is
sensible and comparable to previous experiments, as can be observed in Figure 5.6.
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(a) On all covariates (b) On only selected covariates

Fig. 5.6 Scatter plots of VBVarSel 4-cluster model on the complete TCGA dataset, when PCA is applied to
either all covariates, or only the selected ones.

(a) On all covariates (b) On only selected covariates

Fig. 5.7 Scatter plots of VBVarSel 2-cluster model on the complete TCGA dataset, when PCA is applied to
either all covariates, or only the selected ones.
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Reducing α0 and b0 j, we obtained a 2-clusters model, shown in Figure 5.7, in which
similarly a median of 6203 covariates were selected. Among the PAM50, the median rate of
selection was slightly higher, approximately 82%. Cluster 0 is significantly associated with
Basal-like tumours (Fisher Test, p≪ 0.00001). In both models, variable selection produced
smaller, tighter clusters and increased the separation between them.

5.4.4 Benchmarking on pre-processed TCGA expression dataset

To allow comparison with existing literature, we pre-process the complete TCGA dataset
as in Lock and Dunson (2013) and Crook et al. (2019b). We keep 645 genes for each of
the 348 tumour samples, of which 14 are from the PAM50 subset. Initialising lower α0

and b0 j, VBVarSel converges to two clusters, and 318 variables are selected to discriminate
between the two groups, which includes all the 14 PAM50 genes (Fisher Test, p < 0.00005).
These results are comparable to what is reported in Crook et al. (2019b), although VBVarSel
tends to select more variables overall, and they are also in agreement with stratifications and
selection rates obtained in previous experiments. Indeed, we again observe smaller, tighter,
and more separable clusters when focusing on the retained variables.

5.5 Motivation for annealing

Over the course of our evaluation across the extensive range of experiments implemented,
in addition to assessing performance and strengths of our algorithm, we gathered potential
concerns and encountered challenges. First, we underscore again the high sensitivity of the
algorithm to the initialisation of some parameters, namely the concentration parameter α0, the
shape parameter d0, and most significantly the scale b0 j. We also identify two possible areas
of caution: extremely quick convergence and the conditional independence assumptions.

5.5.1 Investigating convergence

While rapid convergence could be a desirable behaviour of the optimiser, we noticed a
surprisingly and worryingly quick convergence in most experiments, even in less than 5
iterations for some. Such a swift convergence might indicate that the algorithm is settling
on a local optimum, which compromises its ability to capture the underlying complexity. A
typical ELBO pattern would look like Figure 5.8. After a very sharp increase in the first few
iterations, the ELBO plateaus and only changes by very small amounts. This may indicate
that the VBVarSel algorithm is finding a local optimum almost immediately, which may not
be the global optimum, but it gets trapped there and fine-tunes within that region.
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Fig. 5.8 Typical ELBO shape until convergence of VBVarSel on the PAM50 set only.

In our context, this can be partly explained by the data we used. From the scatter plots and
heatmaps we have previously shown, the most evident separation is the one between basal
and non-basal samples. Moreover, Figure 5.9 shows hierarchical clustering on the normalised
PAM50 genes expression clearly identifies only two major subgroups, partly explaining
why we only maximise the ELBO when we retrieve a 2-clusters model. Conceivably, the
VBVarSel algorithm quickly, and relatively accurately finds a separation of the data into basal
and non-basal samples, and then tries to fine-tune from there. This becomes a sub-clustering
problem.

Fig. 5.9 Hierarchical clustering dendrogram on the normalised PAM50 gene expressions.
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Sub-clustering

Sub-clustering, as the name suggests, is concerned with the task of clustering within an
existing cluster which can also be defined as a nested clustering problem. With our data, after
identifying a broad split between basal and non-basal samples, the VBVarSel algorithm tries
to further divide the non-basal samples into more specific clusters. This is a very complex
task, which requires a greater degree of precision and sophistication as it involves finding
structure within a group that already seems homogeneous. There exist algorithms specifically
built for this (Li et al., 2010; Liao et al., 2004; Murtagh, 1983; Patel et al., 2015).

Evaluation of VBVarSel on non-basal samples

To confirm our hypothesis around the rapid convergence observed, we remove the basal
samples from the dataset and apply VBVarSel on the remaining observations, using only the
PAM50 genes. We expect that by removing the evident parent clustering structure, the model
would take longer to converge and potentially better stratify the non-basal samples. Indeed,
Figure 5.10 shows that convergence is slower than Figure 5.8. Moreover, Figure 5.11 shows a
better stratification of non-basal samples, particularly Luminal B and HER2-enriched, despite
the four subtypes still looking like a homogeneous cluster.

