
Graph Neural Stochastic Differential
Equations

Richard Bergna

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Clare Hall August 2023



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done
in collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 15,000 (14,432) words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures. The code related to this work
is available on GitHub and can be accessed via the reference Bergna (2023).

Richard Bergna
August 2023



Acknowledgements

First and foremost, my heartfelt gratitude goes to my supervisor, Jose Miguel Hernandez-
Lobato. I deeply value Lobato’s invaluable insights and amiable disposition, which consis-
tently welcomed my queries and ideas. Each of our discussions was constructive and help
the trajectory of my research. I’m also immensely grateful to Pietro Liò. Our interactions
were always imbued with thought-provoking insights. Pietro’s charismatic presence was not
just a source of inspiration but also a beacon of positivity. Special recognition goes to Felix
Opola. His presence, especially during the initial phase of my dissertation when the path
was uncertain, proved invaluable. Felix’s patience and willingness to explore intricate details
about GNN and the papers we studied together immensely enhanced my understanding.

To my girlfriend, Maya Rao, thank you for your relentless support and understanding
during this challenging yet exhilarating year. Your companionship, particularly during the
intense months of this dissertation, made the entire experience more rewarding. I’d also like
to acknowledge my gym buddy, Sergio Calvo Ordoñez. Our gym sessions and lighthearted
conversations were not only refreshing breaks but also an inadvertent boost to my productivity.
My heartfelt gratitude to Emma Prevot, Connall Garrod, and all my friends in Cambridge.
Your company and support undoubtedly made my time more enjoyable and fulfilling. A
special shout-out to my family: my twin, Philippe Bergna, for his keen interest in my
dissertation and his insightful questions; my sister, Hazel, whose regular check-ins and
concern for my well-being were immensely comforting; and my dad, Gilberto Bergna, who
always encouraged me to be the best version of myself and took a genuine interest in my
work.

Lastly, I extend my gratitude to Andrew Blake. The Clare Halls Blake’s funds, which he
generously provided, have been instrumental. Without this significant support, undertaking
this Masters Program would not have been feasible.

To all who played a part in this journey, either directly or indirectly, I am forever thankful.



Abstract

In this dissertation, we introduce a novel framework, Graph Neural Stochastic Differential
Equations (Graph Neural SDEs), which extends the capabilities of Graph Neural Ordinary
Differential Equations (Graph Neural ODEs) by integrating randomness into data representa-
tion through Brownian motion. This advancement allows for the quantification of prediction
uncertainty, a critical aspect often neglected in current methodologies. The primary focus
revolves around the Latent Graph Neural Stochastic Differential Equations (Latent Graph
Neural SDE). This approach is central to our research and has demonstrated superior capabil-
ities in a multitude of contexts. In addition, we introduce a complementary model, the Graph
Neural GAN-SDE, tailored for generating synthetic graph data in line with an SDE’s dynam-
ics. Empirical analyses underscore the exceptional performance of the Latent Graph Neural
SDE, outpacing conventional contenders like Graph Convolutional Networks and Graph
Neural ODEs across both static and spatio-temporal domains. Moreover, we evaluate the
robustness of our model in out-of-distribution detection, uncertainty quantification, and active
learning for data collection scenarios, where Graph Neural SDEs consistently outperform
other tested models. Consequently, this research represents a substantial progression in the
field, introducing a more robust and uncertainty-aware approach to graph neural networks.
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Chapter 1

Introduction

Graph Neural Networks (GNNs) have profoundly influenced the landscape of graph-structured
data interpretation (Bronstein et al., 2017; Hamilton et al., 2017; Kipf and Welling, 2016;
Veličković et al., 2017), adeptly decoding challenges from social networks to intricate bio-
logical systems (Wu et al., 2020; Zitnik and Leskovec, 2017). Yet, for all their advantages,
GNNs face a persistent limitation: they frequently grapple with the ‘oversmoothing’ issue,
especially when multiple layers are employed (Li et al., 2020).

To advance the field, the authors in Poli et al. (2019) turned to Neural ODEs — continuous-
time machine learning models rooted in the marriage of differential equations’ theoretical
rigor and neural networks’ adaptability (Chen et al., 2018). These models provided a continu-
ous counterpart to traditional discrete neural architectures, allowing for dynamic adaptations
to data in its native temporal resolution. Building upon this foundation, Graph Neural ODEs
emerged as a significant derivative. This fusion reaped two pivotal benefits. First, it adeptly
addressed the oversmoothing issue, thereby enabling the construction of deeper graph neural
architectures. Secondly, its inherent design effortlessly accommodates continuous-time data,
a feature proving essential for irregularly sampled datasets (Poli et al., 2019).

However, both GNNs and Graph Neural ODEs share a glaring oversight: an inability
to effectively quantify predictive uncertainties. Uncertainty quantification in Graph Neural
Networks has profound real-world implications. Whether for robust decision-making in high-
stakes scenarios like medical diagnosis, establishing model trustworthiness, guiding model
improvement, detecting anomalies, enhancing data efficiency, or catering to risk-sensitive
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applications, understanding uncertainty in predictions is pivotal (Gal and Ghahramani, 2016;
Kendall and Gal, 2017; Lakshminarayanan et al., 2017; Leibig et al., 2017).

However, both GNNs and Graph Neural ODEs share a glaring oversight: an inability to
effectively quantify predictive uncertainties. In the realm of machine learning, uncertainty
quantification (UQ) is the process of determining the level of confidence a model has in its
predictions (Gal and Ghahramani, 2016). Ideally, a model should recognize and candidly
indicate when it makes predictions on unfamiliar or "out-of-distribution" data points. For
instance, in classification tasks, if a model trained only on images of cats and dogs is suddenly
presented with an image of a bird, it should ideally predict nearly equal probabilities for
both classes, signaling its unfamiliarity with the input. This absence of overconfidence in
uncertain scenarios is vital. Similarly, in regression tasks, as predictions deviate further from
known training data points, the uncertainty or variance in predictions should grow. UQ is
pivotal not only for determining the model’s trustworthiness but also for offering valuable
insights on areas that might benefit from further data collection or model refinement.

Uncertainty quantification in Graph Neural Networks has profound real-world implica-
tions. Whether for robust decision-making in high-stakes scenarios like medical diagnosis,
establishing model trustworthiness, guiding model improvement, detecting anomalies, en-
hancing data efficiency, or catering to risk-sensitive applications, understanding uncertainty in
predictions is pivotal (Gal and Ghahramani, 2016; Kendall and Gal, 2017; Lakshminarayanan
et al., 2017; Leibig et al., 2017).

1.1 Contribution

Addressing this gap, our work introduces a hybrid approach that combines the strengths of
Graph Neural ODEs with the innate ability of Stochastic Differential Equations (SDEs) to
quantify uncertainty. This synthesis gives birth to Graph Neural SDEs. Crafting a Graph
Neural SDE, however, introduces its own unique challenges, which we’ll detail later in
Chapter 3. To navigate these intricacies, we propose two innovative methodologies: the
primary being the Latent Graph Neural SDE, which is for node, link, and graph prediction,
and the supplementary Graph SDE-GAN, which demonstrates the capabilities of generating
synthetic graph data with SDE-styled features.

Empirical results evidence the advantages of our approach over several counterparts like
Graph Neural ODE, GCN, Bayesian GNN (Lamb and Paige, 2020), and Ensemble GNN
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(Lin et al., 2022) in aspects such as robustness, out-of-distribution detection (emphasizing
our effective uncertainty quantification), and accuracy. In essence, this work presents a
novel methodology for continuous Graph Neural Networks, ensuring effective uncertainty
quantification.

1.2 Dissertation Roadmap

Chapter 2: In this chapter, we lay the foundational concepts which form the backbone of
the entire discourse. It begins with a dive into the realm of Neural Differential Equations, with
its different flavors – Neural Ordinary Differential Equations, Neural Controlled Differential
Equations, and Neural Stochastic Differential Equations. As we traverse this landscape, we
also highlight the inherent advantages of using such equations. From there, the narrative shifts
to Graph Neural Networks (GNNs). This segment offers a walkthrough of their inception,
their prominent subtypes like Graph Convolutional Networks and Graph Attention Networks,
and touches upon the persisting challenges, particularly the oversmoothing issue. The chapter
concludes by introducing Graph Neural Ordinary Differential Equations, which serve as a
conduit between GNNs and differential equations, showcasing how they are realized and
their associated challenges.

Chapter 3: This chapter is devoted to the Graph Neural Stochastic Differential Equations
(GN-SDEs), a primary contribution of this thesis. It initiates with an elucidation of the concept
of GN-SDEs and delves into particular models, emphasizing the Latent Graph Neural SDEs
and Graph SDE-GAN. The journey continues with a juxtaposition of Graph Neural ODEs
and GN-SDEs, emphasizing their distinctive features and underlying connections. Further,
the chapter offers a rigorous evaluation of the models, testing their mettle against various
tasks and datasets. Moreover, the chapter draws connections to relevant works, providing a
broader context.

Chapter 4: As we reach the culmination of our exploration, Chapter 4 offers a reflective
analysis of the journey undertaken. It encapsulates the insights gathered, the implications of
the models proposed, and the innovations introduced. Additionally, this chapter casts an eye
towards the horizon, speculating about potential future endeavors in this realm and laying
down a roadmap for subsequent research efforts.



Chapter 2

Background

In this chapter, we delve into the intricate background that forms the foundation of our
exploration, weaving together strands from diverse areas. We begin by understanding the
motivation behind employing differential equations within the realm of neural networks. This
motivates our exploration into Neural Ordinary Differential Equations (ODEs), followed
by the intricacies of Neural Control Differential Equations (CDEs) and Neural Stochastic
Differential Equations (SDEs). With this mathematical foundation in place, our focus shifts to
Graph Neural Networks, discussing popular architectures that are pivotal in our experimental
studies. Finally, we introduce Graph Neural ODEs, demonstrating how the worlds of graph
networks and differential equations intersect.

We anticipate readers to have a foundational grasp of differential equations. However, it’s
not essential to possess an exhaustive understanding. In this section, we endeavor to provide
all necessary background details to ensure comprehensibility. For readers seeking a deeper
or more specialized mathematical discourse, we direct them to our extended background
section A. Throughout this chapter, we will reference this extended section when deemed
appropriate.

2.1 Neural Differential Equations

Before the widespread use of neural networks and modern machine learning, differential
equations were the gold standard for modeling diverse systems. These equations spanned
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the realms of physics, biology, and social sciences (Buckdahn et al., 2011; Cardelli, 2008;
Cvijovic et al., 2014; Hoops et al., 2016; Mandelzweig and Tabakin, 2001; Quach et al.,
2007). Their prowess lay in capturing continuous changes over time and space, as evident
from their aptitude in representing systems such as the motion of planets: Kepler’s laws
(Russell, 1964), the spread of diseases: SIR model (Kermack and McKendrick, 1927), and
the behavior of electric circuits: Maxwell’s equations (Maxwell, 1861).

As computational capabilities expanded and the volume of available data surged, the
landscape of modeling and prediction shifted noticeably. Neural networks, once a burgeoning
concept, came to the fore. They displayed an unprecedented ability to decode complex
patterns and handle nonlinear relationships in data (Aggarwal et al., 2022; LeCun et al.,
2015). This evolution in data analysis methods led to an essential pondering: Was it possible
to merge the time-tested, robust modeling framework of differential equations with the
newfound flexibility and depth offered by neural networks? Out of this introspection and the
quest for a synthesis, Neural Differential Equations (NDEs) were conceptualized, embodying
the best attributes of both traditional differential equations and modern neural networks.

2.1.1 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (Neural ODEs) were the first to combine neural
network principles with differential equations (Chen et al., 2018). They offer a refined
strategy to model dynamical systems by leveraging the foundational principles of neural
networks. This new model, instead of representing data transformations as discrete layers
in a traditional deep network, Neural ODEs describe them as continuous transformations
parameterized by differential equations. This concept of continuous transformations within
the neural network is often termed as "continuous-depth" or "continuously-deep", implying
that instead of having distinct layers, the network smoothly transitions and evolves data
through a continuum of depths.

These transformations specify how the state of a system, denoted as z(t), evolves over
time. The rate of change in the state of the system is determined by a function f , which is
parameterized by neural network weights.
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Definition: A Neural ODE is given by

dz
dt

= fφ (z(t), t), z(0) = z0.

where fφ signifies the neural network with parameters φ .

This differential equation implies that the state of the system at any time t is determined
by accumulating the effects of the function f from the initial state z0 up to that time. This
can be articulated more explicitly as

z(t) = z0 +
∫ t1

t0
f (z(t), t)dt,

where t0 and t1 are the initial and final times, respectively, hence t lies within the interval
[t0, t1]. The solution to this integral is usually determined using a numerical ODE solver.

Remark: Neural ODEs are completely differentiable, allowing for the standard back-
propagation techniques to fine-tune the network’s parameters φ in order to reduce the
difference between observed and forecasted trajectories.

The core objective of the model is to ensure the predicted trajectory closely aligns with
the actual trajectory. To accomplish this, the model undergoes a training process where it
continuously adjusts its internal parameters to minimize the difference (or "loss") between
these trajectories.

In many applications, Neural ODEs primarily serve to extract a latent representation or
an embedding of data, denoted by zt . Once this latent state is determined, it’s passed through
another neural network to generate a prediction ŷ, referencing the true label y. At their core,
Neural ODEs aim to map x to y through the learned function fφ and the associated linear
transformations l1

φ
and l2

φ
. This can be formally captured as

y ≈ l1
φ (zt), where zt = z0 +

∫ t

0
fφ (zs)ds, and z0 = l2

φ (x).

In this formulation, zt represents the system’s state at time t, with fφ (zs) detailing the system’s
dynamics. The linear transformations, l1

φ
and l2

φ
, play distinctive roles: l2

φ
is employed to
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determine the initial state z0 from input x, and l1
φ

is used to estimate the output y based on the
terminal state zt (Chen et al., 2018; Kidger, 2022).

Remark: Neural differential equations, including Neural ODEs, present a transformative
approach to conceptualizing depth in deep learning models. Unlike traditional architectures
where depth is defined by the discrete layers’ count, here depth takes on a continuous
form.

