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Abstract

In nature, many species achieve complex tasks even with individually limited cognitive 
capacity. Through diversity among members of the species, they can take on different roles 
and contribute to their overall survival. Inspired by natural systems, we are interested in 
understanding how multiple roles can be learned in multi-robot systems through diverse 
behavior between agents. Within Multi-Agent Reinforcement Learning (MARL), many 
multi-robot systems have used homogeneous policies that share the same policy for all agents. 
However, the limitations of this method are not yet properly understood. Heterogeneous 
policies give a separate policy to each agent, which increases the number of policy parameters 
proportional to the number of agents. Despite this drawback, they have recently been 
proposed as an alternative.

Within this work, we show how limiting the neural capacity of each individual agent in 
heterogeneous policies can increase diversity between agents, improve optimization, and 
provide robustness to input perturbation. Through varying neural capacity constraints, 
constraints from the environment, and scenario requirements, we additionally outline the 
fundamental issues of using homogeneous policies to learn multiple roles among agents in 
cooperative multi-agent settings.
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Chapter 1

Introduction

In biological collective systems, it is common to observe complex collective behavior arise
from groups of individuals performing simple but diverse behaviors. For example, colonies
of ants provide three prime examples. Armies of ants walk in organized lines to efficiently
transport food. Colonies of ants can cooperate to survive otherwise catastrophic floods by
creating a raft with their bodies by clinging to each others legs. Finally, ants with varying
body sizes specialize into roles: smaller ants focus on harvesting while larger, stronger ants
stand guard or clear large debris.

In each of these situations, the ant colony benefits from having more individual ants working
together. They each require complex high-level behaviors: each ant must act according to
its distinct role in the situation, and the ant must choose a role with an awareness of the
behaviour of the other ants.

Recent research in robotics has been inspired by these biological collective systems to have
robots learn to work together to achieve collective goals. Although these robots may learn
together, each of these robots has their own brain, or policy, which they use to respond
independently to their own observations in the environment. Specifically, this work is
interested in learning complex behaviors while constraining the policy complexity on each
individual robot.

Multi-agent robotic problems are classified into three types: coordination, cooperation,
collaboration. Each of these types of robot problems have an analogous problem in nature.
In coordination problems we seek to minimize interference between agents. Cooperative
robot problems involve a gain in performance through teamwork. Finally, collaborative
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problems include agents with more than one physical type (Prorok et al., 2021). For all three
types, we are interested only in scenarios where the agents share a common goal, especially
scenarios which require behavioral diversity.

Many previous works have sought to analyze the ability of agents to work together in
collective systems when each individual agent is cognitively limited. The famous flocking
agents known as “boids” can effectively simulate the behavior of flocking birds by defining
a simple set of behaviors for each agent (Reynolds, 1998). Each agent is given just three
simple rules: align to the average direction of nearby boids, move towards the center of mass
of nearby boids, and move away from boids that are too close. Despite their simple policies,
the flocks of boids beautifully coordinate their movements to appear graceful and life-like.

Although the Boids simulator can create lifelike cohesive behavior, each agent has same
behavioral rules and they are very simplistic. For most multi-agent cooperative problems,
it is infeasible to come up with a set of rules by hand for each agent. Instead, multi-agent
reinforcement learning (MARL) uses neural networks to learn policies. This work focuses
on applying the idea of neural simplicity in a setting with behaviorally diverse agents that
use neural networks to approximate their policies.

Through limiting the Lipschitz constant of the policy network, neural simplicity is imposed on
each agent. Through a series of experiments, this work shows how limiting the neural capacity
of each agent can promote or regularize diversity between agents, improve performance, and
increase robustness of the learned policy.

Additionally, this work explores how the features and specifications of each scenario affect
the required neural capacity of each agent. We provide insights into the inherent abilities of
homogeneous policies and heterogeneous policies as these specifications vary.

1.1 Contributions

The main contributions of this work can be summarized as follows:

1. A novel application of Lipschitz continuous neural networks to decrease neural capacity
of agents in multi-agent cooperative policies.
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2. A novel method for measuring diversity that more accurately captures diversity within
homogeneous policies.

3. A study of how neural constraints on heterogeneous agents can naturally increase role
diversity within multi-agent, multi-role cooperative tasks.

4. An overview of environment conditions or task requirements for which homogeneous
policies perform poorly for multi-agent, multi-role cooperative tasks.

1.2 Overview

This thesis is structured as follows:

• Chapter 2 - Background: Discusses the multi-agent reinforcement learning frame-
work, introduces terminology used to discuss role diversity in cooperative multi-agent
settings, and outlines existing methods for measuring diversity in multi-agent systems.

• Chapter 3 - Methodology: Proposes limiting the Lipschitz constant of each policy as
a method for constraining the neural capacity of each agent. Introduces a new diversity
measure that is effective for measuring agent specialization in homogeneous policies.

• Chapter 4 - Environment Conditions and Diversity: Demonstrates how agent
specialization increases when neural constraints are imposed within scenarios that
limit the size of the observation space, specifically physical space and feature space.

• Chapter 5 - Behavioral Diversity with Physical Differences: Presents the interaction
between physical differences between agents, neural expressivity constraints, and
diversity.

• Chapter 6 - Conclusions: Final conclusions are drawn about when neural capacity
constraints are beneficial to multi-agent cooperative scenarios. Summarizes insights
about heterogeneous and homogeneous policies.





Chapter 2

Background

2.1 Multi-Agent Reinforcement Learning

The problems considered in this work are partially observable Markov Games (POMG)
(Kaelbling et al., 1998; Shapley, 1953). POMG are an extension of single agent partially
observable Markov Decision Processes (POMDP) to the multi-agent setting. In POMG,
agents do not have full information about the other agents or the underlying state of the
Markov Decision Process (MDP). Instead, they must infer it through observations. A POMDP
is defined by 〈

N ,S,{Oi}i∈N ,{σi}i∈N ,{Ai}i∈N ,{Ri}i∈N ,T ,S0,γ
〉

(2.1)

where N = {1, . . .n} is the set of agents, S is the set of possible shared states, {Oi}i∈N is
the per-agent observation space and {Ai}i∈N is the continuous action space for each agent.
{Ri}i∈N is the reward function which can be per-agent or shared across agents. The reward
function is a function of the previous state, the actions taken by the agents, and the next state.

Ri : S ×{Ai}i∈N ×S → R ∀i ∈N (2.2)

The function from states to observations {σi}i∈N , σi : S → {Oi}i∈N , determines what the
agents observe given the environment state. The stochastic transition model

T : S ×{Ai}i∈N ×S → [0,1] (2.3)
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defines the probability of transitioning into the next state s′ ∈ S given the current state s ∈ S
and the agents’ actions {ai ∈ Ai} ∀i ∈ N . S0 is the distribution over initial states. The
discount factor γ controls the relative importance of immediate rewards and future rewards.

Each agent acts according to a policy πθ (oi). The policy is parameterized by θ and outputs
an action distribution ai for each agent given its observation oi. A rollout in a scenario is
defined as an instance of the N agents acting in the environment according to their policies
πi starting from a sampled initial state s ∼ S0 for T total time steps. The output action
distributions from each agent’s policy πi(·) = ai ∼N (µi,σi) are parameterized as diagonal,
uni-modal Gaussian distributions with mean µi and variance σi.

Fig. 2.1 The pipeline from state to action for a given agent.

During each time step t of a rollout, the underlying state st is passed into the observation
function of each agent σi(st) to output an observation ot

i . Each agent inputs their observation
oi into their policy πi(ot

i) to produce an action distribution at
i. Then an action zt

i ∼ at
i is

sampled from each agent and carried out. The new state st+1 is updated according to the
actions taken by each agent and the laws of physics. Given the new state, the actions of all
agents, and the previous state, each agent receives its reward rt

i = Ri(st ,{at
i}i∈N ,st+1). The

processes, shown in fig. 2.1, is repeated until t = T .

Multi-Agent Reinforcement Learning (MARL) is a popular framework for solving POMG
multi-agent robot scenarios. For all scenarios in this work, agents have a shared reward and
work cooperatively towards the same goal. There are many algorithm types in MARL, but
this project will investigate only model-free, Actor-Critic algorithms.

2.1.1 Training Multi-Agent Policies

Multi-Agent Proximal Policy Optimization (MAPPO) is a commonly used MARL algorithm
for training in environments where agents have a common reward (Yu et al., 2022). It is an
on-policy algorithm which utilizes a policy function, πθ (ot), and a value function, Vφ (st),
both represented as neural networks. MAPPO is part of the family of Actor-Critic functions:
the actor is the policy πθ and the value function Vφ is the critic. The critic evaluates the value
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of each individual state, but it also provides an overall estimate of the optimality of the actor.
Both the actor and the critic are optimized simultaneously using the PPO objective.

PPO is a policy gradient method which utilizes the objective:

L(θ) = Êt
[
min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)

]
(2.4)

where rt(θ) =
πθ (at st)

πθold(at |st)
, so r(θold) = 1 and Ât is an estimate of the advantage function at

time t. This is an adjustment to the Trust Region Policy Optimization objective (TRPO),
which is the first part of the PPO objective (eq. (2.4)). However, the second term reduces the
maximum update that can be made to the policy by clipping the objective, reducing drastic
changes to the policy.

Generally defining the action at as the collection of actions of all the agents, the advan-
tage function is At(s,a) = Qt(s,a)−V (s) the difference between the Q-value for a state-
action pair and the value function of the state. The Q-value is defined as Qπ

t (st ,at) =

∑
T
t ′=t Eπθ

[
γ t ′−tR(st ′,at ′)|st ,at

]
, where R is the reward function. In other words, the Q-value

of a state-action pair is the expected total sum of rewards after being in state st and taking ac-
tion at . Rather than directly learning the Q-value function to evaluate the advantage function,
PPO utilizes a technique called Generalized Advantage Estimator, or GAE(λ ) (Schulman
et al., 2016). This provides an estimate of the advantage function Ât at time t:

Ât = Rt(λ )−V (st) (2.5)

GAE utilizes the λ -return, which weights the average n-step returns with decay parameter λ

(Sutton and Barto, 1998). The λ return is the infinite sum of returns of a given state. This
can be made finite by considering the rewards up to a given time step T :

Rt(λ ) = (1−λ )
T−t−1

∑
n=1

λ
n−1Rn

t +λ
T−t−1RT−t

t (2.6)

λ can be used to balance the bias and variance of the value estimate, as changing λ to zero
means that only single-step rewards are considered, while making λ = 1 gives the return of a
full rollout.