(a) (b)

Fig. 5.10 (a) Typical ELBO shape until convergence of VBVarSel on non-basal samples. (b) A correlation
heatmap between PAM50 genes for non-basal samples.

Interestingly, from a biological perspective, variable selection discarded considerably
more PAM50 genes. Across 10 runs on different data randomisations, the median number of
discarded genes was 15, with upper and lower quartiles of 18 and 12 respectively. Examining
the correlation plot in Figure 5.10, we notice fewer correlated variables compared to Figure
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5.2. Moreover, the PAM50 genes discarded by the algorithm correspond to the uncorrelated
ones for non-basal samples (Fisher Test, p < 0.0001) and align with the green subgroup in
Figure 5.9. This suggests that a large part of the PAM50 gene set characterises predominantly
Basal-like tumour samples.

Fig. 5.11 PCA scatter plot of VBVarSel stratification on TCGA data using only the PAM50 set and non-basal
observations.

In conclusion, although we partly explained the rapid ELBO convergence in this context
as a sub-clustering problem, the challenge still remains. Ideally, we would want the model to
better explore possible stratifications and variable selection configurations, instead of quickly
exploiting one.
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5.5.2 Investigating conditional independence assumption

The second potential limitation identified involves our model’s core assumption: conditional
independence between covariates, given the cluster assignment. While this is a common
assumption in many models to simplify calculations, it may not hold true in real-world
data. Indeed, we observed significant correlations, especially among PAM50 genes, which
influence variable selection (Figure 5.2). Therefore, we wish to investigate whether our as-
sumption is sensible, i.e. the correlation diminishes upon conditioning on cluster assignment,
or if it does not hold in practice. If the latter is true, our model might be oversimplifying the
complexity of the data, compromising accuracy and performance more broadly.

(a) Cluster A of Figure 5.3 (b) Cluster B of Figure 5.3 (c) Cluster E of Figure 5.3

Fig. 5.12 Correlation heatmaps of the normalised PAM50 gene expression, conditioned on cluster assignment.

We examined the data after clustering and in Figure 5.12 we show the correlation among
the PAM50 genes after conditioning on cluster assignment, for all the inferred clusters that
align well with the ground-truth subtypes. The model we used is the one presented in Section
5.4.1. Compared to Figure 5.2, the correlation structure is notably reduced. However, while
our conditional independence assumption reasonably stands validated, we cannot fully ignore
the potential impact of neglecting the correlation structure on our model’s performance.

5.5.3 How could annealing enhance inference?

The two potential concerns identified could be mitigated by annealing. By introducing
a temperature schedule we could encourage the algorithm to explore a broader range of
solutions and uncover better stratifications. This would in turn result in a slower convergence.
Furthermore, Ruffieux et al. (2020) has shown annealing is particularly beneficial when
dealing with correlated data. Therefore, if and when the conditional independence assump-
tion does not hold strictly, the annealed VBVarSel could still be capable of exploring this
complexity and not rapidly committing to a specific cluster assignment. In the subsequent
section, we present the performance of the annealed VBVarSel for this specific application.
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5.6 Introducing annealing

We replicated three of the experiments previously performed. First, we applied the annealed
VBVarSel to PAM50 genes; then we used the PAM50 set plus 100 randomly chosen co-
variates; lastly, we worked with the pre-processed TCGA expression dataset, as in Section
5.4.4. For all experiments, we normalise the data to zero mean and unit variance, and the
parameters were initialised according to Table B.1, experiment A-TCGA. We explored a wide
variety of annealing approaches and report the temperature configurations allowing more
evident advantages over the non-annealed VBVarSel.

5.6.1 Evaluation

Table 5.2 shows the achieved performance with different types of temperature schedules.