As mentioned, in the neural differential equations framework, "depth" is associated
with an integration interval, typically represented as [t0, t1]. Here, t0 and t1 define the
starting and ending points in a "time" or depth continuum. As the hidden state, z(t),
transforms according to the differential equation dz

dt = fφ (z(t), t), its progression from t0
to t1 mirrors transformations found in traditional layer-based networks.

This continuous modeling eliminates the need for discrete layers. Instead, the neural
ODE’s capacity and intricacy arise from the governing differential equation and the states’
continuous progression throughout the defined integration period. Within this framework,
the interpretation of variables z and t varies with application.

Static datasets: z(t) represents the data’s current state at a specific "depth" or com-
plexity, t (sometimes denoted as "s"), of the network’s transformation. Here, t does not
symbolize real-time but rather signifies the network’s depth or transformation complexity.

Spatio-temporal datasets: z(t) stands for the system’s state at an actual time, t.
The learned function fφ reflects the system’s temporal dynamics, moving beyond mere
transformational mappings from inputs to outputs.

Neural ODEs as continuously-deep Residual Networks

In this section, we delve into the intimate connection between Neural Ordinary Differential
Equations (ODEs) and Residual Networks (ResNets), drawing from insights presented by
Chen et al. (2018); Kidger (2022).

Theorem: Neural ODEs are the continuously-deep analogs of ResNets.
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Proof: To draw parallels between Neural ODEs and ResNets, let’s first consider the
discrete formulation of a ResNet, as detailed in Liu et al. (2021a)

y j+1 = y j + fΘ( j,y j), (2.1)

where y j represents the state or output at the j-th layer, and fΘ( j,y j) denotes the j-th
residual block with parameters encapsulated in Θ.

Transitioning to the domain of Neural ODEs, the form is given by

dy
dt

(t) = fΘ(t,y(t)), (2.2)

where y(t) signifies the state of the system at time t, and the function fΘ(t,y(t)) describes
the rate of change of this state, parameterized by Θ.

Employing the explicit Euler method, and taking discrete time points t j with a uniform
difference of ∆t, the above Neural ODE is discretized as

y(t j+1)− y(t j)

∆t
≈ dy

dt
(t j) = fΘ(t j,y(t j)),

Simplifying, we get

y(t j+1) = y(t j)+∆t · fΘ(t j,y(t j)).

On integrating the term ∆t into fΘ, we can observe that this formulation mirrors that of
the ResNet in equation 2.1. This underlines the idea that Neural ODEs can be interpreted
as a continuous-time rendition of ResNets.

Building on this, we can envision a Neural ODE as an infinite-layered ResNet. In
such a representation, minute updates (akin to residuals) to its state occur incessantly. The
culminating output emerges as an aggregation of these innumerable, minuscule updates,
reminiscent of solving the ODE from its initial condition.

Remark: This bridge between ResNets and Neural ODEs not only offers a theoretical
understanding but also practical benefits. While training a traditional ResNet mandates the
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retention of layer-wise activations for backpropagation, a Neural ODE only demands the
storage of its initial state. The subsequent states, at any desired time points, are computed
on-the-fly by the ODE solver. This characteristic can result in significant memory economy,
especially when the analogous ResNet has a large number of layers.

2.1.2 Neural Controlled Differential Equations

A alternative to Neural ODEs are Neural Controlled Differential Equations (Neural CDEs)
proposed by Kidger et al. (2020). They are a recent advancement in deep learning that
extend the concept of Neural ODEs to model temporal dynamics more effectively. They are
particularly suitable for handling time-series data, as they incorporate a mechanism to adjust
the system’s trajectory based on subsequent observations.

Unlike Neural ODEs, which are determined solely by their initial conditions, Neural
CDEs incorporate data that arrives later through the mathematics of controlled differential
equations. This makes the Neural CDEs model applicable to the general setting of partially
observed irregularly-sampled multivariate time series.

Definition: The Neural CDE model is defined as the solution of the CDE

z(t) = z(t0)+
∫ t

t0
fφ (z(s))dx(s) for t ∈ (t0, tn],

where ‘dx(s)’ denotes a Riemann-Stieltjes integral, and ‘ f (z(s))dx(s)’ refers to a matrix-
vector multiplication.

Remark: Neural CDEs can leverage the same techniques, including ODE solvers, tradi-
tionally employed for Neural ODEs.

2.1.3 Neural Stochastic Differential Equations

Building upon our understanding of Neural ODEs and Neural CDEs, we next delve into
the fascinating realm of Stochastic Differential Equations (SDEs). SDEs have been widely
employed to model real-world phenomena that exhibit randomness, such as physical systems,
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financial markets, population dynamics, and genetic variations (Gontis and Kononovicius,
2014; Ricciardi, 2012; Schreiber et al., 2011). They generalize ODEs by modeling systems
that evolve continuously over time, incorporating randomness. Informally, an SDE can be
seen as an ODE that integrates a certain degree of noise

dz
dt

= f (z(t), t)+ ε(t).

Here, ε(t) represents the time-dependent noise, modeled using diffusion models and
Brownian motion.

Definition: An SDE is represented as:

dz(t) = f (t,z(t))︸ ︷︷ ︸
drift

dt +g(t,z(t))︸ ︷︷ ︸
diffusion

dW (t),

In this equation, the system state z(t) at time t evolves due to two main components:
the drift function f and the diffusion function g. The term dW (t) denotes the infinitesimal
increment of a standard Brownian motion (or Wiener process) W (t), with properties like
W (0) = 0, independent increments, and W (t)−W (τ) being normally distributed with
mean 0 and variance t−τ for 0 ≤ τ < t. The strong solution for the SDE, denoted as z(t),
exists and is unique under conditions where f and g are Lipschitz and E[z(0)2]< ∞a.

aFor a comprehensive and rigorous exploration of Stochastic Differential Equations, readers are
referred to Khasminskii (2012) and Revuz and Yor (2013).

The drift function f (t,z(t)) represents the deterministic aspect of the system’s evolution.
It predicts the expected direction of the system’s change at each point in time, based on the
current state z(t).

The diffusion function g(t,z(t)) represents the stochastic or random aspect of the sys-
tem’s evolution. It models the inherent randomness or uncertainty in the data by scaling the
random noise introduced by the Wiener process W (t), also known as Brownian motion.

Remark: Despite the promising capabilities of Neural SDEs, a significant challenge
arises when the diffusion function g is a learnable parameter and is trained by maximizing
likelihood, for instance, by directly minimizing cross-entropy or mean square error. In
these scenarios, the diffusion function tends to converge towards zero, effectively trans-
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forming the Neural SDE into a Neural ODE. Researchers have proposed diverse strategies
to counteract this, including the minimization of Kullback-Leibler (KL) divergence or
Wasserstein distance. These methodologies underpin advanced constructs like ‘Latent
SDEs’ and ‘SDE-Generative Adversarial Networks’ (SDE-GANs) Kidger et al. (2021); Li
et al. (2020).

Neural SDEs as continuous Recurrent Neural Networks

Similar to how Neural ODEs can be perceived as continuous residual neural networks, we will
present an intuitive interpretation of Neural SDEs as continuously-deep, Recurrent Neural
Networks (RNNs). A prominent analogy draws a parallel between numerically discretized
neural stochastic differential equations and deep learning architectures, especially RNNs. For
Neural SDEs, the RNN’s input is akin to random noise or Brownian motion, while its output
represents a generated sample Li et al. (2020).

Theorem: Neural SDEs are the continuously-deep of RNNs.

Proof: Consider an autonomous one-dimensional Stochastic Differential Equation repre-
sented as:

dy(t) = f (y(t))dt +σ(y(t))dw(t)

where y(t), f (y(t)), σ(y(t)), and w(t) belong to the set of real numbers, R. The
numerical Euler-Maruyama discretization of this SDE can be expressed as:

y(t j+1)− y(t j)

∆t
≈ f (y(t j))+

σ(y(t j))∆w j

∆t

Which simplifies to:
y j+1 = y j + f (y j)∆t +σ(y j)∆w j

Here, ∆t denotes a fixed time step, and ∆w j follows a normal distribution with zero
mean and variance ∆t. This numerical discretization bears resemblance to a specific form
of an RNN. As such, the Neural SDE can be viewed as the continuous-time limit of RNN,
with the depth determined by the number of discretization steps.
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2.1.4 Advantages of Neural Differential Equations

Having covered the essential background on NDFs, we now turn our attention to the benefits
of these models. NDEs, combine the robust foundations of differential equations with the
flexibility of modern neural networks. This integration offers several unique advantages.

Enhanced Representation: Through their continuous nature, NDEs excel at capturing
the complexity of systems, often more efficiently in terms of parameters than discrete models
Chen et al. (2018).

Adaptable Computation: NDEs dynamically alter their computational depth based on
the complexity of the input data, optimizing the utilization of computational assets Li et al.
(2020).

Robustness: Rooted in the theories of differential equations, NDEs maintain stability,
proving resilient to challenges like adversarial interventions Sitzmann et al. (2020).

Versatility in Data Interpretation: NDEs can handle diverse datasets. For static
datasets, z(t) denotes the data’s state at a certain depth or transformation complexity t
within the neural framework. Here, t represents the network’s depth or transformation
complexity, reminiscent of layers in architectures like ResNet/RNN. In contrast, for spatio-
temporal datasets, z(t) (refer to 2.1.3) signals the system’s state at an actual time instance
t. In this context, the function f charts the system’s time-based evolution rather than mere
transformational mappings. This adaptability emphasizes the inherent interpretability of
NDEs.

Summary

Throughout our journey, we have explored various neural differential equations, encom-
passing Neural ODEs, CDEs, and SDEs. These models can be interpreted as continuous
representations of intricate neural architectures, such as RNNs and ResNet. Notably, these
architectures rank among the most prevalent and transformative in modern deep learning.
Additionally, we delved into the interpretative essence of these models in both static and
spatio-temporal datasets, highlighting their multifaceted advantages. As we proceed, we
will introduce Graph Neural Networks, discuss their challenges, and lay the groundwork for
understanding Graph Neural SDEs.
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2.2 Graph Neural Networks

Emerging as one of the primary tools for learning graph-structured data, Graph Neural Net-
works (GNNs) were first introduced in Scarselli et al. (2009). Drawing their inspiration from
traditional neural networks, GNNs specialize in processing structured graph data. Graphs,
foundational to myriad domains ranging from social networks to molecular structures, present
unique challenges and opportunities for machine learning (Liu et al., 2021b; Min et al., 2021;
Zhou et al., 2020).

Definition: A graph, represented as G = (V,E), is comprised of nodes (or vertices)
V and edges E that connect these nodes. Each node in the graph is characterized by
a d-dimensional feature vector xv. All such feature vectors, numbering n = |V |, are
assembled into an n×d matrix, expressed as X = H(0). The set of edges E is captured
within an n×n adjacency matrix A, with an entry Ai j being 1 if an edge e = vi → v j is
present in E, and 0 otherwise. Each node v ∈V and edge e ∈ E can be associated with
respective feature vectors, denoted as xv and xe.

GNNs process the graph G = (V,E), accompanied by node features xv and edge features xe.
They yield feature vectors for nodes (and potentially for edges) which cater to a range of
tasks, such as node or graph classification/regression, and link prediction.

Example:
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Fig. 2.1 On the left: a political compass of voters. On the right: their social circles. Node
colors and features indicate voting preferences among three candidates: red, blue, and
green.

The images above provide insights into the application of GNNs. The left depicts a
political compass mapping voters, while the right presents their social circles. Nodes and
their features signify voting preferences for three distinct candidates: red, blue, and green.
The challenge lies in predicting individual voting patterns, harnessing their political and
social affiliations as data. This exemplifies the node classification problem using GNNs.

Central to GNNs is the concept of layers, akin to traditional neural networks. Each GNN
layer operates over the entire graph, generating latent feature vectors for each node.

Definition: The l-th GNN layer, f (l), receives the graph’s latent feature matrix from the
previous layer, H(l−1), and the adjacency matrix A. It subsequently outputs a new latent
feature matrix H(l) as:

H(l) = f (l)(H(l−1),A) (2.3)

For a multi-layered GNN, the inaugural layer, where l = 1, accepts H(0) = X as input. In
contrast, subsequent layers ingest H(l − 1), which are latent features from the preceding
GNN layer.

This layer-wise operation can be interpreted through the lens of message passing.
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Definition: Message passing in GNNs refers to the mechanism by which nodes in a
graph update their representations by aggregating and processing information from their
neighbors. Given a node u and its representation in the l-th layer as hl

u, the update is
described by:

hl
u = φ

(
hl−1

u , ∑
v∈Nu

ψ(hl−1
u ,hl−1

v )

)
Where φ is the message passing function, ψ is a readout or aggregation function, and
Nu denotes the neighborhood of node u.

This process ensures that the final node representation is permutation-invariant with
respect to its neighbors.

Specifically, for a given node u, the latent representation hl
u in the l layer is computed using

functions φ and ψ , which are typically chosen as Multi-Layer Perceptrons (MLPs), although
their structures can vary.

The equation above succinctly captures the GNN’s operational essence: to refine the
representation of a node u, it contemplates both the node’s immediate neighborhood and
its current representation. This neighborhood information, transformed by ψ , is aggregated
using permutation-invariant functions such as sum (but we can use other operator like max).
The final representation is deduced by passing the node’s current representation and the
aggregated neighborhood data to φ . The permutation-invariant nature ensures that the final
output remains agnostic to the ordering of nodes.

2.2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCN) stand as a pivotal advancement in the domain of GNNs.
Initially introduced by (Chen et al., 2020), GCNs are fundamentally rooted in spectral graph
theory. They skillfully generalize the traditional convolutional operations—most commonly
employed on grid-structured data like images—to the intricacies of graph-structured data
(Bruna et al., 2013).
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Definition: Graph Convolutional Layer (Node-centric formulation):

h(l+1)
v = σ

(
∑

u∈N (v)

1√
dvdu

W (l)h(l)u

)
,

Here, h(l)v characterizes the feature vector of node v at the l-th layer. N (v) represents
the neighbors of node v, and dv depicts the degree of node v. The transformation matrix
W (l) undergoes learning, while σ instills a non-linearity, bolstering the network’s expressive
capability.