MAPPO algorithm uses centralized-training decentralized-execution framework (CTDE), as
the value network is only used during execution. The policy function outputs a stochastic
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action distribution which is shown to improve performance over deterministic actions. Due
to its state-of-the-art performance on most tasks, MAPPO is used throughout this work.

The value of a shared policy is clear in a multi-agent setting. Utilizing a shared value function
means that information about how an agent’s individual performance affects the overall state
is included in the policy gradients, as the loss utilizes the shared value function and advantage
function (eq. (2.5)). However, it is not clear how to define the policy function when extending
from single-agent reinforcement learning into a multi-agent domain.

Homogeneous Policies Many MARL solutions use homogeneous policies, where a single
policy is shared by all agents. The training samples generated by each agent are pooled and
used to update the shared policy. Most solutions use homogeneous policies (Hu et al., 2022),
which can be quite limiting when learning diverse behaviors.

A common solution is to use an integer ID appended to the observations used to type each
agent, but this can be a brittle solution and the number of behaviors that this policy can
represent is still limited (Hu et al., 2022). Other works have also attempted to get around
these constraints by increasing the complexity of the action distribution, for example by
allowing the policy to learn multi-modal Gaussian action distributions (Ma et al., 2020).
However, this technique is not a reliable method for training robust cooperative multi-agent
policies because it relies on the randomness of each agents’ actions to create diversity.

Heterogeneous Policies Alternatively, heterogeneous agents each have their own policy and
they learn using only their own training examples. Heterogeneous agents do not share their
policy parameters and the gradients generated from passing their training samples into the
loss function are only back-propagated into their own policy. Importantly, the parameters
of the value function of the heterogeneous agents are still shared. Although this method
increases parameters and is less sample efficient, this can be a solution to increase the ability
for agents to learn multiple behaviors (Bettini et al., 2023a). Employing heterogeneous
policies can speed up and stabilize training and improve the optimal performance (Bettini
et al., 2023a).

2.1.2 Learning Cooperative Behavior

Scenario, Goal and Environment Each multi-agent cooperative problem is called a scenario
where the agents have an overall, shared goal within a certain world. Within a scenario, the



2.1 Multi-Agent Reinforcement Learning 9

environment is the world excluding the agents. The environment is defined by the spaces
that the agent can move through, the objects in their vicinity, and some degree of intrinsic or
aleatoric uncertainty. As with all reinforcement learning problems, the high-level goal is not
the same as the reward function {Ri}i∈N which serves as a proxy to optimize for the true
goal.

It is a well-known limitation of reinforcement learning that it is hard to define mathematical
proxy reward functions for goals defined semantically. Poor choices of reward functions
can prevent learning or cause unintended behavior (Hu et al., 2020; Skalse et al., 2022).
Multi-agent settings involve learning the behaviors for multiple agents that act independently,
which exacerbates the problem of choosing an appropriate reward function. Rather than
attempting to define the actions of each agent individually, it is often easier to define an
overall shared reward in cooperative scenarios.

Roles, Specialization and Diversity In each multi-agent scenario, agents must complete
tasks according to their role. Tasks within a scenario are defined semantically as high-
level sub-goals that must be completed to achieve the overall goal. Roles are also defined
semantically as a kind of specialization of each agent, in the same way that a role would be
described in a team of humans.

These terms best understood through an analogy to human behavior. For example, at a small
startup, each member of the company will assume a different role based on their specialized
skill set (e.g CEO and CTO). The members of the startup may have the same overall goal of
getting funding. They will allocate tasks among themselves in order to reach that goal, such
as the CTO designing their product prototype and the CEO designing the business strategy to
present to investors. It is clear that these founders should have as much diversity in their roles
and tasks as much as possible to utilize their limited man-hours most effectively. While some
choices of how they divide their time are clearly better than others, there are often many ways
that are best for how the founders of this company should allocate roles or choose tasks.

Motivated by the benefits of diversity in nature and in human teams, the concept of diversity
is also extremely relevant in multi-agent systems. Relating multi-agent scenarios back to
swarms of insects, reaching a certain level of diversity among the colony promoted their
collective survival and ability to achieve complex tasks. This work seeks to increase the
behavioral diversity between agents in multi-role scenarios. From the analogy of the two
founders, it is clear that roles and tasks are a human-interpretable version of the actions that
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the agents take, are very scenario dependent, and agents can learn very different roles and
tasks within a given scenario.

Successful Learning For a successful learning outcome in a cooperative problem, the chosen
MARL algorithm must learn to allocate agents to complete tasks necessary for the overall
goal. This requires learning (i) the optimal roles, (ii) the optimal behavior for each role, and
(iii) the optimal distribution of agents into roles.

Without any limitations, the agents have full freedom to learn any number of roles for a
given task. This motivates the study of how to shape the behavior, roles, and tasks learned by
cooperative agents.

2.2 Diversity in Multi-Agent Systems

2.2.1 Existing Methods of Learning Diverse Roles

Recognizing the benefits of behavioral diversity outlined in section 2.1.2, there are many
existing methods which increase diversity between agents. Grupen et al. (2022) utilizes
interpretable deep learning techniques developed for medicine and presents a technique that
forces agents to take on behaviors from a set of pre-defined, human-interpretable behaviors.
While this strategy is useful in a high-risk environment like medicine, it is very limiting for
robotic applications. Some effective methods enforce behavioral diversity among agents
during training through changing the optimization objective, using an information theoretic
approach Li et al. (2021) increase diversity between agents by maximizing the mutual
information between the trajectories of agents during optimization. Wang et al. (2020)
proposed a similar technique, but additionally assigned agents into roles using a stochastic
embedding space parameterized as a multivariate Gaussian distribution. These works are
effective at increasing the diversity among agents to a suitable level for the situation, but they
require changing the optimization objective of the model and the neural capacity of each
agent remains the same.

While these methods are useful, they do not limit each agents’ individual capacity. Rather,
this work is interested in understanding how the behavioral diversity among agents naturally
changes when their neural capacity is limited.
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2.2.2 Existing Diversity Measures

Measuring the diversity between agents is important to better understand the inter-agent inter-
actions and unique contributions of each agents’ actions in the world. Physical diversity, or
P-type diversity, can be measured by grouping robots based on their physical characteristics
(Bettini et al., 2023a; Prorok et al., 2016). Behavioral diversity, or B-type diversity, is much
harder to describe mathematically as roles are determined through human interpretation as
described in section 2.1.2.

Hierarchic Social Entropy (HSE) measures the behavioral difference between agents by
discretizing the action space into a set of high level tasks and computing the amount of time
that each agent spends per task (Balch, 2000). While the method used in HSE of summing
the total difference in actions is useful, requiring discrete task definitions means that it is
limited. It is also only suitable for deterministic actions.

A similar but more flexible diversity measure, Action-Based Role Difference (KL-RD)
proposed by Hu et al. (2022) measures the symmetric KL-divergence between the action
distributions of two agents at each time step (Hu et al., 2022). The measure sums the action
distributions over a time window around each time step T to get a measure of the role
difference rT

i .

rT
i =

1
2n+1

T+n

∑
t=T−n

πi(ot) (2.7)

Computing the sum of action distributions around each point in time is important to capture
similarities in actions that are periodic, which is important given that agents who follow the
same policy will often produce the same actions but at different points in time. To compare
two agents under this measure at a given time step T , the authors compute the symmetric
KL-divergence between two role differences.

dT
KL-RD(i, j) = KL(rT

i ∥rT
j )+KL(rT

j ∥rT
i ) (2.8)

This measure has a large drawback that the symmetric KL-divergence is not a distance
measure. Under KL-RD the behavioral distance between agents in a policy does not vary in
an intuitive manner and the distances between agents do not adhere to the triangle inequality,
meaning that it cannot be used to accurately compare diversity. (Hu et al., 2022) also note that
the action distribution alone does not capture the full measure of diversity between agents, as
similar actions carried out in different world states can correspond to different roles. They add
a trajectory-based distance measure which measures the total observation overlap between
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two agents. However, this measure is defined only for the specific observation type used in
their experiments because it assumes each agent has local, circular observations.

System Neural Diversity (SND) created by Bettini et al. (2023b) defines a method for
evaluating the neural diversity across heterogeneous agents. SND measures the uniqueness of
actions for the policies given the same observations. It is defined as the pairwise Wasserstein
distance between agents’ action distribution outputs for all observations collected during a
series of rollouts Ô:

dSND(i, j) =
1

|Ô| ∑
o∈Ô

W2(πi(o),π j(o)) (2.9)

This approximates
∫

oW2(πi(o),π j(o))do the total difference between action distributions
output by the policy over the entire observation space. It uses the assumption that computing
rollouts provides a representative sample of the distribution over observations. Using the
Wasserstein distance — rather than the KL-divergence or symmetric KL divergence — is
beneficial because it is a metric. The Wasserstein metric satisfies the triangle inequality,
is symmetric, and does not go to infinity when the variance of the compared distributions
approach zero. SND is a useful metric for evaluating overall diversity between heterogeneous
agents, but it has some limitations. It makes the assumption that all agents’ policies are
well trained over all other agents’ observation distributions, which may not be the case.
Additionally, this method is zero for all agents who share parameters, as it measures the
behavioral distance between two separate policies.



Chapter 3

Methodology

3.1 Neural Constraint Method

The primary goal of this work is to understand how limiting the neural capacity of each
individual agent increases their ability to specialize into roles through the perspective of
function continuity. Specifically, the neural capacity of each agent is defined by learning a
policy from a class of functions with bounded rate of change called Lipschitz continuous
functions.

3.1.1 Bounded Change in Neural Networks

A function f : X → Y is considered Lipschitz continuous if for every two real numbers
x,y ∈ X , the distance between outputs is not more than a constant proportional to the distance
between inputs. Consider two metric spaces (X ,dX) and (Y,dY ) and a function f : X → Y . If
there is a k ∈ R+ such that:

dY ( f (x), f (y))≤ k dX(x,y) (3.1)

for all x,y ∈ X , then f is a Lipschitz function on X with Lipschitz constant k. Figure 3.1
provides a visualization of the Lipschitz constant of a 2D function.
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Fig. 3.1 An example of the Lipschitz constant of a function.