Data T PAM50 Relevant Irrelevant ARI

PAM50 2 F 45 [45, 46] 45 [45, 46] 3 [2, 3] 0.52 [0.50, 0.57]
PAM50 3 G 35 [35, 40] 35 [35, 40] 13 [8, 13] 0.51 [0.48, 0.56]
PAM50 3 H 46 [44, 47] 46 [44, 47] 2 [1, 4] 0.48 [0.45, 0.53]

PAM50 + 100 3 G 25 [25, 26] 34 [33, 36] 114 [112, 115] 0.48 [0.48, 0.55]
Preprocessed 2 F 13 [13, 14] 244 [230, 260] 401 [385, 415] 0.42 [0.37, 0.48]
Preprocessed 4 G 12 [10, 14] 160 [160, 200] 485 [445, 485] 0.35 [0.35, 0.36]

Table 5.2 Annealed VBVarSel performance across different experiments on TCGA data. F: Fixed Temperature,
G: Geometric H: Harmonic schedule and the initial temperature is given. We present the median scores with

the upper and lower quartiles across 10 independent runs on different data randomisation.

The first three rows describe the application of VBVarSel on the PAM50 genes exclu-
sively. With fixed temperature, the model stably retains a higher number of PAM50 covariates.
The stratification obtained, which is shown in Figure 5.13, is very accurate, particularly
in sub-clustering non-basal samples, and is significantly better than random (chi-squared
p < 0.00001). As expected, we observed a slower ELBO convergence (Figure B.2). When
using a geometric or harmonic schedule we can more easily compare the performance to
the non-annealed case as we are targeting the same (approximate) posterior, as discussed
in Section 3.3. We annealed the first 5 or 20 iterations respectively, starting from an initial
temperature of 3. The model stably selected fewer (geometric) or more (harmonic) PAM50
genes on average but both stratifications were better and more stable than the non-annealed
model.
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Fig. 5.13 PCA scatter plot of VBVarSel stratification on TCGA data using only the PAM50 set and annealing
with fixed temperature.

Then, we extracted the PAM50 covariates and 100 randomly sampled genes to evaluate
annealing advantages with more irrelevant variables. This dataset was very sensitive to
the temperature schedule. We found optimal performance was achieved with a geometric
schedule, starting from a temperature of 3 and gradually reducing it to 1 in the first 5
iterations. The annealed VBVarSel algorithm converged to a much-reduced covariate space
compared to the non-annealed model and around half of the PAM50 variables were deselected.
Nonetheless, the stratification obtained is sensible and more stable. The algorithm clustered
observations into either 3 or 4 groups, which were tighter and more separated in PCA space,
proving the increased deselection rate was indeed beneficial (Figure 5.14). Perhaps, given
the model is encouraged to explore, it can find local optima in the posterior space that the
non-annealed optimiser is very unlikely to reach, such as a much-reduced covariate space.
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Finally, we applied the annealed VBVarSel on the pre-processed data as in Section 5.4.4.
We found both fixed temperature and geometric schedules to work well. When using fixed
temperature we effectively encourage exploration throughout all iterations. This results
in more variability in the stratification, with different numbers of clusters in the obtained
models, and in the variable selection. When instead using a geometric schedule, we started
from a temperature of 4 and annealed the first 10 iterations. The model gradually shifts the
focus from exploration to exploitation, focusing on refining the best configuration it found.
Indeed, we observed VBVarSel would more stably converge to a 2-cluster model, with less
variability in the selected covariates.

(a) On all covariates (b) On only selected covariates

Fig. 5.14 Scatter plots of geometrically annealed VBVarSel stratification on the 348 TCGA samples when PCA
is applied to either all PAM50 plus 100 genes, or only the selected ones.

It is difficult to set concrete expectations on which advantages we should observe with the
introduction of annealing, especially in the context of real data. Nonetheless, we generally
observed an improvement in performance, particularly for what concerns sub-clustering the
non-basal patients, as well as more stability in the inference. Moreover, annealing enhanced
the algorithm’s robustness to parameter initialisation and its ability to completely “empty”
superfluous clusters. The only parameter that required very careful tuning was the temperature
T and its schedule. Both fixed and time-dependent (geometric or harmonic) temperatures
yield some advantages over the non-annealed VBVarSel, even though they target different
(approximate) posterior distributions. Nonetheless, the time-dependent schedule offers a
more balanced exploration, which is generally preferable.
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Application to TCPA proteomic
pan-cancer data

We conclude our exploration of the VBVarSel algorithm with its application on proteomic
pan-cancer data from The Cancer Proteome Atlas (TCPA). Though our experiments on TCGA
were more extensive, our aim with TCPA is to further examine the algorithm capabilities and
robustness on a dataset that is inherently different, as we will now explain.