Another formulation of the GCN can be depicted in a more matrix-centric manner,
capturing operations on the entire graph simultaneously:

Definition: Graph Convolutional Layer (matrix-centric formulation):

H(s+1) = H(s)+σ

(
LG H(s)P(s)

)
(2.4)

In this equation, H(s) holds the features of all nodes in the graph at layer s. The matrix
LG signifies the graph Laplacian of the graph G , encapsulating its structural characteristics.
Meanwhile, P(s) functions as a parameter matrix for the s-th layer.

Remark: A foundational principle of GCNs is the recursive refinement of node rep-
resentations by integrating and transmuting features from their local graph vicinity. By
cascading this process, nodes assimilate information from increasingly distant parts of the
graph, enriching their contextual embeddings and rendering them more descriptive.

Over time, GCNs have sown the seeds for a multitude of derivatives and enhancements,
each crafted to surmount particular challenges or to fine-tune the approach for specialized
applications. Whether by infusing attention mechanisms, accommodating diverse graph
structures, or honing computational thriftiness, the seminal influence of GCNs is palpable in
the wide array of GNN architectures that have since evolved.

2.2.2 Graph Attention Networks

Graph Attention Networks (GAT) infuse attention mechanisms, notably from transformer
architectures in NLP, into GNNs (Vaswani et al., 2017; Veličković et al., 2017). Unlike
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GCNs, which give equal weight to all neighbors, GATs use attention scores to assign different
importance levels to neighbors.

Definition: Graph Attention Layer :

h(l+1)
v = σ

(
∑

u∈N (v)
αvuW (l)h(l)u

)
, (2.5)

with the attention coefficients αvu defined as:

αvu =
exp
(
LeakyReLU

(
a⊤[Whv||Whu]

))
∑k∈N (v) exp

(
LeakyReLU

(
a⊤[Whv||Whk]

)) ,
This approach is especially valuable in graphs where node relationships are heterogeneous,

and not every connection is of equal relevance.

Remark: By virtue of its attention mechanism, GATs discern and give prominence
to more informative parts of the structure, achieving improved performance on certain
benchmarks compared to GCNs.

2.2.3 Oversmoothing in GNNs

A recurrent issue faced by GNNs, especially when dealing with deep architectures, is the
phenomenon of oversmoothing. Oversmoothing, also termed as over-smoothing or over-
mixing, ensues when nodes’ features become overly similar across iterations or layers in the
GNN (Li et al., 2018a; Oono and Suzuki, 2019). This phenomenon is particularly evident
during the aggregation phase, where the feature vectors of nodes are updated based on their
neighbors.

Definition: Oversmoothing in a GNN is said to occur when, after several layers or itera-
tions, the difference between nodes’ latent feature vectors diminishes. Mathematically,
for nodes vi and v j, oversmoothing is recognized when the feature vector difference
||H(l)

vi −H(l)
v j || becomes negligible for a sufficiently large l, even if nodes vi and v j are

not structurally similar or closely situated in the original graph.

The implications of oversmoothing are twofold:
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1. Loss of Distinctiveness: As node features converge to a uniform representation, the
GNN’s capacity to discern nodes based on their unique attributes and topological
positioning dwindles.

2. Performance Degradation: Deep GNNs affected by oversmoothing often manifest
plateaued or even deteriorated performance in downstream tasks such as node classifi-
cation or graph clustering.

Example:

Fig. 2.2 Performance accuracy of a GCN across varying layer depths, showcasing the
detrimental effects of oversmoothing.

Figure 2.2 depicts the performance accuracy of a GCN when varying its depth from 1
to 10 layers. The error bars represent the variance across 10 experiments, and the central
points denote the mean accuracy for each layer configuration. A notable observation is
the decline in performance beyond the depth of 2 layers. This deterioration is attributed to
the phenomenon of oversmoothing. The dataset for this experiment originates from the
earlier discussed political compass and friendship group example (see Example 2.2). The
oversmoothing effect can lead to closely aligned latent representations for fundamentally
different voters, such as staunch supporters of rival candidates, even if their relationship
in the graph is distant. This convergence of node representations can result in erroneous
classifications, thereby undermining the effectiveness of the GNN.
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In response to these challenges, the GNN community has diligently pursued solutions to
oversmoothing by delving into alternative aggregation approaches, regularization methods,
and architectural modifications (Bouritsas et al., 2022; Li and Gupta, 2018). Additionally, we
believe (and later show) that Neural Differential Equations on graphs could offer potential
alleviations to this issue. The continuous nature of Neural Differential Equations allows
for a dynamic adjustment of information flow through the graph, which might preserve
node distinctiveness and prevent excessive blending of features—key factors contributing
to the oversmoothing phenomenon. This inherent flexibility and continuous adaptability
might serve as an effective countermeasure against the typical pitfalls observed with discrete
architectures.

Summary

Thus far, we have delved into the intricacies of Neural Differential Equations, encompassing
Neural ODEs, Neural CDEs, and Neural SDEs, and we have just covered GNNs, with their
inherent limitations of GNNs, including the challenge of over-smoothing. We now transition
to our final background chapter on Graph Neural ODEs. Subsequent to this, the forthcoming
chapter will introduce our innovative approach: the Graph Neural SDEs.

2.3 Graph Neural Ordinary Differential Equations

Introduced by Poli et al. (2019), Graph Neural Ordinary Differential Equations (GN-ODEs)
combine continuous-depth adaptability from the Neural ODEs with graph neural network
structure. GN-ODEs meld the structured representation of graph data with the continuous
model flexibility, providing a continuum of GNN layers. Compatible with both static and
autoregressive GNN models, GDEs afford computational advantages in static contexts using
the adjoint method (Chen et al., 2018) and enhance performance in dynamic situations by
leveraging the geometry of the underlying dynamics.

2.3.1 Framework

At the heart of GN-ODEs is the representation of the dynamics between layers of GNN node
feature matrices
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Definition: Inter-layer Dynamics of GNN Node Feature Matrices

H(s+1)=H(s)+FG (s,H(s),θ(s)), H(0) = Xe.

In this representation, X denotes the initial node features of the graph, and Xe is an
embedding derived from various methods such as a single linear layer or another GNN
layer. The function FG represents a matrix-valued nonlinear function conditioned on
graph G , and θ(s) is the tensor of parameters for the s-th layer.

The fundamental concept of a Graph Neural ODE can be simplified into the subsequent
expression:

Definition: Graph Neural Differential Ordinary Equation:

Ḣ(s) = FG (s,H(s),θ), H(0) = Xe,

where s belongs to a subset real numbers, R, typically denoted as [t0, t1].

In the context of GN-ODEs, FG functions as a field on graph G that varies with the depth or
complexity of the model, which we refer to as "depth-varying". Depending on the context,
the node features might be augmented to improve both computational efficiency and the
model’s performance, as indicated in prior studies (Poli et al., 2019).

2.3.2 Continuous GCN: Graph Convolution Differential Equations

Having introduced the concept of Graph Neural ODEs, we now turn our attention to continu-
ous representations of some of the prevailing graph neural architectures. Among these, the
discrete GCN stands out. As expressed in equation 2.4, it can be defined as

H(s+1) = H(s)+σ (LG H(s)θ(s)) (2.6)

with LG representing the graph Laplacian (Merris, 1995), and σ functioning as the activation.
The operation of graph convolution is denoted by C G H(s). Its continuous analogue, the graph
convolution differential equation (GCDE), deploys FG to depict a continuous convolution.
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Definition: Graph Convolution Differential Equations (GCDE)

Ḣ(s) = FGCN(H(s),θ) := C N
G ◦σ ◦C N−1 G ◦ . . .◦σ ◦C 1 G H(s)

The Laplacian, LG , can be deduced through various methods, and convolution layers of
the diffusion type naturally align with this continuous framework.

2.3.3 Message Passing in Graph Neural Differential Equations

Let’s delve into the workings of message passing in Graph NDEs. For a given node, rep-
resented by v ∈ V , its neighboring node set can be defined as N (v) := {u ∈ V : (v,u) ∈
E ∨(u,v) ∈ E }. In this context, Message-passing neural networks (MPNNs) perform a
spatial-based convolution on node v as follows

h(v)(s+1) = u

[
h(v)(s), ∑

u∈N (v)
m(h(v)(s),h(u)(s))

]
,

where typically hv(0) = xv, and both u and m are trainable parameter functions. For
enhanced clarity, let u(x,y) := x+g(y), with g being the actual parameterized function. This
results in

h(v)(s+1) = h(v)(s)+g

[
∑

u∈N (v)
m(h(v)(s),h(u)(s))

]
,

and its continuous counterpart can be defined as

Definition: Graph Message Passing Differential Equation

ḣ(v)(s) = f(v)MPNN(H,θ) := g

[
∑

u∈N (v)
m(h(v)(s),h(u)(s))

]
.
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2.3.4 Continuous GAT: Graph Attention Differential Equation

We now transition to the continuous representation of GAT. In its discrete form, as outlined
in equation 2.5, the GAT can be described as

h(v)(s+1) = σ

(
∑

u∈N (v)
αvuh(u)(s)

)
.

Here, isalearnableweightvector,and is a weight matrix associated with the layer.

The continuous analog of the GAT layer, which we can term as the Graph Attention
Differential Equation (GADE), formulates the change in node representations over depth s
as a function of their neighboring nodes, modulated by the attention weights. This can be
defined as

Definition: Graph Attention Differential Equation (GADE) is defined as

ḣ(v)(s) = FGAT(H(s),θ) := σ

(
∑

u∈N (v)
αvu(s)h(u)(s)

)
,

with the attention coefficients αvu(s) defined in a manner analogous to the discrete GAT
layer.

GADEs leverage the continuous nature of depth to smoothly adjust the attention scores,
enabling a more fine-grained extraction of patterns from the graph structure over depth.
Furthermore, by using depth as a continuous parameter, GADEs can learn to assign varying
importance to neighbors at different depths, possibly capturing multi-scale patterns in the
graph data.

2.3.5 Graph Neural ODEs as Continuously-Deep Graph Residual Net-
works

Having established an understanding of graph neural ODEs, we are now equipped to demon-
strate how graph neural ODE can be perceived as continuously-deep graph residual neural
network. This notion is analogous to the connection between neural ODEs and ResNets,
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where neural ODEs serve as the continuous-depth counterparts of ResNets (refer to Section
2.1.1). In this section, we extend this analogy to graph-structured data, delineating how a
Graph Neural ODE can be conceptualized as a continuous-depth version of a Graph Residual
Network.

Theorem: Graph neural ODEs operate as continuously-deep graph residual networks.

Proof: Considering the architecture of a residual graph network:

y j+1 = y j + fG ( j,y j,θ) (2.7)

where fΘ( j,y j,G ) represents the j-th residual block, with the parameters from all blocks
being collectively represented by Θ.

In contrast, let’s look at the Graph Neural ODE (abbreviated as GN-ODE):

dy
dt

(t) = fG ( j,y j,θ)

Discretizing this GN-ODE using the explicit Euler method at uniformly spaced time
intervals t j with a gap of ∆t gives:

y(t j+1)− y(t j)

∆t
≈ dy

dt
(t j) = fG ( j,y j,θ)

Simplifying, we get:

y(t j+1) = y(t j)+∆t · fG ( j,y j,θ)

By integrating the factor of ∆t into fG , this equation naturally aligns with the formula-
tion in equation 2.7. Such a perspective underscores that neural ODEs can be seen as the
continuous-time counterparts of residual networks.

This viewpoint casts the graph neural ODE as a continuously-deep Graph Residual
Network. Here, the sequence of minor (residual) updates to its hidden states become both
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infinitesimally small and infinitely frequent. The end output is the cumulative effect of these
continuous updates, mirroring the solution to the ODE from its initial state.

Remark: As with ODEs, the adjoint method can be employed in the context of graph
neural networks (refer to A.1.1). This brings a notable advantage in terms of memory
efficiency when comparing Graph Neural ODEs to traditional Graph ResNets. Specifically,
while Graph ResNet training necessitates storing activations from every layer for back-
propagation, a neural ODE using the adjoint method demands only the storage of its initial
state. Subsequently, the ODE solver computes the state at any desired point. This feature
can lead to significant memory conservation, especially for ResNets with a high number
of layers.

2.3.6 Comparison: Oversmoothing in GN-ODE vs. Standard GNN

This section delves into the robustness of GN-ODEs in combating oversmoothing, using a
comparison with the standard GNN as a reference.

Example:

Fig. 2.3 Comparison of performance accuracy between a GCN and Graph Neural ODE
over increasing layer depths, highlighting the impact of oversmoothing.
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Figure 3.2 offers a side-by-side performance comparison of the standard GCN and the
Graph Neural ODE. For this comparison, layer depths range from 1 to 10. Notably, in the
context of the Graph Neural ODE, the layer depth corresponds to the number of steps taken
within the ODE H(s), effectively representing the depth of the Graph Neural ODE itself.
Error bars in the graph represent the variance observed over 10 independent trials, while
the central points indicate the mean accuracy for each depth. A standout observation is the
Graph Neural ODE’s robustness against oversmoothing, a pitfall to which the standard
GCN is more vulnerable. The dataset underpinning this evaluation is derived from the
previously detailed political compass and friendship group scenario (see Example 2.2).
Such findings highlight the empirical benefits of weaving Neural Differential Equations
into graph architectures.

Summary

In this journey, we introduced neural differential equations, encompassing Neural ODEs,
Neural CDEs, and Neural SDEs. Subsequently, we delved into GNN and expounded on Graph
Neural ODEs. Through this exploration, we demonstrated how to implement message passing
with Graph Neural Differential Equations. We also translated popular GNN architectures,
like CNN and GAT, into their continuous counterparts, resulting in GCDEs and GADEs.
Armed with this knowledge, we are now prepared to embark on the premise of this work: our
novel model, the Graph Neural SDEs.



Chapter 3

Graph Neural Stochastic Differential
Equations

Pursuing the ambition to design a continuous GNN model capable of modeling uncertainty
while also addressing the challenges of oversmoothing, we turned our gaze towards Graph
Neural ODEs. These continuous models exhibit robustness against oversmoothing. However,
they are not adept at capturing the uncertainty inherent in the model. This realization naturally
transitioned our focus to Graph Neural Stochastic Differential Equations (GN-SDEs): a
continuous model capable at both quantifying its uncertainty and warding off oversmoothing
effects.