Lipschitz continuity applies across function compositions. Define functions { f1, . . . , fN} that
are Lipschitz continuous with corresponding constants {k1, . . . ,kN}. Then their composition
F = f1 ◦ · · · ◦ fN has a global Lipschitz constant K upper bounded by the product of the
Lipschitz constant of each function (Ó Searcóid, 2006).

K =
N

∏
i=1

ki (3.2)

Using this property, the maximum Lipschitz constant of the network can be set during training.
Feed-forward neural networks (NN) are structured as a series of function compositions of
layers and activation functions. The global Lipschitz constant of the network can be restricted
by limiting the Lipschitz constant of each layer and activation function. The output of layer
l, y(l), is the input x(l+1) of the next layer. If Φ(l) is the activation function for layer l, the
function f (l) for layer l is given by the affine transformation:

y(l+1) = Φ
(l)(W (l)x(l)+b(l)) (3.3)

By applying the definition, it is easy to show that the Lipschitz constant of a linear layer
depends only on the norm of the weight matrix as the bias terms cancel out (Gouk et al.,
2021).

∥(W (l)x1 +b(l))− (W (l)x2 +b(l))∥p ≤ k∥x1 − x2∥p (3.4)

∥(W (l)x1 −W (l)x2∥p ≤ k∥x1 − x2∥p (3.5)
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Finally, the Lipschitz constant of this layer is the supremum operator norm of W:

L( f (l)) = sup
a̸=0

∥W (l)a∥p

∥a∥p
(3.6)

Then, the Lipschitz constant of a network with L layers denoting the Lipschitz constant of a
function f as K f is given by: as:

L−1

∏
l=0

K(l)
Φ

·K(l)
W (3.7)

If the activation for every layer Φ(l) is chosen to be 1-Lipschitz (K(l)
Φ

= 1), the global
Lipschitz constant of the network is upper bounded by the Lipschitz constant of each layer
K(l)

W = ∥W (l)∥p (Scaman and Virmaux, 2018).

In this work, we use the method presented by Kitouni et al. (2021) for the layer normalization.

W i →W i′ =
W i

max(1,K−1/m · ∥W i∥1)
(3.8)

To set the global constant to K, each layer is divided by its matrix 1-norm, which normalizes
it to be 1-Lipschitz. Then, each layer is scaled by K−1/m for a network of m layers to ensure
the product of the Lipschitz constant of all layers is less than or equal to K. The maximum in
the denominator is for numerical stability.

We constraint the 1-norm of the network, as was presented by Kitouni et al. (2021). While it
is common to choose p = 2, corresponding to the spectral norm or largest singular value of
W , computing it relies on an approximation through the power method. Instead, ℓ1 utilizes
the maximum absolute column sum norm and can be computed directly.

Each agents policy is constructed as a 3-layer MLP with the GroupSort activation function
and weight normalization as described in eq. (3.8). Most popular activation functions are
1-Lipschitz: ReLU, Leaky ReLU, Softplus, Tanh, Sigmoid, and max-pooling but are shown
to poorly approximate basic Lipschitz functions (such as the absolute value function) due
to gradient attenuation. Alternatively, the GroupSort activation function is widely used for
training Lipschitz continuous neural networks. It sorts the inputs from small to large in
groupings, so it it is gradient norm preserving and 1-Lipschitz. It is proven to construct a
universal Lipschitz approximator when used in a weight-normed neural network (Anil et al.,
2018).
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Fig. 3.2 A diagram of the policy network used in this work: a 3-layer MLP with GroupSort
activation and layer normalization.

This constraint method allows for the freedom to tune the neural capacity of each agent
to match the scenario. The goal of this project is to investigate ways in which complex
collective intelligence can be achieved by agents that are cognitively limited by decreasing
the Lipschitz constant of their policy.

3.1.2 Benefits of Lipschitz Continuous Neural Networks

Although there are numerous optimization benefits of Lipschitz continuous networks, the
smoothing effects on the network is crucial for this project. This work utilizes the smoothing
effects of constraining the global Lipschitz constant of the policy as a tool to naturally force
simpler and smoother policies on each individual agent. The primary goal of this dissertation
is to understand how this can increase behavioral diversity, cooperation, and the ability
of agents to specialize into a role. Given the numerous additional benefits of Lipschitz
continuous policies, this method is expected to improve performance, robustness, and most
importantly diversity.

Many recent works have found that regularizing the Lipschitz constant of neural networks
provides training stability and enhances optimization (Gogianu et al., 2021a; Gouk et al.,
2021; Kitouni et al., 2021). Notably, Lipschitz continuous neural networks have enabled
breakthroughs in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). GANs
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optimize two neural networks simultaneously — a generator and a discriminator — with the
goal of generating new samples that match a target distribution. The loss function rewards the
generator for producing matching samples, while the discriminator is rewarded for correctly
classifying samples as generated. When the discriminator is no longer able to distinguish
between the original and generated samples learning is successful. Without regularization,
optimizing the discriminator and the generator simultaneously often failed. When the
discriminator was regularized by reducing the Lipschitz constant, training stabilized (Miyato
et al., 2018). While the performance of Lipschitz continuous networks often improves, the
benefits have mainly helped optimization by reducing the maximum gradients in the network
(Gogianu et al., 2021b).

These findings were not within the field of reinforcement learning, but connections have
been made between optimization for GANs and optimization for Actor-Critic methods (Pfau
and Vinyals, 2016). Both model types require optimizing multiple networks simultaneously,
where one network evaluates the performance of the other. This connection indicates that
utilizing Lipschitz continuous networks for multi-agent reinforcement learning should also
improve optimization of the policy and value function. Multi-agent actor-critic suffers from
non-stationary training, as the actions learned by one agent affect the optimal actions of all
other agents. Aside from optimization benefits, smoother action functions should also limit
these issues. These optimization benefits are likely to be even more useful when considering
heterogeneous agents with many policy networks.

Lipschitz continuous neural networks also provide loose robustness guarantees. Bounding the
global Lipschitz constant of a network is a method of conservative certification. Around each
input x, a network f with global Lipschitz constant K certifies that there is no δ such that
∥ f (x+δ )− f (x)∥p ≥ K∥δ∥p showing that the network is certifiably robust around a certain
region around each input x (Cohen et al., 2019). By the definition of Lipschitz continuity,
constraining the Lipschitz constant of a policy provides robustness to observation noise and
smoothes actions across nearby observations.

Given all of these benefits, a few works have utilized Lipschitz continuous policies within
single-agent reinforcement learning. Mysore et al. (2021) constrains the global Lipschitz
constant of the network to smooth action outputs for drone flight. Kobayashi (2022) constrains
local Lipschitz constants of the policy with a similar aim but constraining the local rather than
global Lipschitz constant allows more policy expressivity and increases computational costs.
These works found that decreasing the global Lipschitz constant caused over-smoothing, but
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the method used in these works did not allow for tuning the Lipschitz constant of the network
as a hyperparameter.

The goal of this work is to investigate how constraining each agents’ policy affects their
ability to specialize into distinct roles. This involves limiting the neural expressivity of each
agents’ policy in a way that improves agent specialization. The method used to constrain the
neural capacity of each agent investigated in this work is constraining the Lipschitz constant
of the policy network.

We treat K as a hyperparameter and tune for the optimal K for a given model. This is done
by searching for the lowest K such that the diversity and robustness increase but the policy
performance does not decrease. K = 1 means the policy is isometric, and is a very strong
constraint. K in the range 2− 50 per layer was found to be optimal for many networks
(Gogianu et al., 2021a).

The terms neural capacity, neural expressivity, policy capacity and policy expressivity are all
used to refer to the global Lipschitz constant set before training. This captures the essence
that restricting the policy complexity of each agent is analogous to the limited brain capacity
of each creature in natural collective systems. Each agents’ policy is similar to a brain
as it makes decisions for the agent based on the environmental stimulus it senses through
observations.

3.2 Improved Diversity Measures

3.2.1 Wasserstein Diversity Metric

In order to accurately measure the diversity of agents in a multi-agent system, a measure that
considers both action-based and a observation-based diversity must be considered. Given
that roles and tasks are not mathematically defined, the concept of diversity between agents is
defined in terms of outcomes. Agents are behaviorally diverse when they consistently perform
different behaviors during rollouts. In this way, it is possible for homogeneous policies to
learn specialized behavior. Actions alone don’t translate to “different behaviors,” as agents
might take the same actions in different locations with completely different consequences.
For example, a robot chef must know to put a cake in the oven and not the fridge, although
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Fig. 3.3 Diagram of two agents that move into disjoint observation spaces O1 and O2,
represented as physical spaces, during a rollout in order to complete two separate tasks.

both behaviors involve the same action sequence: grab a handle, open a door, and place the
cake on a shelf.

While SND is suitable to measure heterogeneous diversity, an alternative metric is needed
to measure the specialization of homogeneous agents. Under SND-defined diversity, homo-
geneous policies have zero diversity by design. The concept of diversity for heterogeneous
agents, as measured by System Neural Diversity, is defined by integrating over the differences
in action distributions for the same observations. This metric is used to evaluate the diversity
of heterogeneous policies.

The concept of diversity for homogeneous agents can be partially defined by their ability to
separate their observation distributions such that the actions that they take during rollouts
are specialized. Although the agents use the same policy, separating their observation
distributions during rollouts is one technique that they can exploit to increase the diversity of
actions between agents to decrease functional constraints. In fig. 3.3, an example is shown
which represents two homogeneous agents moving into disjoint observation spaces during a
rollout in order to complete two separate tasks. The observation difference can be measured
through the Wasserstein distance between the observation distributions of two agents.

dobs(i, j) =W2(Ôi,Ô j) (3.9)

Similar to SND, a Monte-Carlo estimate of the observation distributions of the two agents
can be collected through rollouts.
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Fig. 3.4 A scenario depicting two agents moving between the same points at the same speed
but in opposite directions.

However, considering each agent’s distribution over observations is a poor measure of di-
versity when used alone. Consider the scenario represented in fig. 3.4. The agents have
exactly the same observation distribution, but they clearly have unique behavior. However,
the observation distribution between these two agents is zero. Therefore, the diversity mea-
surement used must take into account both observation distribution and action distributions
of the agents.