6.1 Introduction to The Cancer Proteome Atlas (TCPA)

The Cancer Proteome Atlas (TCPA) (Akbani et al., 2014; Li et al., 2013) contains protein
expression data over a large number of tumor and cell line samples, obtained using reverse-
phase protein arrays (RPPAs) (Sheehan et al., 2005). We extract a total of 5157 tumour
samples and we only keep the 217 proteins measured for all of those. The labels of these
samples identify a total of 19 cancer types, distributed as shown in Figure B.4.

Compared to TCGA, the data we extract from TCPA is relatively low-dimensional as the
number of observations greatly exceeds the number of variables, and we find less correlation
between covariates, as shown in Figure 6.1. Furthermore, there is little prior knowledge
about how the model should perform. There are 19 cancer types but there could be subtypes
within those as well as inter-cancer relationships (School et al., 2012; Uhlen et al., 2017;
Weinstein et al., 2013). As for variable selection, the proteins profiled in TCPA are already
pre-selected based on their relevance to cancer biology and therapy (Akbani et al., 2014).
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6.2 Evaluation

For all experiments, we normalise the data to zero mean and unit variance, and the parame-
ters are initialised according to Table B.1, experiment TCPA. We evaluate performance as
explained in Section 3.4.3.

Fig. 6.1 A correlation heatmap of the normalised protein expressions in TCPA data.

Results

Remarkably, despite very little knowledge about the data and expected performance to inform
our parameter initialisation, VBVarSel was able to converge to sensible results with “standard”
configurations obtained using the ELBO for model selection. The algorithm assigns more
than 20 observations to 25 clusters on average. Figure 6.2 shows the correspondence between
the inferred clusters and the cancer subtypes. Most cancers are strongly associated with a
unique cluster. When there is some overlap, this is in agreement with other relevant literature
(Akbani et al., 2014; Crook et al., 2019b; Hoadley et al., 2014). For instance, the cancers
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HNSC, LUAD, and LUSC which are all aero-digestive cancers are most often grouped
together. Same applies to STAD, COAD, and READ which are cancers of the digestive tract.
In contrast, breast cancer (BRCA) and endometrial cancer (UCEC) are split into subgroups
(Akbani et al., 2014).

Fig. 6.2 A heatmap of the correspondence between VBVarSel clusters and the cancer subtypes. We filtered out
clusters with less than 20 observations.

As for variable selection, VBVarSel tends to retain most of the variables, with a median
rate of retention of 90%. Given the profiled proteins in TCPA are already pre-selected
(Akbani et al., 2014), and we obtain sensible stratification, there is no indication that the rate
is inadequate. Moreover, with different parameter initialisation, such as lower d0 or c j, we
were able to obtain a lower retention rate but the stratification obtained was considerably
worse. To better assess variable selection, we permuted the rows of varying numbers of
randomly selected covariates. As expected, at least 91% of the “perturbed” variables were
deselected.
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Figure 6.3 shows a heatmap of the stratification and the retained genetic expressions. We
observe nice agreement between clusters, cancer subtypes, and genetic expressions.

Fig. 6.3 A heatmap of the TCPA expression data using VBVarSel stratification.

In summary, our experiments revealed that VBVarSel scales well not only with increasing
number of covariates, but also with increasing number of observations. Remarkably, the
algorithm can adeptly adjust variable selection based on the data and eventually retain a large
number of covariates with clustering information. Finally, we underscore the pivotal role of
the ELBO in model selection which allows us to fine-tune our parameters initialisation even
in the absence of prior knowledge of the data.



Chapter 7

Conclusion

In this thesis we unveiled VBVarSel, a novel algorithm for simultaneous model-based
clustering and variable selection. Combining finite Gaussian mixture models, with a latent
binary covariate selection indicator within a variational framework, our model achieved
exceptional speed, computational efficiency, and scalability - all without compromising
performance and accuracy.

After establishing a precise formulation of the problem setting and describing the core
theoretical concepts of our model in Chapter 2, we delved into the mathematical and tech-
nical intricacies of the proposed algorithm in Chapter 3, providing clarity on the inference
process and practical implementation. In Chapter 4 we began the evaluation of our model
with synthetic data to allow comparison with established methods in a controlled scenario.
Remarkably, our model reduced the runtime by up to an impressive tenfold, while achieving
near-perfect performance. This allowed us to empirically demonstrate the benefits of Varia-
tional Inference as a computationally efficient alternative to other more popular inference
methods in the field.