It is noteworthy that the exploration of uncertainty quantification in Graph Neural Net-
works has not been as extensive as conventional neural networks. A few seminal contributions
in this space include the Bayesian Graph Neural Network by Hasanzadeh et al. (2020), ro-
bust ensemble methods (Lin et al., 2022), and Gaussian Processes on graphs (Borovitskiy
et al., 2021; Lawrence and Jordan, 2004; Pérez-Cruz et al., 2013). In this work, we use
the Bayesian GNN and the ensemble methods for GNN as benchmarks for quantifying
uncertainty and out-of-distribution detection. These benchmarks are in conjunction with the
previously introduced Graph Neural ODE and GCN, enabling a comprehensive evaluation
landscape.

As defined in 2.1.3, a SDE is defined as

dz(t) = f (t,z(t))︸ ︷︷ ︸
drift

dt +g(t,z(t))︸ ︷︷ ︸
diffusion

dW (t).
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It is important to distinguish between Graph Neural ODEs and Graph Neural SDEs. While
the former seamlessly integrates the Neural ODE with a graph model, the latter contends
with the inherent complexities of Neural SDEs, as elaborated in the background section 2.1.3.
Central to these complexities is the task of properly handling the diffusion function (denoted
as g). In Neural SDE models, if the diffusion function is treated as a trainable parameter (like
a neural network), it will most definitely trend towards zero when directly trained using the
negative log-likelihood (NLL) metrics like cross-entropy (Li et al., 2020). This effectively
transforms our stochastic equation into a Neural ODE.

To navigate the challenges posed by uncertainty quantification in GN-SDEs, we intro-
duce two strategies: the Latent Graph Neural SDE approach and the Graph SDE-GAN
methodology. Our latent approach is inspired by the studies by Li et al. (2020). Conversely,
Graph SDE-GAN is rooted in the foundational principles of the SDE-GAN paper (Arjovsky
et al., 2017), adapting them to graph-centric applications. Within this paradigm, a Graph
Neural SDE plays a generative model, while a GNN combined with Neural CDEs plays
the role of the discriminative model. The primary application of Graph SDE-GAN is the
generation of synthetic data.

In addition to constructing the GN-SDE model, we offer an in-depth theoretical anal-
ysis. We present a mathematical proof illustrating the equivalency between GN-SDE to a
continuously-deep Graph Residual Neural Network. This relationship grants an intuitive
grasp of GN-SDEs, bridging the gap between the continuous-time model and the more
familiar, discrete-time deep learning architectures.

3.1 Graph Neural SDE

With the groundwork laid out, we now pivot to the specific implementations and strategies
adopted for GN-SDE.

3.1.1 Latent Graph Neural SDEs

Our primary methodology in constructing the Graph Neural SDE revolves around the Latent
Graph Neural SDEs approach. Latent Graph Neural SDEs learn an latent state z(t) using
Graph Neural SDEs to encapsulate the data’s underlying patterns. Once determined, this state
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is input into a projection network fΩ to generate predictions ŷ. The model parameterizes an
Ornstein–Uhlenbeck (OU) prior process and an approximate posterior, which is another OU
process1.

Definition:

dz̃(t) = fθ (z(t), t,G )dt +σ(z̃t , t)dWt

The Approximate posterior is expressed as:

dz(t) = fφ (z(t), t,G )dt +σ(zt , t)dWt

Here, fφ is parameterized by a neural network, with φ representing the learned weights
of the network.

Both the prior and posterior drift functions, fθ and fφ respectively, dictate the dynamics
of the system. z(t) denotes the system state at time t, and G symbolizes the graph structure.
Notably, both the prior and posterior SDEs employ the same diffusion function σ but
have distinct drift functions. Sharing the diffusion function ensures that the KL divergence
between these processes remains finite, facilitating its estimation by sampling paths from the
approximate posterior process (Li et al., 2020).

The evidence lower bound (ELBO) is given by

LELBO(φ) = Ezt

[
log(p(xti|zti)−

∫ t1

t0

1
2
||u(zt , t,φ ,θ ,G )||22dt

]
,

where xti are the observations at time t (with i in [t0, t1]), and

u = g(zt , t)−1[ fφ (zt , t,G )− fθ (zt , t,G )].

The latent state zt , is then passed into the projection layer, fΩ, for further prediction. The
posterior predictive is then:

p(y∗|t∗,G ,D) =
∫

p(y∗| fΩ(zt , t∗,G )) p(z|D)dz.

1For an in-depth definition of the OU process, refer to A.2.4
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This posterior predictive distribution is approximated using Monte Carlo sampling by
drawing samples zn from the posterior p(z|D). Therefore, we can represent it as

p(y∗|t∗,G ,D)≈ 1
N

N

∑
n=1

p(y∗| fΩ(z∗n, t
∗,G )) .

The variance, of the Monte Carlo mean estimation, is given by

Var(y) =
1
N

N

∑
n=1

(yn − ȳ)2.

3.1.2 Graph SDE-GAN

The second approach we explore is the Graph SDE-GAN. This technique extends the SDE-
GAN methodology presented by Kidger et al. (2021) to work with graph-structured data.

We begin by considering the Graph Neural SDE, which serves as the generative function
in the GAN. The differential equation for this process is given as

dy(t) = fφ (t,y(t))dt +gθ (t,y(t))dW (t).

Here, y(s) is the predicted output for ytrue(s) at time s. Notably, we use y instead of z to
emphasize that we are directly predicting the output from the input.

The goal of training this model is to ensure that the distribution of y closely resembles
that of ytrue. Specifically, we aim for y to approximate ytrue in a precise sense—measured here
by the Wasserstein distance, as detailed in (Arjovsky et al., 2017; Goodfellow et al., 2014).

In this setup, y is a random variable whose distribution is implicitly controlled by param-
eters θ . To effectively train the model, we must fit it to data, optimizing a suitable measure
of distance between the probability distributions of y and ytrue. We employ the Wasserstein
distance for this purpose and train a discriminator adversarially. We denote this model by
F(Y ), defined as follows

F(Y ) = mΘ ·H(t),
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where

H(0) = y(0),

dH(t) = fφ (t,H(t),G )dt +gθ (t,H(t),G )dW (t).

In this context, · denotes the dot product. The functions fφ , gθ , and qτ are neural networks,
and mΘ is a vector. Each of these components—θ , φ , and Θ—are learnable parameters in
our model.

The training objective can then be expressed as the following optimization problem:

min
θ

min
φ

(
EY [Fφ (Y )]−EYtrue[Ytrue]

)
.

Note that, because we are not training the model via maximum likelihood, we are free to
use separate neural networks for the drift function fφ and the diffusion function gθ without
the diffusion function learn to become zero, although theoretically, it can. Once the Graph
Neural SDE is trained, we can sample from this learned model to produce synthetic data.
This model was not designed for predictive tasks but rather for the generation of synthetic
data.

Remark: With a comprehensive understanding of the Graph SDE-GAN approach, we
are now equipped to employ this model for synthetic data generation. This capability
enriches our data-driven efforts and enhances our ability to simulate real-world phenom-
ena in controlled environments, thus paving the way for groundbreaking research and
applications.

3.2 Graph Neural SDEs as Continuously-Deep Recurrent
Graph Neural Networks

Having introduced the Graph Neural SDE, and given our prior discussions on Neural SDEs
where we established that they serve as continuous-depth analogues of RNNs (refer to 2.1.3),
we now venture further into this terrain. Specifically, our next logical step is to show this
still holds for graph. In essence, we suggest that a Graph Neural SDE should be viewed
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as a continuous-depth version of a Recurrent Graph Neural Network (RGNN). To draw a
parallel, within the framework of Neural SDEs, the input for the RNN is typically interpreted
as random noise or Brownian motion, and its output mirrors that of a generated sample.

Theorem: Graph Neural SDEs operate as continuously-deep RGNN.

Proof: Consider an autonomous one-dimensional Stochastic Differential Equation repre-
sented as

dy(t) = f (y(t),G )dt +σ(y(t))dw(t),

where y(t), f (y(t),G ), σ(y(t)), and w(t) belong to the set of real numbers, R. The
numerical Euler-Maruyama discretization of this SDE can be expressed as

y(t j+1)− y(t j)

∆t
≈ f (y(t j),G )+

σ(y(t j))∆w j

∆t
.

Which simplifies to
y j+1 = y j + f (y j,G )∆t +σ(y j)∆w j.

Here, ∆t represents a fixed time step and ∆w j is normally distributed with mean zero
and variance ∆t. This numerical discretization is reminiscent of an RNN with a specific
form. Therefore, we can consider the Neural SDE as an infinitely deep RNN where the
depth is defined by the number of discretization steps.

Remark: Deep learning designs, like the Graph Neural SDE, appear to have a strong
resemblance to differential equations. At first glance, this may seem coincidental. However,
considering the increasing popularity of this approach, there’s an interesting link suggesting
it’s not all that surprising, especially when we acknowledge the longstanding use of
differential equations in modeling. It makes sense that they influence new areas like deep
learning. This shows how adept they are at describing intricate situations.

Summary

We have successfully introduced our novel model, the Graph Neural SDEs. Within this
framework, we proposed two methodologies: the Latent Graph Neural SDE for standard
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regression and classification tasks, and the Graph SDE-GAN for generating synthetic data
(in a stochastic manner) from graph structures. Furthermore, we demonstrated that under
the Euler-Maruyama discretization (an approximation method for SDEs), this model can
be interpreted as continuously-deep RGNNs. With a foundational understanding of our
innovative model in place, we will now transition to its evaluation on both static and spatio-
temporal datasets. The next section will spotlight related work, serving as benchmarks for
our model. Additionally, we will delve into the capacity of our continuous model to assess
prediction uncertainties and its inherent resistance to over-smoothing.

3.3 Evaluation

To highlight the capabilities of the Graph Neural Stochastic Differential Equations (SDEs),
we conducted a series of experiments on both static and spatio-temporal datasets. We initiated
our evaluation with a basic static toy dataset, offering clear visualization and a tangible
representation of our model’s strengths. Following this, we delved into experiments on real-
world datasets and explored the integration of active learning techniques. In each scenario,
the performance of Graph Neural SDEs was contrasted against established benchmarks like
Graph Neural ODEs and Graph Convolutional Neural Networks (GCNs). Additionally, we
demonstrated the application potential of our Graph SDE-GAN model in generating synthetic
SDE features for graphical data.

In the experiments involving both static and spatio-temporal datasets, we utilized the
Latent Graph Neural SDE. For the sake of simplicity in presentation and discourse, we
commonly referred to it as the Graph Neural SDE or GN-SDE.

3.3.1 Static

Consider the same scenario as in Example 2.2, where the objective is to predict the voting
preferences of individuals for three candidates (red, blue, or green), based on their political
compass (left, right, liberal, authoritarian) and their social circles (this is a node calcification
problem). The right panel of Figure 3.1 depicts this problem, illustrating the voters along with
their respective political compasses. The right panel of the figure shows the social groups or
friend circles of these voters. It is important to note that there is inherent noise in the data.
For instance, individuals often maintain friendships with those who have voted for different
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Fig. 3.1 The left image illustrates the political compass of voters while the right image
presents their social circles, with colors indicating the candidates they voted for.

candidates. Similarly, the alignment of a voter’s political compass does not always strictly
dictate their voting preference, introducing an element of randomness.

Fig. 3.2 Comparison of performance accuracy between a GCN, Graph Neural ODE, Graph
Neural SDE over increasing layer depths, highlighting the impact of oversmoothing.

We first examine the resilience of the models to oversmoothing as the number of layers
increases. Figure 3.2 provides a performance comparison between the standard GCN, Graph
Neural ODE, and Graph Neural SDE across layer depths from 1 to 10. In the case of the
Graph Neural ODE and SDE, "layer depth" denotes the number of steps taken within the
differential equation to solve the integraph. This effectively captures the depth of these
neural architectures. The error bars on the graph show variance over 10 independent trials,
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with central points representing the mean accuracy at each depth. A key takeaway is the
heightened resistance of the Graph Neural ODE and SDE to oversmoothing, a challenge that
more prominently affects the standard GCN.

.

Fig. 3.3 A comprehensive comparison across Graph Neural ODE, GCN, Graph Neural SDE,
Bayesian GCN, and Ensemble GCN models, illustrating performance dimensions across
accuracy, scalability, prediction confidence, and resilience against noise.

Figure 3.3 offers a thorough analysis of five distinct models. These include the Graph
Neural Ordinary Differential Equations (GN-ODE), GCN, our proposed Latent Graph Neural
Stochastic Differential Equations (GN-SDE), Bayesian GCN, and Ensemble GCN — where
the latter averages predictions from five individual GCNs. Four evaluation metrics inform
this comparison, each presented in its corresponding sub-figure.

Accuracy in Relation to Training Data Proportions: We evaluated the model’s accuracy
by training it on different percentages of the dataset, ranging from 10% to 90%. The remaining
data was allocated for testing. Across all these variations, the GN-SDE consistently surpassed
the performance of other models. This underscores the data efficiency of our model.
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Accuracy versus Number of Nodes: Next, we measured performance in relation to graph
node count. The GN-SDE showed high performance even with fewer nodes, maintaining this
lead as node numbers grew. This suggests the model’s versatility in managing both small
and large graphs. In the specific scenario with only 100 nodes, the Ensemble GCN briefly
surpassed our model. Otherwise, the GN-SDE generally dominated.

Accuracy versus Entropy Threshold: This metric probed the models’ capacity for
confident predictions by setting an entropy threshold. Only when prediction entropy falls
below this threshold is the model allowed to predict on test data. Lower entropy indicates
a higher prediction confidence. At an entropy of 1.60, the Ensemble model outdid ours,
but as confidence requirements tightened (e.g., at entropy 0.9 onwards), our model beat the
Ensembel GCN model, only surpassed by the Bayesian GCN after a threshold of 0.5. This
signifies our model’s adeptness at identifying out-of-distribution data and providing reliable
uncertainty measures, bested only by the Bayesian GNC.