KL-RD (eq. (2.8)) is suitable for measuring the action diversity of a homogeneous policy
by summing action distributions over a moving time window, but it uses the symmetric
KL-divergence which is not a metric. Under this measure, it is not possible to directly
compare two policies or even the measure at two different time steps. Additionally, the
KL-divergence goes to infinity as the variance of the action distributions goes to zero, which
is undesirable, as mentioned by Bettini et al. (2023b) when presenting SND. Instead, the
Wasserstein distance metric is used in this work, making a metric diversity measure suitable
for both homogeneous and heterogeneous policies.

Keeping the sum over action distributions proposed by Hu et al. (2022)

rT
i =

1
2n+1

T+n

∑
t=T−n

π j(ot)
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the distance measure can be updated to become the Wasserstein Role Diversity measure
(Wass-RD):

dT
Wass-RD(i, j) =W2(rT

i ,r
T
j ) (3.10)

This modified measure is useful to understand the action distance between agents, but it is
still limited by the fact that it does not consider the observation distance between agents. In
order to present a measure of diversity that combines both, we present a new method in the
next subsection that accomplishes this goal.

3.2.2 Ratio Measure of Diversity

We propose a new method for measuring diversity dπ that denotes the ratio between the action
distribution and the observation distance between two observations for a single homogeneous
policy π .

dπ(oi,o j) =


W2

(
π(oi),π(o j)

)
∥oi −o j∥

if oi ̸= o j

∞ otherwise
(3.11)

dπ is the Wass-RD action difference weighted by the distance between the two compared ob-
servations. While not perfectly scenario-agnostic, this ratio can provide a point of comparison
between the behavioral diversity of policies in two different scenarios.

The ratio diversity as formulated measures the diversity between two observations. This
measure can be used to diagnose the role diversity between two agents by computing the
average dπ across all pairs of observations in a set of rollouts, averaged across a set of rollouts.
Assuming total observations |O| per agent and pairs (o1,o2) such that o1 ∈ O1 and o2 ∈ O2:

1
|O|2 ∑

(o1,o2)

dπ(o1,o2) (3.12)

The ratio diversity for agents i and j is the sum of the ratio diversity for all pairs of observa-
tions in the set of pairs of observations generated by agent i and agent j during rollouts.

This ratio can also be used to evaluate an entire policy by taking the maximum dπ over all
pairs of observations such that the observations come from two different agents.

max
oi,o j : i ̸= j

dπ(oi,o j) (3.13)
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Fig. 3.5 Diagram showing examples of observations with low dπ , high dπ , and dπ = ∞.

Throughout this work, this ratio measure of diversity will be used to evaluate the diversity of
homogeneous policies alongside the Wasserstein Role Diversity measure. For heterogeneous
policies, the Wasserstein Role Diversity measure will be used to test diversity in action
outcomes between agents and System Neural Diversity will be used to measure the policy
difference between heterogeneous agents.

3.2.3 Connecting Diversity and Robustness

The ratio between the observation and action differences per agent for a homogeneous policy
is an important indicator of the robustness of learning multiple roles given the task and
environmental conditions. Taking the maximum dπ during a series of rollouts provides a
lower bound for the Lipschitz constant of the policy defined by the Wasserstein metric and
p-norm between the observations at a single time step. This ratio provides a secondary
method for understanding the neural expressivity of a homogeneous policy, aside from the
constant K set before training, which is suitable for both unconstrained and constrained
policies.

In a noise-free system, a high ratio between action- and observation-difference can be
beneficial to represent the optimal behavior for each observation exactly. However, a scenario
that requires a high ratio within a homogeneous policy indicates a lack of robustness from
the perspective of conservative certification and Lipschitz continuity. When this ratio is high,
agents can accidentally “jump” from one behavior to another that is drastically different.
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When dπ goes to infinity, it indicates an impossibility of role specialization between agents
under π .1

A high ratio indicates that the Lipschitz constant, defined by the Wasserstein distance between
action distributions and the p-norm used to measure observations, is high. This indicates a
high risk of large behavioral shifts for each agent during a rollout, which can destabilize both
training and executions.

This idea is the primary motivation behind constraining the neural capacity through con-
straining the Lipschitz constant of a policy. Tasks which require a high dπ to solve optimally
should not be solved with a homogeneous policy and should instead be broken down into
multiple tasks with lower dπ across heterogeneous policies. Although the Lipschitz constant
constrained through the neural capacity restriction is not defined using the same distance
measures, these two Lipschitz constants are proportional.

3.3 General Problem Formulation

This work will exclusively consider purely cooperative multi-agent robot scenarios. This
means that all agents share the same goal and will have shared reward. Each robot has
holonomic drive, meaning that they allow motion in any direction in the x-axis or y-axis
without restriction. This facilitates focus on the high-level aspects of MARL. The action
space Ai for each agent i ∈N is a two-dimensional force vector

Ai = {u := (ux,uy) | u min
i ≤ u ≤ u max

i } (3.14)

where the individual force limits umin
i and umax

i represent the minimum and maximum output
force for agent i motors.

Every agent is represented as a circular a ground robot with physical type denoted Pi =(mi,ri)

determined by its mass mi and body radius ri.

The observations that the agents receive are their own positions and velocities as well as the
relative positions and velocities of the other agent. For two agents, this is a good method for
passing information between agents about their locations, although for this method to scale

1Notice that as observations are not evaluated based on time steps, agents do not need to be receive the same
observations at the same time for dπ to reach infinity.
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Fig. 3.6 Diagram representing the agents used in this work. Agents have physical type
P = (mi,ri) determined by their mass mi and radius ri. Every agent has a two-dimensional
action at

i = [ut
x,u

t
y] representing the force output in the x and y directions.

an alternative method for communication should be considered.

oi =
[

p(i)x , p(i)y ,v(i)x ,v(i)y

]⊕
j ̸=i

[
p( j)

x − p(i)x , p( j)
y − p(i)y ,v( j)

x − v(i)x ,v( j)
y − v(i)y

]
(3.15)

Additionally, the addition of relative observations mean that the Lipschitz constant of the
network for each policy depends on only the relative distance between agents, which still
makes sense for this application. The details of this proof are shown in Appendix A.1.

3.4 Training Pipeline

The policy constraints are algorithm agnostic, and we can use any MARL training framework
that we choose. Most experiments are trained with multi-agent PPO (MAPPO). The MAPPO
implementation used for this work is modified from the implementation provided within
the VMAS platform described below (Bettini et al., 2022). During each iteration, a batch
of samples are collected with the current model parameters and stored in the replay buffer.
For each epoch, the entire batch of collected data is used to train. To run each epoch, the
samples are randomly divided into minibatches and sampled from the replay buffer. For each
minibatch, the PPO-Clip loss is computed to generate gradients. The policy is optimized
using Adam. Once the epochs are finished, the collector updates its copy of the model
parameters with the updated model parameters. Then these parameters are used to collect a
new batch of data from the environment. This repeats until training is complete.

the centralized critic and each agent’s policy πi are both represented by 3-layer multi-layer
perceptrons (MLPs). More complex networks can be used, but the scenarios discussed are
relatively simple and deeper networks are not needed. Homogeneous agents who share
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Fig. 3.7 An overview of the training process using the MAPPO algorithm on the VMAS
platform.

a policy are represented by learning a single policy πi = π and each agent’s observations
are fed in as a batch dimension. Layer normalization is only included within the policy
network and the centralized critic is not constrained. The value function is only involved in
the optimization process, not during execution after training. Once the agents are trained, the
critic is not used by the agents to make decisions. Therefore, is not considered part of their
individual neural expressivity.

There are numerous multi-agent simulation platforms. Some multi-agent simulators are not
designed specifically for robotics and use a videogame-like setting such as the commonly
used StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). Others are designed
specifically for robotics such as Multi-Agent Mujoco (de Witt et al., 2020), Gym-pybullet-
drones (Panerati et al., 2021), and the Particle Robots Simulator (Shen et al., 2022). However,
these simulators are not vectorized and are for specific applications.

For this work, experiments are trained using the Vectorized Multi-Agent Simulator (VMAS)
developed by Bettini et al. (2022). VMAS has an underlying physics engine, each environ-
ment is fully customizable are there are a wide range of baseline scenarios. For algorithms
like PPO which iteratively collect data and train in a supervised fashion, VMAS can reduce
the sampling time by vectorizing the simulation process. Most environments completed
sampling each iteration with 300 steps of 200 environments, or 60K training samples, in
under 20 seconds. The environment can still have high computational cost to run the physics
computations per step — such as computing distances between the objects in an environment
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with collisions — which can cause a bottleneck in sampling. For this reason, scenarios which
require collision detection between more than a few objects are avoided.

This experimental setup is utilized for the remainder of the thesis. Now the key insights of
this work are introduced in the coming chapters.



Chapter 4

Environment Conditions and Diversity

Within this chapter, we show that in scenarios that require multiple roles, learning many
simple heterogeneous policies can be a considerably better solution for solving cooperative
multi-agent tasks than learning one, complex homogeneous policy.

Further, we provide an understanding how neural expressivity requirements of the policy vary
depending on environmental conditions, specifically limited feature space and observation
noise. These insights can be used to diagnose when heterogeneous policies are beneficial
over homogeneous policies.

4.1 Introducing the Left-Right Scenario

We begin with a simple scenario. The purpose of the Left-Right scenario is to show how
increasing the space between agents decreases the required neural expressivity of the policy.

Treating the center of the world as (x = 0,y = 0), the agents are spawned at distance d apart
along the vertical line x = 0, with observation noise determined by σi = σ . The two agents
each have a goal set before training at (−1,0) or (1,0). Both agents have the same physical
type. Figure 4.1 provides a graphical depiction of the scenario and the scenario parameters
are described in table 4.1.

The agents get reward proportional to their distance from goal at each time step. Agents are
considered “on goal” when their body overlaps with the goal when the distance between their
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Fig. 4.1 A graphical overview of the left-right scenario.

centers is less than the sum of their radii. When both agents are on their respective goal, they
get a final reward Rg = 0.01.

RLeft-Right = ∑
i∈N

∥⃗gi − p⃗i∥+Rg · ∏
i∈N

1(∥⃗gi − p⃗i∥< rg + ri) (4.1)

At the start of the scenario, the agents are spawned symmetrically along the vertical axis
x = 0. The optimal policy corresponds to both agents moving directly towards their goal in
opposite directions. To perform optimally, they must also slow down to a stop on the goal
position and minimize oscillations over the goal. In this problem, none of the bodies can
collide, so the agents can drive through each other.