We believe a distinctive feature of VBVarSel is its capability to handle complete datasets
in a remarkably efficient runtime, without the necessity for pre-processing. This is of particu-
lar relevance in the context of precision medicine, where the algorithm can be deployed to
find complex relationships and patterns in high-dimensional biomedical data, facilitating the
identification of disease subtypes and relevant biomarkers. We demonstrated this through-
out Chapters 5 and 6, with an extensive number of experiments, to showcase VBVarSel’s
unparalleled speed and scalability, as well as good and sensible performance, in line with
established research.

Notably, VBVarSel uniquely integrates annealing to tackle the local-optima trap. Our
empirical findings supported the theoretical claims that establishing an effective balance
between exploration and exploitation with a time-dependent temperature schedule would
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enhance inference in multi-modal posterior landscapes. Indeed, we observed increased
robustness and adaptability to sub-optimal parameter initialisations, correlated data, and
noise and a stabilised inference with both synthetic and real data.

We began this project with an ambitious, yet clear objective: to provide a compact algo-
rithm, capable of accurately and reliably performing simultaneous clustering and feature se-
lection, with superior speed and efficiency, especially when scaling to large, high-dimensional
datasets. We now conclude this thesis with VBVarSel - an embodiment of our vision, which
ticks all the desired boxes and also uniquely introduces annealing. While the algorithm is not
perfect, limitations only pave the way for future refinements.

7.1 Limitations and Future Directions

A critical and concrete next step is the conversion of our Python-based codebase into an R
package, given the majority of the existing methods are available as such. We believe this
will also further increase its speed and efficiency.

More broadly, the methodologies and findings presented in this study, as well as limita-
tions identified in the model, open a wide range of opportunities for future research. Starting
from the clustering task, while the model showed promising and sensible results on real
data, pushing its stratification accuracy beyond a certain threshold was challenging. A future
direction could be a semi-supervised approach such as outcome-guided clustering. The idea
is to introduce a measurable response variable, such as survival time, to guide clustering and
find patterns associated with differences in outcomes. Another area for enhancement is our
choice of the covariate selection indicator. We believe allowing both a continuous or binary
indicator could offer a more nuanced understanding of each covariate’s importance, particu-
larly in datasets like TCPA, where the differences in variable salience are subtle. Finally, due
to time constraints, we were unable to thoroughly explore and implement different annealing
temperature schedules, which we leave as future work.

Looking ahead, broadening VBVarSel application across medical and biological domains
is promising. Moreover, given VBVarSel strength in handling high-dimensional data, it could
be valuable in other research areas such as Finance, for tasks like portfolio optimisation, or
Digital Marketing, for customer segmentation and content personalisation.
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Appendix A

Variational update equations

Given the word count limit, we provide only example derivations for the update of γ and δ in
Section 3.2.2. For the mixture model parameters, Section 10.2.1 in (Bishop, 2006) presents
similar derivations, but without variable selection. The complete mathematical derivation of
our model can be found in the code directory provided in the Declaration and will be made
publicly available as part of a publication for future work.

Updating γ j

Starting from Equation (2.11), we write an expression for lnq∗(γ j)

lnq∗(γ j) = EZ,Φ,π,δ [ln p(X ,Z,π,Φ,γ,δ )]+ const

= EZ,Φ,π,δ [ln(p(X |Z,Φ,γ)p(Z|π)p(π)p(Φ)p(γ|δ )p(δ ))]+ const

= EZ,Φ,δ [ln(p(X |Z,Φ,γ)p(γ|δ ))]+ const

= Eδ j [ln p(γ j|δ j)]+EZ,Φ[ln p(X |Z,Φ,γ j)]+ const

where we keep only the terms that depend on γ j. Note that using Equation (3.19), we write

Eδ j [ln p(γ j|δ j)] = γ jEδ j [ln(δ j)]+(1− γ j)Eδ j [ln(1−δ j)],

and using Equation (3.14) we write

EΦ,Z[ln p(X |Z,Φ,γ j)] = EZ[EΦ[
N

∑
n=1

K

∑
k=1

znk(γ j ln f j(xn j|Φk j)+(1− γ j) ln f j(xn j|Φ0 j))]]

= γ j

(
N

∑
n=1

K

∑
k=1

EZ[znk]EΦ[ln f j(xn j|Φk j)]

)
+(1− γ j)

(
N

∑
n=1

K

∑
k=1

EZ[znk] ln f j(xn j|Φ0 j)]