Noise versus Log-Likelihood: We define log-likelihood as the logarithm of the probabil-
ity assigned to the correct class, and this metric was assessed as the noise level increased. It’s
important to note that a log-likelihood of 0 (indicating that the model assigns a probability
of 0 to the correct class) would lead to negative infinity when taking the logarithm2. Our
evaluations centered on the model’s resilience to Gaussian noise introduced in the test data.
As the noise escalated, our model’s performance demonstrated a gradual and ‘smooth degra-
dation’, especially when juxtaposed with the GCN and Graph Neural ODE. Although the
Bayesian and Ensemble models fared better under extreme noise conditions, the GN-SDE
model’s performance degradation was the most graceful among all competitors, highlighting
its robustness even under challenging circumstances.

It is worth emphasizing that our GN-SDE model consistently excelled over both the Graph
Neural ODE and the GCN in every evaluation setting. Only on isolated occasions did the
Bayesian GCN and the Ensemble model outshine ours. Overall, the GN-SDE demonstrated
superior performance, particularly in terms of robustness, data efficiency, and uncertainty
quantification. For a detailed examination of results pertaining to this dataset, refer to
Appendix B.1.

Figure 3.4 illustrates an active learning experiment conducted on a dataset composed of
100 nodes. The experiment commenced with an initial training set of 10 nodes, with additional
nodes incrementally incorporated one at a time. In the right figure, the node with the highest

2To prevent numerical issues associated with taking the logarithm of 0, we added a small constant 10−4 to
all probabilities before computing the log-likelihood
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(a) Node selection using a random acquisition
function.

(b) Node selection using a maximum entropy ac-
quisition function.

Fig. 3.4 The figure depicts an active learning experiment on a 100-node dataset, starting with
10 nodes and incrementally adding more until reaching 80. The left and right figures use
random and max entropy acquisition functions respectively for node selection.

entropy was strategically selected, while in the left, node selection was based on a random
acquisition function. After the inclusion of each new node, the model was retrained over a
course of 5 epochs. This procedure was consistently followed until the training set expanded
to encompass 80 nodes. Notably, our model achieved a remarkable 99% accuracy upon the
addition of the 78th node, a performance closely paralleled by the Bayesian and Ensemble
models. In stark contrast, the GCN and Graph Neural ODE models under examination could
only attain a peak accuracy nearing 85%. This experiment illustrates the proficiency of our
model in an active learning scenario, a context where it is crucial for a model to be able to
select the next training example when dealing with limited and costly labeled datasets. This
attribute is invaluable in situations where labeled training data is scarce and labeling new
data is expensive. Additionally, compared this with the random acquisition method—which
could not elevate the models’ performance beyond 80% accuracy—shows the importance of
employing uncertainty-aware acquisition strategies in amplifying the models’ performance.

Real-Word Static Data sets

Shifting our focus to real-world datasets, Table 3.1 details the performance of the models
GN-SDE, GN-ODE, GCN, Ensemble GCN, and Bayesian GCN on renowned datasets such
as CORA (Sen et al., 2008), Pubmed (Sen et al., 2008), Citeseer (Giles et al., 1998), and OGB
arXiv (Hu et al., 2020). The models were evaluated based on different entropy thresholds. This
essentially means that a model is only permitted to make predictions if its confidence level, as
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Dataset Models
Entropy Thresholds

∞ 1.6 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

GN-SDE (ours) 0.817 0.834 0.922 0.942 0.957 0.966 0.969 0.977 0.991 1.0 1.0 1.0
GN-ODE 0.799 0.806 0.905 0.923 0.944 0.969 0.976 0.984 0.984 0.995 1.0 1.0

CORA GCN 0.717 0.717 0.720 0.720 0.723 0.734 0.756 0.761 0.771 0.780 0.786 0.824
Ensemble GNN 0.777 0.802 0.935 0.949 0.954 0.958 0.962 0.972 0.983 1.0 1.0 1.0
Bayesian GNN 0.709 0.719 0.800 0.834 0.871 0.893 0.917 0.925 0.930 0.948 0.972 0.981

GN-SDE (ours) 0.71 0.753 0.879 0.889 0.898 0.925 0.929 0.924 0.926 0.947 0.972 1.0
GN-ODE 0.712 0.742 0.875 0.891 0.905 0.931 0.915 0.936 0.930 0.882 0.923 1.0

Citeseer GCN 0.516 0.516 0.524 0.530 0.544 0.557 0.583 0.599 0.626 0.651 0.678 0.725
Bayesian GCN 0.61 0.619 0.729 0.746 0.769 0.791 0.815 0.821 0.854 0.863 0.867 0.88
Ensemble GNN 0.527 0.532 0.743 0.780 0.821 0.834 0.859 0.858 0.920 0.939 0.953 0.933

GN-SDE (ours) 0.791 0.791 0.794 0.794 0.802 0.818 0.837 0.852 0.876 0.893 0.898 0.911
GN-ODE 0.763 0.763 0.768 0.774 0.781 0.813 0.833 0.847 0.858 0.862 0.872 0.899

Pubmed GCN 0.78 0.78 0.784 0.785 0.789 0.795 0.809 0.821 0.823 0.835 0.847 0.864
Ensemble GNN 0.786 0.786 0.796 0.814 0.837 0.868 0.879 0.908 0.907 0.916 0.929 0.952
Bayesian GNN 0.715 0.715 0.719 0.730 0.736 0.752 0.815 0.850 0.864 0.882 0.904 0.918

GN-SDE (ours) 0.531 0.770 0.859 0.871 0.884 0.897 0.907 0.916 0.929 0.944 0.955 0.968
GN-ODE 0.526 0.766 0.853 0.867 0.883 0.898 0.912 0.919 0.930 0.938 0.951 0.964

OGB arXiv GCN 0.470 0.809 0.885 0.900 0.909 0.917 0.931 0.939 0.950 0.966 0.983 0.976
Ensemble GNN 0.512 0.785 0.699 0.800 1.000 1.000 1.000 - - - - -
Bayesian GNN 0.433 0.828 0.880 0.884 0.893 0.897 0.900 0.919 0.916 0.935 0.954 1.000

Table 3.1 Accuracy scores for GN-SDE, GN-ODE, GCN, Ensemble GNN, and Bayesian
GNN on CORA, Citeseer, Pubmed, and OGB arXiv datasets. Comparisons use varying
entropy thresholds, with bold values indicating top performance. A ’-’ for accuracy indicates
the model lacked sufficiently confident data points at that threshold.

measured by entropy, falls below a predefined threshold. Using entropy as a measure provides
an understanding of a model’s capacity for confident predictions (uncertainty quantification)
and its ability in performing out-of-distribution detection.

To clarify further, a lower entropy value signifies higher model confidence; conversely, a
higher value indicates lesser certainty. Importantly, an entropy of inf suggests the model’s
continuous prediction irrespective of its confidence level, implying it always outputs a
prediction regardless of how uncertain it might be. In instances where the accuracy is denoted
with a ’-’ in the table, this represents a unique scenario. It means that the model found
all potential data points too ambiguous to confidently classify under the given entropy
threshold. In other words, none of the data points satisfied the model’s criteria for a confident
prediction at that specific threshold, indicating a heightened level of uncertainty in the
model’s assessment of the data.

Upon examining the table, it becomes clear that our GN-SDE model consistently sur-
passes the other four models across most entropy thresholds, especially in the CORA and
Pubmed datasets. This consistent top-tier performance further substantiates our model’s
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aptitude for detecting out-of-distribution data. Specifically, in the CORA dataset, GN-SDE
shines as the top performer across nearly all entropy thresholds, achieving a perfect 100% ac-
curacy at thresholds 0.3, 0.2, and 0.1. While the Ensemble GCN matched this feat at the same
thresholds, GN-SDE maintains a higher accuracy at elevated entropy levels. Similarly, for
the Pubmed dataset, GN-SDE holds its ground across the majority of thresholds, registering
an impressive 91.1% accuracy at an entropy threshold of 0.1.

When examining the Citeseer and OGB arXiv datasets, the performance of our GN-
SDE model seems more evenly matched with other models, rather than being the clear
leader as observed previously. In the OGB arXiv dataset, the GN-SDE initiates with a strong
performance at entropy inf. However, it faces stiff competition from the Bayesian GNN which
achieves an impressive 100% accuracy at the entropy threshold of 0.1. Noteworthy is the
Ensemble GNN’s performance, which flaunts a flawless 100% accuracy at entropy thresholds
of 0.8 and below, although it stops predicting beyond an entropy of 0.5. This underscores
the model’s high confidence in these thresholds. Interestingly, the GCN model consistently
outstrips both GN-SDE and Graph Neural ODE across several entropy thresholds. Shifting
to the Citeseer dataset, GN-SDE leads in performance across most thresholds. Nevertheless,
GN-ODE emerges as a close second, occasionally surpassing our model at specific thresholds.

Overall, the GN-SDE model showcases commendable performance. Although there’s
variability across datasets and thresholds, the results affirm its robustness and exceptional
ability in confident predictions, adeptly handling out-of-distribution data.
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3.3.2 Spatio-Temporal

Fig. 3.5 Comparison of the true and predicted values for the three-node regression problem.
The first row shows the true values of nodes A, B, and C over time. The second row
presents the predictions made by the Graph Neural SDE model for nodes A, B, and C. The
shaded regions represent the model’s uncertainty quantification, demonstrating an increase in
uncertainty during the interpolation and extrapolation phases.

Moving into a spatial-temporal dataset, let’s consider a scenario involving a three-node
regression problem with nodes A, B, and C. The objective is to predict the regression values
of these nodes at various time points. As depicted in Figure 3.5 and 3.6, the observations are
irregularly sampled, and the graph structure reveals that node C is connected to nodes A and
B, while nodes A and B are independent, i.e., they do not share a direct link. The figure also
delineates the training and testing data points, demonstrating both interpolation (particularly
in the time frame between 4 and 6) and extrapolation (from time 10 to 12).

The underlying true distribution for each node is given by
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A(t) = t ∗ sin
(

πt
2

)
+ εA,

B(t) =
4

t
5 +0.5

∗ cos
(

πt
2

)
+ εB,

C(t) = A(t)+B(t)+ εC,

where εA,εB,εC ∼ N (0,0.52). It is im-
portant to note that while nodes A and B
are independent, node C is a function of
both A and B, with an added Gaussian
noise component.

Fig. 3.6 Represents the graph struc-
ture, showing that node C is con-
nected to nodes A and B, while nodes
A and B are independent.

In this task, our objective is to incorporate uncertainty to filter out predictions during
the testing phase. However, both Neural ODE and GCN models are deterministic. Unlike in
classification tasks where entropy can be utilized as a measure of uncertainty, an equivalent
metric is absent for regression tasks. To circumvent this, we employ Monte Carlo Dropout
during both the training and testing phases for these two models. MC Dropout imparts
stochasticity into the model, and it has been demonstrated that under certain conditions, neural
networks with dropout converge to a Gaussian Process in the limit (Gal and Ghahramani,
2016). This approach enables us to estimate the model’s uncertainty, thereby providing a
mechanism to discard unreliable predictions. The uncertainty is quantified by predicting
both a mean and a variance, with the magnitude of the variance serving as the measure
of uncertainty. Consequently, a prediction is only made if the model’s variance satisfies
a predetermined threshold. It’s worth noting that we do not need to use dropout for the
Bayesian GCN and Ensemble methods, since they inherently quantify uncertainty: the
Ensemble derives the mean and variance of regression predictions, while for the Bayesian
GCN, we utilize Monte Carlo Sampling to ascertain the prediction’s mean and variance,
similar to our GN-SDE’s approach.

The second row in figure 3.5 presents the performance of the Graph Neural SDE model
in the node regression task. The figure highlights the model’s ability to quantify the inherent
uncertainty associated with the randomness of the model. Particularly, it demonstrates an
increase in uncertainty during both the interpolation and extrapolation phases. A comparative
plot, which includes the Dropout Graph Neural ODE model and the Dropout GCN model,
is provided in the appendix (see Figure B.1). It is evident from this comparison that the
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application of dropout does indeed facilitate effective uncertainty quantification, particularly
during interpolation and extrapolation. However, it is worth noting that the models exhibit
limited success in capturing the uncertainty associated with the training data points.

Metric Models
Variance Thresholds

100 2.5 2 1.5 1.0 0.5

MAE

Dropout GCN 13.35 13.06 13.03 13.37 12.24 5.63
GN-SDE (ours) 12.06 11.36 10.46 9.73 2.41 -
Dropout GN-ODE 14.52 14.52 14.52 14.49 13.61 -
Bayesian GCN 10.99 11.02 12.16 9.12 4.25 4.26
Ensemble GCN 2.67 2.68 2.74 2.72 2.62 2.74

MAPE

Dropout GCN 9.34 9.39 9.46 14.08 8.94 3.06
GN-SDE (ours) 6.83 6.32 13.08 3.38 13.55 -
Dropout GN-ODE 8.91 8.91 8.91 10.67 9.96 -
Bayesian GCN 7.50 7.59 9.41 7.70 7.24 2.73
Ensemble GCN 15.44 141.20 25.15 54.49 18.31 8.61

MSE

Dropout GCN 13.35 13.06 13.03 13.37 12.24 5.63
GN-SDE (ours) 12.06 11.36 10.46 9.73 2.41 -
Dropout GN-ODE 14.52 14.52 14.52 14.49 13.61 -
Bayesian GCN 10.99 11.02 12.16 9.12 4.25 4.26
Ensemble GCN 12.73 12.72 13.27 13.28 12.55 13.47

NLL

Dropout GCN 22.55 25.07 25.29 26.74 26.66 19.81
GN-SDE (ours) 8.97 9.03 9.53 10.30 8.44 -
Dropout GN-ODE 40.19 40.19 40.19 42.04 43.97 -
Bayesian GCN 13.28 13.35 12.28 12.01 6.96 10.00
Ensemble GCN 51.38 85.56 81.54 89.95 104.68 205.54

Table 3.2 Performance comparison of Dropout GCN, GN-SDE, Dropout GN-ODE, and
Bayesian GCN models on the three-node regression problem across different variance
thresholds. Bold values indicate superior performance by the model. A ’-’ for accuracy
indicates the model lacked sufficiently confident data points at that threshold.