Initially, both agents are spawned close to the origin at distance 2×10−2 apart. Despite the
fact that this distance is less than the agent radius, both heterogeneous and homogeneous
models can learn the optimal policy. However, learning is be more difficult for homogeneous
policies. The training samples for the the two agents at the start of training will be overlapping,
but the agents will optimize the policy in different directions.
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Left Right Scenario Configuration

Reward Type Shared

Position Reward ∑i∈N ∥gi − pi∥

Goal Reward Rg = 0.01

Goal Positions [(−1,0),(1,0)]

Goal Characteristics Sphere, radius rg = 0.05

Collisions Possible No

Num Agents 2

Agent Mass mi 2.0

Agent Size ri 0.15

Spawn Noise 0

Vertical Spawn Separation 0.02

Table 4.1 The configuration of the Left-Right scenario.

4.1.1 Training with Neural Constraints

With a close spawn distance, it is hard for the homogeneous agents to learn the optimal policy
and reach their respective goals. The performance of the unconstrained homogeneous policy
is much lower than the performance of the unconstrained heterogeneous policy, shown in
fig. 4.3. Similarly, the training curves of the heterogeneous and homogeneous policies in
fig. 4.2 show that the homogeneous agents take longer to train and have more variance across
the three different models.

Furthermore, fig. 4.3 shows the effects of the neural capacity constraints on both the homoge-
neous and heterogeneous models. Aside from the optimization difficulty that this scenario
presents for the homogeneous agents, the required behavior is simple. Through these perfor-
mance plots, we see a benefit of limiting the neural expressivity within both homogeneous
and heterogeneous models. The homogeneous model, although it takes more iterations to
converge to the optimal policy (fig. 4.2), receives a substantial boost in performance with
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Fig. 4.2 Training curves showing the average reward per time step over 100 training iterations
of heterogeneous and homogeneous policies in the Left-Right scenario with spawn distance
2×10−2.

the neural constraints of K = 50 and K = 150 applied and the homogeneous policy almost
reaches the same level of performance as the heterogeneous policy.

Through these performance and training plots, the benefit of heterogeneity in this scenario is
clear. The training plots are much smoother and the policies converge more quickly. However,
it is not yet clear whether the neural expressivity constraints have improved the heterogeneous
policy, as the performance remains relatively unchanged. Through measuring the diversity
and robustness to observation noise of the constrained and unconstrained policies, we can
understand the benefits of limiting the policy expressivity.
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Fig. 4.3 The average total reward of homogeneous and heterogeneous policies in the Left-
Right scenario starting with a spawn distance of 2×10−2, averaged over 300 environments
with 100 steps each over 200 rollouts.
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Diversity Increase under Neural Constraints

(a) Homogeneous Wass-RD (b) Homogeneous Ratio diversity dπ

(c) Heterogeneous Wass-RD (d) Heterogeneous SND

Fig. 4.4 Wass-RD for both policy types with varying neural constraints in the Left-Right
scenario with spawn distance 2× 10−2, averaged over the steps of a rollout for different
neural constraints over 200 rollouts with 300 environments each.

Under neural constraints the heterogeneous agents increase diversity both according to
System Neural Diversity (SND) (fig. 4.4d) and Wasserstein-Role Difference (Wass-RD)
(fig. 4.4c). There are only two agents and the actions are simple, so by considering the plot
of the average Wass-RD throughout a rollout, we can separate the actions of the agents into
stages fig. 4.4c. From steps 0 to 50, the agents immediately move in opposite directions,
starting with action diversity of over 4. This action diversity remains relatively constant until
they near the goal, when they slow down and the Wass-RD value decreases as their force
output goes to zero. Then the agents apply a small force in the opposite direction to come to
a stop on the goal. With neural constraints, the agents start with higher initial action diversity
and the action difference changes more smoothly, reducing speed more gradually. Rather
than immediately applying an opposite force, they slow down more gradually on the goal.
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The homogeneous policies also increase in diversity, measured through the average Wass-
RD (fig. 4.4a) and average ratio diversity (fig. 4.4b). From fig. 4.3, we know that the
homogeneous unconstrained policy does not perform well. Similar stages of actions are
visible in the unconstrained homogeneous policy to the heterogeneous unconstrained policy,
but the initial action distribution between agents starts near zero and the agents have much
more variance in their actions across different rollouts. Instead, under the neural constraints,
the agents are able to learn a policy with artificially increased diversity which is much higher
at its maximum peak than the heterogeneous policy. This shows how homogeneous policies
can also take advantage of neural constraints to increase role specialization.

Finally, all plots show that with K = 1, both models exhibit over-smoothing and do not
learn the optimal policy. Physically, it makes sense that a Lipschitz constant of 1 is too
strong of a constraint for this scenario as it does not allow the agents to quickly decrease
force output when they reach the goal. Additionally, the homogeneous policy is forced to
output similar actions for both agents when they are at the starting position, removing role
separation between agents. The metric diversity fig. 4.4b shows that the metric diversity
throughout rollouts is constant and low and the Wass-RD shows action difference near zero.
On the other hand, fig. 4.4c and fig. 4.4d show that the hom heterogeneous policies still
display unique actions, albeit less diverse. This shows that the neural expressivity of the
homogeneous policy must be higher than the heterogeneous policy for agents to specialize in
this scenario.

4.2 Changing Environment Conditions

4.2.1 Modifying Left-Right: Spatial Constraints

Within the previous section, we discussed how neural capacity constraints can affect learning
with homogeneous and heterogeneous agents. We found that both policies improved under
neural constraints, but heterogeneous policies performed better and had higher diversity
between agents. In this section, we vary the scenario parameters to first show scenarios where
homogeneous policies may be a better choice. Then, we demonstrate when heterogeneous
policies are necessary by showing scenarios where it is not possible for homogeneous policies
to learn the optimal policy.
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4.2.2 Increasing Spawn Separation

From the perspective of reinforcement learning, the increase in spawn distance makes the
scenario harder as the agents have to travel farther to reach their goal. The formulation of the
GAE (eq. (2.5)) uses an exponentially weighted sum of rewards to estimate the value of a
given state. When it takes more time steps for agents to reach the final goal, the strength of
the goal reward is limited by the exponential decay factor λ . Increasing the distance to goal
while keeping the final goal reward fixed slightly decreases the reward signal at the start of
the rollout.

Despite this, as the spawn distance between agents increases, the scenario becomes easier for
homogeneous policies: as the agents are not required to interact at all and their observation
regions can become disjoint. This allows the policies to learn diverse behavior because the
agents are less limited by the functional constraints; the agents can optimize different regions
of the policy input space to match the differing behavior. Figure 4.5 shows the training
curves with the different spawn separations. The heterogeneous agents are relatively invariant
to the starting position, with slight increases corresponding to the distance to goal, while
homogeneous agents benefit from sharing parameters as the distance increases.

Figure 4.6 shows that the performance of the homogeneous policy increases as the spawn
separation increases. However, the homogeneous policy does perform worse with no con-
straints at all distances, likely due to poor optimization. Heterogeneous policies benefit from
neural constraints most when the spawn separation is increased, as the neural smoothness
constraints help with generalization of the training samples. Specifically for K = 1, we can
see how the homogeneous policy improves as the neural expressivity requirements of the
scenario are relaxed.

4.2.3 Degenerate Case: Zero Spawn Distance

In the previous section, we discussed how as the spawn distance between agents decreases,
the required neural expressivity must increase. Heterogeneous agents divide the required
neural expressivity among different agents. For example, when two people try to remember a
phone number, the chances that they remember the number correctly is massively increased if
they each remember half rather than both memorizing all of the digits. Instead, homogeneous
agents must contain all of the required neural expressivity in a single policy.
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(a) Homogeneous policies.

(b) Heterogeneous policies.

Fig. 4.5 Training curves showing the average reward per time step over 100 training iterations
of both policy types in the Left-Right scenario with increasing spawn distances.

Fig. 4.6 Performance of both policy types showing the average total reward after 200 rollouts
on 300 environments each in the Left-Right scenario with increasing spawn distances.
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Fig. 4.7 Training curves showing the average reward per time step over 100 training iterations
of both policy types in the Left-Right scenario with zero spawn distance.

In fig. 4.7, it is clear that with a spawn distance of d = 0, the homogeneous agents are not able
to make meaningful actions when starting at the same position. The agents are physically the
same and have the same sensor function σ , so each agent will always output the same action
distribution at the start when there is no observation noise.

This shows a basic, but fundamental issue with homogeneous policies. Homogeneous policies
are functions, so they can only ever output a single action distribution for each observation.
This action distribution can be made multi-modal or high variance, but that requires that the
agents rely on stochasticity to act according to their role, which is a very unreliable solution.
Further, it is unlikely that the agents will be able to learn the optimal policy if they cannot
reliably sample unique actions at the start of rollouts, preventing them from learning the
policy in the rest of the space.

With zero spawn separation, the observations at time step t = 0 of both agents are the same:
ot

1 = ot
2. Therefore, the ratio diversity measure dπ goes to infinity. This represents the

“impossibility” of learning a stable policy homogeneously that encodes multiple roles.

Alternatively, it is clear that heterogeneous agents can easily learn the optimal policy. Agents
with the same observations can output independent action distributions, allowing heteroge-
neous agents to be much more expressive with the same neural capacity. This is a necessary
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tool to learn multiple unique roles. Additionally, the diversity ratio is considered for a single
agents’ policy only. As no two agents in the scenario act with the same policy, there is no
longer an impossible condition that the agents must meet.

Through these results, we expose fundamental problems with using homogeneous policies to
learn multi-agent cooperative policies in environments with limited space between agents.

4.3 Introducing the Give Way Scenario

Fig. 4.8 A diagram depicting the Give Way scenario.

The “Give Way” Scenario depicted in fig. 4.8 is an extension of the Left-Right scenario. Now,
the agents must move through a narrow corridor to reach their goal at the other end of the
corridor. However, only a single agent can pass through the corridor at a time. Therefore, at
least one agent must “give way” and move into the wider opening to let the other agent pass
before reaching its goal.