)
,
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Gathering terms in γ j and (1− γ j), we rewrite lnq∗(γ j) as

lnq∗(γ j) = γ j lnη1 j +(1− γ j) lnη2 j + const (A.1)

where

lnη1 j = Eδ j [ln(δ j)]+
N

∑
n=1

K

∑
k=1

rnkEΦ[ln f j(xn j|Φk j)], (A.2)

lnη2 j = Eδ j [ln(1−δ j)]+
N

∑
n=1

K

∑
k=1

rnk ln f j(xn j|Φ0 j)]. (A.3)

Exponentiating both sides, it follows that q∗(γ j) ∝ η
γ j
1 jη

1−γ j
2 j , and hence

q∗(γ j) = cγ j
j (1− c j)

1−γ j , (A.4)

where c j =
η1 j

η1 j+η2 j
= Eγ [γ j].

Updating δ j

Similarly, we consider δ j, and use Equation (2.11) to write down an expression for lnq∗(δ j):

lnq∗(δ j) = EZ,Φ,π,γ [ln p(X ,Z,π,Φ,γ,δ )]+ const

= EZ,Φ,π,γ [ln(p(X |Z,Φ,γ)p(Z|π)p(π)p(Φ)p(γ|δ )p(δ ))]+ const

= Eγ [ln(p(γ j|δ j) ln p(δ j))]+ const

= Eγ [γ j lnδ j +(1− γ j) ln(1−δ j)]+(d0−1)(lnδ j + ln(1−δ j))+ const

= (c j +d0−1) lnδ j +(1− c j +d0−1) ln(1−δ j)+ const

where we keep only the terms that depend on δ j and used Equations (3.19)-(3.20) for the
probability distributions over γ j and δ j. We exponentiate lnq∗(δ j) to give

q∗(δ j) = Beta(c j +d0,1− c j +d0) (A.5)

From properties of Beta distributions, it follows that

Eδ j [lnδ j] = ψ(c j +d0)−ψ(2d0 +1) (A.6)

Eδ j [ln(1−δ j)] = ψ(1− c j +d0)−ψ(2d0 +1) (A.7)

which are required to evaluate Equations (A.2) and (A.3).



Appendix B

Supporting material

Parameter initialisation

Experiment K α0 m0 j β0 j a0 j b0 j d0 c j

Synthetic [3,10] [0.1, 1] mean(X j) 10−3 3. [0.1, 1] 0.9 [0.5, 1]
C-TCGA [5,10] 0.01 mean(X j) 10−3 3. [0.01, 1] - -
TCGA [5, 8] [0.01, 0.1] mean(X j) 10−3 3. [0.1, 1] [1, 5] 1
A-TCGA [5, 7] 1/K mean(X j) 10−3 [3, 10] [0.1, 1] [0.9, 5] 1
TCPA [25, 40] 10−3 mean(X j) 10−3 3. 0.1 0.5 [0.8, 1]

Table B.1 Parameter initialisations. For some parameters we provide fixed values, for others a range of values
that worked well. We omit znk and δ j as we always sample them from the corresponding distributions.

Legend:

• K: maximum number of clusters in the overfitted mixture.

• α0: concentration of the Dirichlet prior on the mixture weights π (Eq. (3.15))

• m0 j and β0 j: mean and shrinkage of the Gaussian conditional prior on the components
mean µk j (Eq. (3.16))

• a0 j and b0 j: degrees of freedom and scale of the Gamma prior on the components
precision τk j (Eq. (3.16))

• d0: shape of the Beta prior on the covariate selection probabilities δ j (Eq. (3.20))

• c j: covariate selection indicator

• znk: cluster assignment
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Additional visualisations

Fig. B.1 PCA plot of VBVarSel stratification on TCGA data using the PAM50 plus 100 genes.

Fig. B.2 Annealed ELBO shape until convergence of VBVarSel on PAM50 set.
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Fig. B.3 Pie chart of the breast cancer subtypes in TCGA.

Fig. B.4 Pie chart of the cancer types in TCPA.
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Fig. B.5 Trace (left) and density (right) of 6 PReMiuM (MCMC) chains of the Dirichlet concentration α .
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Fig. B.6 Trace (left) and density (right) of 6 PReMiuM (MCMC) chains of the mean number of clusters K.
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(a) Alpha

(b) K

Fig. B.7 Gelman diagnostic for 6 PReMiuM (MCMC) chains. Gelman and Rubin (1992) suggests that chains
with a factor < 1.2 are likely to have converged.
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