Table 3.3 provides a comprehensive performance comparison of several models across
different variance thresholds. Notably, the GN-SDE model demonstrates consistently strong
results, underscoring its predictive accuracy and adeptness at uncertainty estimation.

The GN-SDE model frequently achieves the lowest Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Negative Log-Likelihood (NLL) across the higher variance thresh-
olds. However, its performance in Mean Absolute Percentage Error (MAPE) demonstrates
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some variability. For a more in-depth understanding of the metrics MAE, MSE, and MAPE,
please refer to Appendix A.3.

For the NLL metric, calculated under the Gaussian-distributed predictions assumption

NLL =
1
N

N

∑
i=1

(
1
2

log(2πσ
2
i )+

(yi −µi)
2

2σ2
i

)
,

where σ2 is the predicted variance, µ is the observations, and µ̂ is the predicted mean.

Interestingly, as the variance threshold reduces, the Bayesian GCN begins to show
competitive results, particularly evident at the stringent variance threshold of 0.5, where
it even surpasses the GN-SDE in the MAE metric. The Ensemble GCN exhibits varied
performance across the thresholds but remains a consistent contender in the comparison.

The GN-SDE model exhibits a significant decrease in MAE and MSE as the variance
threshold decreases, reinforcing its ability to discard less reliable predictions. At the most
restrictive threshold of 0.5, the Dropout GCN and Bayesian GCN are the only models
providing results, with the Bayesian GCN showcasing impressive MAE and NLL scores.

To summarize, the GN-SDE model emerges as a potent tool in the three-node regression
task, often outperforming its counterparts across multiple variance thresholds. The Bayesian
GCN warrants a special mention for its robust results, especially at the lower variance
thresholds. While the Dropout GCN displays resilience at the most stringent threshold, the
Dropout GN-ODE model seems to face challenges at higher variance thresholds, indicating
possible constraints in its uncertainty estimation capabilities. The Ensemble GCN, though
consistent, occasionally exhibits suboptimal results, especially in the NLL metric.

Real World Datasets

Now we move to real-world spatio-temporal datasets. We focused our attention on two
specific datasets: PEMS-BAY and METR-LA, as discussed in Li et al. (2018b).

The predictive modeling of traffic, a quintessential spatiotemporal phenomenon, generally
takes the form of a time-series prediction problem. Here, the primary objective is to predict
future traffic metrics (for instance, traffic speed or traffic flow) over the next H time steps given
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a historical record of traffic observations over the previous M time steps. Mathematically,
this prediction can be expressed as:

v̂t+1, . . . , v̂t+H = arg max
vt+1,...,vt+H

logP(vt+1, . . . ,vt+H |vt−M+1, . . . ,vt),

In this formulation, vt ∈ Rn denotes an observation vector for n road segments at time
step t, with each element of the vector representing historical observations for an individual
road segment (Yu et al., 2017).

Among the datasets analyzed, the METR-LA traffic dataset is a widely utilized resource
for traffic speed prediction. This dataset comprises traffic data gathered from loop detectors
installed on highways across Los Angeles County. A total of 207 sensors were selected for
this study, yielding a dataset that encompasses four months of data spanning from March 1st
to June 30th, 2012. This rich dataset provides a comprehensive view of traffic dynamics over
a considerable temporal and spatial scale.

In our experiments, we utilized Graph Attention Networks (GAT) to embed the input
data, which consisted of the past six recordings. These inputs were embedded into 64-
dimensional tensors. Subsequently, these embeddings were passed to our Latent Graph
Stochastic Differential Equation (SDE) model. The Graph Latent SDE model employs a
GCN for the drift function, while the diffusion function is held constant at a value of 1. The
hidden state of the model is of size 64, which is then passed to a GCN projection layer for
prediction.

The Graph Neural ODE model follows a similar structure but replaces the SDE with an
ODE and omits the noise component. The GCN model also utilizes the same embedding and
projection layers but bypasses the differential equations entirely. This setup allows for a fair
comparison between the models, as they share the same embedding and projection layers,
differing only in the differential equation component.

From the results presented in Table 3.3, the Graph Neural Stochastic Differential Equa-
tions (GN-SDE) model consistently outperforms the Dropout GAT-GCN, Dropout GN-ODE,
Bayesian GCN, and Ensemble GCN models across all variance thresholds. For the variance
thresholds of 100, 3, and 1, the GN-SDE model achieved the lowest Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and
Root Negative Log-Likelihood (RNLL). This achievement indicates the GN-SDE model’s
superior predictive accuracy and capability in uncertainty estimation.
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Metric Models
Variance Thresholds

100 3 1 0.5 0.25

MAE

Dropout GAT-GCN 14.30 14.01 9.38 5.25 5.22
GN-SDE (ours) 14.13 12.42 10.14 5.40 4.82
Dropout GN-ODE 15.21 15.53 12.36 9.37 5.58
Bayesian GCN 15.0 13.9 9.4 5.3 5.2
Ensemble GCN 9.835 6.665 2.615 2.736 -

MAPE

Dropout GAT-GCN 10.21 10.59 20.42 21.01 20.87
GN-SDE (ours) 10.63 9.66 18.74 18.79 13.25
Dropout GN-ODE 10.27 13.92 21.86 17.14 13.70
Bayesian GCN 10.5 10.6 20.5 20.9 20.8
Ensemble GCN 18.15 15.44 18.31 8.61 -

RMSE

Dropout GAT-GCN 18.58 16.39 9.58 5.26 5.22
GN-SDE (ours) 15.38 13.17 10.12 5.22 4.78
Dropout GN-ODE 19.73 17.32 16.68 12.87 7.33
Bayesian GCN 19.0 16.5 9.6 5.3 5.2
Ensemble GCN 19.74 12.73 7.55 6.47 -

RNLL

Dropout GAT-GCN 7.03 13.28 15.12 11.56 14.52
GN-SDE (ours) 6.56 11.57 13.54 13.92 13.88
Dropout GN-ODE 32.33 75.10 31.03 92.42 213.09
Bayesian GCN 7.2 13.4 15.3 12.0 14.6
Ensemble GCN 39.63 51.38 104.68 205.54 -

Table 3.3 Comparative performance of various models on the METER-LA Dataset across
different variance thresholds. Bold values indicate superior performance by the model.

As the variance threshold decreases further to 0.5 and 0.25, the GN-SDE model continues
to maintain its leading performance, securing the lowest MAE, MAPE, RMSE, and RNLL
scores. This persistence in performance suggests that the GN-SDE model’s predictions align
more closely with the observed data and that the model effectively quantifies the uncertainty
of its predictions.

In contrast, the Dropout GN-ODE model consistently registers the highest RNLL across
thresholds, pointing to a potentially poorer fit to the data and less effective uncertainty
quantification. The severity of this gap is accentuated at the 0.25 variance threshold, where
the RNLL of the Dropout GN-ODE model surpasses its counterparts by a substantial margin.
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However, it’s also essential to note the competitive performance of the Bayesian GCN. For
most thresholds, BG Bayesian GCN maintains a performance closely trailing the GN-SDE
model, reflecting its robust modeling and uncertainty estimation capabilities.

The Ensemble GCN, though showcasing some strength in lower variance thresholds,
particularly in MAE, is inconsistent across metrics and thresholds. It often falls behind in the
RNLL metric, which can be observed at the 100 and 3 variance thresholds.

In conclusion, while the GN-SDE model stands out for its robust performance across
different variance thresholds, the Bayesian GCN model also showcases significant promise.
Both Dropout GAT-GCN and Dropout GN-ODE face challenges in specific metrics, while
the Ensemble GCN displays fluctuating performance.

3.3.3 Generating Graph SDE Data

In our study, we present a Generative Adversarial Network (GAN) model named the Graph
Neural Stochastic Differential Equations GAN (Graph SDE-GAN). This model combines
the generative abilities of GANs to produce graph-structured data with the dynamics of
Stochastic Differential Equations (SDEs). This integration allows the Graph SDE-GAN to
generate graph data with SDE-related features. As a result, the Graph SDE-GAN offers a
mechanism for producing graph data with SDE characteristics, facilitating data analysis and
modeling in various fields.

Additionally, the synthetic data created by the Graph SDE-GAN can be used to train a
Latent Graph SDE model. In scenarios where the original dataset is inherently stochastic
and noisy—attributes that align with a Graph SDE model—but is limited in quantity, the
Graph SDE-GAN can supplement this dataset with synthetic data. This additional data can
be utilized to train the Latent Graph SDE model, addressing challenges related to limited
data availability.

In this graph regression challenge, we engage with a fully connected four-node graph.
Every node carries a feature aligned to a temporal aspect ‘t’. The target is to deduce a
regression outcome, illustrated by the functions cos(t) and sin(t) for the left and right images
in Figure 3.7, respectively. The figures displays the synthetic data, shaped by the nuances of
Stochastic Differential Equations (SDEs), generated by the Graph SDE-GAN. Remarkably,
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Fig. 3.7 Two visualizations of synthetic data from the Graph SDE-GAN, crafted for a four-
node graph regression task. Here, the ‘x’ markers signify the original training data points.

the SDE-GAN exhibits proficiency in data modeling. Notably, as we move away from the
training data’s purview, the model’s uncertainty escalates—aligning with our anticipations.

The Graph SDE-GAN, while promising, presents operational challenges, especially in the
realm of hyperparameter tuning, a topic we delve into in the subsequent section. The potential
and performance of the Graph SDE-GAN demand further examination, and a comparative
study with other GNN generative models could yield valuable insights. However, we defer
such in-depth investigations to future work.

3.4 Limitations

We have introduced the Graph Neural SDE and assessed its performance across a diverse set
of datasets, covering both static and spatio-temporal data. In the majority of datasets tested,
the Graph Neural SDE surpasses other methods, excelling in key metrics such as uncertainty
quantification, out-of-distribution detection, robustness, and active learning.

Drawing upon the "No Free Lunch" theorem (Wolpert and Macready, 1997), we recognize
that no single model is universally optimal across all scenarios. Consequently, our Graph
Neural SDE does come with certain limitations. The primary drawback is its computational
intensity. Compared to GNNs like GAT and GCN, and even Graph Neural ODEs, our model
demands more computational resources. Its computational needs are on par with the Bayesian
GCN, yet less than an ensemble of five GCNs. The root of this computational demand stems
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from the inherent complexity of solving an SDE, which is intrinsically more involved than
an ODE. Consequently, training times for the Graph Neural SDE tend to be longer.

From our empirical studies, we observed that Graph Neural SDE’s training duration is
approximately 1.5 times that of Graph Neural ODEs and about 3 times longer than basic
GNNs. Nevertheless, this increased training time did not pose significant issues in our
experiments.

When we delve deeper into the specific constructs of Graph Neural SDEs, distinct
characteristics emerge between the Latent Graph SDE and the Graph SDE-GAN. While the
Latent Graph SDE has consistently shown robust performance across tasks, the Graph SDE-
GAN has thrown up certain implementation challenges. Specifically, the Graph SDE-GAN
model demands meticulous tuning and optimization to deliver results effectively. Our testing
has shown that this model showcases superior performance when gradient clipping is favored
over the gradient penalty, and the Adadelta optimizer takes precedence over Adam.

These observations bring to the forefront the inherent trade-offs associated with Graph
Neural SDEs. While they offer superior performance, robustness to noise, resistance to
oversmoothing, continuous benefits for time-irregular datasets, a pronounced ability to
quantify prediction uncertainty, and enhanced out-of-distribution detection, one must balance
these advantages against the computational demands they impose and the intricate nuances
of model optimization, especially for the Graph SDE-GAN.

3.5 Related Work

Uncertainty quantification in GNNs has been relatively less explored compared to traditional
neural networks. Among the limited research in this domain, we have benchmarked our
work against key contributions such as the Bayesian Graph Neural Network Lamb and Paige
(2020) and robust ensemble methods (Lin et al., 2022). While there has been significant
research into Gaussian Processes on graphs (Borovitskiy et al., 2021; Lawrence and Jordan,
2004; Pérez-Cruz et al., 2013), we did not include these in our evaluations.

Furthermore, the use of differential equations on graphs is a growing research area, with
most work focused on Graph Neural ODEs (Poli et al., 2019) and Graph Control Differential
Equations (Choi et al., 2022). Graph Neural ODEs have been applied to dynamic graph
classification (Jin et al., 2022; Shi et al., 2023), traffic forecasting (Choi et al., 2022; Liu
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et al., 2023), and protein interface prediction (Tan). Extensions include second-order and
higher-order Graph ODEs (Luo et al., 2023; Zhang et al., 2022).

In the realm of synthesizing graph data using GNNs, a notable trajectory has been the
integration with Generative Adversarial Networks (GANs). Works like GraphGAN (Wang
et al., 2018) sought to enhance graph-based semi-supervised learning. Thereafter, GraphVAE
(Simonovsky and Komodakis, 2018) applied Variational Autoencoders for graph generation.
MolGAN (De Cao and Kipf, 2018), specifically targeted at molecular graphs, has displayed its
niche utility in computational biology and chemistry. These endeavors signify the increasing
importance of GNNs in synthetic data generation, akin to the advancements of GANs in
image and sequence datasets.

While SDEs provide a promising avenue for better uncertainty quantification in differ-
ential equations, their application in graphs has been limited. They have primarily been
employed in Graph Diffusion models for denoising purposes (Huang et al., 2022; Jo et al.,
2022; Luo et al., 2022). In this context, the paper ‘BroNet’ (Bishnoi et al., 2023) is distinct
for its claim to pioneer Graph Neural SDEs. However, its methodology deviates significantly
from our approach as it merely employs a GNN to learn an SDE’s scalar parameter, without
truly modeling the graph as an SDE.

In summary, the integration of differential equations with stochastic dynamics in the
context of graph neural networks is still nascent. Our work aims to be a trailblazer in this
domain, setting the stage for future endeavors in Graph SDE-based techniques.

Summary

In this section, we introduced our innovative model, Graph Neural SDEs, detailing both
its forms: the Latent Graph Neural SDE and the Graph SDE-GAN. We demonstrated that
the (Latent) Graph Neural SDE outperforms in various metrics tested, including accuracy,
robustness, uncertainty quantification, resistance to oversmoothing, and efficient data collec-
tion through active learning. We acknowledged the higher computational demands of our
model compared to others and addressed the specific limitations associated with the Graph
SDE-GAN, particularly concerning hyperparameter tuning. Additionally, we provided an
overview of related work in the field. With these discussions, we conclude this chapter and
transition to our final section to wrap up the dissertation.