This scenario extends the insights about spatial constraints and tests the neural capacity
constraints in an environment which requires more complicated actions and behaviors than
the Left-Right scenario. The scenario uses the same reward function RLeft-Right in eq. (4.1).

This scenario is very hard for homogeneous agents to solve, and often the agents reach the
end of the corridor then turn around and begin to move back into the center of the corridor to
give way once again. There is a slight performance improvement gained from the constraints
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Give Way Scenario Configuration

Position Reward ∑i∈N ∥gi − pi∥

Goal Reward Rg = 0.01

Goal Positions At the ends of the corridor

Goal Characteristics Sphere, radius rg = 0.05

Collisions Possible Yes

Num Agents 2

Agent Mass 2.0

Agent Size ri 0.15

Agent Actions at
i ut

x,u
t
y

Table 4.2 The configuration details of the Give Way scenario.

in the homogeneous policies. Heterogeneous agents can very easily solve this task for all
neural constraint levels, shown in fig. 4.9.

4.3.1 Diversity with Limited Physical Space

The Wass-RD of each policy in fig. 4.10 shows that under neural constraints, the homoge-
neous models become less diverse, leading to the decline in performance visible in fig. 4.9.
Meanwhile, the heterogeneity of all of the heterogeneous models increases with the con-
straint.

Through the Wass-RD plot, the three stages of the policy are once again visible. Steps 1 to
100 correspond to agents moving through first segment of the corridor. Both homogeneous
and heterogeneous policies can complete this step. Then, around 100 steps, the heterogeneous
policies demonstrate the “give way” behavior, which causes a drop in diversity while the
agents slow down and utilize the larger section of the corridor. Finally, diversity increases
again as the agents reach the end of their corridor and settle into a final resting position
against the wall, sometimes bumping into the wall causing oscillations. In the homogeneous
W-RD plot, these three stages are less clear. Without the constraint, after the third stage the
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Fig. 4.9 The average reward over 200 rollouts of the three models trained in the Give Way
scenario. The error bars show the min and max average value for the three models.

Fig. 4.10 The Wass-Role Diversity for each time step in the Give Way scenario, averaged
over 200 rollouts over 300 environments each over 3 seeds.
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Fig. 4.11 Demonstration of how homogeneous policies can take advantage of different areas
of observation space. Only the ends of the corridor are visualized.

agents continue to increase diversity once again, indicating that they move back towards the
other end of the corridor, repeating the cycle shown during the first segment. With K = 500,
the variance of diversity is very high, indicating that some of the policies learn the optimal
policy, while others do not. When K = 150, it is clear that the policy breaks down, as the
agents do not exhibit a second cycle, and they often get stuck at the center, unable to find a
policy where they move across.

Something that is not visible in this plot, but is an interesting phenomenon is that often
homogeneous agents under the neural capacity constraints utilized the observation space
in creative ways. For example, the heterogeneous policies that successfully trained to get
agents to reach the opposite end of the corridor often forced agents to output velocity nearly
perpendicular to the wall. This allowed them to use a different area of the observation space
to complete their goal, as the velocity of the agent during the first step had been parallel to
the corridor. This is shown through a diagram in fig. 4.11.

While it is clear from the plot of the Wass-RD for the heterogeneous policy fig. 4.10 that
the diversity increases as the neural constraints are applied, however, from the plot of SND
fig. 4.12b, it becomes even more clear as it increases for different neural constraints. As
the SND measures the difference between action outputs for the two policies for the same
observation, this is a stronger indicator of overall diversity between heterogeneous agents
than Wass-RD.
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(a) Ratio Diversity dπ , Hom. (b) SND, Het.

Fig. 4.12 Diversity with different constraint levels in the Give Way scenario for each time
step, averaged over 200 rollouts.

For homogeneous agents, the decrease in neural expressivity under constraints is visible
through the ratio diversity dπ . It peaks sharply as the agents move near each other without
constraints. As the constraint is increased, the spike disappears. The neural constraints
limit the maximum ratio diversity of the policy, making it difficult or impossible to learn the
optimal, high peak.

4.3.2 Limits on Physical Space and Robustness

In section 3.1.1, we connected Lipschitz continuity and conservative certification. Although
the overall Lipschitz constant of these networks is relatively high, we are interested in testing
whether constraining the Lipschitz constant of each agent’s individually policy translates to
an overall improvement in robustness to input perturbations for the system.

To test this theory, we inject uniform observation noise of varying levels. The results
are shown in fig. 4.13. The heterogeneous model indicates slightly better robustness to
observation noise under the constraints for both K = 150 and K = 500 due to the increased
diversity of the agents and the increased smoothness in their policies. Homogeneous agents
with constraints also do not degrade under noise as much as the unconstrained policy. K = 500
is the best constraint level for this policy because it does not degrade performance compared
to the unconstrained policy and demonstrates robustness to even uniform noise of level 0.5,
which is high for the size of the environment.
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Fig. 4.13 The performance of the Give Way models with different Lipschitz constants levels
under uniform noise.

It is likely that using a higher Lipschitz constant for the homogeneous policy in this case
would improve performance over the constants shown, but the heterogeneous policy per-
formed much better both in the noise-free case and under uniform noise. Therefore, we can
conclude definitive benefits of heterogeneous policies over homogeneous policies in this
scenario. This confirms the insights from the Left-Right Scenario that decreasing physical
space in the environment is more difficult for homogeneous agents.

In the final section of this chapter, we consider how heterogeneous and homogeneous policies
compare when the spatial limits imposed on the agents from the scenario are decreased by
meaningfully increasing the feature space.

4.4 Understanding Explicit Indices

4.4.1 Modifying Give Way: Explicit Goal Location

In this section, we investigate whether artificially increasing the richness of the observations
of the homogeneous agents can improve agent specialization. Clearly, without an explicit
index, the homogeneous agents were not able to specialize into roles in the Give Way scenario
as described in section 4.3.
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Appending explicit integer IDs to each agent is a common practice that has been used
with homogeneous policies to improve diversity (Christianos et al., 2021; Hu et al., 2022).
Although this technique increases agent specialization of homogeneous policies, it is not
a perfect solution as it has been shown to break down quickly with the number of agents.
Further, integer IDs do not make it clear how agents should share their knowledge, as the ID
has no real meaning in the scenario. Rather than appending an integer index as many prior
works have done, we append the goal position for each agent. This is a much better method
for differentiating agents explicitly, as it can change continuously within the environment
space. It can benefit learning for all agents as it provides them with knowledge of how to get
to a specific goal position that is not dependent on the particular agent that receives this goal
location.

4.4.2 Performance Improvements

When the relative goal position between the agent and its goal is appended to the observation,
the performance of the homogeneous agents drastically improve, shown in table 4.3. In fact,
the homogeneous agents perform better. With the goal position included in the observations,
much stronger neural constraints can be used for both the homogeneous and heterogeneous
agents than when the goal position is not included. With K = 1, both agents have almost no
change in performance.

Performance in Modified Give Way

Policy Type Lip Constant Avg Total Reward Std.

Hom. 1.0 9.539 2.24e-02

150.0 9.729 3.57e-03

Unc. 9.727 1.20e-02

Het. 1.0 9.553 2.93e-02

150.0 9.689 4.30e-02

Unc. 9.644 5.00e-02

Table 4.3 Average total reward across 200 rollouts for models trained with the goal position
appended to the observations in the Give Way scenario.
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With the goal position appended to the observations, a number of conditions contribute
to homogeneous policies performing better than heterogeneous policies. First, now the
homogeneous agents can take full advantage of their shared training examples. Rather than
causing instability as the updates from one agent directly opposing the other, the updates
from both agents can be used in conjunction to make the policy better. Additionally, both
heterogeneous and homogeneous policies improve performance over the models without the
goal position provided.

4.4.3 Robustness and Neural Constraints

Fig. 4.14 Average total reward across 200 rollouts for models trained with the goal position
appended to the observations in the Give Way scenario for different amounts of uniform
noise injected into observations between 0 and 0.5.

With the explicit goal position appended to the observation, the neurally constrained agents
are now limited in behavior based on distance to the goal position. This limits the benefits of
neural constraints. Supporting this, with the explicit goal index appended to the observations,
the heterogeneous policy without neural constraints now performs the best under uniform
observation noise, shown in fig. 4.14.

Additionally, due to the importance of the goal location, it may be expected that the policies
of homogeneous agents break down more quickly under injected uniform noise. For the
unconstrained models, the heterogeneous model is more robust to noise than the homo-
geneous model, still showing some benefits of heterogeneity although the homogeneous
model performs slightly better in the noise-free case. On the other hand, the constrained
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Fig. 4.15 Average dπ for the homogeneous policy in the Give Way scenario with the goal
position explicitly given.

homogeneous models perform slightly better under noise than the heterogeneous ones, with
the most robust policy being the homogeneous model with constraint K = 150.

4.4.4 Neural Constraints and Diversity

Following the insights from injecting observation noise into the policies and testing robustness
to input perturbations, we examine the changes in diversity for the different policy types
under neural constraints.

The homogeneous policy with the goal location appended can utilize similar neural capacity
with the constraints and without, shown in the plot of the average ratio diversity shown in
fig. 4.15. In fact, with K = 150, the diversity among the agents actually peaks higher than
for the unconstrained policy. Given that the level of ratio diversity is still low, this does not
indicate a lack of robustness. Overall, the ratio diversity of these policies are ten times smaller
than the ratio diversity that was required in fig. 4.12a without the goal position appended.

For both policies, the changes for the Wass-RD between the unconstrained and constrained
policies indicate over-smoothing from the K = 1 policy, however this is less-so for the
homogeneous policy. The SND among agents makes most sense for the optimal policy at
K = 150 which correlates with the increase in performance.
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Fig. 4.16 Average Wass-RD across 200 rollouts with 300 environments each over 300 steps
per environment, for models trained with the goal position appended to the observations.

Adding features to the observations which are continuous in the environment and aid agents
in specialization can improve the ability of homogeneous policies to specialize.

4.5 Concluding Insights

In this chapter, we demonstrated how imposing neural constraints was beneficial to learning
cooperative multi-agent policies with agent specialization. The the Lipschitz constant of the
policy networks were properly tuned to the given the scenario, the neural constraints were
showed to increase diversity.

Despite the fact that homogeneous policies can learn the optimal policy in many cases, there
are specific degenerate cases where homogeneous policies cannot learn the optimal policy.
Increasing the feature space of the agents can be an useful technique to model multiple
behaviors. However, adding features to the observation space of the agents may not be
suitable for every environment because the features should be continuous and relevant to the
goals of the agents in order to support training.

When the environment configuration places limits on the agents in terms of physical space or
observation noise, heterogeneous agents should be heavily considered to model multiple roles,
as heterogeneous agents are not limited by functional constraints. Further, heterogeneous
agents under cognitive limitations improved in robustness, optimization and performance.
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Fig. 4.17 Average SND across 200 rollouts with 300 environments each over 300 steps per
environment, for models trained with the goal position appended to the observations.





Chapter 5

Behavioral Diversity with Physical
Differences

In this chapter, we explore how physical difference between agents can be utilized when
learning diverse behavior.

5.1 Introducing the Two-Mass Scenario

Building off of the insights from the previous chapter, the Two-Mass scenario is designed to
test the learning capabilities of heterogeneous and homogeneous policies when the agents
have different physical types. The two agents are spawned randomly from a uniform
distribution within a square region with side length d. The first agent has mass in the range
[1.5−2.5] and the second agent’s mass is in the range [3.5−4.5], chosen randomly at uniform.
The goal of the scenario is to maximize the speed of a single agent while minimizing energy
cost.

R = max
i∈N

{vi}−0.17 · 1√
2 ∑

i∈N
∥u∥ (5.1)

In the Two-Mass scenario, the agents are rewarded for maximizing the speed of a single
agent while minimizing their overall energy expenditure. This means that the heavier agent
should not move at all, while the lighter agent should output maximum force. For simplicity,
the agents are limited to only move horizontally u = ux. To solve this scenario optimally, the
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Fig. 5.1 A diagram describing the Two-Mass scenario environment.

agents must specialize into either the role of the lighter agent (output a non-zero force) or the
role of the heavier agent (output no force).

The optimal policy requires strictly unique behavior from each agent. For agents to behave
optimally, the required policy is very simple. In fact, the optimal force output for each agent
is constant:

u (Heavy)
x = 0, u (Light)

x = u opt

While the optimal policy per agent in this scenario is extremely simple, only heterogeneous
agents can take advantage of this simplicity by learning only one behavior per agent. Through
training, the heterogeneous policy can learn the best policy for the corresponding physical
type because the physical difference is clear based on the observations of each agent and the
difference in reward.

Homogeneous agents cannot take advantage of this simplicity and must learn which ob-
servations under the given policy are only observed by the light agent O(Light) and which
observations are only observed by the heavy agent O(Heavy) so that π(o1)≈ 0 for o1 ∈O(Light)

and π(o2) ≈ u opt for o2 ∈ O(Heavy). Between these regions, the policy must learn actions
which will cause the agents to behave differently according to their physical type to separate
the observations that they might see during a rollout. Then the difference in observation
distribution for each agent can be used to specialize. Homogeneous policies must be much
more complex, and must have high neural expressivity.
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Two-Mass Scenario Configuration

Reward Type Shared

Max Velocity Reward maxi∈N {vi}

Energy Penalty − 1√
2 ∑i∈N ∥u∥

Energy Penalty Coefficient 0.17

Collisions Possible No

Num. Agents 2

Agent Mass m1 ∼ U(1.5,2.5)

Agent Mass m2 ∼ U(3.5,4.5)

Agent Radius 0.15

Agent Actions at
i = [ut

x,0]

Spawn Region d = 1

Table 5.1 The configuration of the Two-Mass scenario. The agents are the same physical
type. The agents get reward proportional to their distance from goal at each time step. When
both agents are on their respective goal, they get a final reward Rg. The goal per agent is set
before training.

5.1.1 Training Two-Mass

This high neural expressivity requirement is shown in fig. 5.2. As the Lipschitz constant is
decreased, the homogeneous policy breaks down, while the heterogeneous policy improves
under a lower Lipschitz constant. Heterogeneous polices increase performance under these
constraints as the policy is forced to output more similar actions for each observation for
each agent. Homogeneous polices decrease performance under all constraints and increasing
the strength of the constraint is correlated with a decrease in performance.

Figure 5.3 shows the difference in policy plots between the homogeneous and heterogeneous
agents. In fig. 5.3a, around the line v(Light) = v(Heavy), the policy gives both agents a small,
equal amount of force. Once the speed of a single agent increases more than another, the
output force quickly increases for only the agent with higher speed. This corresponds to
the optimal homogeneous policy. The policy must output the same action for the same
observation per agent, so it is forced to be symmetric for all agents. With a strong constraint
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Fig. 5.2 Mean total reward in the Two-Mass scenario of both policy types under different
neural constraints. Three different models are trained for each lip constant for 500 iterations.
The mean total reward is averaged over 200 rollouts over 200 environments per rollout per
model. The error bars show the minimum average and maximum average across the three
models.

of K = 1 shown in fig. 5.3b, the policy is overly smoothed and outputs similar force to
both agents even when their velocities are different. In contrast, fig. 5.3c shows that the
heterogeneous policy simply outputs a non-zero constant force for the light agent and no
force onto the heavy agent, a much simpler policy. Given that it is constant, this policy is
unchanged given a strong Lipschitz constant of K = 1.

Both homogeneous and heterogeneous policies are able to learn these agent specializations.
However, Bettini et al. (2023a) noticed that although the policy could learn heterogeneous
behavior, the learned policy was not robust to observation noise. The single homogeneous
policy encodes both specialized behaviors, so under observation noise the agents can receive
observations that make them act according to the wrong behavior. This is confirmed by the
fact that the homogeneous policies break down under a relatively high Lipschitz constant.

The training plots of both heterogeneous and homogeneous policies under different levels of
neural constraints are shown in fig. 5.4. For all Lipschitz constants imposed, heterogeneous
agents learn the optimal policy within 100 iterations, but averages around 40 iterations.
Without neural constraints, the homogeneous policy converges in around 300 iterations.
In the unconstrained case, both the heterogeneous and homogeneous policies learn the
optimal policy. With the neural constraints imposed, the homogeneous policies take longer
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(a) Hom. K = 3000 (b) Hom. K = 1

(c) Het. K = 1

Fig. 5.3 Plots of the learned homogeneous policy at (0,0) depending on the speed of the
agents. The magnitude of the arrow along each axis represents the policy output force for a
single agent.
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Fig. 5.4 Training plots of the Two-Mass scenario for selected Lipschitz constants. Each
training plot shows the average reward per step over 100 steps, for each training iteration,
averaged over three models with different seeds.

time to train for stronger constraints. With constraints K ≤ 500, the optimal homogeneous
policy is not learned within 500 iterations. However, decreasing the neural constraints on
the heterogeneous policy slightly decreases training time. This increase in training time
for homogeneous policies is an additional indicator that the neural constraints cause the
homogeneous policies to break down.

5.1.2 Evaluating Two-Mass Diversity

Figure 5.4 shows that homogeneous policies take a very long time to converge under any
constraint, even very high ones. The policy is forced to output more similar actions for
similar observations, which decreases the proximity of the two separate observation regions
O(Light) and O(Heavy). Figure 5.6 shows the average difference in observations between the
agents throughout the steps of a rollout. For homogeneous policies, higher neural constraints
decrease the rate at which the difference in observations between agents changes. Heteroge-
neous agents separate at nearly the same rate for all constraints. Homogeneous unconstrained
policies can learn to separate the agents observations, but the neural constraints decrease
observation difference by the end of the rollout. In homogeneous policies, observation
difference is a proxy for diversity as the homogeneous policy will always evaluate to be the
same for all inputs. The reduction in observation difference also indicates a reduction in
diversity. The heterogeneous policy, on the other hand, has the same observation difference
for all neural constraint levels.

Additionally, fig. 5.5 shows that the diversity of the agents increases as the scenario progresses
in the homogeneous scenarios, but is much less diverse than in the heterogeneous policies.
Homogeneous diversity ratings are lower overall than heterogeneous policies, even without



5.1 Introducing the Two-Mass Scenario 55

(a) Unconstrained. (b) K = 3000. (c) K = 1000.

(d) K = 500. (e) K = 250. (f) K = 50

(g) K = 25 (h) K = 1 (i) Homogeneous policies.

Fig. 5.5 The Wasserstein-Role Diversity metric with n = 0 for all neural constraint levels for
the Two-Mass scenario evaluated for each step of a rollout averaged over 200 rollouts across
three models
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Fig. 5.6 Observation distance in the Two-Mass policies for each step of a rollout averaged
over 200 rollouts across three models.

constraints. Figure 5.5i shows that the maximum Wass-RD reached by the homogeneous
agents is between 5 and 15, while most heterogeneous policies reached between 8 and over
50. The constraints imposed on the heterogeneous policies makes the diversity between
agents more consistent throughout the rollout. This corresponds to a more optimal policy,
as the output policy should be constant for all inputs. It also decreases the variance in
diversity. For the strongest constraint of K = 1 (fig. 5.5h), the minimum diversity rating for
the heterogeneous policy is the highest. In contrast, the homogeneous policy has average
diversity near zero throughout all time steps.

In addition to the raw difference in diversity between the heterogeneous and homogeneous
agents, the homogeneous diversity ratings evolve differently throughout the rollout. The
diversity among homogeneous agents start at zero at the start of each rollout when the types
of each agent are unknown. Increasing the constraints on the homogeneous policy decreases
diversity, and the diversity score decreases as the Lipschitz constant is decreased.

Figure 5.7 shows that without constraints, the ratio of diversity is very high as the agents are
meant to act in two specialized ways with similar observations.

5.1.3 Robustness to Noise

The link between the neural expressivity of the policy and the Lipschitz constant of the
network was presented in section 3.1.2. Evaluating the model performance for different
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Fig. 5.7 Ratio diversity dπ for the homogeneous policy evaluated for each step of a rollout
averaged over 200 rollouts across three models.

Fig. 5.8 Mean total reward over 200 environments after 300 steps averaged over 3 models
trained with different seeds in the Two-Mass scenario.
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neural constraints under observation noise demonstrates this link. The policies which are able
to learn under stronger neural constraints are better able to handle higher levels of observation
noise. Through Figure 5.8, it is clear that the heterogeneous policy is nearly invariant to
observation noise. For K = 1, the policy shows almost now change for uniform noise up to
0.5. This is due to the fact that the policy is smoothed and represents the constant action
output accurately. In contrast, the homogeneous policy breaks down almost immediately
under observation noise, even in the unconstrained case where the performance in a noise-free
setting nearly matches the heterogeneous model.