Chapter 4

Conclusion

In this study, our primary contribution is the introduction of the Latent Graph Stochastic
Differential Equations (Latent Graph SDE) model, tailored for advanced tasks such as
node, graph, and link prediction. In addition to this primary model, we have also presented a
novel approach for synthetic data generation — the Graph Neural Stochastic Differential
Equations Generative Adversarial Network (Graph SDE-GAN). By integrating the
dynamics of Stochastic Differential Equations (SDEs) within a Generative Adversarial
Network (GAN) framework, the Graph SDE-GAN emerges as a potent tool for producing
graph-structured data with SDE characteristics. Conversely, the Latent Graph SDE model is
tailored for tasks such as node, graph, and link prediction.

Our experimental results reveal that the (latent) Graph Neural SDEs consistently out-
perform contemporaneous models such as the Baysian GCN, Ensemble GCN, and Graph
Neural ODEs and GCNs. The metrics where our model took the lead include uncertainty
quantification, out-of-distribution detection, robustness, and active learning.

The unanticipated edge in accuracy displayed by our model compared to the Graph Neural
ODE might be rooted in the inherent noise incorporated within the differential equations of
our Graph Neural SDEs. This intrinsic noise, infused during each epoch or batch of training,
can be analogized to the data augmentation techniques used in conventional machine learning.
Consequently, the model regularly interacts with slightly altered data versions, which might
bolster its robustness, leading to enhanced generalization during testing. This hypothesis
warrants future exploration — perhaps by comparing a Graph Neural ODE trained on
noise-augmented data and assessing the resulting accuracy differences.
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While our findings underscore the prowess of Graph Neural SDEs compared to their
counterparts like Graph Neural ODEs, this supremacy is not without its complications.
The nature of SDEs is inherently intricate, necessitating more computational power. This
complexity is largely due to the integration costs tied to SDEs, typically surpassing those of
ODEs.

To conclude, our work with the Latent Graph SDE and the Graph SDE-GAN not only
bridges a research gap but also paves the way for future endeavors in the integration of
stochastic differential equations with graph neural networks, fostering advancements in both
methodology and application domains. And provides a new Graph-based model which hable
to sucessefuly qunatify the uncertianty of the predictions.

4.1 Future Work

The journey into Graph Neural SDEs has illuminated several promising avenues that beckon
deeper exploration.

Comparison of Graph SDE-GAN with Contemporary Graph Generative Models: A
direct comparison of our Graph SDE-GAN with state-of-the-art graph generative models
would provide valuable insights into its standing within the synthetic data generation ecosys-
tem. By pitting it against established models such as GraphVAE, GraphGAN, and MolGAN,
we aim to identify its unique strengths, potential shortcomings, and areas for refinement.

Bayesian Neural Network SDE with Ornstein-Uhlenbeck Prior over the weights: A
particularly promising direction is building upon the Bayesian Neural Network SDE utilizing
an Ornstein-Uhlenbeck prior for its weights, as elucidated by Xu et al. (2022). There exists
an enticing possibility to extend this paradigm to graph structures, creating Graph Bayesian
Neural Network SDEs (Graph BNN-SDEs).

Adaptation of Advancements in PDEs: The recent innovations in Partial Differential
Equations presented by Sun et al. (2020) offers an intriguing template. By harnessing a latent
method akin to the one in our work, there lies the potential to craft Graph Stochastic Partial
Differential Equations (Graph SPDEs) tailored for intricate graph contexts.
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Integration of Higher-order SDEs: The fusion of higher-order stochastic differential
equations with the Latent Graph Neural SDE we’ve pioneered could open new doors. Such
integrations may serve as potent tools in the nuanced modeling of complex systems, capturing
their dynamics with even greater fidelity.

Infusing Authentic Stochasticity in Deterministic Models: In our current exploration,
we ventured into introducing stochasticity to deterministic models like the Graph Neural
ODE and GNNs (e.g., GCN and GAT) through dropout at inference, inspired by Yarin
Gal’s methodology. While effective, this strategy might not capture the intricate randomness
inherent in systems steered by Stochastic Differential Equations (SDEs). A compelling next
step would be to integrate Gillespie’s algorithm, famed for its stochastic simulations in
biochemical realms, as a conduit to seed genuine stochastic dynamics into Neural ODEs.
By emulating the organic noise observed in real-world scenarios, this fusion could usher in
neural architectures that harmoniously blend the determinism’s stability with the vibrancy of
stochastic dynamics, refining their prowess in tasks where organic system noise takes center
stage.

In wrapping up this dissertation and as we set our sights on future investigations, it’s
evident that the field is full of opportunities. We take pride in having contributed significantly
to the realm of uncertainty-aware graph-based machine learning throughout this work.
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Appendix A

Extended Backgorund

A.1 The Adjoint Method for Neural ODEs and Neural
SDEs

A.1.1 Neural ODEs

Neural Ordinary Differential Equations (ODEs) provide a framework to represent continuous-
time dynamics. An instance of a Neural ODE can be formulated as:

dz
dt

= f (z(t), t,θ) (A.1)

In this formulation, z(t) denotes the evolving state at time t, while θ encapsulates the param-
eters governing the function f .

Given an initial condition z(t0), the resultant state at t1 is represented as z(t1). In the context
of training Neural ODEs, a pertinent task involves the computation of the gradient:

∂L
∂θ

=
∂L

∂ z(t1)
∂ z(t1)

∂θ
(A.2)

Here, L stands for a designated loss function contingent upon z(t1).

To facilitate an efficient gradient calculation, we introduce an auxiliary concept termed
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the adjoint state, represented as:

a(t) =
∂L

∂ z(t)

This adjoint state’s temporal evolution is encapsulated by the relationship:

da(t)
dt

=−a(t)
∂ f
∂ z

(A.3)

Remarkably, this differential equation offers solutions through a backward time integration,
spanning from t1 to t0.

The culmination of this methodology allows us to express the gradient concerning the
parameters as:

dL
dθ

=
∫ t1

t0
a(t)

∂ f
∂θ

dt (A.4)

Definition: The Adjoint State serves as an intermediary state, evolving inversely with
time. It acts as the cornerstone for the efficacious computation of gradients within the
realm of Neural ODEs.

Remark: The adjoint technique emerges as a memory-efficient strategy. It circumvents
the need to persistently store intermediate activations, a prevailing bottleneck in deep
learning architectures. Augmenting Neural ODEs with the adjoint methodology further
bequeaths them with the prowess of adaptive depth, honing itself based on data intricacies.

A.1.2 Neural Stochastic Differential Equations

Embarking upon the domain of stochastic differential equations (as defined in Definition
2.1.3), we propose a neural stochastic differential equation (SDE) expressed as :

dZt = f (Zt , t,θ)dt +g(Zt , t,θ)dWt (A.5)

Within this portrayal, Zt symbolizes the state at an arbitrary time t. Here, f operates as the
drift function, g delineates the diffusion function, θ encompasses the model’s parameters,
and Wt denotes a canonical Wiener process.
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The overarching objective revolves around deducing the gradient dL
dθ

of a specified loss
function L, relative to the parameters θ .

Derivation of the Adjoint Equations for Neural SDEs

A pivotal tool in our arsenal, Ito’s lemma, facilitates discerning the dynamics of the gradient
derivative d

dt

(
dL
dZt

)
as:

d
dt

(
dL
dZt

)
=−

(
dL
dZt

)(
∂ f
∂Zt

)
−0.5

(
dL
dZt

)(
∂g
∂Zt

)(
∂g
∂Zt

)T

(A.6)

The above dynamics, in tandem with the original forward SDE, embodies a symphony of
coupled forward-backward SDEs.

Enlisting the aid of the chain rule, we extrapolate dL
dθ

in terms of dL
dZt

and dZt
dθ

:

dL
dθ

=

(
dL
dZt

)(
dZt

dθ

)
(A.7)

Differentiating the rudimentary SDE concerning θ , we infer:

d
dt

(
dZt

dθ

)
=

(
∂ f
∂Zt

)T dZt

dθ
+

∂ f
∂θ

+

(
∂g
∂Zt

)T dZt

dθ

∂g
∂θ

(A.8)

This expression epitomizes the adjoint SDE. Noteworthily, by integrating this system in a
reverse temporal direction, one can compute the gradient dL

dθ
with heightened efficiency.

Remark: The adoption of the adjoint methodology for Neural SDEs is firmly anchored
in its roots within stochastic calculus. This framework promises a methodologically robust
and efficient means to extract gradients within neural stochastic differential systems. This
is accomplished without incurring the computational overhead of exorbitant memory
allocation.
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A.2 Mathematics

A.2.1 Interpretations of Stochastic Integrals

When integrating stochastic processes, especially when dealing with Brownian motion,
ambiguity arises concerning the interpretation of the integral due to the inherently non-
smooth nature of such processes. Two of the most prominent interpretations in the literature
are the Itō and Stratonovich interpretations.

A.2.2 Itō Interpretation

The Itō interpretation is arguably the more widespread and commonly used of the two,
particularly in finance and related disciplines (Itô, 1944). It integrates with respect to the
left-hand limit, inherently assuming a non-anticipative nature.

Definition: Given a stochastic process X(t) defined by the SDE:

dX(t) = α(t)dt +β (t)dW (t) (A.9)

The Itō integral over the interval [0, t] is defined as:∫ t

0
β (s)dW (s) (A.10)

Where the integration essentially sums up all the tiny random increments of W (s)
weighted by β (s) over the interval.

A.2.3 Stratonovich Interpretation

The Stratonovich interpretation finds its roots in physics and provides a more intuitive inter-
pretation when considering physical systems (Stratonovich, 1966). Unlike Itō’s interpretation,
which is non-anticipative, the Stratonovich interpretation uses the midpoint for integration,
inherently accounting for the anticipative nature of the system.
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Definition: Given the same stochastic process X(t) defined by the SDE:

dX(t) = α(t)dt +β (t)◦dW (t) (A.11)

The Stratonovich integral over the interval [0, t] is denoted by the "circle" notation (◦)
and defined similarly as: ∫ t

0
β (s)◦dW (s) (A.12)

However, in this interpretation, the integrand β (s) is evaluated at the midpoint of the
interval.

Remark: The choice between Itō and Stratonovich integrals often depends on the prob-
lem at hand. While Itō’s interpretation is non-anticipative and therefore often preferred
in finance where anticipative strategies are inherently non-feasible, the Stratonovich in-
terpretation, being more physically intuitive, is often chosen for problems in physics.
Importantly, one can convert between the two forms using the so-called Stratonovich-Itō
correction.

A.2.4 Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck (OU) process stands as an integral pillar for comprehending spe-
cific types of Stochastic Differential Equations (SDEs) (Uhlenbeck and Ornstein, 1930).
Frequently invoked to capture the dynamics of a Brownian particle under the sway of friction,
the OU process functions as the continuous-time counterpart of the first-order autoregressive
model, commonly denoted as AR(1).

Definition: The equation governing the Ornstein–Uhlenbeck process, X(t), is repre-
sented by the following Stochastic Differential Equation (SDE):

dX(t) = θ(µ −X(t))dt +σdW (t) (A.13)

In this formulation, θ > 0 denotes the rate at which the process reverts to its mean. The
term µ signifies the long-term mean that the process gravitates towards. The parameter
σ > 0 describes the volatility inherent in the process, and W (t) is recognized as a Wiener
process or Brownian motion.
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Remark: Several crucial properties characterize the Ornstein–Uhlenbeck process. Fore-
most, as t advances towards infinity, the process inclines towards a mean µ , possessing a
variance equal to σ2

2θ
. Additionally, when t reaches infinity, the stationary distribution of

the process assumes a Gaussian distribution. This distribution is distinguished by a mean
µ and variance σ2

2θ
. It’s also worth noting that the Ornstein–Uhlenbeck process enjoys

applications within the financial sector, particularly in rendering models for interest rates
and exchange rate behaviors.

A.2.5 Lipschitz Continuity in Neural Networks and SDEs

The Lipschitz continuity plays an indispensable role in the study of Stochastic Differential
Equations (SDEs) and neural networks (Higham, 2001; Rahaman et al., 2019). This continuity
condition ensures the boundedness of the rate of change of functions, which, in the realm of
SDEs, becomes pivotal for ascertaining the existence and uniqueness of solutions.

Definition: Given a function f : Rn → Rm, it adheres to the Lipschitz condition within
a domain D if there’s a positive real constant L, termed the Lipschitz constant. For any
pair of points x,y residing in D, the following relationship must be maintained:

∥ f (x)− f (y)∥ ≤ L∥x− y∥

The implications of this condition are twofold. Firstly, it prevents the function f from
exhibiting abrupt changes or exceedingly steep slopes between any two points. Secondly,
while it embodies a stronger continuity requirement, the Lipschitz condition offers a
systematic mechanism to control the variations a function may experience.

Remark: Consider a typical SDE expressed as:

dz(t) = f (t,z(t))dt +g(t,z(t))dW (t),

where f denotes the drift coefficient and g the diffusion coefficient. By ensuring Lipschitz
conditions for both f and g with respect to z, we ensure that for a constant t, any alterations
in z will not lead to rapid changes in the functions f and g. Such a guarantee is crucial as
it asserts the existence of a unique strong solution for the SDE, implying that the solution
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z(t) correlates to the underlying Wiener process W (t) in a manner that’s deterministically
unique.

However, it’s important to highlight that while Lipschitz conditions facilitate an easy
pathway to deduce the existence and uniqueness of solutions, they are not always impera-
tive. There exist SDEs with coefficients that do not adhere to Lipschitz conditions, yet still
possess unique solutions. Nevertheless, in a plethora of practical scenarios, the coefficients
in focus usually respect the Lipschitz constraints.

A.3 Evaluation Metrics

In predictive modeling, it is essential to have reliable metrics to evaluate the performance
of the models. This section provides a brief overview of three commonly used evaluation
metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE).