5.1.4 Varying Mass Difference and Diversity

As the difference in mass increases between the agents, the required neural expressivity of
the homogeneous policy decreases. To explicitly test the ability of the homogeneous policy
to use the physical difference between agents to specialize, the spawn region between the
agents is set to d = 0 and both agents are spawned at the same location. Additionally, the
mass noise of each agent is reduced to 0, so the agents are spawned with the same mass each
time.

Through these different mass differences, we can gain an understanding of how different
conditions affect the level of specialization that is achievable under the agent physical types
and neural constraints.

Modifications to the Two-Mass Scenario

Num Agents 2

Agent Mass m1 2.0

Agent Mass m2 2.0, 6.0 or 10.0

Spawn Region d = 0

Table 5.2 The modifications to the Two-Mass scenario configuration. In this modified
scenario the agents are spawned at the same location. Multiple experiments are run which
vary the second agent’s mass (set before training).

Through the Two-Mass scenario, the impacts of neural constraints on learning, performance,
and diversity are introduced. Next, the scenario features within Two-Mass that contribute to
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Fig. 5.9 The Wass-Role Diversity of agents through the Two-Mass scenario with no mass
difference between agents averaged over 200 rollouts with 300 environments each over 3
different model seeds.

the difficulty of learning with a homogeneous policy in this scenario are broken down. First,
the parameters of this scenario are varied to change the mass difference between the agents.

Zero Mass Difference

When both agents have the same mass and they are spawned at the same location, the agents
cannot reliably separate under a homogeneous policy. This is the same principle addressed in
the Left-Right scenario with no spawn separation (section 4.2.3).

Throughout the entire rollout, the average action diversity between agents using a homoge-
neous policy is zero, shown in fig. 5.9. On the other hand, the heterogeneous agents are able
to learn multiple roles under these conditions. This result seems trivial, but it clarifies the
ways in which homogeneous policies are inadequate for learning multiple roles.

While heterogeneous agents are able to solve the scenario with an unconstrained policy, the
unconstrained policy learned is noticeably less smooth. Under these scenario conditions,
there are actually two optimal policies. There is no right answer as to which agent should be
the one to stay stationary and which should have non-zero velocity. When one agent learns
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Fig. 5.10 Mean reward over 200 rollouts across 300 steps per rollout. Rollouts are conducted
for the three trained models per Lipschitz constant and mass difference pairing. The error
bars show the minimum and maximum of these rollouts.

to increase its velocity such that it moves faster than the other, the optimization direction for
both agents suddenly shifts, as the other agent should then learn to have zero velocity. This
can cause the policy to be non-stationary during training. When both agents have similar
velocity, it is difficult for the optimization objective to fall into one of the global optimums.
In this case, the neural constraints on heterogeneous agents provide optimization benefits,
as it is harder for each agent to dramatically change its learned actions during training.
Figure 5.9 shows that the diversity of the heterogeneous policy under the constraint is almost
constant, while the unconstrained policy after the same number of iterations varies greatly
throughout the rollout. As with the original Two-Mass scenario parameters, the optimal
policy corresponds to a constant diversity between agents throughout the rollout.

Varying Non-Zero Mass Difference

In the previous section, we decreased the physical differences between agents. Now, we
consider increasing the mass difference between agents. We expect to see that as the
physical differences are increased, learning the optimal policy becomes easier. If the physical
difference between agents is higher, the same force input will produce a larger difference in
observations between the agents.
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Fig. 5.11 The Average Wasserstein Role Diversity (n = 0) throughout a rollout within the
Two-Mass scenario with mass differences of 4.0 and 8.0, averaged over 200 rollouts over
300 environments.

Figure 5.10 shows that the performance of the homogeneous policy with mass difference 4.0
slightly decreases for all constraints compared to the policies with mass difference 8.0. This
indicates that the policy with lower mass difference requires slightly more policy expressivity.

Within the heterogeneous policies, although most policies learn the optimal policy, the
unconstrained model with lower mass difference has lower performance than the model with
higher mass difference. This is because as the mass difference increases, the optimization
problem becomes easier, as was noticed when optimizing the policy with no mass difference.

Despite the slight increase in performance of the policies under the mass difference of
8.0 over the mass difference of 4.0, the diversity of the policies are relatively the same
under constraints. The biggest difference in diversity between the two policies is for the
unconstrained models. The benefits of heterogeneity under constraints are still visible under
these relaxed mass differences.

5.2 Concluding Insights

In the Two-Mass scenario, there is a clear need for diverse behavior. Representing this
diverse behavior with a homogeneous policy is possible, but the level of diversity that can be
achieved is limited by the fact that the policy must utilize actions to determine which role a
given agent should take. Further, learning multiple behaviors within a single homogeneous
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Fig. 5.12 The ratio diversity of the policies learned with mass difference 4.0 and 8.0.

policy made the policy less robust, as shown by the increase in dπ and lack of robustness
to noise. By understanding how the homogeneous policy breaks down in this scenario, it is
more clear how the neural capacity constraints impact the behaviors and roles of the agents.
For nearby observations, agents must output similar actions. These neural constraints smooth
the policy function and regularize the behavior of the agents. In heterogeneous policies, this
can be beneficial, as was seen in the stabilization of diversity between agents throughout all
time steps.

Crucially, the homogeneous agents are not able to effectively encode multiple roles within
a single, constrained policy. This is an important result which indicates that this constraint
method is effective at enforcing diversity. Further, the strength of the neural constraint
correlates with the decrease in diversity in the homogeneous policy, meaning that the the
level of diversity allowed in a single policy can be tuned. Using this method, the effective
neural capacity of each agent can be reduced to a level suitable for the environment.

This scenario is extremely specialized and simple, as it only requires learning a constant
policy using heterogeneous agents. Therefore, scenarios that require more complex actions
must be considered. In this scenario, the diversity of the heterogeneous agents in the
unconstrained case in this scenario was already near optimal. Even still, although this method
did not strictly increase diversity between agents, it caused the diversity between agents to
stabilize and the variance to decrease. Under very strong constraints, the minimum diversity
increased. Secondarily, this method is was shown to slightly increase robustness of the
heterogeneous policies and slightly improve optimization, even in a case where the optimal
policy was extremely simple.



Chapter 6

Conclusion

6.1 Discussion

This work contributes to a broader goal within multi-agent cooperative reinforcement learning
to understand how to model collaboration in complex systems. The conclusions of this work
are twofold.

First, limiting the Lipschitz constant of the policies of heterogeneous agents is shown to
increase diversity. By bounding the maximum rate of change of each agent’s policy, it forces
each agent to learn simpler, smoother behavior. While both homogeneous and heterogeneous
policies can benefit from smoother policies, heterogeneous policies in particular can improve
under strong neural constraints. By forcing simpler policies, neural constraints naturally
encourage the agents to take on unique roles in a scenario. Further, teams of agents with
limited neural expressivity improve in both optimization and robustness when the constraints
are chosen at an optimal level.

Second, while many previous works have utilized homogeneous policies in settings that
require multiple roles, these types of policies have specific limitations that have not yet
been properly understood. This work outlines these limitations. Homogeneous policies are
limited by function constraints: for every observation, only a single action distribution can
be learned. While obvious, this makes learning multiple roles impossible in scenarios where
agents share observation space under a homogeneous policy. When homogeneous policies
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can learn multiple role specializations, heterogeneous policies can often do so with lower
neural expressivity, taking advantage of the benefits described above.

Heterogeneous policies are not suitable for every situation and have some limitations. Scenar-
ios which require high degrees of exploration or agents can act independently without sharing
the same region of observation space in the optimal policy, parameter sharing provided by
homogeneous policies can improve performance and increase data efficiency. However, this
work presents specific scenario conditions under which heterogeneous policies provide a
large improvement over homogeneous policies.

6.2 Future Work

There are many avenues of research that can build upon the benefits of heterogeneity and
policy expressivity constraints presented in this work. While this work found definitive
results for the scenarios presented, the scenarios chosen are intentionally simple. Only
scenarios with two agents and two unique specializations were considered. In the future, it
would be interesting to explore how neural constraints may affect more complex scenarios or
tasks. For more complex situations, it may be useful to consider how agents with varying
levels of neural capacity can work together in a system.

Additionally, there are many alternative options that can be used to constrain the Lipschitz
constant of a neural network. For example, different constants can be applied to each layer,
or the norm type can be varied.

Large teams of heterogeneous agents may be infeasible when each has its own set of
parameters. However, decreasing each agents’ neural capacity may be able to help scale
heterogeneous policies across larger teams of agents. Learning Lipschitz continuous polices
should help this goal given the benefits in optimization and increased diversity.

Finally, previous works have shown how heterogeneous agents can reduce the Sim-to-Real
gap when transferring simulated results onto real robots (Bettini et al., 2023a). Future
experiments should consider how decreasing the neural capacity of heterogeneous agents can
reduce the additional training time required to transfer a policy to real robots.
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Appendix A

Additional Derivations

A.1 Lipschitz constant and relative observations.

Assuming a policy π , two agents in the scenario, and observations defined in eq. (3.15) as
follows

o⃗′i =
[

p(i)x , p(i)y ,v(i)x ,v(i)y

]⊕
j ̸=i

[
p( j)

x − p(i)x , p( j)
y − p(i)y ,v( j)

x − v(i)x ,v( j)
y − v(i)y

]
the 1-norm Lipschitz constant can be shown to depend only on the relative positions of the
agents.

Representing this more compactly as:

o⃗′i = o⃗i
⊕
j ̸=i

[⃗
oi − o⃗ j

]
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We can find that this increases the effective Lipschitz constant by a constant factor.

|π(o1)−π(o2)| ≤ K |o′1 −o′2|
≤ K |⃗o1 − o⃗2|+ |(⃗o2 − o⃗1)− (⃗o1 − o⃗2)|
≤ K |⃗o1 − o⃗2|+2|⃗o2 − o⃗1|
≤ 3K |⃗o1 − o⃗2|

Increasing the number of agents would make this value rely on the relative positions of the
other agents in the scenario. However, scenarios with more agents better communication
strategies should be considered over appending relative observations.
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