A.3.1 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a frequently used measure of the differences between
values predicted by a model and the values observed. It is especially useful when large errors
are particularly undesirable. The RMSE of a model prediction with respect to the estimated
variable X is defined as:

RMSE =

√
1
n

n

∑
i=1

(Xi − X̂i)2 (A.14)

where Xi denotes the observed values, X̂i denotes the predicted values, and n is the total
number of observations.
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A.3.2 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is a measure of errors between paired observations express-
ing the same phenomenon. It is less sensitive to outliers compared to RMSE. The MAE is
given by:

MAE =
1
n

n

∑
i=1

|Xi − X̂i| (A.15)

where Xi denotes the observed values, X̂i denotes the predicted values, and n is the total
number of observations.

A.3.3 Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy of a
forecasting method in statistics. It usually expresses the accuracy as a percentage, and is
defined by the formula:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Xi − X̂i

Xi

∣∣∣∣ (A.16)

where Xi denotes the observed values, X̂i denotes the predicted values, and n is the total
number of observations. Note that MAPE is undefined for Xi = 0 and can take on large values
if some Xi are close to zero.
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Extended Results

B.1 Static Toy Data set

Number of Nodes Graph Neural ODE GNN Graph Neural SDE

100
Train: 0.7755 ± 0.138 Train: 0.7865 ± 0.105 Train: 0.8135 ± 0.077
Test: 0.532 ± 0.116 Test: 0.446 ± 0.103 Test: 0.662 ± 0.152

200
Train: 0.7525 ± 0.144 Train: 0.8298 ± 0.110 Train: 0.8157 ± 0.081
Test: 0.786 ± 0.161 Test: 0.871 ± 0.140 Test: 0.912 ± 0.116

500
Train: 0.7088 ± 0.140 Train: 0.8012 ± 0.114 Train: 0.8187 ± 0.097
Test: 0.7516 ± 0.154 Test: 0.8576 ± 0.138 Test: 0.8836 ± 0.098

1000
Train: 0.7417 ± 0.158 Train: 0.7893 ± 0.144 Train: 0.8931 ± 0.096
Test: 0.777 ± 0.178 Test: 0.8178 ± 0.162 Test: 0.9478 ± 0.107

2500
Train: 0.7629 ± 0.169 Train: 0.81 ± 0.152 Train: 0.9187 ± 0.113
Test: 0.7822 ± 0.181 Test: 0.8174 ± 0.172 Test: 0.9394 ± 0.126

5000
Train: 0.7729 ± 0.175 Train: 0.813 ± 0.158 Train: 0.9303 ± 0.121
Test: 0.7843 ± 0.183 Test: 0.8255 ± 0.164 Test: 0.9434 ± 0.122

10000
Train: 0.7534 ± 0.192 Train: 0.8219 ± 0.157 Train: 0.9346 ± 0.122
Test: 0.7587 ± 0.197 Test: 0.8314 ± 0.160 Test: 0.9446 ± 0.122

Table B.1 Training and Test Accuracy for Different Models and Number of Nodes, 80 percent
traning
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The table in B.1 provides a comparative analysis of the performance of three distinct models:
GN-ODE, GNN , and GN_SDE, across various graph sizes determined by the number of
nodes. The performance metrics utilized for the comparison are training and test accuracies,
with results represented as mean values of 25 runs accompanied by standard deviations.

From the results, it becomes evident that the GN_SDE model consistently exhibits superior
performance in test accuracy across all graph sizes. This superior performance becomes even
more pronounced as the number of nodes in the graph increases. In the realm of training
accuracies, while GN_SDE and GNN show comparable results for smaller graph sizes,
GN_SDE manifests a discernible lead for larger graphs, specifically those with node counts
exceeding 1000.

Furthermore, the GN_SDE model generally showcases smaller standard deviations, par-
ticularly in test accuracies, hinting at more consistent and reliable results. On the contrary,
GN-ODE, although competitive in some scenarios, does not scale as effectively as its coun-
terparts, especially for larger graphs.

In summation, the GN_SDE model emerges as the most robust and effective model, es-
pecially in test scenarios and larger graphs, showcasing both enhanced performance and
consistency.

The table presented in B.2 showcases a systematic evaluation of three distinctive models,
namely the Graph Neural ODE (GN-ODE), Graph Neural Network (GNN), and Graph
Neural SDE (GN-SDE). The comparison is pivoted around performance metrics derived
from varying training percentages from a dataset that comprises 200 training samples.

A close inspection of the results reveals a consistent trend: the GN-SDE model generally
surpasses its counterparts in both training and test accuracies, especially at higher training
percentages. While the GN-SDE and GNN exhibit closely aligned training accuracies, the
GN-SDE demonstrates a clear advantage in test scenarios, indicating its better generalization
capabilities. This advantage becomes progressively prominent as the training percentage
escalates.

Moreover, the standard deviation values embedded in the results highlight the consistency
of each model. GN-SDE often exhibits the smallest standard deviations in test accuracies,
suggesting that its performance is not just superior but also more consistent across different
data splits.
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Training Percentage Graph Neural ODE GNN Graph Neural SDE

10%
Train: 0.85 ± 0.091 Train: 0.85 ± 0.009 Train: 0.884 ± 0.087
Test: 0.555 ± 0.091 Test: 0.590 ± 0.009 Test: 0.662 ± 0.087

20%
Train: 0.752 ± 0.150 Train: 0.743 ± 0.083 Train: 0.77 ± 0.112
Test: 0.634 ± 0.150 Test: 0.652 ± 0.083 Test: 0.778 ± 0.112

30%
Train: 0.73 ± 0.123 Train: 0.77 ± 0.109 Train: 0.763 ± 0.114
Test: 0.708 ± 0.123 Test: 0.705 ± 0.109 Test: 0.801 ± 0.114

40%
Train: 0.73 ± 0.134 Train: 0.799 ± 0.119 Train: 0.765 ± 0.108
Test: 0.739 ± 0.134 Test: 0.783 ± 0.119 Test: 0.826 ± 0.108

50%
Train: 0.738 ± 0.137 Train: 0.807 ± 0.115 Train: 0.79 ± 0.086
Test: 0.732 ± 0.137 Test: 0.773 ± 0.120 Test: 0.828 ± 0.098

60%
Train: 0.735 ± 0.134 Train: 0.769 ± 0.116 Train: 0.791 ± 0.090
Test: 0.755 ± 0.137 Test: 0.768 ± 0.144 Test: 0.833 ± 0.110

70%
Train: 0.739 ± 0.137 Train: 0.792 ± 0.115 Train: 0.795 ± 0.089
Test: 0.768 ± 0.145 Test: 0.799 ± 0.119 Test: 0.838 ± 0.101

80%
Train: 0.741 ± 0.136 Train: 0.79375 ± 0.112 Train: 0.80375 ± 0.083
Test: 0.762 ± 0.146 Test: 0.821 ± 0.137 Test: 0.855 ± 0.108

90%
Train: 0.734 ± 0.136 Train: 0.771 ± 0.125 Train: 0.809 ± 0.088
Test: 0.768 ± 0.147 Test: 0.792 ± 0.126 Test: 0.856 ± 0.102

Table B.2 Training and Test Accuracy for Different Models and Training Percentages 200
traning dataset.

In conclusion, among the three models scrutinized, the GN-SDE consistently demonstrates a
robust performance, with a particular inclination towards delivering higher test accuracies.
This performance metric emphasizes its potential as the preferred model for tasks where
training data can vary in size.

The table above presents the performance of three distinct models: GN-ODE, GNN, and
GN-SDE, trained on varying percentages of data. The test accuracies are assessed based on
different entropy thresholds, which serve as a confidence measure. Specifically, a smaller
entropy value suggests a higher confidence in predictions, and only predictions with an
entropy smaller than a given threshold are considered.

From the results, several insights can be extracted:

1. Across all training percentages, the GN-SDE consistently outperforms the GN-ODE
and GNN models at nearly all entropy thresholds. This suggests that the GN-SDE
model is more robust and confident in its predictions, making it preferable for tasks
that require out-of-distribution detection.
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Trained % Models
Entropy Threshold

1.58 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10%
GN-ODE 0.5549 0.5569 0.5585 0.5597 0.5627 0.5744 0.5811 0.5859 0.5937 0.6050 0.6242

GNN 0.5898 0.5898 0.5898 0.5898 0.5898 0.5925 0.5928 0.5944 0.5925 0.5942 0.5966
GN-SDE 0.6616 0.6672 0.6747 0.6880 0.7139 0.7419 0.7716 0.8028 0.8302 0.8474 0.8604

20%
GN-ODE 0.6335 0.6342 0.6344 0.6366 0.6429 0.6592 0.6696 0.6794 0.6926 0.7050 0.7277

GNN 0.6517 0.6517 0.6517 0.6517 0.6517 0.6568 0.6608 0.6634 0.6664 0.6683 0.6726
GN-SDE 0.7778 0.7865 0.7990 0.8598 0.8844 0.9054 0.9196 0.9326 0.9451 0.9519 0.9696

30%
GN-ODE 0.7083 0.7115 0.7147 0.7187 0.7287 0.7505 0.7628 0.7773 0.7894 0.8049 0.8208

GNN 0.7054 0.7057 0.7056 0.7056 0.7058 0.7123 0.7180 0.7202 0.7253 0.7306 0.7377
GN-SDE 0.8009 0.8131 0.8311 0.8598 0.8844 0.9054 0.9196 0.9326 0.9451 0.9519 0.9696

40%
GN-ODE 0.7387 0.7386 0.7400 0.7460 0.7542 0.7860 0.8051 0.8158 0.8230 0.8348 0.8534

GNN 0.7833 0.7838 0.7849 0.7850 0.7856 0.7939 0.7983 0.8024 0.8078 0.8163 0.8279
GN-SDE 0.8260 0.8412 0.8608 0.8837 0.9094 0.9297 0.9475 0.9623 0.9681 0.9727 0.9817

50%
GN-ODE 0.7324 0.7330 0.7368 0.7420 0.7514 0.7780 0.7938 0.8082 0.8291 0.8410 0.8567

GNN 0.7728 0.7730 0.7733 0.7736 0.7736 0.7856 0.7900 0.7958 0.7996 0.8066 0.8186
GN-SDE 0.8280 0.8337 0.8494 0.8753 0.9027 0.9235 0.9426 0.9551 0.9664 0.9742 0.9816

60%
GN-ODE 0.7550 0.7553 0.7576 0.7635 0.7702 0.7984 0.8150 0.8310 0.8423 0.8640 0.8897

GNN 0.7680 0.7680 0.7678 0.7692 0.7693 0.7855 0.7908 0.7964 0.8031 0.8104 0.8148
GN-SDE 0.8325 0.8438 0.8667 0.8911 0.9223 0.9422 0.9565 0.9682 0.9771 0.9753 0.9827

70%
GN-ODE 0.7680 0.7679 0.7679 0.7680 0.7752 0.8060 0.8237 0.8352 0.8514 0.8782 0.8812

GNN 0.7993 0.7993 0.8011 0.8016 0.8020 0.8184 0.8223 0.8282 0.8330 0.8384 0.8457
GN-SDE 0.8380 0.8527 0.8662 0.8934 0.9165 0.9349 0.9505 0.9701 0.9726 0.9791 0.9747

80%
GN-ODE 0.762 0.763 0.764 0.765 0.774 0.800 0.825 0.846 0.862 0.879 0.883

GNN 0.821 0.821 0.821 0.821 0.821 0.834 0.843 0.851 0.855 0.859 0.866
GN-SDE 0.855 0.856 0.861 0.877 0.892 0.914 0.930 0.939 0.952 0.971 0.974

90%
GN-ODE 0.768 0.770 0.773 0.771 0.782 0.804 0.818 0.828 0.833 0.850 0.865

GNN 0.792 0.792 0.792 0.792 0.792 0.806 0.807 0.813 0.818 0.820 0.828
GN-SDE 0.856 0.858 0.862 0.883 0.906 0.927 0.939 0.955 0.978 0.985 1.0

Table B.3 Test accuracies of GN-ODE, GNN, and GN-SDE models across varying training
percentages and entropy thresholds. Lower entropy thresholds represent higher confidence
levels in model predictions.

2. As the training percentage increases, there is a general trend of improvement in
accuracy across all models and most entropy thresholds. This implies that with more
training data, the models become more confident and accurate in their predictions.

3. When considering lower entropy thresholds (indicating higher confidence levels), the
gap in performance between the models becomes more pronounced. Particularly, the
GN-SDE model’s superiority is more evident, suggesting that it is significantly more
reliable when making highly confident predictions.

4. For certain models, especially the GNN, the accuracy tends to remain consistent across
a range of entropy thresholds. This indicates that the model’s predictions do not
significantly change in confidence across these thresholds, potentially highlighting
limitations in its ability to gauge its own uncertainty.

In conclusion, when evaluating models for out-of-distribution detection using entropy
as a measure of confidence, the GN-SDE emerges as the most promising choice. Moreover,
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increasing the training data percentage generally leads to improved performance, emphasizing
the importance of training on extensive datasets for enhanced model confidence and accuracy.

B.1.1 Meter-LA Experiment Set Up

In our experiments, we utilized Graph Attention Networks (GAT) to embed the input data,
which consisted of the past six recordings. These inputs were embedded into 64-dimensional
tensors. Subsequently, these embeddings were passed to our Latent Graph Stochastic Differ-
ential Equation (SDE) model. The Graph Latent SDE model employs a GCN for the drift
function, while the diffusion function is held constant at a value of 1. The hidden state of the
model is of size 64, which is then passed to a GCN projection layer for prediction.

The Graph Neural ODE model follows a similar structure but replaces the SDE with an
ODE and omits the noise component. The GCN model also utilizes the same embedding and
projection layers but bypasses the differential equations entirely.

This setup allows for a fair comparison between the models, as they share the same embedding
and projection layers, differing only in the differential equation component.

B.1.2 Spatial-Temporal Images
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Fig. B.1 The figure displays 12 images organized. Each column corresponds to one of the
3 nodes, while each row represents a different model or dataset. The top row illustrates the
training and testing datasets for each node, in the context of node regression. The aim is to
predict the regression value for each node. The second row presents results from the GCN,
the third row showcases those from the Graph Neural ODE, and the bottom row depicts our
model, the Graph Neural SDE.
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